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Introduction 

The North American Bulk Power System is a complex technological network, and its cyber-
physical interconnectivity allows for long-distance power transmission but presents a “surface” 
for cyber-attacks. The BPS is comprised of substations, control centers, energy management 
systems, multiple communication technologies, supervisory control, etc. The critical operation of 
BPS is to provide monitoring, protection and control based on information gathered from field 
units and decision making and control at multiple control centers. The components in the BPS 
that are vulnerable to cyber-attacks include, substations, control centers, communication links 
and networks. The cyber-attacks can manifest as, spear phishing, denial of service, man-in-the 
middle, timing, replay, integrity. There is a need to develop cyber resilience metrics for BPS to 
provide quantitative insights into ability of security controls to ensure operational resilience and 
development of cost-effective mitigation plan. 

The availability of cyber resilience metrics will facilitate effective risk management decision 
making in BPS. Specifically, asset owners will be able to prioritize corrective actions through 
identification of resilient topologies/configurations, identification of critical vulnerabilities which 
need to be mitigated, cost-effective security controls, etc.  In addition, the availability of cyber 
resilience metrics will motivate operators to continually assess their response to cyber threats. 
However, existing cyber resilient metrics to achieve these desired objectives for BPS are 
inadequate. This brief describes the need for cyber resilience metrics for BPS and techniques to 
develop the metrics. 

Motivation 

There have been efforts on developing models for power grid structural resilience in the presence 
of cascading failures. According to the Energy Sector Cybersecurity Capability Maturity Model 
[1], there is a need to develop techniques to reduce risks and to increase operational grid 
resilience, commensurate with the risk to critical infrastructure and organizational objectives. 
However, resilience metrics for BPS substation networks in the presence of cyber threats do not 
exist. 

Efforts on understanding and quantifying resilience in the power grid primarily focus on local 
and cascading failures which are caused due to physical faults [2-5]. Specifically, researchers 
have analyzed the power grid’s structural resilience to deliberate physical attacks to substations, 
control centers, substation/transmission lines, and communication systems. The physical attacks 
caused due to vandalism or theft result in faults or failures in the generators and/or transmission 
lines and any cascading effects can be traced back to the original fault reliably. Physical attacks 
in contrast to cyber-attacks are deterministic in nature because attackers are usually aware of the 
system units to target. Due to the selective nature of the physical attacks, the impact felt on the 
immediate victims or potential of cascading events are not similar to cyber-attacks. The physical 
attacks are also characterized by temporal selectivity. The timing of physical attack is chosen to 
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maximize the impacts. In contrast, the timing of cyber-attacks cannot be always guaranteed to be 
precise. The restoration process after a successful physical attack versus cyber-attack may have 
different timelines. 

Resilience metrics have been developed for critical infrastructures. [6-10]. Tierney et al. [6], 
proposed a R4 framework for disaster resilience. The R4 framework comprises of Robustness 
(Ability of systems to function under degraded performance), Redundancy (identification of 
substitute elements that satisfy functional requirements in event of significant performance 
degradation), Resourcefulness (initiate solutions by identifying resources based on prioritization 
of problems), and Rapidity (ability to restore functionality in timely fashion). However, these 
models have not focused on cyber resilience of bulk power systems. 

Approach 

The Cyber Resilient Energy Delivery Consortium (CREDC) funded by the U.S. Department of 
Energy is advancing security and resiliency in the cyber support infrastructure as a key enabler 
of Energy Delivery System (EDS) resiliency [11]. The objectives are achieved through 
collaborative research activities between universities and industry. The cyber resilience metrics 
for BPS is a research activity under the theme of cyber monitoring and metrics. 

A framework for developing cyber resilience metrics for BPS should not build on top of models 
for physical attacks, but differentiate from these by considering the additional complexity 
introduced by the cyber aspects of modern BPS. The availability of resilience metrics will aid in 
identifying the most vulnerable devices and the impact on operation of the power grid and 
security controls which are cost-effective and provide appreciable tradeoff between protection 
and performance 

Weighted graph models have been developed for quantifying resilience of physical attacks. The 
modeling of exploitability and impact of cyber-attacks needs to be integrated in the weighted 
graph model.  The model should be also integrated with varying degrees of exploitability and 
impact of cyber-attacks, diversity of network topology, configuration and vendor products and 
study influence of critical nodes, attack timing, stepping stones, pivot points, and attack launch 
location. The cyber resilience metrics should be based on the four elements (robustness, rapidity, 
resourcefulness and redundancy) of the R4 framework. The models for each of the 
aforementioned properties for the networks interconnecting sub stations and control center 
should be developed. A multi-level directed acyclic graph is a good model to use as it 
incorporates security domains, security policies and protocols. Fig. 1 illustrates a security 
architecture schema proposed by NIST for industrial control systems. This architecture is 
applicable to SCADA systems in general and BPS infrastructures in particular due to the 
similarities in inter-connectivity between corporate, control system and substation networks. 
Fig.2 illustrates the multi-layered Directed Acyclic Graph (DAG) to model interactions between 
the devices in the cyber infrastructure depicted in Fig. 1. In addition, the graph model also 
incorporates channel vulnerability paths to assess the exploitability of cyber-attack and the 
impact on operational resilience. Network and system configuration parameters, such as firewall 
rules, network paths, node recovery time, backup resources available, etc., will impact the 
computation of robustness, redundancy, resourcefulness and rapidity properties. There is need to 



	 	 	 	

  
   

	

 	

 
 

	

ICSJWG 	Article p. 3/5
 

provide relationship between the network/system configuration parameters and resilience which 
will be benefit the BPS stakeholders. 

Fig. 1. CSSP Recommended Defense-in-Depth Architecture [12] 

Fig. 2. Bulk Power Systems infrastructure modeled as multi-layered DAG 
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