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Introduction
Both the attractiveness of power systems as 
targets of cyberattack and their vulnerability to 
remote attack via digital networks are evident 
from recent world events. While policy makers 
seek means to deter such attacks politically, the 
most effective way to reduce their attractiveness 
as targets is to reduce their vulnerability to such 
attacks. This can be done; these are engineered 
systems built to satisfy specifications. The 
results of the workshop presented here aim to 
reduce the vulnerability of future power systems 
to remote attacks that exploit vulnerabilities in 

the code – software or firmware – that controls 
their operation. The approach taken is to de-
velop a consensus “building code” for building 
the software that controls these systems. Such 
a building code can provide a basis for custom-
ers to specify the security required of power 
system software components, for vendors to 
produce them, and for third parties to evaluate 
important aspects of their security properties. 
The availability and use of such a code can 
enable the marketplace to reward producers of 
systems with stronger security properties.
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Power System Context
This effort is motivated by the power system 
environment, including supply, demand, trans-
mission, distribution, generation, smart grids, 
and microgrids, including residential use. The 
systems in this environment have requirements 
for both local and remote access as well as 
local and remote control. This access will be via 
networks that support digital communications. 
Some may be isolated, but some will be Internet-
connected. To maintain the reliability and safety 
of these structures, cybersecurity is an issue of 
increasing concern in the power system environ-
ment as a whole.

In the realm of physical structures, building 
codes can incorporate a very broad range of 
requirements, from architectural and design 

requirements that apply to large public struc-
tures or neighborhoods to requirements on 
type and strength of materials to be used in 
construction. But a building code is not a design 
manual. It is a guideline that provides minimum 
expectations and recommended practices so 
that a building that conforms to the code should 
at least be safe and sound. Similarly, a software 
building code for power systems, while it cannot 
guarantee overall system security or reliability, 
will improve the security posture of the software 
and systems being developed in this industry. 
Software must, as always, meet organizational 
and operational requirements, mitigate threats, 
and minimize flaws.
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The Need for a Secure Software 
Development Process
It continues to be the case that most successful 
cyber intrusions exploit vulnerabilities that were 
accidentally introduced into the software at the 
implementation stage, i.e., when programmers 
convert specifications to code. For this reason, 
this draft building code focuses most strongly 
on techniques for preventing the introduction 
of such implementation flaws or for finding and 
correcting them. However, the consensus of this 
workshop was that there is a fundamental need 
for a secure software development process to be 
put in place to organize the production of soft-
ware for power systems. Participants proposed 
that two flows of requirements must be con-
ducted in parallel as part of this process:

System requirements à device requirements à 
software 

Security policy à security requirements à 
secure implementation

Security Policy’s Central Role
In this context, security policy becomes part of 
the system requirements, and system security 
must be seen as not only preventing unintended 
things from happening but also ensuring that 
the system does perform its intended functions. 
Security policy in this light becomes the state-
ment of what it means for the system to provide 

service that is dependable and secure in the 
sense of [4], in which a protection mechanism 
(e.g., a circuit breaker) is dependable to the 
extent that it operates at appropriate times and 
is secure to the extent that it doesn’t operate at 
other times. In this lexicon, a system is consid-
ered reliable to the extent that it is both depend-
able and secure.* 

A system is secure only with respect to its 
stated security policy (and insecure only when 
and if those policy statements are violated). The 
specific security controls included in a system 
(e.g., authentication, access control, information 
flow control, cryptographic controls) are chosen 
in order to implement and enforce the policy. 

Overall system design will determine whether 
software, hardware, or people operating the sys-
tem are responsible for assuring that particular 
aspects of an overall security policy are correctly 
enforced. This document primarily addresses 
those aspects of security policies that are to be 
assured by software.

The building code can assist in the selection 
of proper controls to achieve the system’s secu-
rity policy as part of the software development 
process, just as codes for physical buildings 
assist the architect, developer, and builder in 
determining the safe width for stairways and 
fire exits. The essential first step in develop-
ing secure software is the security policy; the 

* Other technical communities define these terms differently, e.g. [5]
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remainder of this building code is intended as 
a guideline to assist in the selection of controls 
and implementation of the controls necessary to 
enforce the policy.

Minimization of Function
Among cybersecurity professionals, it is often 
said that complexity is the enemy of security 
[6,7,8]. Nevertheless, the economics of chip 
production and software production have led to 
the prevalence of computing hardware with broad 
capabilities and software that frequently includes 
many features and options bundled together. 
Features include a chip or application that the 
purchaser does not even know are present have 
often been exploited to penetrate a system. 

Although not originally proposed as an 
element for the building code (and hence not 
included explicitly in the draft report), the prin-
ciple of disabling unneeded / unused functions 
was part of the workshop consensus. Different 
functions of a device might be disabled accord-
ing to the application in which it is to be used; 
the building code would apply to the software 
developed for the device regardless of its appli-
cation. Note that if the software implementing 
a disabled function is not removed, care must 
be taken to assure that it cannot be activated 
through the exploitation of flaws elsewhere in 
the system.

