
32  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

PROGRAMMINGCuring the Vulnerable Parser
Design Patterns for Secure Input Handling

S E R G E Y B R A T U S , L A R S H E R M E R S C H M I D T , S V E N M . H A L L B E R G ,
M I C H A E L E . L O C A S T O , F A L C O N D . M O M O T , M E R E D I T H L . P A T T E R S O N ,
A N D A N N A S H U B I N A

Sergey Bratus is a Research
Associate Professor of
Computer Science at
Dartmouth College. He sees
state-of-the-art hacking as a

distinct research and engineering discipline
that, although not yet recognized as such,
harbors deep insights into the nature of
computing. He has a PhD in mathematics from
Northeastern University and worked at BBN
Technologies on natural-language processing
research before coming to Dartmouth.
sergey@cs.dartmouth.edu

Lars Hermerschmidt is currently
working as Information Security
Officer at AXA Konzern AG,
where he is leading software
security activities. He is a PhD

candidate in software engineering at RWTH
Aachen University, where he started to work
on correct unparsers to prevent injections and
on automated security architecture analysis.
hermerschmidt@se-rwth.de

Sven M. Hallberg is a
programmer by passion, a
mathematician by training, and
calls himself an applied scientist
of insecurity by profession. He

contributed large parts to the Hammer parser
library and wrote the DNP3 parser based on it.
He is currently pursuing a doctoral degree at
Hamburg University of Technology, Germany,
where he tries to further apply LangSec
principles to cybernetic systems.
pesco@khjk.org

Programs are full of parsers. Any program statement that touches
input may, in fact, do parsing. When inputs are hostile, ad hoc input
 handling code is notoriously vulnerable. This article is about why

this is the case, how to make it less so, and how to make the hardened parser
protect the rest of the program.

We set out to make a hardened parser for an industrial control protocol known for its com-
plexity and vulnerability of previous implementations: DNP3 [1]. We started with identifying
known design weaknesses and protocol gotchas that resulted in famous parser bugs; we soon
saw common anti-patterns behind them. The lesson from our implementation was twofold:
first, we had to nail down the protocol syntax with precision beyond that of the standard,
and, second, we formulated and followed a design pattern to avoid the gotchas.

We’ve used this approach with other protocols. Our parser construction kit Hammer (https://
github.com/UpstandingHackers/hammer) allows a programmer to express the input’s syn-
tactic specification natively in the same programming language as the rest of the application.
Hammer offers bindings for C, C++, Python, Ruby, Java, .NET, and others, and is suitable for
a wide variety of binary protocols.

Sadly, there is no silver bullet one could implement in a library and simply reuse in every
program to fix unsafe input-handling once and for all. However, we found several design pat-
terns for handling input correctly, and thus making programs resilient against input-based
attacks. In the following sections we describe three of them: the Recognizer, the Most Restric-
tive Input Definition, and the Unparser.

These patterns came from studying famous input-handling code flaws and what made them
that way. Importantly, we found that the problems started with the choice of the input syntax
and format that forced additional complexity on the code. The code flaws were made more
likely by the choices of input structure; in a word, data format doomed the code.

“Don’t trust your input” doesn’t help to write good parsers. First, we need to deal with
the standing advice of “Don’t trust your input.” This advice doesn’t give the programmers any
actionable solution: what to trust, and how to build trust? Without giving developers a recipe
for establishing whether the input is trustworthy, we cannot expect correct software. This is
a design issue, which no amount of penetration testing and patching can fix.

The problem of trust in the data is old. This is what types in programming languages arose
to mitigate: the problem of authenticating the data, as James H. Morris Jr. called it in 1973
[2], before operating on it. We now call it validating the data, although our opponent is not
 Murphy—randomly corrupted data that leads to crashes—but Machiavelli: purposefully
crafted data that leads to state corruption and compromise, aka unexpected computation.

