
Building Code for Power System
Software Security

Carl E. Landwehr, Cyber Security and Privacy Research Institute (CSPRI), George Washington University

Alfonso Valdes, Information Trust Institute (ITI), University of Illinois

http://www.computer.org
http://www.ieee.org
http://cybersecurity.ieee.org/

2

Public Access Encouraged

Because the authors, contributors,
and publisher are eager to engage the
broader community in open discussion,
analysis, and debate regarding a vital
issue of common interest, this document
is distributed under a Creative Commons
BY-SA license. The full legal language of the BY-SA license is available
here: http://creativecommons.org/licenses/by-sa/3.0/legalcode.

Under this license, you are free to both share (copy and redistribute the
material in any medium or format) and adapt (remix, transform, and build
upon the material for any purpose) the content of this document, as long
as you comply with the following terms:

Attribution — You must give appropriate credit, provide a link to the
license, and indicate if changes were made. You may use any reasonable
citation format, but the attribution may not suggest that the authors or
publisher has a relationship with you or endorses you or your use.

“ShareAlike” — If you remix, transform, or build upon the material, you
must distribute your contributions under the same BY-SA license as
the original. That means you may not add any restrictions beyond those
stated in the license, or apply legal terms or technological measures that
legally restrict others from doing anything the license permits.

Please note that no warranties are given regarding the content of this
document. Derogatory use of the content of this license to portray the
authors, contributors, or publisher in a negative light may cancel the
license under Section 4(a). This license may not give you all of the
permissions necessary for a specific intended use.

Staff

Brian Kirk, Manager, New Initiative Development
Jennie Zhu-Mai, Designer

http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://www.ieee.org
http://www.computer.org
http://cred-c.org/
https://www.iti.illinois.edu/
http://www.ieee-pes.org/
http://smartgrid.ieee.org/
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://cybersecurity.ieee.org/

TA B L E O F C O N T E N T S

3

Introduction.. 4
Power System Context...................................... 5

The Need for a Secure Software Development
Process.. 6

Security Policy’s Central Role................................ 6
Minimization of Function....................................... 7
Challenges.. 7

Purpose.. 9
Elements Recommended for Inclusion,
by Category... 10

Elements intended to avoid/detect/remove
specific types of vulnerabilities
at the implementation stage............................... 11

Elements intended to assure proper
use of cryptography.. 15

Elements intended to assure software/firmware
provenance and integrity, but not to remove
code flaws .. 16

Elements intended to impede attacker
analysis or exploitation but not necessarily
remove flaws .. 17

Elements intended to enable
detection/attribution of attack............................ 20

Elements intended to assist in safe
degradation of function during an attack.............. 21

Elements intended to assist in restoration
of function after attack 21

Elements intended to support maintenance of
operational software without loss of integrity....... 21

Conclusion.. 22
How might this report be used?.......................... 22
Acknowledgments.. 22

Appendix A. Research Agenda
for Power Systems Software Security............... 24

Input Simplification.. 24
Verified OS and hardware.................................... 24
Automated conformance checking....................... 24
Formal requirements specification....................... 25
Active defense and automated response............. 25
Assurance cases with eliminative arguments....... 25

Appendix B. List of Participants....................... 27

4

Introduction
Both the attractiveness of power systems as
targets of cyberattack and their vulnerability to
remote attack via digital networks are evident
from recent world events. While policy makers
seek means to deter such attacks politically, the
most effective way to reduce their attractiveness
as targets is to reduce their vulnerability to such
attacks. This can be done; these are engineered
systems built to satisfy specifications. The
results of the workshop presented here aim to
reduce the vulnerability of future power systems
to remote attacks that exploit vulnerabilities in

the code – software or firmware – that controls
their operation. The approach taken is to de-
velop a consensus “building code” for building
the software that controls these systems. Such
a building code can provide a basis for custom-
ers to specify the security required of power
system software components, for vendors to
produce them, and for third parties to evaluate
important aspects of their security properties.
The availability and use of such a code can
enable the marketplace to reward producers of
systems with stronger security properties.

5

Power System Context
This effort is motivated by the power system
environment, including supply, demand, trans-
mission, distribution, generation, smart grids,
and microgrids, including residential use. The
systems in this environment have requirements
for both local and remote access as well as
local and remote control. This access will be via
networks that support digital communications.
Some may be isolated, but some will be Internet-
connected. To maintain the reliability and safety
of these structures, cybersecurity is an issue of
increasing concern in the power system environ-
ment as a whole.

In the realm of physical structures, building
codes can incorporate a very broad range of
requirements, from architectural and design

requirements that apply to large public struc-
tures or neighborhoods to requirements on
type and strength of materials to be used in
construction. But a building code is not a design
manual. It is a guideline that provides minimum
expectations and recommended practices so
that a building that conforms to the code should
at least be safe and sound. Similarly, a software
building code for power systems, while it cannot
guarantee overall system security or reliability,
will improve the security posture of the software
and systems being developed in this industry.
Software must, as always, meet organizational
and operational requirements, mitigate threats,
and minimize flaws.

6

P OW E R S YS T E M C O N T E X T

The Need for a Secure Software
Development Process
It continues to be the case that most successful
cyber intrusions exploit vulnerabilities that were
accidentally introduced into the software at the
implementation stage, i.e., when programmers
convert specifications to code. For this reason,
this draft building code focuses most strongly
on techniques for preventing the introduction
of such implementation flaws or for finding and
correcting them. However, the consensus of this
workshop was that there is a fundamental need
for a secure software development process to be
put in place to organize the production of soft-
ware for power systems. Participants proposed
that two flows of requirements must be con-
ducted in parallel as part of this process:

System requirements à device requirements à
software

Security policy à security requirements à
secure implementation

Security Policy’s Central Role
In this context, security policy becomes part of
the system requirements, and system security
must be seen as not only preventing unintended
things from happening but also ensuring that
the system does perform its intended functions.
Security policy in this light becomes the state-
ment of what it means for the system to provide

service that is dependable and secure in the
sense of [4], in which a protection mechanism
(e.g., a circuit breaker) is dependable to the
extent that it operates at appropriate times and
is secure to the extent that it doesn’t operate at
other times. In this lexicon, a system is consid-
ered reliable to the extent that it is both depend-
able and secure.*

A system is secure only with respect to its
stated security policy (and insecure only when
and if those policy statements are violated). The
specific security controls included in a system
(e.g., authentication, access control, information
flow control, cryptographic controls) are chosen
in order to implement and enforce the policy.

Overall system design will determine whether
software, hardware, or people operating the sys-
tem are responsible for assuring that particular
aspects of an overall security policy are correctly
enforced. This document primarily addresses
those aspects of security policies that are to be
assured by software.

