
An Approach to Incorporating Uncertainty in Network
Security Analysis

Hoang Hai Nguyen
hnguye11@illinois.edu

Kartik Palani
palani2@illinois.edu

David M. Nicol
dmnicol@illinois.edu

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

Urbana, IL 61801

ABSTRACT
Attack graphs used in network security analysis are analyzed
to determine sequences of exploits that lead to successful ac-
quisition of privileges or data at critical assets. An attack
graph edge corresponds to a vulnerability, tacitly assuming
a connection exists and tacitly assuming the vulnerability
is known to exist. In this paper we explore use of uncer-
tain graphs to extend the paradigm to include lack of cer-
tainty in connection and/or existence of a vulnerability. We
extend the standard notion of uncertain graph (where the
existence of each edge is probabilistically independent) how-
ever, as significant correlations on edge existence probabil-
ities exist in practice, owing to common underlying causes
for dis-connectivity and/or presence of vulnerabilities. Our
extension describes each edge probability as a Boolean ex-
pression of independent indicator random variables. This
paper (i) shows that this formalism is maximally descrip-
tive in the sense that it can describe any joint probability
distribution function of edge existence, (ii) shows that when
these Boolean expressions are monotone then we can eas-
ily perform uncertainty analysis of edge probabilities, and
(iii) uses these results to model a partial attack graph of the
Stuxnet worm and a small enterprise network and to an-
swer important security-related questions in a probabilistic
manner.

1. INTRODUCTION
As computers become more ubiquitous in critical infras-

tructures, evaluating the effect of vulnerabilities becomes
increasingly important. In order to make decisions about
defense measures, it is vital to study the paths that an at-
tacker might take to intrude into a target network and dis-
rupt services. The attack graph formalism [16] is a repre-
sentation of the possible ways in which an attacker can get
to the desired target host by exploiting vulnerabilities on
network hosts while gaining the required privileges at each
step. The first step in attack graph generation is analyzing
the connectivity of the network components and is termed
as reachability analysis [11]. This information is used to de-
termine if a target host is reachable by an attacker from his
current host. Ideally, information about the network topol-
ogy of the target network, applications running on network
hosts, access control rules for the network, and the trust rela-
tionships between hosts is known to the modeler. Accuracy
and exhaustiveness of network configuration information di-
rectly affects accuracy of the generated attack graph [14].

Despite being a useful and well-developed tool, attack

graphs have deterministic semantics and hence are not ca-
pable of expressing uncertainty [18], which is inherent to
any model. To our interest, uncertainty arises mainly from
three sources: the uncertainty about the attacker (e.g. his
skill set, goal, and knowledge), about the system being mod-
eled (e.g. the versions and configuration details of network
services and their associated vulnerabilities), and about the
environment in which the system is operated (including the
legitimate users and administrators). In each category, un-
certainty may also come in different shapes, either due to the
lack, inadequacy, inaccuracy, or sometimes inconsistency of
information. Ideally we should be able to both use an at-
tack graph to identify possible pathways of attack, but also
quantify uncertainty about those pathways.

This paper aims to integrate uncertainty into security
modeling and analysis of computer systems. As a first step,
we choose to focus only on studying uncertainty about the
system. Hence, uncertainties about the attacker and the en-
vironment (and their implications) will not be considered.
Under this assumption, we propose to use uncertain graphs,
graphs where potential edges are labeled with an existence
probability. Uncertain graphs have been successfully applied
to various problems in different domains [2] [26] [8] [9]. We
use it to analyze uncertainty of the existence of stepping
stone attacks encoded in data structures like attack graphs.
However, the usual definition of uncertain graph assumes
edges exist independently of each other [10] [12] [13], a ma-
jor issue when applying to security modeling, e.g., as one
vulnerability may simultaneously enable attacks from mul-
tiple hosts. Furthermore, existing uncertain graph research
does not consider the precision of connectivity subjected to
changes (or uncertainty) in edge existence; in other contexts,
uncertainty analysis tell us in what cases, a robust conclu-
sion can be made in the face of model input uncertainty.

A major portion of this paper aims to address those two
issues. For the first issue, we extend the uncertain graph
formalism and model the correlation between edge existence
due to common underlying causes. We describe common
causes using independent indicator random variables and
use Boolean expressions of these to express the edge ex-
istence probabilities. For the second issue, we show how
uncertainty analysis of uncertain graphs can be easily done
when the Boolean expressions are monotone [4], i.e. they
do not use negation of random variables. In summary, our
contributions are fourfold:

1. To the best of our knowledge, we are the first to pro-
pose uncertain graphs for security modeling and anal-
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ysis of system with uncertainty.

2. We extend the traditional uncertain graph formalism
to model the correlation between edge existence and
prove theoretical results about the expressiveness of
uncertain graphs.

3. We perform uncertainty analysis of uncertain graphs
by leveraging the monotonicity of reachability.

4. We show how to use uncertain graphs to model systems
with uncertainty and how the graphs help answering
different security-related questions about the modeled
systems in a probabilistic manner.

The rest of the paper is organized as follows: Section 2
discusses background, Section 3 extends the uncertain graph
formalism and prove some theoretical results, Section 4 per-
forms uncertainty analysis of uncertain graphs, Section 5
and 6 show two modeling examples, Section 7 discusses re-
lated works, and Section 8 concludes the paper.

2. BACKGROUND

Symbols Definitions

V set of vertices
s, t vertices in V , start and end point of attack
n size of V
E set of edges
m size of E
G deterministic graph

E(G) set of edges in G
ΓV set of all det. graphs with vertex set V

N size of ΓV which is 2n(n−1)

p probability assignment vector
X set of random variables
r size of X

∧,∨,¬ logic operator AND, OR, NOT
q function that assigns boolean exp. to edges
G uncertain graph (basic and extended)

wG,G the probability of G in G
f stochastic mapping
Rs,t reachability of deterministic graph
Rs,t reachability of uncertain graph

[0, 1]m unit hypercube of dimension m
Hp,ε hyperrectangle containing p

Table 1: Summary of notations

2.1 Attack graph and scenario graph
The operation of systems can be modeled to be in different

states at different instants of time. While most states might
be benign, there exist critical states that can lead the system
to failure. A failure scenario is described as a sequence of
events that violate a correctness property defined for the
system. A scenario graph [24] is an exhaustive and succinct
representation of all failure scenarios. A special case of the
scenario graph is an attack graph.