Trustworthy input is input with predictable effects. The goal of input-checking is being
able to predict the input’s effects on the rest of your program. Already, as we speak of checking
the input, we assume that there is a checker separate and distinct from the rest of the code;
we will make this distinction precise in the design patterns discussed below. The standing
advice to validate input implicitly assumes that, if the input is valid, then its effects are predict-
able and do not include unexpected computation; it is safe to pass on to the rest of the program.

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 33

Safety—that is, predictability of execution—comes from the combination of both the input
format and the code checking it being simple and well-structured.

How do we know that reading a file that contains a hundred records is safe? How can we be
sure that the execution is predictable? We’ll have to start with the idea that a single record
can be predictably read, and that the actions required for the reading are repeatable. One way
to do so is to make sure the validity of each record can be judged apart from the contents of
others, and that any objects constructed from it depend only on that record. This means that
the records encode independent objects that follow each other (rather than nesting in each
other). A pattern is allowed to repeat without limit, or up to a certain number of times, but
its structure must be rigid; a pattern cannot contain itself recursively, directly or indirectly.
Then, if it’s safe to call the code that parses a record once, it’s safe to call it repeatedly.

Some nesting of objects in a record is allowed but only in a pre-defined pattern: if we draw
the objects containing each other as a tree, the shape of that tree is rigid except for possible
repetition of a node where that kind of node is allowed. Supposing that each object is parsed
by a separate function, the shape of the call graph is similar to the shape of the tree. This
roughly corresponds to so-called regular syntax (as in regular expressions).

In short, when parsing such regular formats, the answer to “What should I do next?” or “Is
the next part of the input valid?” doesn’t depend on reexamining any previous parts. Thus the
code that works predictably once is sure to work again.

However, not all formats can be so restricted. In HTML or XML, for example, elements can
be nested in elements like themselves to an arbitrary depth. The same is true for file systems
that have directories and for formats that emulate such file systems such as Microsoft’s OLE2.
Other formats, like PDF, have other kinds of container objects that can nest to any depth.

For such formats, whether it is safe to invoke the code that parses an object again and again
may not be predictable, because it could be called under a potentially infinite set of circum-
stances. Should the result depend on the path to the top of the tree of objects or, worse, on the
sibling nodes in that tree, such dependencies may now pile up infinitely. Unlike the regular
case above, the shape of the tree is no longer rigid; much variation in its form can occur. Now
the code needs to foresee a potentially unlimited number of possible paths and histories
after which it gets called; the more its behavior is supposed to depend on reexamining other
objects, the harder it is to get it right (and the harder it is for a programmer to have a succinct
mental model of its behavior that has any predictive power whatsoever).

Thus the simpler the better; and only with the simplest formats can some assurance be
obtained. The simplest syntax patterns are regular and context-free. Context-sensitive pat-
terns are much harder to parse, and the code is much harder to reason about. In fact, such
reasoning poses undecidable or intractable problems for formats that seem fairly intuitive
and straightforward. We refer the reader to [3] and http://langsec.org/ for the theory; here,
we’ll look at the common scenarios of how things go wrong instead.

How Input Handling Goes Wrong
From a certain perspective, input data is “just” a sequence of symbols or bytes. But this
sequence drives the program logic involved in construction and manipulation of some
objects. These objects drive the rest of the program and must do so predictably.

The program should make no assumptions about these objects beyond those that the parser
constructing them validates. If it does, the likely effect of its code working on data it does
not expect will be exploitation. This relationship between the parser’s results and assump-
tions made by the rest of the program is crucial, but the absolute majority of programming

Michael E. Locasto is a Senior
Computer Scientist at SRI
International, where he works
in the Infrastructure Security
Group and leads several

projects dealing with IoT security and secure
energy systems research. He was previously
an Associate Professor at the University of
Calgary and an I3P Fellow at George Mason
University. He is interested in why computer
programs break and how we can get better at
fixing them. michael.locasto@sri.com

Falcon Darkstar Momot is a
Senior Security Consultant
with Leviathan Security
Group. He leads security
reviews and penetration tests

of software and networks at various large
software companies, with an eye to process
improvements. He received a BSc in computer
science from the University of Lethbridge and
is an MS student at Athabasca University.
In his spare time he teaches people how to
use amateur radios and works on a team to
maintain an operational Bell System No. 1
Crossbar. falcon@iridiumlinux.org