The building code can assist in the selection
of proper controls to achieve the system’s secu-
rity policy as part of the software development
process, just as codes for physical buildings
assist the architect, developer, and builder in
determining the safe width for stairways and
fire exits. The essential first step in develop-
ing secure software is the security policy; the

* Other technical communities define these terms differently, e.g. [5]

7

P OW E R S YS T E M C O N T E X T

remainder of this building code is intended as
a guideline to assist in the selection of controls
and implementation of the controls necessary to
enforce the policy.

Minimization of Function
Among cybersecurity professionals, it is often
said that complexity is the enemy of security
[6,7,8]. Nevertheless, the economics of chip
production and software production have led to
the prevalence of computing hardware with broad
capabilities and software that frequently includes
many features and options bundled together.
Features include a chip or application that the
purchaser does not even know are present have
often been exploited to penetrate a system.

Although not originally proposed as an
element for the building code (and hence not
included explicitly in the draft report), the prin-
ciple of disabling unneeded / unused functions
was part of the workshop consensus. Different
functions of a device might be disabled accord-
ing to the application in which it is to be used;
the building code would apply to the software
developed for the device regardless of its appli-
cation. Note that if the software implementing
a disabled function is not removed, care must
be taken to assure that it cannot be activated
through the exploitation of flaws elsewhere in
the system.

Challenges
Expanding the scope of the software building
code from a focus on elimination of implemen-
tation errors to include system security policies
and secure software development processes is
a significant step. While a single organization
may be able to implement and control secure
software development procedures for software it
develops internally, it is difficult to find a product
today that doesn’t incorporate software devel-
oped by others, including software with roots
in the community of open source developers.
Assuring that all of the software in a system
was developed in accordance with a particular
secure software development process will be a
significant challenge for most companies. (The
requirement for a software “bill of materials” in
the draft code will at least allow the sources of
software to be identified.)

In general, there are three ways to gain
confidence that a piece of software will function
as specified. First, one may have confidence in
the people who built the software, for example, if
they have produced similar software in the past
and it has performed well. Seeking this kind of
confidence might lead one to establish certifica-
tion processes for individuals and for identifying
what software was produced by certified individ-
uals. Second, one may have confidence in the
process or methodology used to build and test
the software. This approach leads to the secure
software development process requirement

8

embraced by the workshop consensus, and
might lead to certification of software develop-
ment processes and identifying software that
was produced in accordance with a particular
process. A third way to assure that software will
behave as specified is by examining the software
itself, the output of the software development
process. This third kind of assurance is the
strongest, in the sense that it reasons about
the actual code that will operate the system,
but it is difficult (often impossible) to achieve
simply by testing the code, because the state

spaces involved are far too large for exhaustive
testing. Techniques for mathematical verification
of software can provide this kind of assurance.
This approach might call for the certification of
the tools and processes used in the verification.
The size of software to which techniques have
been successfully applied continues to grow, but
remains a limiting factor. A successful approach
to the development of secure power system
software may well involve all three of these kinds
of assurance for the foreseeable future.

P OW E R S YS T E M C O N T E X T

9

Purpose
This code is intended to provide a basis for
reducing the risk that power system software is
vulnerable to malicious attacks that might im-
pede system operation or compromise the integ-
rity or confidentiality of data used or generated
by the system. The aim in specifying a model
code is not to assure that future systems are
invulnerable to any anticipated attack but to re-
cord a consensus among experts from industry,
academia, and government laboratories that rep-
resents a baseline set of requirements for the
security of software and firmware in power sys-
tems. To act in the same way as building codes
for physical structures, such a code will need to

evolve over time and hence will need to find an
appropriate home in a body with a continuing ex-
istence and continuing participation by relevant
groups. Procedures will need to be established
for defining terms precisely, for proposing and
adopting changes, for establishing conformance
to the code, and so on. The workshop partici-
pants offer this baseline code in hope that it will
eventually lead, either through the establishment
of a more formal building code structure or
through adoption in some other form by relevant
bodies, to a safer and stronger cyberinfrastrcture
for power systems generally.

10

Elements Recommended
for Inclusion, by Category
In creating the categorization below, the aim
is to be comprehensive. Consequently, there
are some categories for which no proposed
elements were identified or agreed upon by the
participants These empty categories are retained
to highlight unmet needs.

For each element of the code, the following
subsections are provided:

•	Description: What is the meaning and pur-
pose of this element?

•	Vulnerabilities addressed: What kinds of
vulnerabilities will be reduced or eliminated if
this element is implemented properly?

•	Developer resources required: What
resources will the individual or organization
developing the software/device require in
order to satisfy this element?

•	Evaluator resources required: What is
required for a third party to assess whether
the device satisfies this element?

•	References

11

Elements intended to avoid/detect/
remove specific types of vulnerabilities
at the implementation stage
Secure software development process
with assurance against subversion along
with evidence of conformance
•	Description: Vendors must develop securi-

ty-critical software within the framework of an
established methodology for secure software
development. No specific methodology is
required, but relevant examples include
Microsoft’s Secure Development Lifecycle
(SDL) and the coding practices developed
by SAFECODE. Evidence that the delivered
software was developed within the chosen
methodology must be available for review.
Any third-party software incorporated into
security-critical functions must be shown to
provide equivalent assurance against acci-
dental incorporation of vulnerabilities.

•	Vulnerabilities addressed: Methodologies of
the required type aim to reduce or eliminate
a wide range of software vulnerabilities
including memory safety errors, integer over-
flows, SQL injection, etc.

•	Developer resources required: Developer must
be able to select and implement a given
methodology, develop software in accordance
with it, and also develop the evidence to
demonstrate conformance.

•	Evaluator resources required: Evaluator must
be able to review the delivered software

and the conformance evidence and assess
compliance.

•	References: For information on Microsoft’s
Security Development Lifecycle, see https://
www.microsoft.com/en-us/sdl/. Information
on the industry-wide SAFECODE intiative, is
available at https://www.safecode.org.

Static and dynamic code analysis
(throughout development cycle)
•	Description: Apply static and dynamic code

analysis techniques to expose (and remedi-
ate as appropriate) software vulnerabilities.
For developers, it is likely to be most effec-
tive to apply these tools regularly to software
as it is developed, so that errors are found,
and can be fixed, as soon as possible. The
tools can be applied after the software is
developed (including to software provided by
third parties) and can still provide valuable
information about the presence (or absence)
of classes of errors; however it is generally
acknowledged that it is significantly more
costly to remediate errors found later in the
development process.

•	Vulnerabilities addressed: Memory safety
(buffer overflows, use-after-free errors, null
pointer dereference errors, etc.)

•	Developer resources required: Access to
relevant program analysis tools and program-
mers trained to use them effectively.

•	Evaluator resources required: Access to the

E L E M E N T S R E C O M M E N D E D F O R I N C LU S I O N, BY C AT E G O RY

https://www.microsoft.com/en-us/sdl/
https://www.microsoft.com/en-us/sdl/
https://www.safecode.org

12

software and analysis tools in order to repli-
cate (or not) results supplied by the vendor.