An attack graph models the possible ways an attacker
might get access to a critical asset by exploiting a set of vul-
nerabilities on the services running on the hosts. The ver-
tices of the graph represent the privilege level of the attacker
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Figure 1: A 4-vertex, 5-edge uncertain graph and
three of its 32 possible worlds. In security modeling,
s denotes the starting point (e.g. a compromised
computer in the network) and t the ending point of
the attack (e.g. a critical computer that the attacker
wants to gain access to).

on the network host and the edges represent the vulnerabil-
ity that the attacker could exploit [22]. Traditionally, teams
of experts have looked at the services running on hosts to
determine vulnerability information and have coupled this
with network information, such as the connectivity of hosts,
to build out these attack graphs. However, this information
is not always readily available, which makes it important to
account for uncertainty in the models.

2.2 Overview of uncertain graphs
Uncertain graphs extend the definition of deterministic

graph by ascribing to each of a deterministic graph’s edges
an existence probability [19] [10] [13]. Formally, let G =
(V,E) denote a deterministic graph1 where V = {V1, . . . , Vn}
and E = {E1, . . . , Em} are the set of vertices and edges. The
uncertain graph G = (V,E, p), where p = (p1, . . . , pm) ∈
(0, 1]m, allows each edge Ei ∈ E to exist independently of
each other and with probability pi for i = 1, . . . ,m. We
call p the probability assignment vector of E. An uncer-
tain graph may contain both certain edges – edges that
exist with probability one – and uncertain edges – edges
that exist with probability strictly less than one. When all
edges are certain edges, the uncertain graph degenerates to
a deterministic graph. In the literature, uncertain graphs
are sometimes treated as generative models of deterministic
graphs [19] [10]. With this view, every deterministic graph
G = (V,E′) where E′ ⊆ E is called a possible world (or
possible outcome) of G. Slightly abusing the notation, we
denote this as G ∈ G. G generates an exponential number

of 2m
′

possible worlds, each G = (V,E′) with probability:

wG,G =
∏

Ei∈E′

pi
∏

Ei∈E\E′

(1− pi)

where m′ ≤ m is the number of uncertain edges in G. For
example, the probability of Gi in G (Figure 1) is wGi,G =
p1p2(1− p3)(1− p4)p5. Obviously wG,G ∈ (0, 1] ∀G ∈ G and
the law of total probability dictates that

∑
G∈G wG,G = 1.

1we only consider simple directed graphs



An uncertain graph distinguishes itself from a Bayesian
network [27] [29], which was designed to model causal ef-
fects. While Bayesian networks are acyclic, cyclic relation-
ship arises from many practical situations and is allowed
in uncertain graphs. [27] circumvented the problem with
cycles, but the technique had to rely on metric-dependent
property. Uncertain graphs also do not assume the state
transition modeled in transition systems [3] (e.g. Markov de-
cision processes, probabilistic automata). Such transitions
have a subtle drawback in security modeling of computer
networks since an attacker does not “jump” from one place
to the other. Instead, he gains access to more and more
places as the attack progresses and is capable of showing up
at multiple places at the same time.

2.3 Properties of uncertain graphs
For any given graph property, e.g., reachability from ver-

tex s to vertex t, a deterministic graph has the property
or does not have it. Since edges in an uncertain graph are
random, we will speak of the probability that an uncertain
graph has a given property, as the sum of the probabilities
of graphs in its possible worlds that possess that property.
We are particularly interested in reachability.

Using mathematical symbols, let function Rs,t(G) denote
the reachability of the deterministic graph G, which evalu-
ates to 1 if s reaches t in G and to 0 otherwise. In Figure 1,
Rs,t(Gi) = Rs,t(G32) = 1 and Rs,t(G1) = 0. The reachabil-
ity of the uncertain graph G is defined as:

Rs,t(G) =
∑
G∈G

wG,G Rs,t(G)

=
∑
G∈G

 ∏
Ei∈E(G)

pi
∏

Ei∈E\E(G)

(1− pi) Rs,t(G)


(1)

where E(G) denotes the set of edges in G. Using Equation
1, the reachability of the uncertain graph in Figure 1 can be
computed as follows (after simplification):

Rs,t(G) = p1p2 + p4p5 + p1p3p5 − p1p2p3p5−
p1p2p4p5 − p1p3p4p5 + p1p2p3p4p5

Although we only focus on reachability in this paper, many
other properties of uncertain graphs can be defined in a sim-
ilar fashion.

2.4 Measuring uncertain graph properties
Most problems in uncertain graphs are #P-complete, in-

cluding the problem of computing reachability [25]. For that
reason, sampling techniques have been proposed as the alter-
native to direct computation in solving problems of large un-
certain graphs [7] [19] [10] [13]. A basic Monte-Carlo method
for estimating the reachability of an uncertain graph G works
as follows. First, sample i possible worlds G1, . . . , Gi from G.
This can be achieved by sampling edges in G independently
according to their existence probabilities. Then, compute
the reachability Rs,t(Gj) for each Gj , j = 1, . . . , i. The
reachability of the uncertain graph is estimated as:

R̂s,t(G) =
1

i

(
i∑

j=1

Rs,t(Gj)

)

The estimator R̂s,t(G) is a random variable whose mean

is Rs,t(G) (for this we say the estimator is unbiased) and
variance 1

i
Rs,t(G)(1−Rs,t(G)) [7] [10]. Advanced sampling

techniques have been proposed to reduce the estimator vari-
ance while requiring fewer number samples [10] [13]. Those
techniques recursively compute Rs,t(G) by conditioning on
the existence of an edge.