Meredith L. Patterson is
the founder of Upstanding
Hackers. She developed the
first language -theoretic defense
against SQL injection in 2005

as a PhD student at the University of Iowa and
has continued expanding the technique ever
since. She lives in Brussels, Belgium.
mlp@upstandinghackers.com

Anna Shubina is a Research
Associate at the Dartmouth
Institute for Security,
Technology, and Society.
She was the operator of

Dartmouth’s Tor node when the Tor network
had about 30 nodes total.
ashubina@cs.dartmouth.edu

PROGRAMMING
Curing the Vulnerable Parser: Design Patterns for Secure Input Handling

34  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

PROGRAMMING
Curing the Vulnerable Parser: Design Patterns for Secure Input Handling

languages do not provide any means of expressing it. Yet it has
multiple ways of going wrong. Either the data’s design is so
complex that it invites bugs, or the programmer misunderstands
the kind of validation that the data needs. Let us look at some of
these examples.

Input too complex for its effects to be predictable. Safety is
predictability. When it’s impossible to predict what the effects of
the input will be (however valid), there is no safety.

Consider the case of Ethereum, a smart contract-based system
that sought to improve on Bitcoin. Ethereum operators like
the decentralized autonomous organization (DAO) accepted
contracts—that is, programs—to run in a virtual environment on
their system; the code was the contract. The program that emptied
the DAO’s bank was a valid Ethereum program; it passed input vali-
dation. Yet it clearly performed unintended computation (creative
theft of funds) and should not have been allowed to run.

Could the DAO have made this determination beforehand, algo-
rithmically? Certainly not; Rice’s theorem says that no general
algorithm for deciding non-trivial properties of general-purpose
programs may exist, and predicting the effects of a program on
a bank such as DAO’s is beyond even “non-trivial”—even the
definition of malice in this context may not be amenable to com-
plete computational expression. We will not dig into this theory
here but will instead appeal to intuition: how easy would it be to
automatically judge what obfuscated program code does before
executing it? A Faustian Ethereum smart contract is hardly
any easier. From the viewpoint of language-theoretic security, a
catastrophic exploit in Ethereum was only a matter of time: one
can only find out what such programs do by running them. By
then it is too late.

Arbitrary depth of nesting vs. regexp-based checking. The
arrangement (ordering and relative location) of objects in input
requires a matching code structure to validate. Famously, regu-
lar expressions do not work for syntactic constructs that allow
arbitrary nesting, such as elements of an HTML or XML docu-
ments or JSON dictionaries. These constructs may contain each
other in any order and to any depth; their basic well-formedness
and conformance to additional format constraints must be vali-
dated at any depth.

Regular expressions (regexps), which many Web applications
erroneously use to check such structures, cannot do it. Regexps
were originally invented to represent finite state machines,
and those are incompatible with arbitrary-depth nesting. Thus
regexps are best suited to checking sequences of objects that
contain and follow each other in a particular order, repeat one
or more times (or zero or more times), but do not infinitely nest;
in other words, a finite state machine has no way of represent-
ing trees that can go arbitrarily deep. One can write a pattern

that nests to some given depth N, but what about an input byte
sequence where objects nest to depth N + 1? The attacker can
craft just such an input and bypass the check.

Although regexp extensions found in modern scripting lan-
guages such as Perl, Python, and Ruby extend the power of their
regexps beyond finite state machines, it is quite hard to write
such patterns and get them right. Put differently, finite state
machines cannot handle recursion well; a stack is needed there,
and stack machines make a different, more powerful class
of automata. Try writing a regexp without back references to
match a string where several kinds of parentheses must nest in
a balanced way. It cannot be done; the same problem arises with
matching nesting XML elements of several kinds.