•	References: See NIST Software Assurance
Metric and Tool Evaluation (SAMATE) reports,
available at: https://samate.nist.gov/index.
php/SAMATE_Publications.html. For a list of
source code security analyzers, see https://
samate.nist.gov/index.php/Source_Code_
Security_Analyzers.html.

Use of memory-safe/type-safe languages
•	Description: Memory-safe languages can

eliminate or substantially reduce the likeli-
hood of many classes of coding errors that
have often led to exploitable vulnerabilities.
These include buffer overflows, null pointer
dereferences, use-after-free errors, and refer-
ences to uninitialized memory. Rust and Go
are relatively recent memory-safe languages;
others include F#, C#, Python, and Haskell.
Developers who select other common lan-
guages (e.g., C, C++) that don’t provide
memory safety need to provide evidence that
their implementations avoid these problems.

•	Vulnerabilities addressed: Memory safety
errors.

•	Developer resources required: Access to com-
pilers and tools for memory safe languages
and programmers trained in them.

•	Evaluator resources required: Ability to assure
that the programming language was in fact
used to create the software (e.g., source

code and a compiler).
•	References: See results reported for prob-

ability of security errors in programming
contest submissions reported in A. Ruef,
M. Hicks, J. Parker, D. Levin, M. L. Mazurek,
and P. Mardziel, “Build It, Break It, Fix
It: Contesting Secure Development,”
Proceedings of the ACM Conference on
Computer and Communications Security
(CCS), Oct. 2016; https://arxiv.org/
abs/1606.01881.

System and component fuzz-testing
•	Description: Conventional testing generally

aims to compare the results of a software
implementation against its specification
by exercising the functions included in the
design in both normal and limit cases, so
the test inputs are often designed to check
particular cases and are not random. Fuzz
testing essentially submits random inputs
to a software component or system to see if
unexpected behavior can be elicited and pos-
sibly exploited to subvert the behavior of the
component or system. Participants agreed
that fuzz-testing at both the component and
system level should be a requirement of the
building code, since attackers are quite likely
to use it to seek paths into the system.

•	Vulnerabilities addressed: Like other testing
methodologies, fuzz-testing cannot guarantee
the absence of vulnerabilities, but its use can

E L E M E N T S R E C O M M E N D E D F O R I N C LU S I O N, BY C AT E G O RY

https://samate.nist.gov/index.php/SAMATE_Publications.html
https://samate.nist.gov/index.php/SAMATE_Publications.html
https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
https://arxiv.org/abs/1606.01881
https://arxiv.org/abs/1606.01881

13

reveal a broad range of vulnerabilities include
memory safety problems, race conditions,
and many others. If these vulnerabilities can
be found and remediated prior to deploy-
ment, they will be unavailable for exploitation
by attackers.

•	Developer resources required: Personnel
who understand fuzz testing, the intricate
details of the interfaces implemented, and
have the tools available to conduct it. Like
any testing regime, requires a specification
of system behavior against which the tested
behavior can be compared. Fuzz testing is
random and cannot be exhaustive, and it
provides more assurance as more tests are
run. Consequently, an assurance regime that
depends heavily on fuzz testing will demand
significant computing resources.

•	Evaluator resources required: The ability to
review fuzz testing output and to judge its
comprehensiveness.

•	References: The original paper on fuzz test-
ing: B.P. Miller, L. Fredriksen, and B. So, “An
Empirical Study of the Reliability of UNIX
Utilities,” Communications of the ACM 33,
Dec. 1990. Many tools are available for fuzz
testing; some depart from the completely
random model and incorporate coverage
metrics or target boundary and limit cases.
Microsoft has published guides on “how
much” fuzzing is appropriate as well as on
types of fuzzing to be applied.

Stress Testing
•	Description: The aim of stress testing is

to explore the behavior of a component or
system when it is operated with relatively
limited resources – e.g., memory, CPU, or
network communications bandwidth may be
limited in relation for a high required demand
for service. These conditions can occur in
normal operation if there is high demand,
but they may also be artificially induced by
an attacker mounting, for example, a denial
of service attack on the system. A properly
designed system should show graceful deg-
radation in the face of stress testing and
should recover normal operation smoothly as
the stress is removed. Participants agreed
that stress testing at both the component
and system level should be a requirement of
the building code.

•	Vulnerabilities addressed: Like other testing
methodologies, stress testing cannot assure
flaws or design weaknesses are absent, it
can only reveal only reveal those that the
tests exercise. Stress testing may reveal a
variety of implementation failures that occur
when design parameters (e.g., maximum
table sizes or queue lengths) are reached.
Stress testing should also reveal failures in
recovery mechanisms.

•	Developer resources required: Requires
personnel who understand stress testing
and have the tools available to conduct it.

E L E M E N T S R E C O M M E N D E D F O R I N C LU S I O N, BY C AT E G O RY

ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz.pdf
ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz.pdf
ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz.pdf

14

Requires a specification of expected system
behavior under high-stress conditions and
expected recovery modes when stress is
removed.

•	Evaluator resources required: Requires the
ability to review stress testing results and to
judge the comprehensiveness of the tests.

•	References: Textbook on performance testing
generally: H.H. Liu, Software Performance
and Scalability: A Quantitative Approach, John
Wiley & Sons, Inc., 2009.

Fault-injection testing
•	Description: Fault injection testing aims to

evaluate component and system behavior
when faults occur. This testing approach
therefore focuses on exercising fault- and
error-handling code within the system that
may be rarely invoked in operation. Faults
may be injected at compile time by modifying
the source code or at run time by modifying
system data or protocol messages flowing

over a network. Specifications must address
the expected response to induced failures
so that test results can be evaluated.
Participants agreed that this type of testing
should be applied to high-fidelity represen-
tations of operational power systems but
should definitely not be conducted on live
operational systems.

•	Vulnerabilities addressed: Vulnerabilities likely
to be revealed through fault-injection testing
are those found in error-handling and recov-
ery routines.

•	Developer resources required: Personnel con-
versant with fault injection testing and tools
to assist in conducting tests and evaluating
results.

•	Evaluator resources required: The ability to
evaluate fault-injection test results and to
assess their comprehensiveness.

•	References: M.-C. Hsueh, T.K.Tsai, R. Iyer.
“Fault Injection Techniques and Tools,”
Computer, Apr. 1997, p. 75 ff.