Challenges
Expanding the scope of the software building 
code from a focus on elimination of implemen-
tation errors to include system security policies 
and secure software development processes is 
a significant step. While a single organization 
may be able to implement and control secure 
software development procedures for software it 
develops internally, it is difficult to find a product 
today that doesn’t incorporate software devel-
oped by others, including software with roots 
in the community of open source developers. 
Assuring that all of the software in a system 
was developed in accordance with a particular 
secure software development process will be a 
significant challenge for most companies. (The 
requirement for a software “bill of materials” in 
the draft code will at least allow the sources of 
software to be identified.)

In general, there are three ways to gain 
confidence that a piece of software will function 
as specified. First, one may have confidence in 
the people who built the software, for example, if 
they have produced similar software in the past 
and it has performed well. Seeking this kind of 
confidence might lead one to establish certifica-
tion processes for individuals and for identifying 
what software was produced by certified individ-
uals. Second, one may have confidence in the 
process or methodology used to build and test 
the software. This approach leads to the secure 
software development process requirement 
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embraced by the workshop consensus, and 
might lead to certification of software develop-
ment processes and identifying software that 
was produced in accordance with a particular 
process. A third way to assure that software will 
behave as specified is by examining the software 
itself, the output of the software development 
process. This third kind of assurance is the 
strongest, in the sense that it reasons about 
the actual code that will operate the system, 
but it is difficult (often impossible) to achieve 
simply by testing the code, because the state 

spaces involved are far too large for exhaustive 
testing. Techniques for mathematical verification 
of software can provide this kind of assurance. 
This approach might call for the certification of 
the tools and processes used in the verification. 
The size of software to which techniques have 
been successfully applied continues to grow, but 
remains a limiting factor. A successful approach 
to the development of secure power system 
software may well involve all three of these kinds 
of assurance for the foreseeable future.

P OW E R  S YS T E M  C O N T E X T
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Purpose
This code is intended to provide a basis for 
reducing the risk that power system software is 
vulnerable to malicious attacks that might im-
pede system operation or compromise the integ-
rity or confidentiality of data used or generated 
by the system. The aim in specifying a model 
code is not to assure that future systems are 
invulnerable to any anticipated attack but to re-
cord a consensus among experts from industry, 
academia, and government laboratories that rep-
resents a baseline set of requirements for the 
security of software and firmware in power sys-
tems. To act in the same way as building codes 
for physical structures, such a code will need to 

evolve over time and hence will need to find an 
appropriate home in a body with a continuing ex-
istence and continuing participation by relevant 
groups. Procedures will need to be established 
for defining terms precisely, for proposing and 
adopting changes, for establishing conformance 
to the code, and so on. The workshop partici-
pants offer this baseline code in hope that it will 
eventually lead, either through the establishment 
of a more formal building code structure or 
through adoption in some other form by relevant 
bodies, to a safer and stronger cyberinfrastrcture 
for power systems generally.
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Elements Recommended 
for Inclusion, by Category
In creating the categorization below, the aim 
is to be comprehensive. Consequently, there 
are some categories for which no proposed 
elements were identified or agreed upon by the 
participants These empty categories are retained 
to highlight unmet needs. 

For each element of the code, the following 
subsections are provided:

•	Description: What is the meaning and pur-
pose of this element?

•	Vulnerabilities addressed: What kinds of 
vulnerabilities will be reduced or eliminated if 
this element is implemented properly?

•	Developer resources required: What 
resources will the individual or organization 
developing the software/device require in 
order to satisfy this element?

•	Evaluator resources required: What is 
required for a third party to assess whether 
the device satisfies this element?

•	References
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Elements intended to avoid/detect/
remove specific types of vulnerabilities 
at the implementation stage
Secure software development process 
with assurance against subversion along 
with evidence of conformance
•	Description: Vendors must develop securi-

ty-critical software within the framework of an 
established methodology for secure software 
development. No specific methodology is 
required, but relevant examples include 
Microsoft’s Secure Development Lifecycle 
(SDL) and the coding practices developed 
by SAFECODE. Evidence that the delivered 
software was developed within the chosen 
methodology must be available for review. 
Any third-party software incorporated into 
security-critical functions must be shown to 
provide equivalent assurance against acci-
dental incorporation of vulnerabilities.

•	Vulnerabilities addressed: Methodologies of 
the required type aim to reduce or eliminate 
a wide range of software vulnerabilities 
including memory safety errors, integer over-
flows, SQL injection, etc.

•	Developer resources required: Developer must 
be able to select and implement a given 
methodology, develop software in accordance 
with it, and also develop the evidence to 
demonstrate conformance.

•	Evaluator resources required: Evaluator must 
be able to review the delivered software 

and the conformance evidence and assess 
compliance. 

•	References: For information on Microsoft’s 
Security Development Lifecycle, see https://
www.microsoft.com/en-us/sdl/. Information 
on the industry-wide SAFECODE intiative, is 
available at https://www.safecode.org. 

Static and dynamic code analysis 
(throughout development cycle)
•	Description: Apply static and dynamic code 

analysis techniques to expose (and remedi-
ate as appropriate) software vulnerabilities. 
For developers, it is likely to be most effec-
tive to apply these tools regularly to software 
as it is developed, so that errors are found, 
and can be fixed, as soon as possible. The 
tools can be applied after the software is 
developed (including to software provided by 
third parties) and can still provide valuable 
information about the presence (or absence) 
of classes of errors; however it is generally 
acknowledged that it is significantly more 
costly to remediate errors found later in the 
development process.

•	Vulnerabilities addressed: Memory safety 
(buffer overflows, use-after-free errors, null 
pointer dereference errors, etc.)

•	Developer resources required: Access to 
relevant program analysis tools and program-
mers trained to use them effectively.

•	Evaluator resources required: Access to the 

E L E M E N T S  R E C O M M E N D E D  F O R   I N C LU S I O N,  BY C AT E G O RY

https://www.microsoft.com/en-us/sdl/
https://www.microsoft.com/en-us/sdl/
https://www.safecode.org
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software and analysis tools in order to repli-
cate (or not) results supplied by the vendor.

•	References: See NIST Software Assurance 
Metric and Tool Evaluation (SAMATE) reports, 
available at: https://samate.nist.gov/index.
php/SAMATE_Publications.html. For a list of 
source code security analyzers, see https://
samate.nist.gov/index.php/Source_Code_
Security_Analyzers.html. 

Use of memory-safe/type-safe languages 
•	Description: Memory-safe languages can 

eliminate or substantially reduce the likeli-
hood of many classes of coding errors that 
have often led to exploitable vulnerabilities. 
These include buffer overflows, null pointer 
dereferences, use-after-free errors, and refer-
ences to uninitialized memory. Rust and Go 
are relatively recent memory-safe languages; 
others include F#, C#, Python, and Haskell. 
Developers who select other common lan-
guages (e.g., C, C++) that don’t provide 
memory safety need to provide evidence that 
their implementations avoid these problems.

•	Vulnerabilities addressed: Memory safety 
errors.

•	Developer resources required: Access to com-
pilers and tools for memory safe languages 
and programmers trained in them.

•	Evaluator resources required: Ability to assure 
that the programming language was in fact 
used to create the software (e.g., source 

code and a compiler).
•	References: See results reported for prob-

ability of security errors in programming 
contest submissions reported in A. Ruef, 
M. Hicks, J. Parker, D. Levin, M. L. Mazurek, 
and P. Mardziel, “Build It, Break It, Fix 
It: Contesting Secure Development,” 
Proceedings of the ACM Conference on 
Computer and Communications Security 
(CCS), Oct. 2016; https://arxiv.org/
abs/1606.01881.

System and component fuzz-testing
•	Description: Conventional testing generally 

aims to compare the results of a software 
implementation against its specification 
by exercising the functions included in the 
design in both normal and limit cases, so 
the test inputs are often designed to check 
particular cases and are not random. Fuzz 
testing essentially submits random inputs 
to a software component or system to see if 
unexpected behavior can be elicited and pos-
sibly exploited to subvert the behavior of the 
component or system. Participants agreed 
that fuzz-testing at both the component and 
system level should be a requirement of the 
building code, since attackers are quite likely 
to use it to seek paths into the system.

•	Vulnerabilities addressed: Like other testing 
methodologies, fuzz-testing cannot guarantee 
the absence of vulnerabilities, but its use can 

E L E M E N T S  R E C O M M E N D E D  F O R   I N C LU S I O N,  BY C AT E G O RY

https://samate.nist.gov/index.php/SAMATE_Publications.html
https://samate.nist.gov/index.php/SAMATE_Publications.html
https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
https://arxiv.org/abs/1606.01881
https://arxiv.org/abs/1606.01881
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reveal a broad range of vulnerabilities include 
memory safety problems, race conditions, 
and many others. If these vulnerabilities can 
be found and remediated prior to deploy-
ment, they will be unavailable for exploitation 
by attackers.

•	Developer resources required: Personnel 
who understand fuzz testing, the intricate 
details of the interfaces implemented, and 
have the tools available to conduct it. Like 
any testing regime, requires a specification 
of system behavior against which the tested 
behavior can be compared. Fuzz testing is 
random and cannot be exhaustive, and it 
provides more assurance as more tests are 
run. Consequently, an assurance regime that 
depends heavily on fuzz testing will demand 
significant computing resources.

•	Evaluator resources required: The ability to 
review fuzz testing output and to judge its 
comprehensiveness.

•	References: The original paper on fuzz test-
ing: B.P. Miller, L. Fredriksen, and B. So, “An 
Empirical Study of the Reliability of UNIX 
Utilities,” Communications of the ACM 33, 
Dec. 1990. Many tools are available for fuzz 
testing; some depart from the completely 
random model and incorporate coverage 
metrics or target boundary and limit cases. 
Microsoft has published guides on “how 
much” fuzzing is appropriate as well as on 
types of fuzzing to be applied.

Stress Testing
•	Description: The aim of stress testing is 

to explore the behavior of a component or 
system when it is operated with relatively 
limited resources – e.g., memory, CPU, or 
network communications bandwidth may be 
limited in relation for a high required demand 
for service. These conditions can occur in 
normal operation if there is high demand, 
but they may also be artificially induced by 
an attacker mounting, for example, a denial 
of service attack on the system. A properly 
designed system should show graceful deg-
radation in the face of stress testing and 
should recover normal operation smoothly as 
the stress is removed. Participants agreed 
that stress testing at both the component 
and system level should be a requirement of 
the building code.

•	Vulnerabilities addressed: Like other testing 
methodologies, stress testing cannot assure 
flaws or design weaknesses are absent, it 
can only reveal only reveal those that the 
tests exercise. Stress testing may reveal a 
variety of implementation failures that occur 
when design parameters (e.g., maximum 
table sizes or queue lengths) are reached. 
Stress testing should also reveal failures in 
recovery mechanisms.

•	Developer resources required: Requires 
personnel who understand stress testing 
and have the tools available to conduct it. 

E L E M E N T S  R E C O M M E N D E D  F O R   I N C LU S I O N,  BY C AT E G O RY

ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz.pdf
ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz.pdf
ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz.pdf
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Requires a specification of expected system 
behavior under high-stress conditions and 
expected recovery modes when stress is 
removed.

•	Evaluator resources required: Requires the 
ability to review stress testing results and to 
judge the comprehensiveness of the tests.

•	References: Textbook on performance testing 
generally: H.H. Liu, Software Performance 
and Scalability: A Quantitative Approach, John 
Wiley & Sons, Inc., 2009. 

Fault-injection testing
•	Description: Fault injection testing aims to 

evaluate component and system behavior 
when faults occur. This testing approach 
therefore focuses on exercising fault- and 
error-handling code within the system that 
may be rarely invoked in operation. Faults 
may be injected at compile time by modifying 
the source code or at run time by modifying 
system data or protocol messages flowing 

over a network. Specifications must address 
the expected response to induced failures 
so that test results can be evaluated. 
Participants agreed that this type of testing 
should be applied to high-fidelity represen-
tations of operational power systems but 
should definitely not be conducted on live 
operational systems.

•	Vulnerabilities addressed: Vulnerabilities likely 
to be revealed through fault-injection testing 
are those found in error-handling and recov-
ery routines.

•	Developer resources required: Personnel con-
versant with fault injection testing and tools 
to assist in conducting tests and evaluating 
results.

•	Evaluator resources required: The ability to 
evaluate fault-injection test results and to 
assess their comprehensiveness.

•	References: M.-C. Hsueh, T.K.Tsai, R. Iyer. 
“Fault Injection Techniques and Tools,” 
Computer, Apr. 1997, p. 75 ff.

E L E M E N T S  R E C O M M E N D E D  F O R   I N C LU S I O N,  BY C AT E G O RY
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Elements intended to assure 
proper use of cryptography
Accredited cryptographic algorithms 
and implementations
•	Description: Cryptographic algorithms that 

resist serious cryptanalysis are notoriously 
difficult to invent and to program correctly. 
While different environments make different 
demands on cryptography (for example, dif-
fering amounts of energy and time to devote 
to cryptographic operations and different 
time horizons for protecting keys), developers 
should seek algorithms that have received 
some external, open certification rather than 
attempt to develop their own. If for some 
reason suitable algorithms are not available 
and invention is required (this should be a 
last resort), developers should take care 
to get expert review prior to adopting and 
implementing their own crypto- algorithms. 
Weaknesses in cryptography often come in 
the implementation of the algorithm, key 
management, and surrounding protocols. 
Externally developed and certified imple-
mentations should be sought; custom im-
plementations of cryptographic components 
require careful vetting by experts. In power 
system environments, cryptography may more 
often be called upon to assure the integrity 
of commands from operators and data from 

sensors rather than to protect their secrecy. 
Proper selection and implementations of 
algorithms for these requirements, proper 
use of cryptographic software packages, and 
proper management of keys will be essential 
to assuring that the requirements are met in 
practice.

•	Vulnerabilities addressed: addresses 
Weaknesses in cryptographic algorithms, 
implementations, and use.

•	Developer resources required: The ability to 
understand the cryptographic requirements 
of the system, select appropriate algo-
rithms and implementations, and to use the 
selected packages correctly.

•	Evaluator resources required: The ability to 
review and evaluate the system requirements 
and the developers design, selections, and 
implementations.

•	References: “Use Cryptography Correctly,” in 
IEEE Cybersecurity Initiative: Avoiding the Top 
Ten Software Security Design Flaws, p. 19; 
https://www.computer.org/cms/CYBSI/
docs/Top-10-Flaws.pdf.