Perhaps the best known example of this mistake was the buggy
anti-XSS system of Internet Explorer 8. Using regexps to “fix”
supposed XSS led to non-vulnerable HTML pages being rewrit-
ten into vulnerable ones, the fix adding the actual vulnerabilities
[5]. Web app examples of vulnerable checks of (X)HTML snip-
pets are many and varied.

Context sensitivity. The lesson of the previous pitfall—still not
learned by many Web apps—is that judging input must be done
with appropriate algorithmic means, or else the program won’t
be able to tell if the data is even well-formed. But this is not the
only trouble there can be.

Besides being well-formed, objects should only appear where it is
legal for them to appear in the message. Judging this legality can
be troublesome when the rules that determine validity depend
not just on the containing object or message (i.e., the “parent”
of the object we are judging), but on other objects as well, such
as “sibling” objects in that parent or even some others across
protocol layers.

For example, imagine that an object contains a relative time
offset, in a shorter integer field, which is relative to another
object that has the longer absolute value. For the relative value to
appear legally, there has to be an absolute value somewhere pre-
ceding it, and the checker must keep track of this. This situation
actually occurs in DNP3.

A closer-to-home example is nested objects that each include a
length field. Since these lengths specify where each (sub)object
ends (and another begins), all these lengths must agree with
each other, and with the overall length of the message; that may
be a quadratic number of checks on these fields alone!

The infamous Heartbleed bug arose from just such a construct:
the agreement between the length fields of the containing
SSL3_RECORD and the HeartbeatMessage contained in it was not
checked, and the inner length was used to grab the bytes to echo
back. Set that inner length to 65535, and that’s how many bytes

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 35

PROGRAMMING
Curing the Vulnerable Parser: Design Patterns for Secure Input Handling

OpenSSL included, even though the overall message length was
set at a modest four bytes. The GNU TLS Hello message CVE-
2014-3466 similarly took advantage of three nested lengths that
were expected to agree but didn’t get checked.

An older but equally famous example was the 2002 pre-authen-
tication bug in OpenSSH 3.3 exploited by GOBBLES; there, the
lengths of all SSH options would need to sum up to the length
of the packet, and instead overflowed an integer allocation size
variable before the crafted packet could be discarded.

Such formats where validity rules require checking proper-
ties across object boundaries are called context-sensitive. They
require more complex checkers—and are more error-prone.
Indeed, it is violating these relationships that’s first tried by
exploiters: a forgotten check is more likely there and thus an
action on unchecked data that’s not what the code expects.

It’s best to be able to judge an object’s legality based either
just on its own content or on what type its parent object is;
that is, context-free syntax is preferable to the more complex
context-sensitive.

Transformation before validation. Another lesson from
vulnerable ways of handling such a seemingly straightforward
format as XML is that input messages should be checked as they
arrive, without additional transformations, least of all those
driven by the elements of these messages themselves. This has
been a source of famous vulnerabilities with XML entities.

An XML document may include entities, syntactic elements that
will be resolved and replaced, by string substitution, through-
out the body of the document. Substitutions may occur in many
rounds if entities include other entities, which, in turn, will be
parsed and substituted, all before the document can be finally

validated. The simplest consequence of this is that a short docu-
ment can expand to gigabytes in size by using several levels of
entities and repetition, the so-called “billion laughs” attack.

XML entities may also include references to external documents
that need to be fetched and inserted before the input data object
can be constructed and validated. Fetching an XML external
entity (XXE) may already be an undesirable action in and of
itself, and can trigger execution of other code; at the very least it
creates network connections and can exfiltrate files, or even lead
to remote code execution.

It becomes instantly clear that XXEs are trouble when you con-
sider that an action is taken based on input before that input has
been fully validated. XXEs bring actions into the recognition
process, thus breaking the separation between recognition and
processing. By comparison, JSON has no such feature, and JSON
objects are judged as they are received. This may account for an
order of magnitude difference in CVEs related to XML (850 at the
time of this writing, of which 216 are XXE-related) vs. JSON (96).

The shotgun parser. We say we have a shotgun parser where
validation is spread across an implementation, and program
logic grabs data from the input-handling code before the full
data’s correctness is assured. This makes it very hard to follow
the dependencies and assumptions made by the code, which,
in turn, leads to vulnerabilities and unexpected behavior. The
antidote for this is separation of concerns: validation first, then
a clear boundary at which the data has been validated to a clear
specification—and not used before.

But what comes out at that boundary? It is data as objects:
constructed and fully conforming to the definitions of the data
structures to be extracted from input. Reaching in to use them

Figure 1: The Recognizer Pattern for validating raw input and providing it to the business logic: (a) input data flow through the Recognizer Pattern;
(b) the Recognizer Pattern as a UML class diagram

InputDataParser

Handler

handle(InputData d)
error()

InputGrammar CD

Business
Logic

RawInput

36  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

PROGRAMMING
Curing the Vulnerable Parser: Design Patterns for Secure Input Handling

before they are ready is an anti-pattern that resulted in Heart-
bleed (a remote memory leak) and many remote code executions
like the 2002 OpenSSH bug or the GNU TLS Hello bug.

A million-dollar misnomer. Another key misconception about
input data is that it is generally benign but can contain unsafe
elements that should (and can) be “sanitized” or “neutralized.”
The choice of words suggested that having these elements
removed or altered makes the data safe overall.

As a typical result of this (mis)understanding, the input is trans-
formed by filtering it through regexp-based substitutions, where
the regexps match the “bad” syntactic elements and replace
them with some “safe” ones or suppress them.

The problem with this intuition is immediately clear: validity as
predictability of execution is the property of the entire input, not
of a few characters!

Deserialization is parsing, too! It should be clear by now that
deserialization is not a trivial concern to be handled by some
auxiliary code; it is a security boundary. This boundary exists
between every pair of components that communicate outside a
strong typing system or that use different structures to repre-
sent data.

It is the deserialization code’s responsibility to create the
conditions that the rest of the program can trust; otherwise any
assurance of good program behavior is lost. That’s why the prop-
erties of the serialized payload should be as simple as possible to
check and, once checked, reliable enough to ensure predictable
behavior.

Simply put, what a deserializer cannot check, the rest of the code
should not assume. If serialized objects aren’t self-contained and
validatable on their own, the game is already lost; so many Java
deserialization bugs, Python unpickling bugs, Remote Procedure
Call bugs, and so on have turned into exploits.

The Recognizer Design Pattern for Input
Validation
Input validation needs design patterns. Ensuring that input
data is safe to process is a distinct, specialized role for code. As a
matter of program architecture, any specialized code should be
isolated in a dedicated component. Design patterns are a natural
way to express the relationships of this component with others.

The main input-handling pattern we discuss is the Recognizer
Pattern. As a whole, a recognizer has the sole task of accepting
or rejecting input: it enforces the rule of full recognition before
processing. This pattern concentrates the logic responsible for
strictly matching the input’s syntax with the specification and
discarding any inputs that don’t match.

The Recognizer Pattern in Figure 1 describes the relationships
between five main elements: the InputGrammar, the Parser, the
RawInput, the Handler, and the data type representing the input
data within the program (called InputData in Figure 1 (b)). The
locus of the Recognizer Pattern is the Parser. The Parser uses
the InputGrammar as a definition of the valid input syntax. For
input sequences read from the RawInput that comply with that
syntax, the Parser produces a correctly instantiated InputData
object representing the input in the programming language’s
type system. Importantly, the Parser only invokes the handle()
method of the Handler interface after creating InputData
objects. The Handler interface must be implemented by the
“business logic” of the application. This arrangement cleanly
separates the parsing logic from subsequent processing within
the business logic, as the Handler can only access InputData
validated by the Parser. This provides a crucial guarantee to the
remainder of the business logic that the data has been validated
and that such validation is structurally sound (i.e., it cleanly
handles InputData objects nested within each other).