E L E M E N T S R E C O M M E N D E D F O R I N C LU S I O N, BY C AT E G O RY

15

Elements intended to assure
proper use of cryptography
Accredited cryptographic algorithms
and implementations
•	Description: Cryptographic algorithms that

resist serious cryptanalysis are notoriously
difficult to invent and to program correctly.
While different environments make different
demands on cryptography (for example, dif-
fering amounts of energy and time to devote
to cryptographic operations and different
time horizons for protecting keys), developers
should seek algorithms that have received
some external, open certification rather than
attempt to develop their own. If for some
reason suitable algorithms are not available
and invention is required (this should be a
last resort), developers should take care
to get expert review prior to adopting and
implementing their own crypto- algorithms.
Weaknesses in cryptography often come in
the implementation of the algorithm, key
management, and surrounding protocols.
Externally developed and certified imple-
mentations should be sought; custom im-
plementations of cryptographic components
require careful vetting by experts. In power
system environments, cryptography may more
often be called upon to assure the integrity
of commands from operators and data from

sensors rather than to protect their secrecy.
Proper selection and implementations of
algorithms for these requirements, proper
use of cryptographic software packages, and
proper management of keys will be essential
to assuring that the requirements are met in
practice.

•	Vulnerabilities addressed: addresses
Weaknesses in cryptographic algorithms,
implementations, and use.

•	Developer resources required: The ability to
understand the cryptographic requirements
of the system, select appropriate algo-
rithms and implementations, and to use the
selected packages correctly.

•	Evaluator resources required: The ability to
review and evaluate the system requirements
and the developers design, selections, and
implementations.

•	References: “Use Cryptography Correctly,” in
IEEE Cybersecurity Initiative: Avoiding the Top
Ten Software Security Design Flaws, p. 19;
https://www.computer.org/cms/CYBSI/
docs/Top-10-Flaws.pdf.

Secure random numbers
•	Description: Generating random numbers

for use in initializing pseudorandom number
generators and cryptographic algorithms,
using them correctly, and avoiding reusing

E L E M E N T S R E C O M M E N D E D F O R I N C LU S I O N, BY C AT E G O RY

https://www.computer.org/cms/CYBSI/docs/Top-10-Flaws.pdf
https://www.computer.org/cms/CYBSI/docs/Top-10-Flaws.pdf

16

them are challenging problems. Mistakes can
nullify even well-designed and implemented
cryptographic mechanisms. As advised in
other work, developers should adopt estab-
lished approaches that experts have vetted
rather than attempting novel solutions. Even
established approaches for random number
generation need to be subjected to appropri-
ate testing to assure their effectiveness.

•	Vulnerabilities addressed: Susceptibility to
cryptanalytic attacks on integrity and confi-
dentiality that exploit poor selection of keys
and other numbers intended to be random.

•	Developer resources required: Access to
vetted procedures for random number gen-
eration; these may be platform-dependent.
Requires testing the procedures and docu-
menting the results.

•	Evaluator resources required: Ability to review
and evaluate developer’s design and imple-
mentation of random number generation and
use, as well as reviewing test results.

•	References: “Use Cryptography Correctly,” in
IEEE Cybersecurity Initiative: Avoiding the Top
Ten Software Security Design Flaws, p. 19;
https://www.computer.org/cms/CYBSI/
docs/Top-10-Flaws.pdf.

Elements intended to assure software/
firmware provenance and integrity,
but not to remove code flaws
Software Bill of Materials
•	Description: Originally posed as “layered,

traceable assurance and verification,” the
participants felt that it was too difficult to
formulate as a checkable building code ele-
ment, but agreed that a bill of materialsspec-
ifying what software (including version or
release number) is included in a system and
the source of all of the software components
in the systemis both critical and checkable.

•	Vulnerabilities addressed: This element does
not prevent vulnerabilities but permits iden-
tifying whether vulnerabilities discovered in
software components are included in the
system and hence may require patching/
remediation. In this way it can be a critical
tool for system defenders, but also for attack-
ers, if they have access to it.

•	Developer resources required: Ability to deter-
mine and specify where each line of code in
the delivered product originated

•	Evaluator resources required: Ability to map
provided bill of materials against delivered
software components.

•	References: “H.R.5793 - 113th Congress
(2013-2014): Cyber Supply Chain
Management and Transparency Act of

E L E M E N T S R E C O M M E N D E D F O R I N C LU S I O N, BY C AT E G O RY

https://www.computer.org/cms/CYBSI/docs/Top-10-Flaws.pdf
https://www.computer.org/cms/CYBSI/docs/Top-10-Flaws.pdf

17

2014 - Congress.gov - Library of Congress”.
Available at https://www.congress.gov/
bill/113th-congress/house-bill/5793.

Digitally signed software and
firmware with update validation
•	Description: Both firmware and software

that implement critical functions should be
digitally signed, and the private signing keys
must be carefully managed. The developer
must either identify and distinguish critical vs.
non-critical functions, or else the signatures
must apply to all software and firmware. Files
containing critical system configuration data
will also benefit from these controls.

•	Vulnerabilities addressed: This element does
not prevent or eliminate vulnerabilities in
software or firmware but aids in addressing
software provenance (se Software Bill of
Materials as well) and accountability in case
of failures or attacks. Reduces vulnerability
to spoofed updates or rollbacks.

•	Developer resources required: Infrastructure
to generate, distribute, update and protect
signing keys; ability to integrate signing and
validation functions in delivered system.

•	Evaluator resources required: Evaluator needs
to assure the integrity of signing mechanisms
and operational mechanisms for signature
verification.

•	References: W. A. Arbaugh, D. J. Farber, and J.
M. Smith, “A Secure and Reliable Bootstrap
Architecture,” Proc. 1997 IEEE Symp. on
Security and Privacy, IEEE, 1997.

•	D. K. Nilsson, L. Sun, and T. Nakajima, “A
Framework for Self-Verification of Firmware
Updates over the Air in Vehicle ECUs,” Proc.
2008 IEEE Globecom Workshops, IEEE, 2008.

•	A. Cui, M. Costello, and S. J. Stolfo, “When
Firmware Modifications Attack: A Case
Study of Embedded Exploitation,” Proc. 20th
Network and Distributed Systems Symp.
(NDSS) 2013, Internet Society, San Diego,
CA, Feb. 2013.

Elements intended to impede
attacker analysis or exploitation
but not necessarily remove flaws
Specification of system information
flows with effective enforcement
•	Description: While the confidentiality of infor-

mation in power systems is a concern, the
integrity and flow of information, particularly
control information sent to and received from
cyberphysical systems, is usually the most
critical concern. The developer must specify
the flow of critical information through soft-
ware and hardware components and make
use of software and hardware mechanisms,
including mandatory access controls (MAC),

E L E M E N T S R E C O M M E N D E D F O R I N C LU S I O N, BY C AT E G O RY

https://www.congress.gov/bill/113th-congress/house-bill/5793
https://www.congress.gov/bill/113th-congress/house-bill/5793

18

rings of protection, privilege mechanisms,
capability mechanisms, one-way flow devices,
etc., as available and appropriate. This broad
requirement concerns both system security
policy and system architecture.