Secure random numbers 
•	Description: Generating random numbers 

for use in initializing pseudorandom number 
generators and cryptographic algorithms, 
using them correctly, and avoiding reusing 

E L E M E N T S  R E C O M M E N D E D  F O R   I N C LU S I O N,  BY C AT E G O RY

https://www.computer.org/cms/CYBSI/docs/Top-10-Flaws.pdf
https://www.computer.org/cms/CYBSI/docs/Top-10-Flaws.pdf
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them are challenging problems. Mistakes can 
nullify even well-designed and implemented 
cryptographic mechanisms. As advised in 
other work, developers should adopt estab-
lished approaches that experts have vetted 
rather than attempting novel solutions. Even 
established approaches for random number 
generation need to be subjected to appropri-
ate testing to assure their effectiveness.

•	Vulnerabilities addressed: Susceptibility to 
cryptanalytic attacks on integrity and confi-
dentiality that exploit poor selection of keys 
and other numbers intended to be random.

•	Developer resources required: Access to 
vetted procedures for random number gen-
eration; these may be platform-dependent. 
Requires testing the procedures and docu-
menting the results.

•	Evaluator resources required: Ability to review 
and evaluate developer’s design and imple-
mentation of random number generation and 
use, as well as reviewing test results.

•	References: “Use Cryptography Correctly,” in 
IEEE Cybersecurity Initiative: Avoiding the Top 
Ten Software Security Design Flaws, p. 19; 
https://www.computer.org/cms/CYBSI/
docs/Top-10-Flaws.pdf.

Elements intended to assure software/
firmware provenance and integrity, 
but not to remove code flaws 
Software Bill of Materials
•	Description: Originally posed as “layered, 

traceable assurance and verification,” the 
participants felt that it was too difficult to 
formulate as a checkable building code ele-
ment, but agreed that a bill of materialsspec-
ifying what software (including version or 
release number) is included in a system and 
the source of all of the software components 
in the systemis both critical and checkable.

•	Vulnerabilities addressed: This element does 
not prevent vulnerabilities but permits iden-
tifying whether vulnerabilities discovered in 
software components are included in the 
system and hence may require patching/
remediation. In this way it can be a critical 
tool for system defenders, but also for attack-
ers, if they have access to it.

•	Developer resources required: Ability to deter-
mine and specify where each line of code in 
the delivered product originated 

•	Evaluator resources required: Ability to map 
provided bill of materials against delivered 
software components. 

•	References: “H.R.5793 - 113th Congress 
(2013-2014): Cyber Supply Chain 
Management and Transparency Act of 

E L E M E N T S  R E C O M M E N D E D  F O R   I N C LU S I O N,  BY C AT E G O RY

https://www.computer.org/cms/CYBSI/docs/Top-10-Flaws.pdf
https://www.computer.org/cms/CYBSI/docs/Top-10-Flaws.pdf
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2014 - Congress.gov - Library of Congress”. 
Available at https://www.congress.gov/
bill/113th-congress/house-bill/5793.

Digitally signed software and 
firmware with update validation
•	Description: Both firmware and software 

that implement critical functions should be 
digitally signed, and the private signing keys 
must be carefully managed. The developer 
must either identify and distinguish critical vs. 
non-critical functions, or else the signatures 
must apply to all software and firmware. Files 
containing critical system configuration data 
will also benefit from these controls. 

•	Vulnerabilities addressed: This element does 
not prevent or eliminate vulnerabilities in 
software or firmware but aids in addressing 
software provenance (se Software Bill of 
Materials as well) and accountability in case 
of failures or attacks. Reduces vulnerability 
to spoofed updates or rollbacks.

•	Developer resources required: Infrastructure 
to generate, distribute, update and protect 
signing keys; ability to integrate signing and 
validation functions in delivered system.

•	Evaluator resources required: Evaluator needs 
to assure the integrity of signing mechanisms 
and operational mechanisms for signature 
verification.

•	References: W. A. Arbaugh, D. J. Farber, and J. 
M. Smith, “A Secure and Reliable Bootstrap 
Architecture,” Proc. 1997 IEEE Symp. on 
Security and Privacy, IEEE, 1997.

•	D. K. Nilsson, L. Sun, and T. Nakajima, “A 
Framework for Self-Verification of Firmware 
Updates over the Air in Vehicle ECUs,” Proc. 
2008 IEEE Globecom Workshops, IEEE, 2008.

•	A. Cui, M. Costello, and S. J. Stolfo, “When 
Firmware Modifications Attack: A Case 
Study of Embedded Exploitation,” Proc. 20th 
Network and Distributed Systems Symp. 
(NDSS) 2013, Internet Society, San Diego, 
CA, Feb. 2013. 