3. EXTENDED UNCERTAIN GRAPHS
While a promising tool, the existing uncertain graph for-

malism however does not support modeling of the correlation
between edge existence. Such correlation arises naturally
from modeling various systems (Section 5 and 6). Here is
an example. Assume in a certain network, host 0 and host
1 can freely communicate with all services running on host
1 and host 2, respectively. Furthermore, both host 1 and
host 2 run a similar set of services. If an attacker from host
0 can gain access to host 1 by exploiting some vulnerability
of a service running on host 1, then surely he is also able to
do so from host 1 to host 2. As we model the possibility of
attacks in the network using an uncertain graph, edge (0, 1)
existence guarantees that edge (1, 2) also exists. In other
words, there is no possible world in which edge (0, 1) exists
while edge (1, 2) does not. This behavior cannot be mod-
eled using the described uncertain graphs where edges exist
independently of one another (Section 3.2). As the result,
an altered and more powerful formalism is indeed required.

The layout of this section is as follows. First, we formally
define the correlation between edge existence and extend
the basic uncertain graph formalism to model such property
(Section 3.1). Next, we show that modeling the correla-
tion expands the expressiveness of basic uncertain graphs,
in the sense that there exists an extended uncertain graph
that has no equivalent basic uncertain graph (Section 3.2).
Lastly, we prove that extended uncertain graphs can model
an arbitrary stochastic mapping, making the two of them
equivalent in term of expressiveness (Section 3.3).

3.1 Formal definition
Define G = (V,E,X, p, q) where V = {V1, . . . , Vn} and

E = {E1, . . . , Em} are the set of vertices and edges, X =
{X1, . . . , Xr} the set of independent Boolean random vari-
ables, p = (p1, . . . , pr) ∈ (0, 1]r the probability assignment
vector of X, i.e. pi = P [Xi] is the probability that Xi
evaluates to true for i = 1, . . . , r, and q the function that
associates each edge Ei ∈ E with a Boolean expression of
the random variables in X for i = 1, . . . ,m. The existence
probability of edge Ei is the probability that its associ-
ated Boolean expression evaluates to true, or P [Ei exist] =
P [q(Ei)]. We refer to this formalism the extended uncer-
tain graph, in contrast with the basic uncertain graph G =
(V,E, p) defined in Section 2.2. An example of an extended
uncertain graph is shown in Figure 2. When the context
is clear, we use the term uncertain graph to refer to both
basic and extended uncertain graph (although their proba-
bility assignment vectors have slightly different meanings).
Every basic uncertain graph G = (V,E, p) has an equivalent
extended uncertain graph representation G = (V,E,X, p, q),
which uses m random variables and q(Ei) = Xi for i =
1, . . . ,m. The definition of basic uncertain graph properties
(Section 2.3) and methods to estimate the graph properties
(Section 2.4) apply to extended uncertain graph in a similar
fashion.

If we consider uncertain graphs as generative models of
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Figure 2: An extended uncertain graph and its only
two possible worlds. This graph has no equivalent
basic uncertain graph.

deterministic graphs, then each uncertain graph defines a
mapping from the set of possible worlds to the unit interval
(0, 1]. Let ΓV denote the set of all deterministic graphs with

vertex set V and N = |ΓV | = 2n(n−1) the size of ΓV (i.e. we
consider all possible directed edges except loops). Define a
mapping f : ΓV → [0, 1] that associates with each determin-
istic graph G ∈ ΓV a real number wG,G between 0 and 1.
If the mapping f satisfies the condition

∑
G∈ΓV

f(G) = 1,

then we call it a stochastic mapping 2. A stochastic map-
ping is then a joint probability distribution function over the
space of deterministic graphs whose edges are a subset of E.
We express

f(G) =

{
wG,G if G ∈ G

0 if G ∈ ΓV \G

and call f the equivalent stochastic mapping of G and denote
that as G ≡ f . Every uncertain graph has an equivalent
stochastic mapping and two uncertain graphs are equivalent
if they have the same stochastic mapping.

3.2 Expressiveness of basic uncertain graphs
In this subsection, we prove the following theorem:

Theorem 3.1. Extended uncertain graphs strictly expand
the expressiveness of basic uncertain graphs, i.e. there ex-
ists an extended uncertain graph that has no equivalent basic
uncertain graph.

Proof. We prove this theorem by giving an example.
Consider the extended uncertain graph G in Figure 2. It
has only two possible worlds G1 and G2 with wG1,G =
1 − P [X1] = 0.5 and wG2,G = P [X1] = 0.5. We will
show that this extended uncertain graph has no equiva-
lent basic uncertain graph representation. Define the ba-
sic uncertain graph G′ = (V,E, p) where V = (s, a, t), E =
((s, a), (a, s), (a, t), (t, a), (t, s), (s, t)) and p some probability
assignment vector. The definition of G′ captures all possible
basic uncertain graphs that can be constructed from three
vertices s, a, t. The probabilities of G1 and G2 in G′ are:

wG1,G′ = (1− p1)(1− p2)(1− p3)(1− p4)(1− p5)(1− p6)

= (1− p1)(1− p3)Q

wG2,G′ = p1(1− p2)p3(1− p4)(1− p5)(1− p6)

= p1p3Q

where Q = (1− p2)(1− p4)(1− p5)(1− p6) and 0 < Q ≤ 1.
Assume by contradiction that G′ produces the same stochas-
tic mapping as G, or equivalently wG1,G′ = wG2,G′ = 0.5, we
2as in stochastic vector
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Figure 3: Top: a stochastic mapping f and three
deterministic graphs with non-zero probabilities
f(G1) = 0.5, f(G2) = 0.2, f(G3) = 0.3. Bottom: an
equivalent extended uncertain graph G of f gener-
ated using the construction described in Section 3.3.