•	Vulnerabilities addressed: Enforcement of in-
formation flow constraints does not necessar-
ily eliminate implementation errors that could
be exploited by maliciously crafted inputs, but
it can limit the effects to the domains “down-
stream” from the exploitable flaw.

•	Developer resources required: Ability to under-
stand and architect information flows within
the system and to employ available mecha-
nisms to enforce them.

•	Evaluator resources required: Ability to under-
stand and assess both system function and
developer’s information flow specification and
implementation.

•	References: See French ANSSI http://www.
ssi.gouv.fr/uploads/2014/01/Managing_
Cybe_for_ICS_EN.pdf, esp. Appendix B, GP02,
and US DHS https://ics-cert.us-cert.gov/
sites/default/files/documents/Seven%20
Steps%20to%20Effectively%20Defend%20
Industrial%20Control%20Systems_S508C.
pdf, item 4, for examples of related guidance.

Input Validation: All input accepted by control
software must be well-defined (via a grammar

or equivalent means), as syntactically simple
as possible (regular or context-free syntax
preferred), and fully validated before use.
•	Description: Demonstrating the effectiveness

of input validation, i.e., demonstrating that
invalid inputs can be identified and are in fact
rejected, was agreed to belong in the code.
Simplification of inputs, which can reduce the
difficulty of validation, was considered desir-
able but did not gain consensus as a code
requirement.

•	Vulnerabilities addressed: Exploitation of
input-handling code by maliciously crafted
input. Accepting invalid inputs can lead to
unpredictable system behavior. Input valida-
tion can protect against buffer overflows and
related memory safety errors.

•	Developer resources required: Requires that
for each possible system input, the range of
acceptable inputs be unambiguously spec-
ified and that the implementation assure
inputs are validated as specified.

•	Evaluator resources required: Ability to review
both the input specification and the code
responsible for validating inputs.

•	References: L. Sassaman, M. L. Patterson,
S. Bratus, and M. E. Locasto, “Security
Applications of Formal Language Theory,” IEEE
Systems Journal, vol. 7, no. 3, Sept. 2013;
http://langsec.org/papers/langsec-tr.pdf.

E L E M E N T S R E C O M M E N D E D F O R I N C LU S I O N, BY C AT E G O RY

http://www.ssi.gouv.fr/uploads/2014/01/Managing_Cybe_for_ICS_EN.pdf
http://www.ssi.gouv.fr/uploads/2014/01/Managing_Cybe_for_ICS_EN.pdf
http://www.ssi.gouv.fr/uploads/2014/01/Managing_Cybe_for_ICS_EN.pdf
https://ics-cert.us-cert.gov/sites/default/files/documents/Seven%20Steps%20to%20Effectively%20Defend%20Industrial%20Control%20Systems_S508C.pdf
https://ics-cert.us-cert.gov/sites/default/files/documents/Seven%20Steps%20to%20Effectively%20Defend%20Industrial%20Control%20Systems_S508C.pdf
https://ics-cert.us-cert.gov/sites/default/files/documents/Seven%20Steps%20to%20Effectively%20Defend%20Industrial%20Control%20Systems_S508C.pdf
https://ics-cert.us-cert.gov/sites/default/files/documents/Seven%20Steps%20to%20Effectively%20Defend%20Industrial%20Control%20Systems_S508C.pdf
https://ics-cert.us-cert.gov/sites/default/files/documents/Seven%20Steps%20to%20Effectively%20Defend%20Industrial%20Control%20Systems_S508C.pdf
http://langsec.org/papers/langsec-tr.pdf

19

Appropriate component separation / isolation
•	Description: Providing isolation between

components so that malfunction or penetra-
tion of one component cannot affect those
isolated from it is a fundamental software
and security engineering technique. In power
systems, it is appropriately used to separate
non-critical functions from critical ones, which
implies that the critical functions have been
explicitly identified. Mechanisms for achieving
the separation can include hardware support
for isolating machine domains (e.g., privilege
modes, rings, segmentation, capabilities).
Software sandboxing mechanisms can also
be effective but may require additional evi-
dence to assure their strength.

•	Vulnerabilities addressed: This element does
not remove specific classes of vulnerabilities
but prevents or raises the difficulty for an
attacker who exploits a vulnerability in one
component to leverage that exploitation in
other components.

•	Developer resources required: The ability to
distinguish more critical from less critical
functions/components; ability to organize
security architecture to exploit underlying
security isolation mechanisms (processes,
sandboxes, virtual machines); ability to map
the design to the underlying separation
mechanisms correctly.

•	Evaluator resources required: Access to rele-
vant design and implementation documents
from developer and ability to interpret and
evaluate them correctly.

•	References: C. Greamo and A. Ghosh,
“Sandboxing and Virtualization: Modern
Tools for Combating Malware,” IEEE Security
& Privacy, vol. 9, no. 2, Mar./Apr. 2011,
pp. 79–82.

Authentication and access control
(human – device and device – device)
•	Description: Authentication of human op-

erators to machines is critical to providing
accountability for operator-initiated actions
and a basis for implementing role based (or
other) access controls. As automation and
attack sophistication increase, it will become
more important for the machine to authen-
ticate itself to the operator as well (i.e., so
that the operator can be sure she is com-
municating with the intended machine and
that its configuration is accurately portrayed).
A complicating factor may be the need for
emergency access by human operators. In
addition, devices will require mutual authen-
tication, for similar reasons. Some current
standards for substation operation already
impose authentication requirements. The
consensus was that the code should require

E L E M E N T S R E C O M M E N D E D F O R I N C LU S I O N, BY C AT E G O RY

20

two-factor authentication of operators, but
at the same time should provide for audited
“break-glass” emergency access for critical
functions. Device-device authentication was
seen as important, but requiring further
research prior to imposing a building code
requirement.

•	Vulnerabilities addressed: This element does
not generally detect or remove vulnerabili-
ties in software or hardware, but it provides
accountability for actions taken and provides
the basis for authorizing system access.
Authenticated communications can enable
detection of traffic inserted by unauthorized
third parties.

•	Developer resources required: Ability to
design and incorporate appropriate authen-
tication mechanisms, including two-factor
authentication.

•	Evaluator resources required: Ability to eval-
uate authentication mechanism design and
implementation.

•	References: IEEE Std. 1686-2007 for
Intelligent Electronic Devices. IEEE Std. 1815
(DNP3) also describes a machine-to-machine
authentication process.

Elements intended to enable
detection/attribution of attack
Security event logging
•	Description: Provide a tamper-resistant audit

trail for security-related events, such as soft-
ware installation, user authentication, and
attempted intrusion. The audit trail must not
be overwritten by a flood of events; and there
shall be a provision for offline storage. It was
noted that certain kinds of power fluctuations
might themselves be indicators of security-
-relevant events, but such fluctuations are
expected to be captured by the power mon-
itoring systems and hence did not require
inclusion in this element.