Elements intended to impede 
attacker analysis or exploitation 
but not necessarily remove flaws 
Specification of system information 
flows with effective enforcement
•	Description: While the confidentiality of infor-

mation in power systems is a concern, the 
integrity and flow of information, particularly 
control information sent to and received from 
cyberphysical systems, is usually the most 
critical concern. The developer must specify 
the flow of critical information through soft-
ware and hardware components and make 
use of software and hardware mechanisms, 
including mandatory access controls (MAC), 
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rings of protection, privilege mechanisms, 
capability mechanisms, one-way flow devices, 
etc., as available and appropriate. This broad 
requirement concerns both system security 
policy and system architecture.

•	Vulnerabilities addressed: Enforcement of in-
formation flow constraints does not necessar-
ily eliminate implementation errors that could 
be exploited by maliciously crafted inputs, but 
it can limit the effects to the domains “down-
stream” from the exploitable flaw.

•	Developer resources required: Ability to under-
stand and architect information flows within 
the system and to employ available mecha-
nisms to enforce them.

•	Evaluator resources required: Ability to under-
stand and assess both system function and 
developer’s information flow specification and 
implementation. 

•	References: See French ANSSI http://www.
ssi.gouv.fr/uploads/2014/01/Managing_
Cybe_for_ICS_EN.pdf, esp. Appendix B, GP02, 
and US DHS https://ics-cert.us-cert.gov/
sites/default/files/documents/Seven%20
Steps%20to%20Effectively%20Defend%20
Industrial%20Control%20Systems_S508C.
pdf, item 4, for examples of related guidance.

Input Validation: All input accepted by control 
software must be well-defined (via a grammar 

or equivalent means), as syntactically simple 
as possible (regular or context-free syntax 
preferred), and fully validated before use.
•	Description: Demonstrating the effectiveness 

of input validation, i.e., demonstrating that 
invalid inputs can be identified and are in fact 
rejected, was agreed to belong in the code. 
Simplification of inputs, which can reduce the 
difficulty of validation, was considered desir-
able but did not gain consensus as a code 
requirement.

•	Vulnerabilities addressed: Exploitation of 
input-handling code by maliciously crafted 
input. Accepting invalid inputs can lead to 
unpredictable system behavior. Input valida-
tion can protect against buffer overflows and 
related memory safety errors. 

•	Developer resources required: Requires that 
for each possible system input, the range of 
acceptable inputs be unambiguously spec-
ified and that the implementation assure 
inputs are validated as specified.

•	Evaluator resources required: Ability to review 
both the input specification and the code 
responsible for validating inputs.

•	References: L. Sassaman, M. L. Patterson, 
S. Bratus, and M. E. Locasto, “Security 
Applications of Formal Language Theory,” IEEE 
Systems Journal, vol. 7, no. 3, Sept. 2013; 
http://langsec.org/papers/langsec-tr.pdf.
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Appropriate component separation / isolation 
•	Description: Providing isolation between 

components so that malfunction or penetra-
tion of one component cannot affect those 
isolated from it is a fundamental software 
and security engineering technique. In power 
systems, it is appropriately used to separate 
non-critical functions from critical ones, which 
implies that the critical functions have been 
explicitly identified. Mechanisms for achieving 
the separation can include hardware support 
for isolating machine domains (e.g., privilege 
modes, rings, segmentation, capabilities). 
Software sandboxing mechanisms can also 
be effective but may require additional evi-
dence to assure their strength.

•	Vulnerabilities addressed: This element does 
not remove specific classes of vulnerabilities 
but prevents or raises the difficulty for an 
attacker who exploits a vulnerability in one 
component to leverage that exploitation in 
other components.

•	Developer resources required: The ability to 
distinguish more critical from less critical 
functions/components; ability to organize 
security architecture to exploit underlying 
security isolation mechanisms (processes, 
sandboxes, virtual machines); ability to map 
the design to the underlying separation 
mechanisms correctly. 

•	Evaluator resources required: Access to rele-
vant design and implementation documents 
from developer and ability to interpret and 
evaluate them correctly. 

•	References: C. Greamo and A. Ghosh, 
“Sandboxing and Virtualization: Modern 
Tools for Combating Malware,” IEEE Security 
& Privacy, vol. 9, no. 2, Mar./Apr. 2011, 
pp. 79–82.

Authentication and access control 
(human – device and device – device)
•	Description: Authentication of human op-

erators to machines is critical to providing 
accountability for operator-initiated actions 
and a basis for implementing role based (or 
other) access controls. As automation and 
attack sophistication increase, it will become 
more important for the machine to authen-
ticate itself to the operator as well (i.e., so 
that the operator can be sure she is com-
municating with the intended machine and 
that its configuration is accurately portrayed). 
A complicating factor may be the need for 
emergency access by human operators. In 
addition, devices will require mutual authen-
tication, for similar reasons. Some current 
standards for substation operation already 
impose authentication requirements. The 
consensus was that the code should require 
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two-factor authentication of operators, but 
at the same time should provide for audited 
“break-glass” emergency access for critical 
functions. Device-device authentication was 
seen as important, but requiring further 
research prior to imposing a building code 
requirement.

•	Vulnerabilities addressed: This element does 
not generally detect or remove vulnerabili-
ties in software or hardware, but it provides 
accountability for actions taken and provides 
the basis for authorizing system access. 
Authenticated communications can enable 
detection of traffic inserted by unauthorized 
third parties.

•	Developer resources required: Ability to 
design and incorporate appropriate authen-
tication mechanisms, including two-factor 
authentication.

•	Evaluator resources required: Ability to eval-
uate authentication mechanism design and 
implementation. 

•	References: IEEE Std. 1686-2007 for 
Intelligent Electronic Devices. IEEE Std. 1815 
(DNP3) also describes a machine-to-machine 
authentication process.

Elements intended to enable 
detection/attribution of attack
Security event logging
•	Description: Provide a tamper-resistant audit 

trail for security-related events, such as soft-
ware installation, user authentication, and 
attempted intrusion. The audit trail must not 
be overwritten by a flood of events; and there 
shall be a provision for offline storage. It was 
noted that certain kinds of power fluctuations 
might themselves be indicators of security-
-relevant events, but such fluctuations are 
expected to be captured by the power mon-
itoring systems and hence did not require 
inclusion in this element.

•	Vulnerabilities addressed: This element does 
not prevent or detect vulnerabilities, it aims 
to provide a record that would permit recon-
struction and understanding of adverse activi-
ties after the fact and may assist in restoring 
the system to a valid state. If software 
monitoring a log can detect a malfunction or 
attack based on the logged actions, it may 
be able to initiate recovery actions or inhibit 
further damage.

•	Developer resources required: Identification 
of security related event types (for ex-
ample, authentications, privilege level 
changes, and software updates) including 
intrusion attempts, and implementation 
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of tamper-resistant, append-only security 
event logs.

•	Evaluator resources required: Manual review 
of identified security related event types and 
of design and implementation of logging 
mechanisms and security event generation 
mechanisms. 

•	References: IEC 61850, IEEE 1815 (DNP3) 
already call for related functions.

Elements intended to assist in 
safe degradation of function 
during an attack
No elements proposed specific to this category, 
but see “back-out” functionality element.

Elements intended to assist in 
restoration of function after attack 
Inherent “back-out” functionality 
// trustworthy recovery
•	Description: Provide mechanisms that sup-

port restoration to secure functional state 
after a successful attack has been detected. 
Providing this capability can affect the sys-
tem design broadly.

•	Vulnerabilities addressed: This element does 

not prevent or eliminate vulnerabilities but 
aims to restore system function after a vul-
nerability has been exploited. 

•	Developer resources required: Requires the 
developer anticipate potentially successful 
attack modes and provide recovery mecha-
nisms (e.g. backups inaccessible to attack-
ers) that can be invoked when system degra-
dation is detected.

•	Evaluator resources required: Ability to 
assess adequacy of developer’s design and 
recovery mechanisms. 

•	References: P. Gallagher, A Guide to 
Understanding Trusted Recovery in Trusted 
Systems, NCSC-TG-022, U.S. National 
Computer Security Center, Dec. 1991; 
https://fas.org/irp/nsa/rainbow/tg022.htm.

Elements intended to support 
maintenance of operational 
software without loss of integrity
No elements proposed specific to this category. 
However, it is related to software/firmware 
update validation under the previous element 
“Digitally signed software and firmware with 
update validation”
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Conclusion

How might this report be used?
This report serves as an example of how a build-
ing code might be developed for software with 
security responsibilities in a particular domain. 
In itself, it records the consensus of a group of 
experienced industry, academic, and government 
laboratory individuals who are concerned with 
the security of future power systems. If it is to 
be used more widely, it needs to be circulated, 
read, considered, revised, amplified and perhaps 
eventually adopted by relevant organizations 
in the industry. It can also serve as a basis 
for industry and government standards groups 
considering how to proceed to help make the 
cybersecurity properties of future power systems 
an asset rather than a liability.
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Appendix A. Research Agenda for 
Power Systems Software Security

Input Simplification
Some participants proposed that inputs should 
be required to be simplified to improve the assur-
ance that inputs can be mechanically validated. 
For example, “Protocols with complex message 
formats such as DNP3, IEC 61850, etc. must be 
restricted by their recognizer modules to subsets 
actually used by specific devices and valid for 
these devices. Non-conforming inputs should be 
rejected.” The consensus was not to include this 
requirement in the initial code because protocol 
implementations may be licensed from third 
parties and hence difficult to modify. Research 
may be warranted into techniques for simplifying 
input language complexity and for wrapping exist-
ing implementations so that (potential) flaws in 
third party implementations cannot be exploited.