have: 0 = wG1,G′ − wG2,G′ = (1 − p1)(1 − p3)Q − p1p3Q =
(1− p1 − p3)Q. Since Q > 0, 1− p1 − p3 = 0 or p1 + p3 = 1.
Moreover, 1 = wG1,G′ + wG2,G′ = (1 − p1)(1 − p3)Q +
p1p3Q = (1 − p1 − p3 + 2p1p3)Q = 2p1p3Q. Since Q ≤ 1,
2p1p3 = 1/Q ≥ 1. Combine this with p1 + p3 = 1 we have
(p1 + p3)2 − 2p1p3 ≤ 12 − 1 = 0 or p2

1 + p2
3 ≤ 0, therefore

p1 = p3 = 0. This solution does not satisfy p1 + p3 = 1,
hence no basic uncertain graph equivalent to G exists.

Although extended uncertain graphs strictly expand the
expressiveness of basic uncertain graphs, there are cases
in which the extended uncertain graph model of the stud-
ied system can be reduced to an equivalent basic uncer-
tain graph using simple graph transformation tricks (Section
6.3).

3.3 Expressiveness of extended uncertain graphs
In this subsection, we show that our definition of extended

uncertain graph is maximally expressive, in the sense that
for any stochastic mapping of ΓV , we can construct an ex-
tended uncertain graph whose joint edge existence probabil-
ity distribution is identically that of ΓV ’s stochastic map-
ping.

Theorem 3.2. Every stochastic mapping has an equiva-
lent extended uncertain graph.

Proof. Fix the set of vertices V . Let f be a stochastic
mapping defined over ΓV = {G1, . . . , GN}. Define f (i) for
i = 1, . . . , N the following mapping:

f (i)(Gj) =

{
f(Gj)∑i
k=1

f(Gk)
if 1 ≤ j ≤ i

0 if i < j ≤ N

Without loss of generality, assume f(G1) > 0 so that ev-

ery f (i) is well-defined and moreover, it is a valid stochastic
mapping since

∑N
j=1 f

(i)(Gj) = 1. Especially, f (N) ≡ f .



We will show how to iteratively construct an equivalent ex-
tended uncertain graph G(i) of every f (i).

The first step is to show an equivalent extended uncertain
graph G(1) of f (1), a stochastic mapping that maps G1 to
1 and the rest in ΓV to 0. Define the extended uncertain
graph G(1) = (V,E,X(1), p(1), q(1)) as follows:

• V the set of vertices and E the set of all n(n−1) edges,
i.e. G = (V,E) is a complete directed graph

• X(1) = {X1}

• p(1) = (p1) where p1 = 1 (i.e. P [X1] = p1 = 1)

• q(1) works as follows: ∀Ej ∈ E, if Ej ∈ E(G1) then

q(1)(Ej) = X1, else q(1)(Ej) = ¬X1

It can be easily seen that G(1) ≡ f (1).
Assume we have constructed G(i) = (V,E,X(i), p(i), q(i))

where X(i) = {X1, . . . , Xi} and p(i) = (p1, . . . , pi) such that

G(i) ≡ f (i) for some 1 ≤ i < N . If f(Gi+1) = 0 then

f (i+1) ≡ f (i). Hence G(i+1) = G(i) is the equivalent ex-
tended uncertain graph of f (i+1). When f(Gi+1) > 0, the
equivalent extended uncertain graph

G(i+1) = (V,E,X(i+1), p(i+1), q(i+1))

of f (i+1) can be constructed as follows:

• V the set of vertices and E the set of all n(n−1) edges

• X(i+1) = {X1, . . . , Xi, Xi+1} where Xi+1 is the newly
introduced random variable

• p(i+1) = (p1, . . . , pi, pi+1) where pi+1 =
∑i
j=1 f(Gj)∑i+1
j=1 f(Gj)

• q(i+1) works as follows: ∀Ej ∈ E, if Ej ∈ E(Gi+1)

then q(i+1)(Ej) = q(i)(Ej) ∨ ¬Xi+1, else q(i+1)(Ej) =

q(i)(Ej) ∧Xi+1

The full proof of correctness of this construction is not in-
cluded in this paper. The construction of G(i+1) works by
scaling down the edge existence probabilities in G(i) by a fac-
tor of pi+1 before adding the new graph Gi+1 with probabil-

ity 1− pi+1 = 1−
∑i
j=1 f(Gj)∑i+1
j=1 f(Gj)

=
f(Gi+1)∑i+1
j=1 f(Gj)

= f (i+1)(Gi+1).

The last step of the construction achieves this by first per-
forming a logic AND operation (∧) between the Boolean ex-

pression associated with every edge of G(i) and the new ran-
dom variable Xi+1, or formally q(i+1)(Ej) = q(i)(Ej)∧Xi+1.

Then, for every edge of G(i) that appears in Gi+1, we ad-
ditionally perform a logic OR operation (∨) between its as-
sociated Boolean expression and ¬Xi+1. The purpose of
doing so is to force G(i+1) to generate Gi+1 with probability
1− pi+1. Combining these two operations, the Boolean ex-
pression associated with every edge of G(i+1) that appears
in Gi+1 is:

q(i+1)(Ej) = (q(i)(Ej) ∧Xi+1) ∨ ¬Xi+1

= (q(i)(Ej) ∨ ¬Xi+1) ∧ (Xi+1 ∨ ¬Xi+1)

= q(i)(Ej) ∨ ¬Xi+1

This process allows us to construct an equivalent extended
uncertain graph G(i) of f (i) for i = 1, . . . , N . As the result,
G = G(N) will be the equivalent extended uncertain graph
of f since f ≡ f (N) ≡ G(N).