•	Vulnerabilities addressed: This element does
not prevent or detect vulnerabilities, it aims
to provide a record that would permit recon-
struction and understanding of adverse activi-
ties after the fact and may assist in restoring
the system to a valid state. If software
monitoring a log can detect a malfunction or
attack based on the logged actions, it may
be able to initiate recovery actions or inhibit
further damage.

•	Developer resources required: Identification
of security related event types (for ex-
ample, authentications, privilege level
changes, and software updates) including
intrusion attempts, and implementation

E L E M E N T S R E C O M M E N D E D F O R I N C LU S I O N, BY C AT E G O RY

21

of tamper-resistant, append-only security
event logs.

•	Evaluator resources required: Manual review
of identified security related event types and
of design and implementation of logging
mechanisms and security event generation
mechanisms.

•	References: IEC 61850, IEEE 1815 (DNP3)
already call for related functions.

Elements intended to assist in
safe degradation of function
during an attack
No elements proposed specific to this category,
but see “back-out” functionality element.

Elements intended to assist in
restoration of function after attack
Inherent “back-out” functionality
// trustworthy recovery
•	Description: Provide mechanisms that sup-

port restoration to secure functional state
after a successful attack has been detected.
Providing this capability can affect the sys-
tem design broadly.

•	Vulnerabilities addressed: This element does

not prevent or eliminate vulnerabilities but
aims to restore system function after a vul-
nerability has been exploited.

•	Developer resources required: Requires the
developer anticipate potentially successful
attack modes and provide recovery mecha-
nisms (e.g. backups inaccessible to attack-
ers) that can be invoked when system degra-
dation is detected.

•	Evaluator resources required: Ability to
assess adequacy of developer’s design and
recovery mechanisms.

•	References: P. Gallagher, A Guide to
Understanding Trusted Recovery in Trusted
Systems, NCSC-TG-022, U.S. National
Computer Security Center, Dec. 1991;
https://fas.org/irp/nsa/rainbow/tg022.htm.

Elements intended to support
maintenance of operational
software without loss of integrity
No elements proposed specific to this category.
However, it is related to software/firmware
update validation under the previous element
“Digitally signed software and firmware with
update validation”

E L E M E N T S R E C O M M E N D E D F O R I N C LU S I O N, BY C AT E G O RY

22

Conclusion

How might this report be used?
This report serves as an example of how a build-
ing code might be developed for software with
security responsibilities in a particular domain.
In itself, it records the consensus of a group of
experienced industry, academic, and government
laboratory individuals who are concerned with
the security of future power systems. If it is to
be used more widely, it needs to be circulated,
read, considered, revised, amplified and perhaps
eventually adopted by relevant organizations
in the industry. It can also serve as a basis
for industry and government standards groups
considering how to proceed to help make the
cybersecurity properties of future power systems
an asset rather than a liability.

Acknowledgments
The authors thank all of the participants for their
contributions to the workshop, which included
considerable work in advance of the meeting
itself. The willingness of all of the participants to
travel to UIUC (including some from Europe and
Australia), to share their views and to engage
in spirited discussion made the workshop both
productive and pleasurable. This report aims
to capture the consensus of those present at
the meeting. The authors are grateful to the
group leaders and keynote speakers, who had
the opportunity to review draft versions of the
report, and whose comments have improved it.
Responsibility for the final report, and any errors
in it, remains with the authors.

23

Craig Preuss of the IEEE Power and Energy
Society was particularly helpful in recruiting
participants and assisting the organization
of the workshop, although he was unable to
participate in person. The IEEE Cybersecurity
Initiative, and in particular Brian Kirk of the IEEE
Computer Society, provided funds and orga-
nizational support that were essential to the
conduct of the workshop. The U.S. Department
of Energy, through its Cyber Resilient Energy
Delivery Consortium (CREDC DoE Award Number
DE-OE0000780) activities at the University
of Illinois at Urbana-Champaign (and in par-
ticular Amy Clay Moore) provided excellent
facilities and logistics support. The National
Science Foundation (NSF CNS-1452113) and
the Center for Security and Privacy Research
at George Washington University provided
additional support.

References
1.	 C.E. Landwehr, A Building Code for Building Code:

Putting What We Know Works to Work, Proc. 29th

Annual Computer Security Applications Conference

(ACSAC), New Orleans, Dec. 2013.

2.	 Workshop to Develop a Building Code and Research

Agenda For Medical Device Software Security: Final

Report, Report GW-CSPRI-2015-01, 8 Jan. 2015;

http://www.cspri.seas.gwu.edu/s/Landwehr-Building

-Code-Final-Edit-Report-3-q0jj.pdf.

3.	 Building Code for Medical Device Software Security.

(with Thomas Haigh), IEEE Computer Society, Mar.

2015; http://cybersecurity.ieee.org/images/files

/images/pdf/building-code-for-medica-device

-software-security.pdf.

4.	 North American Electric Reliability Corporation

(NERC), Reliability Fundamentals of system

Protection: Report to the Planning Committee, NERC

System Protection and Control Subcommittee, Dec.

2010; http://www.nerc.com/comm/PC/System%20

Protection%20and%20Control%20Subcommittee%20

SPCS%20DL/Protection%20System%20Reliability%20

Fundamentals_Approved_20101208.pdf.

5.	 A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr,

Basic Concepts and Taxonomy of Dependable and

Secure Computing, IEEE Trans on Dependable and

Secure Computing, vol. 1, no., 1, pp. 11–33.

6.	 K. Zetter, “Three Minutes with Security Expert Bruce

Schneier,” PC World, 28 Sept. 2001; https://www

.schneier.com/news/archives/2001/09/three

_minutes_with_s.html.

7.	 D. Geer, “Complexity is the Enemy,” IEEE Security

& Privacy Magazine, Aug. 2008. p. 88; http://

ieeexplore.ieee.org/stamp/stamp.jsp

?arnumber=4753682.

8.	 J. Goldfarb, “Complexity is the Enemy of Security”

Security Week, 11 Feb. 2015; http://www

.securityweek.com/complexity-enemy-security.