Verified OS and hardware
Some participants proposed to require the use 
of verified operating system and hardware plat-
forms for critical devices. Some low power/low 
function devices do not include operating sys-
tems, so if such a requirement were included in 
a future code, the scope of its application would 

need to be made clear. Verfication would enable 
assuring that system initialization leads to a 
secure initial state. Critical properties desired 
of a binary (or source) program would need to 
be specified precisely. The subject program is 
then analyzed against a model embodying the 
semantics of the (hardware/software) execution 
environment to verify that the desired properties 
are present. The participants recognized there 
have been substantial advances in tools that 
can be applied to carry out formal verification 
of software and that some substantial software 
systems, including the seL4 kernel, have been 
verified. The technology is seen as cost-effective 
and is in use by chip vendors to verify hardware 
designs. The relative simplicity of some power 
system components would seem to bring them 
within reach of the technology. However, on bal-
ance, the participants felt that there was more 
research to be done before this element could 
be placed into the code.

Automated conformance checking
This proposed element is meant to cover mech-
anisms to check whether a software program 
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conforms to the building code. Tools (some more 
automated, like SAT solvers, and some requiring 
more manual assistance, like theorem provers) 
are, and have been for some time, available for 
this purpose. This element is closely related to 
the proposed “Verified OS and hardware” ele-
ment, except that the proposed conformance is 
to the building code rather than to a functional 
specification, and a similar discussion applies.

Formal requirements specification
At least three senses of formal requirements 
specification were discussed during the meeting. 
For those pursuing formal verification of pro-
grams, a formal (in the sense of mathematical 
logic) specification of the desired properties of 
the program is required. The difficulty of creating 
such a specification is an impediment to the 
development of verified OS and hardware, just 
discussed, and suggested that incorporating 
a building code element for a formal specifica-
tion is premature at this time. The participants 
also discussed formal security policy models, 
in the sense of the Trusted Computer System 
Evaluation Criteria, and endorsed the idea that 
without such a model, particularly one address-
ing mandatory integrity requirements, it is essen-
tially impossible to specify when a security viola-
tion has occurred. On the other hand, “formal” 
used in the sense of having a form, a structure, 
leads to a different interpretation of “formal re-
quirements specification”. It was noted that IEEE 

Standard 1686 for Intelligent Electronic Devices 
provides a framework for cybersecurity require-
ments for such devices. The consensus placed 
this proposed element on the research agenda.

Active defense and 
automated response
This proposed element aims to automate the 
current activities of attack detection and re-
sponse. As such, it aims to reduce vulnerabil-
ities only as mitigations to observed attacks. 
Some current activities such as the DARPA Cyber 
Grand Challenge have incentivized this approach, 
but the participants felt that the technology is 
not mature enough to include in a building code 
at this time.

Assurance cases with 
eliminative arguments
Analysts who use this technique try to increase 
the confidence in a security assertion by posing 
counter-examples and then presenting evidence 
that eliminates as many counter-examples as 
possible. When a counter-example cannot be 
eliminated completely, the evidence can provide 
bounds on the potential impact of the counter-
-example. While assurance cases have been 
used successfully in the safety domain, their 
development for use in the security domain is 
less mature. The strength of any eliminative 
argument depends on the completeness of the 
set of posited counter-examples. No work has 

A P P E N D I X A
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been done to identify security-related counter-
examples specifically for power system devices. 
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Chris Chelmecki, Basler Electric, Discussion 

Group Leader
Art Conklin, University of Houston
Adam Crain, Automatak
Dennis Gammel, Schweitzer
Andrew Ginter, Waterfall-Security
Mark Heckman, University of San Diego
Marijn Heule, University of Texas at Austin
Carl Landwehr, George Washington University 

(CSPRI)
Chad Lloyd, Schneider Electric
Dario Lobozzo, Radiflow
Johan Malmström, ABB
Scott Mix, North American Electric Reliability 

Corporation (NERC)
Ken Modeste, UL, Discussion Group Leader
Tommy Morris, University of Alabama -- Huntsville
David Nicol, University of Illinois at 

Urbana-Champaign
Rajesh Nighot, Nebulian
Michael Pyle, Schneider Electric
Edwards Reed, AESec, Inc.

Craig Rieger, Idaho National Laboratory
Benjamin Salazar, Lawrence Livermore National 

Laboratory
Chet Sandberg, Consulting Engineer
William Sanders, University of Illinois at 

Urbana-Champaign
Roger Schell, AESec, Inc., Keynote address
Steven Templeton, University of California, Davis
Eric Thibodeau, Gentec
Mike Thiems, Basler Electric
Alfonso Valdes, University of Illinois at 

Urbana-Champaign
Zhenyuan Wang, ABB, Discussion Group Leader
Sam Weber, New York University
Jin Wei, University of Akron
Andrew West, SUBNET Solutions, Inc., Keynote 

address and Discussion Group Leader
Chuck Weinstock, Software Engineering Institute 

(CMU), Discussion Group Leader
Reid Wightman, RevICS
Carol Woody, Software Engineering Institute 

(CMU)
Tim Yardley, University of Illinois at 

Urbana-Champaign
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