The construction outlined here requires a new random
variable for every deterministic graph that has a non-zero
probability in f . Therefore, the total number of random
variables used by the final extended uncertain graph is r =
|{Gi|f(Gi) > 0 for i = 1, . . . , N}|. For example, the ex-
tended uncertain graph in Figure 3 only uses three ran-
dom variables to model an equivalent stochastic mapping in
which only three deterministic graphs have non-zero proba-
bilities G1, G2, and G3. After the first, second, and last iter-
ation of the construction, the Boolean expressions associated
with edge (s, a) in G(1), G(2), and G(3) are X1, X1∨¬X2, and
X1∨¬X2∨¬X3, respectively. We notice that both edge (s, t)
and (t, a) in G are associated with the same Boolean expres-
sion (X1∧X2)∨¬X3. This is because (s, t) and (t, a) coexist
in all deterministic graphs that have a non-zero probability
in f . In general, basic uncertain graphs are not capable of
modeling such behavior.

The main importance of this result is that our particular
method for extending uncertain graphs, motivated by a par-
ticular need to describe correlation among edges in an attack
graph, is capable of describing any joint distribution of edge
existence probabilities. This is an important foundational
result in the theory of uncertain graphs.

4. UNCERTAINTY ANALYSIS
Uncertainty analysis plays an important role in under-

standing how uncertainty in model inputs affects its out-
put. While a selection of vector p gives an expression of
uncertainty, that expression itself is likely inexact. This is
partly because in many cases, p cannot be directly com-
puted or measured and hence some form of estimation is re-
quired. When estimation is used, the resulting estimate usu-
ally comes with the form of a mean, which is p, and its upper
and lower bounds. Analyses of the uncertain graph there-
fore must be applied to p as well as its credible neighbor-
hood so that robust conclusions can be made [21]. Among
the neighborhood of p, we are interested in two probability
assignment vectors under which the model output, i.e. a
property of the uncertain graph, acquires its maximum and
minimum value. Those extrema tell us how precisely we can
arrive at the value of the property in the face of model input
uncertainty.

In this paper, we focus on the reachability property of un-
certain graphs (first introduced in Section 2.3). Reachabil-
ity has an intuitive interpretation in the context of security
and forms the basis to the answering of numerous security-
related questions (Section 5.2). Henceforth, when we talk
about uncertainty analysis we will implicitly refer to the
reachability property of uncertain graphs. In the remain-
ing part of this section, we first formally define uncertainty
analysis as the problem of finding the extrema of the model
output (Section 4.1). Then, we show how to quickly iden-
tify the extrema using the monotonicity of reachability of
the class of monotone uncertain graphs (Section 4.2).

Remark 1. One may argue that although we have sup-
plied the edge existence probability value with its bounds,
the bounds can be inexact and so another layer of uncer-
tainty should be considered; this argument can go on for-
ever. Indeed, we never truly know the underlying probabil-
ity (if one exists) and do not consider such a value in our
model. Instead, we take the Bayesian view of probability
and treat the edge existence probability as the numerical
representation of our belief (and the bounds our confidence



in the number), given the information we have collected and
subjected to the assumptions we have made. This saves us
from the impossible task of defending whether a probability
assignment vector is representative of reality or a method
to estimate one is the right method – that is to say, unless
the method is based on logically flawed technique. Hope-
fully the justification will become clearer when we attempt
to estimate the probability assignment vector in section 6.3.

4.1 Formal definition
Let G = (V,E, p) denote a basic uncertain graph and
Rs,t(G) the probability that s reaches t in G. Define ε =
(ε1, . . . , εm) ∈ [0, 1]m the perturbation vector and Hp,ε the
hyperrectangle3 obtained by perturbing each entry pi in p
by an amount of at most εi, or formally:

Hp,ε = {p′ ∈ [0, 1]m | |p′i − pi| ≤ εi ∀i = 1, . . . ,m}

The mean and confidence interval of estimates described ear-
lier can be modeled using the probability assignment and
perturbation vector. Uncertainty analysis of uncertain graphs
(with respect to the reachability property) aims to find two
probability assignment vectors pmin, pmax in the hyperrect-
angle Hp,ε such that the reachability of the uncertain graph
G reaches its extrema, i.e:

pmin = argmin
p′∈Hp,ε

Rs,t(V,E, p′) (2)

pmax = argmax
p′∈Hp,ε

Rs,t(V,E, p′) (3)

Here we use the notation Rs,t(V,E, p′) to denote Rs,t(G)
where G = (V,E, p′). Uncertainty analysis of extended un-
certain graphs is defined in a similar fashion.

Searching for pmin and pmax in the hyperrectangle Hp,ε
proves to be a nontrivial task. Part of it comes from the
difficulty of estimating the reachability of large uncertain
graphs. Fortunately, the monotonicity property of reacha-
bility allows us to find pmin and pmax immediately without
having to formulate Equations 2 and 3 as optimization prob-
lems. The monotonicity of reachability in the context of de-
terministic graphs means (i) adding one or more edges to a
deterministic graph does not change its reachability status
(with respect to some source and destination vertex) from
1 to 0 and vice verca, (ii) removing one or more from the
graph does not change its reachability status from 0 to 1.
The next subsection extends this property to the class of
monotone uncertain graphs – uncertain graphs whose edges
are associated with monotone Boolean expressions – and the
implication regarding how to find pmin and pmax.

4.2 Uncertainty analysis of monotone uncer-
tain graphs

An extended uncertain graph G = (V,E,X, p, q) where
each uncertain edge is associated with only one random vari-
able, i.e. q(Ei) ∈ X for every uncertain edge Ei ∈ E, is
called a single uncertain graph. We first start with an ob-
servation about monotone and single uncertain graphs.

Lemma 4.1. Every monotone uncertain graph has an equiv-
alent single uncertain graph representation.

3rectangle generalized for higher dimensions

s t
X1∨X2 s t

a

b

X1
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s t
X1∧X2 s ta

X1 X2

Figure 4: Two monotone uncertain graphs and their
equivalent single uncertain graphs.

Details of the proof are omitted to conserve space. An
example of monotone uncertain graphs and their equivalent
simple uncertain graph representations is given in Figure 4.
Lemma 4.1 allows us to prove the following theorem about
the monotonicity of reachability with respect to monotone
uncertain graphs.

Theorem 4.2. Let G = (V,E,X, p, q) and G′ = (V,E,X, p′, q)
be two monotone uncertain graphs. Furthermore, let pi ≥ p′i
for i = 1, . . . , r. For all s, t ∈ V , the following inequality
holds: Rs,t(G) ≥ Rs,t(G′).

Proof. Without loss of generality, assume G and G′ are
simple uncertain graphs, i.e. q(Ei) ∈ X for every uncertain
edge Ei ∈ E (otherwise, we can use lemma 4.1 to transform
them into simple uncertain graphs).

We first prove a special case of theorem 4.2 in which G′ =
(V,E,X, p′, q) where p′ = (p′1, p2, . . . , pr). Define E1 ⊆ E
the set of all edges associated with the random variable X1

and assume E1 6= ∅ (otherwise, redefine G and G′ without
X1). Furthermore, define two following uncertain graphs:

G0 = (V,E\E1, X, (p2, p3 . . . , pr), q)

G1 = (V,E,X, (1, p2, . . . , pr), q)

In plain text, all possible worlds in G1 contain all edges in
E1 while none in G0 contains any. The reachability of G
and G′ with respect to any s, t ∈ V can be computed by
conditioning on the random variable X1 as follows:

Rs,t(G) = p1Rs,t(G1) + (1− p1)Rs,t(G0)

Rs,t(G′) = p′1Rs,t(G1) + (1− p′1)Rs,t(G0)

Hence:

Rs,t(G)−Rs,t(G′) = (p1 − p′1)
(
Rs,t(G1)−Rs,t(G0)

)
Since p1 ≥ p′1, we only need to prove that Rs,t(G1) ≥
Rs,t(G0). For every possible world G1 ∈ G1, the four fol-
lowing properties hold: (i) G1 contains all edges in E1, (ii)
G0, as the result of removing all edges in E1 from G1, is a
possible world in G0, (iii) moreover wG1,G1 = wG0,G0 , and

lastly (iv) Rs,t(G
1) ≥ Rs,t(G0) according to the monotonic-

ity of reachability of deterministic graph. Consequently:

wG1,G1Rs,t(G
1) ≥ wG0,G0Rs,t(G

0)∑
G1∈G1

wG1,G1Rs,t(G
1) ≥

∑
G0∈G0

wG0,G0Rs,t(G
0)

Rs,t(G1) ≥ Rs,t(G0)

Therefore, Rs,t(G) ≥ Rs,t(G′) for a specific case in which
G′ = (V,E,X, p′, q) where p′ = (p′1, p2, . . . , pr).

Define G(i) = (V,E,X, p(i), q) where p(i) = (p′1, . . . , p
′
i, pi+1, . . . , pr)

for i = 1, . . . , r. Note that G(0) = G and G(r) = G′. By
chaining the inequalities in the following fashion where each



holds as a specific case, Rs,t(G) = Rs,t(G(0)) ≥ Rs,t(G(1)) ≥
. . . ≥ Rs,t(G(r−1)) ≥ Rs,t(G(r)) = Rs,t(G′), the theorem is
proven.

The next result immediately follows theorem 4.2:

Corollary 4.2.1. Let G = (V,E,X, p, q) be a monotone
uncertain graph, ε ∈ [0, 1]r a perturbation vector such that
pi − εi ≥ 0 and pi + εi ≤ 1 for i = 1, . . . , r. We have:
pmin = p− ε and pmax = p+ ε.

As the main result of this section, corollary 4.2.1 shows us
how to perform uncertainty analysis of monotone uncertain
graphs. The set of all monotone uncertain graphs contains
all basic uncertain graphs but strictly subsumes the set of
all extended uncertain graphs, as one might expect. If we
take the extended uncertain graph in Figure 2 and change
the boolean expression associated with edge (a, t) from X1

to ¬X1, then we obtain a graph that does not have an equiv-
alent monotone uncertain graph representation. We believe
that uncertainty analysis for extended uncertain graphs in
the general case can be reduced to the Boolean satisfiability
problem, so it is NP-hard with respect to the number of ran-
dom variables Xi such that both Xi and its negation ¬Xi
appear in q. Not surprisingly, this is usually the price we
have to pay for extending the expressiveness of a modeling
formalism. However, since the NOT logic operator is not
required in the modeling examples in Section 5 and 6, un-
certainty analysis can be performed efficiently in both cases.

Remark 2. Incorporating uncertainty into the model in-
put is one right step toward producing more trustworthy
analyses. However, a large amount of uncertainty in the
model input will likely produce a large amount of uncer-
tainty in the model output. Although uncertainty analysis
helps us quantify this relation, it does not tell exactly what
part of the input’s uncertainty attributes the most to the
output’s. This information is crucial to a modeler who de-
sires to draw a more robust conclusion about the system and
who wants to know the best places to spend on reducing
uncertainty (by collecting more information, adding more
details into the model, etc.) When this is the case, a dif-
ferent but closely related form of analysis called sensitivity
analysis should be considered.

5. CASE 1: STUXNET PARTIAL ATTACK
GRAPH

In the first modeling example, we show how to use an un-
certain graph to model a partial attack graph of the Stuxnet
worm (Figure 5), the cyberweapon that sabotaged the Ira-
nian nuclear program in 2009.

5.1 Modeling approach
Converting the Stuxnet partial attack graph (denoted as

GStux) to an uncertain graph (denoted as GStux) is rela-
tively straightforward. GStux uses the same set of vertices of
GStux. Each random variable of GStux represents a unique
edge label of GStux. Multiple edges of GStux that share
the same starting and ending vertex translate into a sin-
gle edge of GStux. Each edge of GStux (e.g. (Contractor,
Laptop)) is associated with a disjunction of random vari-
ables (e.g. XS7 ∨XUSB) where each variable represents an
edge label of GStux (i.e. XS7 denotes the risk associated
with “S7 Project Files” and XUSB “Infected USB Drive”).

Figure 5: Stuxnet partial attack graph (figure
adopted from [5])

The remaining task is to come up with numerical values for
the probability assignment vector of GStux. Those numbers,
which may include both the means and their bounds, can
be obtained after performing a full security auditing of the
system.

5.2 Security analysis
The resulting uncertain graph GStux and the analyses in

previous sections allow an analyst to answer the following
security-related questions:

1. What is the probability Rs,t(GStux) that there exists
a path from the outside of the system to a targeted
industrial process?

2. To what extend should I trust the computed proba-
bility Rs,t(GStux), or in other words how precise it is
subjected to perturbation of model input?

3. If some form of network hardening is applied to the sys-
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Figure 6: An enterprise network with 3 firewalls and
8 hosts (example adopted from [28], slightly modi-
fied for illustration purposes.)

tem and the probability assignment vector re-estimated,
will Rs,t(GStux) be reduced and if so, by how much?

4. Instead of performing network hardening, I want to
deploy an intrusion detection system (IDS) to detect
ongoing attacks. Assume I choose to monitor a specific
set of hosts, what is the chance that I miss an attack?

5. What should I do if the outcome of the analysis is not
precise enough to draw a conclusion?

Questions 1 and 3 ask about the reachability of the uncertain
graph which is estimated by mean of sampling as shown
in Section 2.4. If the size of the graph is relatively small,
then reachability can be directly computed using Equation
1. Uncertainty analysis in Section 4 answers Question 2
since GStux is monotone. Question 4 can be rephrased into
the problem of estimating reachability of uncertain graphs:
if I remove the set of vertices that correspond to the set of
monitored hosts (together with all edges that connect to and
from those vertices), what is the probability that t remains
reachable from s? Question 5 is likely to arise in practice
and usually indicates that the given amount of information
is not sufficient to reason about the security posture of the
system (refer to Remark 2 at the end of Section 4).

6. CASE 2: NETWORK SECURITY WITH
SERVICE UNCERTAINTY

In the second modeling example, we show how to use un-
certain graphs to model a computer network with incom-
plete information about the network services, or service un-
certainty. We first introduce the studied network and some
basic networking concepts (Section 6.1). Then we define
the threat model (Section 6.2) and propose an approach
to model service uncertainty using uncertain graph (Sec-
tion 6.3). We conclude the section with a note on how the
probability assignment vector can be estimated using avail-
able information obtained from the common vulnerability
databases.

6.1 Network model
Figure 6 shows a simple enterprise network consisting of

3 firewalls and 8 hosts. The firewall rules regulate the com-
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Figure 7: Flow graph representation of the enter-
prise network in Figure 6. Label <80> on flow from
vertex 0 to vertex 1 is short for <6:0-65535:80-80>.
Flows without label allow any traffic.

munication traffic in the network and define which hosts
can directly talk to the other. For example, the 5-tuple rule
<6,0,1,*,80> of firewall 1 allows all TCP traffic (protocol
type 6) from any port on host 0 to port 80 on host 1. The
deny-by-default policy is applied to all firewalls. As a re-
sult, firewall 1 blocks all TCP traffic from any port on host
0 to port 25 on host 1.The given enterprise network and the
firewall rulesets effectively define a flow graph of logically
connected hosts (Figure 7). The flow graph is a directed
graph where each vertex represents a host in the enterprise
network and each directed edge a flow, i.e. a logical con-
nection. For example, the directed edge from vertex 0 to
vertex 1 with the label <80> in Figure 7 represents a 3-tuple
flow <6:0-65535:80-80> (i.e. the protocol, the source and
destination port). There can be more than one flow from
one host to another and in that case, the flow graph is a
directed multigraph.

The flow graph is a general description of the types of
traffic allowed between hosts in the network. Knowing that
flow <6:0-65535:80-80> from host 0 to host 1 exists, we
can make an educated guess that host 1 runs some form
of an http service. For the purpose of security modeling
and analysis, we are also interested in knowing the version
and configuration details of the service. Without such in-
formation, the existence of a flow does not necessarily imply
that an attacker can utilize it as a link in his stepping-stone
attack sequence (in fact, the flow might exist while its cor-
responding service is not running at all). Security modeling
and analysis under unquantified input uncertainty will not
produce any significant result since any outcome is equally
likely. However, if we are allowed to make further assump-
tions, which are valid ones, then the service uncertainty in
flow graphs can be greatly reduced and reasonably estimated
using augmented information from the public domain.

6.2 Threat model
We assume the attacker has already gained access to host

0. His ultimate goal is to gain access to host 6, which is a
critical asset in the system. To simplify the discussion, we
make some further assumptions:

• The attacker only exploits vulnerability of network ser-
vices running on the receiving host of flows. As a re-
sult, if no flow from host 0 to host 1 is allowed or host 1
does not run any vulnerable service, then the attacker
cannot launch a direct attack from host 0 to host 1.

• The flow graph remains unchanged throughout the at-
tack period, meaning the attacker does not attempt to
attack the firewalls and modify the rulesets to enable
new flows.
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the flow graph in Figure 7.

• Local attacks like privilege escalation are not modeled;
we assume the attacker acquires the highest access
level after compromising a machine.