Most Restrictive Input Definition
In order to fully take advantage of this pattern, the input syntax
specification expressed as the Grammar component should have
a minimum of complexity needed to represent input objects. This
point is very important because it openly acknowledges the price
of adopting the Recognizer Pattern. Part of the value of adopt-
ing this approach is that you have a clear idea of what data you
accept, but you give up attempting to accept arbitrarily complex
data. Practically speaking, this means purposeful, thoughtful
subsetting of many protocols, formats, encodings, and com-
mand languages, including eliminating unneeded variability and
introducing determinism and static values. The design principle
for creating predictable programs is to choose the most restrictive
input definition for the purpose of the program; we acknowledge
that it may be challenging to completely articulate the purpose
of the program well enough, and that errors may still exist deeper
in the program logic.

Parser Combinators: Don’t Fear the Grammar!
At the heart of the Recognizer Pattern is keeping the admitted
inputs to a strict definition of valid syntax. Being definite about
the input gives the pattern its power; but how to do so without
undue burden?

Historically, computer scientists wrote such definitions in spe-
cial languages such as Augmented Backus-Naur Form (ABNF).
Unfortunately, that’s one more language—and another set of
tools—for developers to learn; too much investment for handling
what might seem a simple binary format! Moreover, after having
written the input data definitions as a grammar (say, for yacc or
Bison), one would need to write them again, in code, to construct
the actual objects.

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 37

PROGRAMMING
Curing the Vulnerable Parser: Design Patterns for Secure Input Handling

To add to developer confusion, yacc and Bison focus primarily on
compiler construction, not binary parsing. The code they gener-
ate is quite unreadable: it’s a large state machine with none of its
internals named in a way to make sense to humans. Interfacing
processing code with it is hard and has led to many mistakes.

Finally, another concern about grammars is that they have
subtle gotchas to confuse their developers, such as left recur-
sion’s incompatibility with classic LL(k)-parsing algorithms.

Fortunately, the parser combinator style of writing input han-
dling code provides a graceful way around these obstacles. The
parser combinator style of programming defines the grammar
of the input language and implements the recognizer for it at the
same time. Thus it repackages strict grammar constraints on
input in a form much more accessible to developers than do bare
grammars, while retaining all of the rigor and power.

We took the parser combinator approach, and implemented the
Hammer parser construction kit to specifically target parsing
of binary payloads (e.g., describing bit flags and fields that cross
byte boundaries is simple in Hammer, unlike in character-ori-
ented parsing tools). Hammer targets C/C++, where the need for
secure parsing is the strongest, yet modern tools for it (such as
ANTLR) are not available.

Hammer supports hand-writing code that looks like the gram-
mar and captures the definition of the recognized language in
an eminently readable form. However, it does not preclude code
generation. For example, Nail [4], a direct offshoot of Hammer,
comes with a code-generation step.

But didn’t ASN.1 solve this problem? The formidable ASN.1
standard was expected to solve the problem of unambiguously
representing protocol syntax. Separating the syntax from encod-
ing and specifying the encoding rules separately was supposed
to open the way for automatically validating data against specifi-
cation. The security gain from this would be obvious.

In reality, ASN.1 encoding rules and code generation tools cre-
ated enough complexity and confusion to result in a series of
high-profile bugs. The more permissive BER seems to be doing
worse than DER: 45 vs. 26 related entries out of a total 95 ASN.1-
related CVEs (based on a simple keyword search). Overall, the
security record of ASN.1 does not suggest an equivalent security
win for code generation.

Specifying a format with combinators. Here is an excerpt
showing what our parser combinator code looks like. Remember,
under this style everything gets its own parser, even a bit flag.
This may seem excessive, but it truly defines the format from the
ground up, and makes it clear, at every point, what structure is
expected from inputs, and which properties have been checked
and are being checked. Since Hammer targets binary protocols,

it provides primitives for a field containing a given number of
bits, h_bits, and a way to limit such a bit field to a range of pos-
sible integer values, h_int _range.

These individual parsers are connected up to parsers for each
sub-unit of the message with combinators, such as sequencing
(h_sequence, arguments are a NULL-terminated sequence of
constructs that must follow each other), repetition (h_many, h_

many1, h_repeat_n for the same respective meanings as *, + and
{n} in regexps), or alternatives (h_choice).

Let’s build up the parser for a DNP3 application header, which
starts with a four-bit sequence number followed by four single-
bit flags, then a one-byte function code (FC), and is optionally
followed by a 16-bit field called “internal indications” (IIN), of
which two bits are reserved. Whether a payload is a response or
a request is determined by the flag combination. Not all combi-
nations of flags are legal, and IIN is only legal in payloads that
represent protocol responses, not requests. All these dependen-
cies must be checked before the payload can be acted upon—or
else memory corruption awaits.

We start with building up the bits for flags and their allowed
combinations:

bit = h_bits (1, false);

one = h_int_range(bit, 1, 1); // bit constant 1

zro = h_int_range(bit, 0, 0); // bit constant 0

conflags = h_sequence(bit, zro, one, one, NULL); // confirm

reqflags = h_sequence(zro, zro, one, one, NULL); // fin, fir

unsflags = h_sequence(one, one, ign, ign, NULL); // unsolicited

rspflags = h_sequence(zro, bit, bit, bit, NULL); // response

Then comes the start of the header, with its several valid alterna-
tives. The rest are illegal and will be discarded.

seqno = h_bits(4, false /* unsigned */);

conac = h_sequence(seqno, conflags, NULL);

reqac = h_sequence(seqno, reqflags, NULL);

unsac = h_sequence(seqno, unsflags, NULL);

rspac = h_sequence(seqno, rspflags, NULL);

iin = h_sequence(h_repeat_n(bit, 14), reserved (2) , NULL);

...

req_header =

 h_choice(h_sequence(conac, confc, NULL),

 h_sequence(reqac, reqfc, NULL), NULL);

rsp_header =

 h_choice(h_sequence(unsac, unsfc, iin, NULL) ,

 h_sequence(rspac, rspfc, iin, NULL), NULL);

38  S P R I N G 20 17 VO L . 42 , N O. 1 www.usenix.org

PROGRAMMING
Curing the Vulnerable Parser: Design Patterns for Secure Input Handling

Not shown here are the parsers for the one-byte function code
field (confc, reqfc, unsfc, and rspfc), which enforce the appropri-
ate value ranges. For example,

fc = h_uint8();

reqfc = h_int_range(fc, 0x01, 0x21);

and so on.

This example shows how the parser combinator-style code
defines the expectations regarding the input precisely and
implements a recognizer for them at the same time. But there’s
more—this recognizer doubles as the constructor of the parsed
objects! For more detail, see [1].

Handling Output: The Unparser Pattern
So far we’ve only considered the case of an adversary that can
directly provide input to a program. However, in interconnected
systems, e.g., a Web server and a database, there are back-end
systems like the database that only process input provided by
the front-end Web server. Nevertheless, unexpected input to the
front end may manipulate its output so that the back end inter-
prets this in a way not intended by the developer. Therefore we
need to discuss how to make back-end systems safe from indi-
rect input attacks, where hostile inputs are passed by another
program. Examples include SQL injection (SQLi) and cross-site
scripting (XSS) and are most common in, but not limited to, text-
based languages like SQL and HTML.

This injection into the output of the front end cannot, gener-
ally speaking, be prevented by the Recognizer at the front end.
The reason is simple: the Recognizer enforced the specification
of the input language; the language expected to be output by a
program is different, and the Recognizer has no information

about it. Hence it cannot reject those inputs that cause problems
in output.

Commonly, textual output is created by concatenating fixed
strings like SQL query parts with program input. Since textual
languages like SQL use special tokens such as quotation marks
to separate data from code, those tokens must be encoded when
used within the program’s output. Otherwise, input might
change the meaning of the created output by using these tokens.
Using templates where variables are replaced by input data, e.g.,
to create HTML, suffers from the same core problem: naïve cre-
ation of output with string concatenation that is not aware of the
string being a language parsed by another program.

A defensive design pattern must encapsulate this awareness. For
creating output and ensuring it is well formed, we developed the
Unparser Pattern shown in Figure 2. Its operation is essentially
reverse to that of the Recognizer: it uses a language specification
(an OutputGrammar) to serialize existing valid objects to that
specification.

Just as the Parser is the only class meant to read from RawInput,
only the Unparser writes output to the RawOutput. Therefore,
creating output from the perspective of the business logic works
by instantiating OutputData objects and filling them with data
without caring whether this data might contain special tokens
of the output language. The Unparser takes these objects and
creates a serialized output. It uses the definition of the Output-
Grammar to ensure tokens possibly contained in the OutputData
are encoded properly.

SQL’s prepared statements interface is a special case of this pat-
tern that had not been generalized to other output languages; we
correct that. Our OutputData class provides an interface similar
in function but more general and strongly typed. More about
unparsers can be found in [6]; McHammerCoder (https://github
.com/McHammerCoder) is our binary unparser kit for Java.

Finally, connecting the Recognizer, Most Restrictive Input
Definition, and Unparser patterns using a business logic that
translates InputData to OutputData results in a Transducer. The
special case when InputGrammar and OutputGrammar are the
same can be employed as a transparent filter at the trust bound-
ary of a system. It acts like a syntactic firewall, improving the
system’s predictability by enforcing a strict input specification.
We implemented this approach in our DNP3 exhaustive syntac-
tic validation proxy and recommend it for other protocols.

CD

Unparser

write(OutputData d)

OutputData

OutputGrammar

Business
Logic

RawOutput

OutputEmitter

Figure 2: The Unparser Pattern for creating valid output illustrated as a
UML class diagram.

www.usenix.org S P R I N G 20 17 VO L . 42 , N O. 1 39

PROGRAMMING
Curing the Vulnerable Parser: Design Patterns for Secure Input Handling

Conclusion
After decades of repeated embarrassing failure, the larger pro-
grammer community accepted that “rolling your own crypto”
was simply the wrong approach; effective cryptography required
using professional tools.

This realization came none too soon, but a bigger realization
awaits: rolling your own parser is just as bad or worse. Faulty
input-handling is a bigger threat to security than faulty crypto,
simply because, as a target, it comes before crypto and leads to
full compromise. Solid design and professional tools are needed,
just as with crypto; otherwise, the insecurity epidemic will
continue.

References
[1] S. Bratus, A. J. Crain, S. M. Hallberg, D. P. Hirsch, M. L.
Patterson, M. Koo, and S. W. Smith, “Implementing a Verti-
cally Hardened DNP3 Control Stack for Power Applica-
tions,” Annual Computer Security Applications Conference
(ACSAC), Industrial Control System Security Workshop
(ICSS), December 2016, Los Angeles, CA.

[2] J. H. Morris, Jr., “Types Are Not Sets,” in Proceedings of the
1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages (POPL ’73), October 1973, pp. 120–124.

[3] L. Sassaman, M. L. Patterson, S. Bratus, M. E. Locasto,
and A. Shubina, “Security Applications of Formal Language
Theory,” IEEE Systems Journal, vol. 7, no. 3, September 2013;
Dartmouth Computer Science Technical Report TR2011-709.

[4] J. Bangert and N. Zeldovich, “Nail: A Practical Tool for
Parsing and Generating Data Formats,” in Proceedings of the
11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’14): https://www.usenix.org/system
/files/conference/osdi14/osdi14-paper-bangert.pdf.

[5] E. V. Nava and D. Lindsay, “Abusing IE8’s XSS Filters,”
2010: http://p42.us/ie8xss/Abusing_IE8s_XSS_Filters.pdf.

[6] L. Hermerschmidt, S. Kugelmann, and B. Rumpe, “Towards
More Security in Data Exchange: Defining Unparsers with
Context-Aware Encoders for Context-Free Grammars,” in
Proceedings of 2015 IEEE Security and Privacy Workshop,
pp. 134–141: http://spw15.langsec.org/.