C O N C LU S I O N

http://www.landwehr.org/2013-12-cl-acsac-essay-bc.pdf
http://www.landwehr.org/2013-12-cl-acsac-essay-bc.pdf
http://www.landwehr.org/2015-01-landwehr-gw-cspri.pdf
http://www.landwehr.org/2015-01-landwehr-gw-cspri.pdf
http://www.landwehr.org/2015-01-landwehr-gw-cspri.pdf
http://www.cspri.seas.gwu.edu/creating-building-code-for-medical-software-security/
http://www.cspri.seas.gwu.edu/creating-building-code-for-medical-software-security/
http://www.landwehr.org/2015-03-haigh-landwehr-ieee.pdf
http://cybersecurity.ieee.org/images/files/images/pdf/building-code-for-medica-device-software-security.pdf
http://cybersecurity.ieee.org/images/files/images/pdf/building-code-for-medica-device-software-security.pdf
http://cybersecurity.ieee.org/images/files/images/pdf/building-code-for-medica-device-software-security.pdf
http://www.landwehr.org/2004-aviz-laprie-randell.pdf
http://www.landwehr.org/2004-aviz-laprie-randell.pdf
https://www.schneier.com/news/archives/2001/09/three_minutes_with_s.html
https://www.schneier.com/news/archives/2001/09/three_minutes_with_s.html
https://www.schneier.com/news/archives/2001/09/three_minutes_with_s.html
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4753682
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4753682
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4753682
http://www.securityweek.com/complexity-enemy-security
http://www.securityweek.com/complexity-enemy-security

24

Appendix A. Research Agenda for
Power Systems Software Security

Input Simplification
Some participants proposed that inputs should
be required to be simplified to improve the assur-
ance that inputs can be mechanically validated.
For example, “Protocols with complex message
formats such as DNP3, IEC 61850, etc. must be
restricted by their recognizer modules to subsets
actually used by specific devices and valid for
these devices. Non-conforming inputs should be
rejected.” The consensus was not to include this
requirement in the initial code because protocol
implementations may be licensed from third
parties and hence difficult to modify. Research
may be warranted into techniques for simplifying
input language complexity and for wrapping exist-
ing implementations so that (potential) flaws in
third party implementations cannot be exploited.

Verified OS and hardware
Some participants proposed to require the use
of verified operating system and hardware plat-
forms for critical devices. Some low power/low
function devices do not include operating sys-
tems, so if such a requirement were included in
a future code, the scope of its application would

need to be made clear. Verfication would enable
assuring that system initialization leads to a
secure initial state. Critical properties desired
of a binary (or source) program would need to
be specified precisely. The subject program is
then analyzed against a model embodying the
semantics of the (hardware/software) execution
environment to verify that the desired properties
are present. The participants recognized there
have been substantial advances in tools that
can be applied to carry out formal verification
of software and that some substantial software
systems, including the seL4 kernel, have been
verified. The technology is seen as cost-effective
and is in use by chip vendors to verify hardware
designs. The relative simplicity of some power
system components would seem to bring them
within reach of the technology. However, on bal-
ance, the participants felt that there was more
research to be done before this element could
be placed into the code.

Automated conformance checking
This proposed element is meant to cover mech-
anisms to check whether a software program

25

conforms to the building code. Tools (some more
automated, like SAT solvers, and some requiring
more manual assistance, like theorem provers)
are, and have been for some time, available for
this purpose. This element is closely related to
the proposed “Verified OS and hardware” ele-
ment, except that the proposed conformance is
to the building code rather than to a functional
specification, and a similar discussion applies.

Formal requirements specification
At least three senses of formal requirements
specification were discussed during the meeting.
For those pursuing formal verification of pro-
grams, a formal (in the sense of mathematical
logic) specification of the desired properties of
the program is required. The difficulty of creating
such a specification is an impediment to the
development of verified OS and hardware, just
discussed, and suggested that incorporating
a building code element for a formal specifica-
tion is premature at this time. The participants
also discussed formal security policy models,
in the sense of the Trusted Computer System
Evaluation Criteria, and endorsed the idea that
without such a model, particularly one address-
ing mandatory integrity requirements, it is essen-
tially impossible to specify when a security viola-
tion has occurred. On the other hand, “formal”
used in the sense of having a form, a structure,
leads to a different interpretation of “formal re-
quirements specification”. It was noted that IEEE

Standard 1686 for Intelligent Electronic Devices
provides a framework for cybersecurity require-
ments for such devices. The consensus placed
this proposed element on the research agenda.

Active defense and
automated response
This proposed element aims to automate the
current activities of attack detection and re-
sponse. As such, it aims to reduce vulnerabil-
ities only as mitigations to observed attacks.
Some current activities such as the DARPA Cyber
Grand Challenge have incentivized this approach,
but the participants felt that the technology is
not mature enough to include in a building code
at this time.

Assurance cases with
eliminative arguments
Analysts who use this technique try to increase
the confidence in a security assertion by posing
counter-examples and then presenting evidence
that eliminates as many counter-examples as
possible. When a counter-example cannot be
eliminated completely, the evidence can provide
bounds on the potential impact of the counter-
-example. While assurance cases have been
used successfully in the safety domain, their
development for use in the security domain is
less mature. The strength of any eliminative
argument depends on the completeness of the
set of posited counter-examples. No work has

A P P E N D I X A

26

been done to identify security-related counter-
examples specifically for power system devices.

References
1.	 [IEEE] http://cybersecurity.ieee.org/

2.	 [L13] C.E. Landwehr, “A Building Code for Building

Code: Putting What We Know Works to Work,”

Proc. 29th Annual Computer Security Applications

Conference (ACSAC), New Orleans LA, ACM, NY,

pp. 139–147; http://www.landwehr.org/2013-12

-cl-acsac-essay-bc.pdf.

3.	 [MDSSA] Workshop to Develop a Building Code

and Research Agenda For Medical Device Software

Security: Final Report, Report GW-CSPRI-2015-01,

8 Jan. 2015; http://www.landwehr.org/2015-01

-landwehr-gw-cspri.pdf.

4.	 [MDSSB] C.E. Landwehr, and T. Haigh, “Building Code

for Medical Device Software Security,” IEEE Computer

Society, Mar. 2015; http://cybersecurity.ieee.org

/images/files/images/pdf/building-code-for-medica

-device-software-security.pdf.

5.	 [MSSDL] Microsoft Security Development Lifecycle;

http://www.microsoft.com/en-us/sdl/default.aspx.

6.	 [NIST14] National Institute of Standards and

Technology. Framework for Improving Critical

Infrastructure Cybersecurity, version 1.0, 12 Feb.

2014; http://www.nist.gov/cyberframework/upload

/cybersecurity-framework-021214.pdf.

7.	 [SDL06] Michael Howard and Steve Lipner. “The

Security Development Lifecycle: SDL: A Process for

Developing Demonstrably More Secure Software

(Developer Best Practices).”