6.3 Modeling approach
Define X1,80 and X1,!80 the random variables that denote

if host 1 runs a vulnerable service on port 80 and on some
other port that is not 80. The flow graph in Figure 7 indi-
cates the correlation between exploitability of flows in the
following sense. If host 1 runs a vulnerable http service on
port 80, or X1,80 = true, then an attacker on either host 0
or 2 can use the existing flows to attack host 1. In contrast,
if host 1 does not run any vulnerable http service on port
80, or X1,80 = false, the attacker cannot attack host 1 from
host 0. However, he might be able to do so from host 2,
given that host 1 runs a vulnerable service on some other
port, i.e. X1,!80 = true. If we convert the flow graph to
an extended uncertain graph with the same set of vertices
and edges, then such property can be modeled by associating
edge (0, 1) with X1,80 and edge (2, 1) with X1,80∨X1,!80. Re-
peating this process to other edges and vertices, we can build
an extended uncertain graph that faithfully models the ser-
vice uncertainty and the correlation between edge existence
of the flow graph in Figure 7. In this modeling example,
such an extended uncertain graph can be further reduced to
an equivalent basic uncertain graph (Figure 8) using simple
graph transformation tricks, which contains transformation
artifacts like certain edges, or edges that exist with proba-
bility one (solid arrows), and extra vertices (bold circles).

In the last part the section, we briefly discuss how to esti-
mate the probability assignment vector for the constructed
basic uncertain graph. The security analyst may assume (or
he may learn so from the system administrator) that with
no exception, all network services run on standard network
ports, i.e. http services on port 80, ftp services on port 21,
smtp services on port 25, and so on. The problem of service
uncertainty still persists but the uncertainty is now greatly
reduced. That is because the analyst knows that, e.g, an
attacker can go directly from host 0 to host 1 only if host
1 runs a vulnerable http service. For each http implemen-
tation h, the analyst searches in all common vulnerability
databases (e.g. the National Vulnerability Database4) for
some vulnerability of h that allows an attacker to compro-
mise the hosting machine. Denote v(h) = 1 if the analyst

4https://nvd.nist.gov/

finds some vulnerability of h and v(h) = 0 otherwise. The
probability assigned to X1,80 is:

P [X1,80] =

(∑
h

whv(h)

)
/
∑
h

wh (4)

where wh is the relative weight assigned to implementation h
(if no further information is given, all implementations carry
the same weight). The analyst might assume all hosts share
the default probability pdef of running some vulnerable net-
work service (again, if no further information is given). The
probability assigned to X1,80 and X1,!80 and pdef are related
according to the following equation:

pdef = 1− (1− P [X1,80])(1− P [X1,!80])

Therefore P [X1,!80] can also be estimated. This process ap-
plies to the remaining random variables in a similar fashion.
Numerical results of the analyses are not reported in this
paper and will be a significant topic in follow-up work, in
which we study larger and more realistic systems.

7. RELATED WORK

7.1 Uncertain graphs
Uncertain graphs, also known as probabilistic graphs, have

been applied to modeling of problems from various domains
like interaction between proteins using noisy and error-prone
experimental data [2], entity resolution for inexact machine
learned models [26], optimal reachability in intermittently
connected network with known routing algorithm [8], path
queries on road networks with unexpected traffic jams [9],
and many others. The power of uncertain graphs comes from
its capability of modeling systems with uncertainty, whether
due to lack of knowledge about certain part of the systems
[8] [9] or to noisy model data [2], [26].

Reasoning with uncertain graphs is challenging since most
problems in uncertain graphs are computationally hard. For
example, counting the number of possible worlds of an uncer-
tain graph in which vertex s reaches vertex t is #P-complete
(ST-CONNECTEDNESS [25]). [19] derived sampling-based
approximation algorithms for the k-nearest neighbor prob-
lem of uncertain graphs. [10] formulated the distance-constraint
reachability (DCR) problem and introduced efficient recur-
sive sampling schemes to estimate DCR of large uncertain
graphs. [12] studied reliability search problems of uncertain
graphs, i.e. finding all vertices reachable from some query
vertices with probability no less than a given threshold, us-
ing RQ-tree. Recently, [13] proposed recursive stratified
sampling-based estimators to reduce the variance of stan-
dard Monte-Carlo approach in estimating uncertain graph
properties.

7.2 Attack graph
Traditionally, red teams have constructed attack graphs

to represent paths that an attacker may use to compromise
the security of a system [22]. Due to the manual nature of
the construction of such attack graphs, they are prone to
error and often not exhaustive. Automated attack graph
generation using model checking was introduced by Ritchey
and Ammann [20]. The model check, however, provided just
a single attack scenario. Sheyner et al [23] use model check-
ing on heterogeneous networks to provide an exhaustive list



of attack scenarios. A more scalable solution for larger net-
works has been proposed in [17]. Another optimization using
the monotonicity property has been proposed by Ammann
et al [1].

Another related aspect is the process of reachablity analy-
sis. Reachability analysis of a network investigates the con-
ditions under which a target host can be reached by an at-
tacking host. Network scanners [15] and vulnerability dis-
covery tools [6] can be leveraged to derive the configuration
of the target network.

Work in [27] and [29] use Bayesian networks to capture
the uncertainty of information in attack graphs. However we
believe that the acyclic nature of Bayesian networks limits
its ability to model the possible cyclic relationships that arise
in many practical situations.

8. CONCLUSION
In this paper, we show how to use uncertain graphs for the

security modeling and analysis of computer systems with un-
certainty. In doing so, we have extended the traditional un-
certain graph formalism to model the correlation between
edge existence and prove theoretical results about the ex-
pressiveness of basic and extended uncertain graphs. We
also show how to perform uncertainty analysis of monotone
uncertain graphs. Modeling-wise, the developed examples
serve as a starting point for taking on larger and more com-
plex systems. In such systems, uncertainty arises from mod-
eling at different layers of abstraction and from the presence
of human-in-the-loop. Regarding the later one, uncertain
graphs can use existing human-related models to plug holes
in the overall attack graph and model the probability that a
phishing campaign succeeds or the probability that a power
grid operator plugs in the USB stick he received at the con-
ference. Analysis-wise, we are also interested in formulating
and solving optimization problems to find the best defense
actions, which minimizes the probability of a successful at-
tack, given a limited budget. Those aspects will be explored
in subsequent studies.
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