A P P E N D I X A

http://cybersecurity.ieee.org/
http://www.landwehr.org/2013-12-cl-acsac-essay-bc.pdf
http://www.landwehr.org/2013-12-cl-acsac-essay-bc.pdf
https://urldefense.proofpoint.com/v2/url?u=http-3A__www.landwehr.org_2015-2D01-2Dlandwehr-2Dgw-2Dcspri.pdf&d=BQMFaQ&c=8hUWFZcy2Z-Za5rBPlktOQ&r=64GMvox8l4OdRyfjK9lDB5iJk9WH6UZJEtUf2GNubx8&m=SR-ZRVEJJdd2d8tqKNgkp8nz594fuz2__EMeeuGTlYg&s=C9Ise703gIh9bs9qmY-A_JSrgQhP5cCA7CGdI5zke9c&e=
https://urldefense.proofpoint.com/v2/url?u=http-3A__www.landwehr.org_2015-2D01-2Dlandwehr-2Dgw-2Dcspri.pdf&d=BQMFaQ&c=8hUWFZcy2Z-Za5rBPlktOQ&r=64GMvox8l4OdRyfjK9lDB5iJk9WH6UZJEtUf2GNubx8&m=SR-ZRVEJJdd2d8tqKNgkp8nz594fuz2__EMeeuGTlYg&s=C9Ise703gIh9bs9qmY-A_JSrgQhP5cCA7CGdI5zke9c&e=
https://urldefense.proofpoint.com/v2/url?u=http-3A__cybersecurity.ieee.org_images_files_images_pdf_building-2Dcode-2Dfor-2Dmedica-2Ddevice-2Dsoftware-2Dsecurity.pdf&d=BQMFaQ&c=8hUWFZcy2Z-Za5rBPlktOQ&r=64GMvox8l4OdRyfjK9lDB5iJk9WH6UZJEtUf2GNubx8&m=SR-ZRVEJJdd2d8tqKNgkp8nz594fuz2__EMeeuGTlYg&s=ohUylGdpCTutKXqYmYTfylwbODWoYPjwkrnU9mb82e4&e=
https://urldefense.proofpoint.com/v2/url?u=http-3A__cybersecurity.ieee.org_images_files_images_pdf_building-2Dcode-2Dfor-2Dmedica-2Ddevice-2Dsoftware-2Dsecurity.pdf&d=BQMFaQ&c=8hUWFZcy2Z-Za5rBPlktOQ&r=64GMvox8l4OdRyfjK9lDB5iJk9WH6UZJEtUf2GNubx8&m=SR-ZRVEJJdd2d8tqKNgkp8nz594fuz2__EMeeuGTlYg&s=ohUylGdpCTutKXqYmYTfylwbODWoYPjwkrnU9mb82e4&e=
https://urldefense.proofpoint.com/v2/url?u=http-3A__cybersecurity.ieee.org_images_files_images_pdf_building-2Dcode-2Dfor-2Dmedica-2Ddevice-2Dsoftware-2Dsecurity.pdf&d=BQMFaQ&c=8hUWFZcy2Z-Za5rBPlktOQ&r=64GMvox8l4OdRyfjK9lDB5iJk9WH6UZJEtUf2GNubx8&m=SR-ZRVEJJdd2d8tqKNgkp8nz594fuz2__EMeeuGTlYg&s=ohUylGdpCTutKXqYmYTfylwbODWoYPjwkrnU9mb82e4&e=
http://www.microsoft.com/en-us/sdl/default.aspx
http://www.nist.gov/cyberframework/upload/cybersecurity-framework-021214.pdf
http://www.nist.gov/cyberframework/upload/cybersecurity-framework-021214.pdf

27

Appendix B. List of Participants
Note: Organizational affiliations are shown for information only. The workshop results and report do
not necessarily represent the views of these organizations.

Kaibin Bao, Karlsruhe Institute of Technology
(KASTEL)

Ian Bryant, Trustworthy Software Foundation
Chris Chelmecki, Basler Electric, Discussion

Group Leader
Art Conklin, University of Houston
Adam Crain, Automatak
Dennis Gammel, Schweitzer
Andrew Ginter, Waterfall-Security
Mark Heckman, University of San Diego
Marijn Heule, University of Texas at Austin
Carl Landwehr, George Washington University

(CSPRI)
Chad Lloyd, Schneider Electric
Dario Lobozzo, Radiflow
Johan Malmström, ABB
Scott Mix, North American Electric Reliability

Corporation (NERC)
Ken Modeste, UL, Discussion Group Leader
Tommy Morris, University of Alabama -- Huntsville
David Nicol, University of Illinois at

Urbana-Champaign
Rajesh Nighot, Nebulian
Michael Pyle, Schneider Electric
Edwards Reed, AESec, Inc.

Craig Rieger, Idaho National Laboratory
Benjamin Salazar, Lawrence Livermore National

Laboratory
Chet Sandberg, Consulting Engineer
William Sanders, University of Illinois at

Urbana-Champaign
Roger Schell, AESec, Inc., Keynote address
Steven Templeton, University of California, Davis
Eric Thibodeau, Gentec
Mike Thiems, Basler Electric
Alfonso Valdes, University of Illinois at

Urbana-Champaign
Zhenyuan Wang, ABB, Discussion Group Leader
Sam Weber, New York University
Jin Wei, University of Akron
Andrew West, SUBNET Solutions, Inc., Keynote

address and Discussion Group Leader
Chuck Weinstock, Software Engineering Institute

(CMU), Discussion Group Leader
Reid Wightman, RevICS
Carol Woody, Software Engineering Institute

(CMU)
Tim Yardley, University of Illinois at

Urbana-Champaign

	Table of Contents

	Button 4z:
	IEEE:
	IEEE Computer Society:
	IEEE Cybersecurity Initiative:
	Next Page:
	Page 2:
	Page 41:
	Page 52:
	Page 63:
	Page 74:
	Page 85:
	Page 96:
	Page 107:
	Page 118:
	Page 129:
	Page 1310:
	Page 1411:
	Page 1512:
	Page 1613:
	Page 1714:
	Page 1815:
	Page 1916:
	Page 2017:
	Page 2118:
	Page 2219:
	Page 2320:
	Page 2421:
	Page 2522:
	Page 2623:

	a:
	Page 2:
	Page 31:
	Page 42:
	Page 53:
	Page 64:
	Page 75:
	Page 86:
	Page 97:
	Page 108:
	Page 119:
	Page 1210:
	Page 1311:
	Page 1412:
	Page 1513:
	Page 1614:
	Page 1715:
	Page 1816:
	Page 1917:
	Page 2018:
	Page 2119:
	Page 2220:
	Page 2321:
	Page 2422:
	Page 2523:
	Page 2624:
	Page 2725:

	Creative Commons:
	IEEE Computer Society 2:
	IEEE 2:
	CREDC:
	ITI:
	IEEE Smart Grid:
	IEEE PES:
	IEEE Cybersecurity:
	Next Page 1:
	Back to TOC:
	Page 4:
	Page 51:
	Page 62:
	Page 73:
	Page 84:
	Page 95:
	Page 106:
	Page 117:
	Page 128:
	Page 139:
	Page 1410:
	Page 1511:
	Page 1612:
	Page 1713:
	Page 1814:
	Page 1915:
	Page 2016:
	Page 2117:
	Page 2218:
	Page 2319:
	Page 2420:
	Page 2521:
	Page 2622:
	Page 2723:

