
Dependable End-to-End Delay Constraints
for Real-Time Systems using SDN∗

Rakesh Kumar1, Monowar Hasan1, Smruti Padhy2, Konstantin Evchenko1,
Lavanya Piramanayagam3, Sibin Mohan1 and Rakesh B. Bobba4

1University of Illinois at Urbana-Champaign, USA, 2National Center for Supercomputing Applications, USA
3PES University, India, 4Oregon State University, USA

Email: 1,2{kumar19, mhasan11, spadhy, evchenk2, sibin}@illinois.edu
3lava281995@gmail.com, 4rakesh.bobba@oregonstate.edu

ABSTRACT
Real-time systems (RTS) require dependable delay guaran-
tees on delivery of network packets. Traditional approaches
for providing such guarantees for mission critical applica-
tions require the use of expensive custom built hardware
and software resources. We propose a novel framework that
reduces the management and integration overheads of the
traditional approaches by leveraging the capabilities (espe-
cially global visibility and ease of management) of Software-
defined networking (SDN) architectures. Given the specifi-
cations of flows requiring real-time guarantees, our frame-
work synthesizes paths through the network and associated
switch configurations that can meet the requisite delay re-
quirements for real-time flows. Using exhaustive simulations
as well as emulations with real switch software, we show the
feasibility of our approach.

1. INTRODUCTION
Software-defined networking (SDN) [23] has become

increasingly popular since it allows for better management
of network resources, application of security policies and
testing new algorithms and mechanisms. It finds use in
a wide variety of domains – from enterprise systems [21]
to cloud computing services [17], from military networks
[28] to power systems [25] [7]. The centralized (and
global) view of the network obtained by the use of
SDN architectures provides significant advantages when
compared to traditional networks. It enables network
designers and engineers to push down rules to various nodes
in the network to manage the bandwidth and resource
allocation for flows through the entire network to a fine level
of precision.

Real-time systems (RTS), especially those with stringent
timing constraints, need to reason about delays. Packets
must be delivered between hosts with guaranteed upper bounds
on end-to-end delays. Examples of such systems include
avionics, automobiles, industrial control systems, power
substations, manufacturing plants, etc. Another property
of such systems is that they often include traffic flows
with mixed criticality, i.e., those with varying degrees
of timing (and perhaps even bandwidth and availability)
requirements: (a) high priority/criticality traffic that is
essential for the correct and safe operation of the system;
examples include sensor data and control commands for
closed loop control in avionics, automotive or power grid
systems; (b) medium criticality traffic that is critical to the
correct operation of the system, but with some tolerances in
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delays, packet drops, etc.; for instance, navigation systems
in aircraft, system monitoring traffic in power substations,
etc.; (c) low priority traffic – essentially all other traffic in
the system that does not really need guarantees on delays or
bandwidth such as engineering traffic in power substations,
multimedia flows in aircraft, etc.

The high priority flows (that we henceforth refer to as
“Class I” traffic) have stringent timing requirements and
can often tolerate little to no loss of packets. Often
these flows also have predefined priority levels among
themselves. Typically, in many safety-critical RTS, the
properties of all Class I flows are well known, i.e., designers
will make these available ahead of time. Any changes
(addition/removal of flows or modifications to the timing or
bandwidth requirements) will often require a serious system
redesign. The number (and properties) of other flows could
be more dynamic – consider the on-demand video situation
in airplanes where new flows could arise and old ones stop
based on the viewing patterns of passengers.

Current safety-critical systems often have separate net-
works (hardware and software) for each of the aforemen-
tioned types of flows (for safety and sometimes security
reasons). This leads to significant overheads (equipment,
management, weight, etc.), increases potential for errors or
faults, and even increases the attack surface. Existing sys-
tems, e.g., avionics full-duplex switched Ethernet (AFDX)
[4, 9], controller area network (CAN) [15], etc. that are in
use in many of these domains are either proprietary, com-
plex, expensive or even require custom hardware. Despite
the fact that AFDX switches ensure timing determinism,
traffic flows transmitted on such switches may be changed
frequently at run-time when sharing resources (e.g., band-
width) among different networks [22]. In such situations, a
dynamic configuration is required to route packets based on
switch workloads and flow delays to meet all the high prior-
ity QoS (e.g., end-to-end delay) requirements. In addition
AFDX protocols require custom hardware [11].

In this paper we present mechanisms to guarantee end-
to-end delays for high-criticality flows (Class I) on net-
works constructed using SDN switches, i.e., essentially
commercial-off-the-shelf (COTS) components. The advan-
tage of using SDN is that it provides a centralized mecha-
nism for configuring and managing the system. The global
view is useful in providing the end-to-end guarantees that
are required. Another advantage is that the hardware/soft-
ware resources needed to implement all of the above types
of traffic can be reduced since we can use the same network
infrastructure (instead of three separate ones as is the case
these days). On the other hand, the current standards used
in traditional SDN (OpenFlow [23,27]) generally do not sup-
port end-to-end delay guarantees or even existing real-time
networking protocols such as AFDX. Retrofitting OpenFlow
into AFDX is not straightforward and generally less effec-
tive [14].

A number of issues arise while developing a software-
defined networking infrastructure for use in real-time sys-
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tems. For instance, flows belonging to Class I need to meet
their timing (e.g., end-to-end delay) requirements for the
real-time system to function correctly and be dependable.
Hence, we need to find a path through the network (and
allocate the resources such as bandwidth1) that will meet
these guarantees. In contrast to traditional SDNs, it is not
necessary to find the shortest path through the network. Of-
tentimes, Class I flows can arrive just in time [24, 26], i.e.,
just before their deadline – there is no real advantage in
getting them to their destinations well ahead of time. Path
layout for real-time SDN is a non-trivial problem since, (i)
we need to understand the delay(s) caused by individual
nodes (e.g., switches) on a Class I flow and (ii) compose
them along with an understanding of the delays/problems
caused by the presence of other flows in that node as well as
the network in general.

In this work we consider Class I (i.e., high-criticality)
flows and develop a scheme to meet their timing con-
straints2. We evaluate the effectiveness of the proposed ap-
proach using different custom topologies and UDP traffic3.

2. SYSTEM MODEL
Consider an SDN topology (N) with open flow switches

and controller, and a set of real-time flows (F ) with specified
delay and bandwidth guarantee requirements. The problem
is to find paths for the flows (through the topology) such
that the flow requirements (i.e., end-to-end delays) can be
guaranteed for the maximum number of critical flows. We
model the network as an undirected graph N(V,E) where
V is the set of nodes, each representing a switch port in a
given network and E is set of the edges4, each representing
a possible path for packets to go from one switch port to
another. Each port v ∈ V has a set of queues vq associated
with it, where each queue is assigned a fraction of bandwidth
on the edge connected to that port.

Consider a set F of unidirectional, real-time flows that
require delay and bandwidth guarantees. The flow fk ∈ F
is given by a four-tuple (sk, tk, Dk, Bk), where sk ∈ V and
tk ∈ V are ports (the source and destination respectively)
in the graph, Dk is the maximum delay that the flow can
tolerate and Bk is the maximum required bandwidth by the
flow. We assume that flow priorities are distinct and the
flows are prioritized based on a “delay-monotonic” scheme
viz., the end-to-end delay budget represents higher priority
(i.e., pri(fi) > pri(fj) if Di < Dj , ∀fi, fj ∈ F where pri(fk)
represents priority of fk).

For a flow to go from the source port sk to a destination
port tk, it needs to traverse a sequence of edges, i.e., a flow
path Pk. The problem then, is to synthesize flow rules that
use queues at each edge (u, v) ∈ Pk that can handle all
flows F in the given system while still meeting each flow’s
requirement. If dfk (u, v) and bfk (u, v) is the delay faced by
the flow and bandwidth assigned to the flow at each edge
(u, v) ∈ E respectively, then ∀fk ∈ F and ∀(u, v) ∈ Pk the
following constraints need to be satisfied:∑

(u,v)∈Pk

dfk (u, v) ≤ Dk, ∀fk ∈ F (1)

bfk (u, v) ≥ Bk, ∀(u, v) ∈ Pk,∀fk ∈ F. (2)

Once we obtain path layouts5 that satisfy the above

1Current SDN implementations reason about bandwidth
instead of delays. Hence, we must find a way to extend
the SDN infrastructure to reason about delays for use in
real-time systems.
2Integrating the other types of traffic is left for future work.
3Since most hard real-time systems use UDP traffic [11].
4We use the terms edge and link interchangeably throughout
the paper.
5We formulate this problem as a multi-constrained path
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Figure 1: Delay measurement experiments: the
measured mean and 99th percentile per-packet delay
for the packets in the active flows in 25 iterations.

constraints, the next step is to map flows assigned to a port
to the queues at the port. The possible approaches could be:
(a) allocate each flow to an individual queue or (b) multiplex
flows in different queues and dispatch the packets based on
priority. Our intuition is that the end-to-end delays are
lower and more stable when separate queues are provided
to each critical flow – especially as the rates for the flows
get closer to their maximum assigned rates. We carried
out some simple experiments to demonstrate this (and to
highlight the differences between these two strategies) – this
is outlined in the following section.

2.1 Queue Assignment Strategies
We propose synthesizing configurations for Class I traffic

such that it ensures complete isolation of packets in a
designated class I flow. In order to test how using output
queues can provide isolation to flows in a network so
that each can meet its delay and bandwidth requirements
simultaneously, we setup a experiment using Mininet [20].
The experiment uses a simple topology that contains two
switches (s1, s2) connected via a single link. Each switch
has two hosts connected to it. We configured flow rules and
queues in the switches to enable connectivity among hosts at
one switch with the hosts at other switch. We experimented
with two ways to queue the packets as they cross the switch-
to-switch link: (i) in one case, we queue packets belonging to
the two flows separately in two queues (i.e., each flow gets its
own queue), each configured at a maximum rate of 50 Mbps
(ii) in the second case, we queue packets from both flows in
the same queue configured at a maximum rate of 100 Mbps.
Finally, we used ingress policing such that if traffic from a
host exceeds its maximum rate (50 Mbps in this case), fits
traffic is throttled before it enters the switch.

After configuring the flow rules and queues, we triggered
packet flows using netperf [6]: the first starting at the host
h1s1 destined to host h1s2 and the second starting at host
h2s1 with a destination to host h2s2. Both packet flows are
triggered simultaneously and they last for 10 seconds. We
changed the rate at which the traffic is sent across both flows
and performed each experiment 50 times to measure the
average and 99th percentile for per-packet delays. Figure 1
plots the average value and standard error over all iterations.
The x-axis indicates the rate at which the traffic is sent
via netperf, while the y-axis shows the mean and 99th
percentile delay. The following key observations stand out:

1. The per-packet average and 99th percentile delay
increases in both cases as traffic send rate approaches
the configured rate of 50 Mbps. This is an expected
queue-theoretic outcome and motivates the need for
slack allocations for all applications in general. For
example, if an application requires a bandwidth

(MCP) problem and describe the solution in Section 3.



guarantee of 1 Mbps, it should be allocated 1.1 Mbps
for minimizing jitter.

2. The case with separate queues experiences lower
average per-packet average and 99th percentile delay
when flow rates approach the maximum rates. This
indicates that when more than one flow uses the
same queue, there is interference caused by both
flows to each other. This becomes a source of
unpredictability and eventually may cause the end-to-
end delay guarantees for the flow to be not met or
perturbed significantly.

Thus, isolating flows using separate queues results in
lower and more stable delays especially when traffic rate in
the flow approaches the configured maximum rates. The
maximum delay along a single link can be measured. Such
measurements can then be used as input to a path allocation
algorithm that we describe in the following section.

3. PATH LAYOUT: OVERVIEW AND
SOLUTION

We now present a more detailed version of the problem
(composing paths that meet the end-to-end delays for
critical real-time flows) and also an overview of our solution.

3.1 Problem Overview
Let Pk be the path from sk to tk for flow fk that needs

to be determined. Let D(u, v) be the delay incurred on the
edge (u, v) ∈ E. The total delay for fk over the path Pk is
given by Dk(Pk) =

∑
(u,v)∈Pk

D(u, v). Therefore we define

the following constraint on end-to-end delay for the flow fk
as

Dk(Pk) ≤ Dk. (3)

Note that the end-to-end delay for a flow over a path
has following delay components: (a) processing time of a
packet at a switch, (b) propagation on the physical link, (c)
transmission of packet over a physical link, and (d) queuing
at the ingress/egress port of a switch. As discussed in the
Section 2, we use separate queues for each flow with assigned
required rates. We also over-provision the bandwidth for
such flows so that critical real-time flows do not experience
queueing delays.

The second constraint that we consider in this work is
bandwidth utilization, that for an edge (u, v) for a flow

fk, can be defined as: Bk(u, v) = Bk
Be(u,v)

where Bk is

the bandwidth requirement of fk and Be(u, v) is total
bandwidth of an edge (u, v) ∈ E. Therefore, bandwidth
utilization over a path (Pk), for a flow fk is defined as:
Bk(Pk)) =

∑
(u,v)∈Pk

Bk(u, v). Note that the bandwidth

utilization over a path Pk for flow fk is bounded by

Bk(Pk) ≤ max
(u,v)∈E

Bk(u, v)|V | (4)

where |V | is the cardinality of a set of nodes (ports) in
the topology N . Therefore in order to ensure that the
bandwidth requirement Bk of the flow fk is guaranteed, it
suffices to consider the following constraint on bandwidth
utilization

Bk(Pk) ≤ B̂k (5)

where B̂k = max
(u,v)∈E

Bk(u, v)|V |.

Remark 1. The selection of an optimal path for each flow
fk ∈ F subject to delay and bandwidth constraints in Eq. (3)
and (5), respectively can be formalized as a multi-constrained
path (MCP) problem that is known to NP-complete [16].

Therefore we consider a polynomial-time heuristic similar
to that presented in literature [10]. The key idea is to relax
one constraint (e.g., delay or bandwidth) at a time and try

to obtain a solution. If the original MCP problem has a
solution, one of the relaxed versions of the problem will also
have a solution [10]. In what follows, we briefly describe the
polynomial-time solution for the path layout problem.

3.2 Polynomial-time Solution
Let us represent the delay and bandwidth constraint as

follows

D̃k(u, v) =

⌈
Xk ·D(u, v)

Dk

⌉
, B̃k(u, v) =

⌈
Xk ·Bk(u, v)

B̂k

⌉
where Xk is a given positive integer. For instance, if we relax
the bandwidth constraint (e.g., represent Bk(Pk) in terms

of B̃k(Pk) =
∑

(u,v)∈Pk
B̃k(u, v)), Eq. (5) can be rewritten

as

B̃k(Pk) ≤ Xk. (6)

Besides, the solution to this relaxed problem will also be a
solution to the original MCP [10]. Likewise, if we relax the
delay constraint, Eq. (3) can be rewritten as

D̃k(Pk) =
∑

(u,v)∈Pk

D̃k(u, v) ≤ Xk. (7)

Let the variable dk[v, i] preserve an estimate of the path
from sk to tk for ∀v ∈ V , i ∈ Z+. There exists a solution
(e.g., a path Pk from sk to tk) if any of the two conditions
is satisfied when the original MCP problem is solved by the
heuristic.

• When the bandwidth constraint is relaxed: The delay
and (relaxed) bandwidth constraints, e.g., Dk(Pk) ≤
Dk and B̃k(Pk) ≤ Xk are satisfied if and only if

dk[t, i] ≤ Dk, ∃i ∈ [0, Xk] ∧ i ∈ Z.

• When the delay constraint is relaxed: The (relaxed)

delay and bandwidth constraints, e.g., D̃k(Pk) =∑
(u,v)∈Pk

D̃k(u, v) ≤ Xk and Bk(Pk) ≤ B̂k are

satisfied if and only if

dk[t, i] ≤ Xk, ∃i ∈ [0, B̂k] ∧ i ∈ Z.

3.3 Algorithm Development
Let us consider MCP HEURISTIC(N, s, t,W1,W2, C1, C2) is

an instance of polynomial-time heuristic solution to the
MCP problem that finds a path P from s to t in any network
N , such that the constraints W1(P) ≤ C1 and W2(P) ≤ C2

are satisfied6. Based on this MCP abstraction, we pro-
pose a path selection scheme considering delay and band-
width constraints (refer to [19, Algorithm 2]). For each flow
fk ∈ F , starting with highest (e.g., the flow with tighter
delay requirement) to lowest priority, we first keep the de-
lay constraint unmodified and relax the bandwidth con-

straint and solve MCP HEURISTIC(N, sk, tk,Dk, B̃k, Dk, Xk).
If there exists a solution, the corresponding path Pk is as-
signed for fk. However, if relaxing bandwidth constraint
is unable to return a path, we further relax delay con-
straint keeping bandwidth constraint unmodified and solve

MCP HEURISTIC(N, sk, tk, D̃k,Bk, Xk, B̂k). If the path is not
found after both of the relaxation steps, the flow-set is con-
sidered as unschedulable since it is not possible to assign a
path for fk such that both delay and bandwidth constraints
are satisfied.

4. IMPLEMENTATION
We implement our prototype as an application that uses

the northbound API for the Ryu controller [3]. The
prototype application accepts the specification of flows in

6The heuristic solution of MCP problem is summarized in
our extended report [19, Algorithm 1].



the SDN. The flow specification contains the classification,
bandwidth requirement and delay budget of each individual
flow. In this section, we describe how we realize a given flow
fk in the SDN.

4.1 Forwarding Intent Abstraction
An intent represents the actions performed on a given

packet at each individual switch. Each flow fk is decomposed
into a set of intents. The number of intents that are
required to express actions that the network needs to
perform (for packets for a flow) is the same as the number
of switches on the flow path. Each intent is a tuple given
by (Match, InputPort,OutputPort,Rate). Here, Match defines
the set of packets that the intent applies to, InputPort and
OutputPort are where the packet arrives and leaves the
switch and finally, the Rate is intended data rate for the
packets matching the intent. In our implemented mechanism
for laying down flow paths, each intent translates into a
single OpenFlow [27] flow rule that is installed on the
corresponding switch in the flow path.

4.2 Bandwidth Allocation for Intents
In order to guarantee bandwidth allocation for a given

flow fk, each one of its intents (at each switch) in the
path need to allocate the same amount of bandwidth. As
described above, each intent maps to a flow rule and the
flow rule can refer to a meter, queue or both. However,
meters and queues are precious resources and not all switch
implementations provide both of them. As mentioned
earlier (Section 2), there exist two alternative strategies for
allocating bandwidth to individual intents: (a) individual
queue/meter for each flow and (b) multiplexing meters and
queues across multiple flows. The former strategy limits
the rate of the queue/meter to Bk. It also places limits
on the number of flows that a given switch can support
at any point in time. On the other hand, as seen in
Section 2.1, it guarantees much better isolation among
flows. The second strategy (multiplexing) makes better
use of the (limited) resources on each switch but cannot
guarantee isolation without further changes to a switch’s
implementation. Hence, in our current implementation, we
use the first strategy (one queue per flow) and leave the
multiplexing idea for future work.

4.3 Intent Realization
Each intent is realized by installing a corresponding flow

rule by using the northbound API of the Ryu controller.
Besides using the intent’s Match and OutputPort, these flow
rules refer to corresponding queue and/or meter. If the
meters are used, then they are also synthesized by using
the controller API. However, OpenFlow does not support
installation of queues in its controller-switch communication
protocol, hence the queues are installed separately by
interfacing directly with the switches by using a switch API
or command line interface.

5. EVALUATION
In this section, we evaluate our proposed solutions using

the following methods: (a) an exploration of the design
space/performance of the path layout algorithm in Section
5.1 and (b) an empirical evaluation, using Mininet, that
demonstrates the effectiveness of our end-to-end delay
guaranteeing mechanisms even in the presence of other
traffic in the network (Section 5.2).

5.1 Performance of the Path Layout
Algorithm

Topology Setup and Parameters
In the first set of experiments we explore the design space
(e.g., feasible delay requirements) with randomly generated
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Figure 2: Schedulability of the flows in different net-
work topology. For each of the (delay-requirement,
number-of-flows) pair (e.g., x and y-axis of the fig-
ure), we randomly generate 250 different topology.
In other words, total 5 × 5 × 250 = 6250 different
topology were tested in the experiments.

network topologies and synthetic flows. For each of the
experiments we randomly generate a graph with 5 switches
and create fk ∈ [1, 5] flows. Each switch has 2 hosts
connected to it. We assume that the bandwidth of each of
the links (u, v) ∈ E is 10 Mbps (e.g., IEEE 802.3t standard
[5]), and link delays are randomly generated within [25, 125]
µs. For each randomly-generated topology, we consider the
bandwidth requirement as Bk ∈ [1, 5] Mbps, ∀fk.

Results
We say that a given network topology with set of flows
is schedulable if all the real-time flows in the network can
meet the delay and bandwidth requirements. We use the
acceptance ratio metric (z-axis in Fig. 2) to evaluate the
schedulability of the flows. The acceptance ratio is defined as
the number of accepted topology (e.g., the flows that satisfied
bandwidth and delay constraints) over the total number of
generated ones. To observe the impact of delay budgets
in different network topologies, we consider the end-to-end
delay requirementDk, ∀fk ∈ F as a function of the topology.
In particular, for each randomly generated network topology
Gi we set the minimum delay requirement for the highest
priority flow as Dmin = βδi µs and increment by Dmin

10
for

each of the remaining flows where δi is the diameter (e.g.,
maximum eccentricity of any vertex) of the graphGi in the i-

th spatial realization of the network topology, β = Dmin
δi

and

Dmin represents x-axis values of Figure 2. For each (delay-
requirement, number-of-flows) pair, we randomly generate
250 different topologies and measure the acceptance ratios.
As Figure. 2 shows, stricter delay requirements (e.g., less
than 300 µs for a set of 5 flows) limit the schedulability
(e.g., only 60% of the topology is schedulable). Increasing
the number of flows limits the available resources (e.g.,
bandwidth) and thus the algorithm is unable to find a path
that satisfies the delay requirements of all the flows.

5.2 Experiment with Mininet Topology:
Demonstrating that the End-to-End Delay
Mechanisms Work

Experimental Setup
The purpose of the experiment is to evaluate whether
our controller rules and queue configurations can provide
isolation guarantees so that the real-time flows can meet
their delay requirement in a practical setup. We evaluate
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Figure 3: End-to-end round-trip 99th percentile
delay with varying number of flows. For each set
of flow fk ∈ [1, 5], we examine fk × 25× 5 packet flows
(each for 10 seconds).

the performance of the proposed scheme using Mininet [20]
(version 2.2.1) where switches are configured using Open
vSwitch [2] (version 2.3.0). We use Ryu [3] (version 4.7)
as our SDN controller. For each of the experiments we
randomly generate a Mininet topology using the parameters
described in Section 5.1. We develop flow rules in the queues
to enable connectivity among hosts in different switches.
The packets belonging to the real-time flows are queued
separately in individual queues and each of the queues are
configured at a maximum rate of Bk ∈ [1, 5] Mbps. If the
host exceeds the configured maximum rate of Bk, our ingress
policing throttles the traffic before it enters the switch7. To
measure the effectiveness of our prototype with mixed (e.g.,
real-time and non-critical) flows, we enable [1, 3] non-critical
flows in the network. Our flow rules isolate the non-critical
flows from real-time flows. All of the low-criticality flows use
a separate, single queue and are served in a FIFO manner –
it is the “default” queue in OVS.

We use netperf (version 2.7.0) [6] to generate the UDP
traffic between the source and destination for any flow fk.
Once the flow rules and queues are configured, we triggered
packets starting at the source sk destined to host tk for each
of the flows fk. The packets are sent at a burst of 5 with
1 ms inter burst time. For each set of flows fk ∈ {2, 5}, we
randomly generate 25 different network topology. For each
topology, we randomly generate the traffic with required
bandwidth Bk ∈ [1, 5] Mbps and send packets between
source (sk) and destination (tk) hosts for 5 times and log
the worst-case round-trip delay experienced by any flow.
All packet flows are triggered simultaneously and last for
10 seconds.

Experience and Evaluation
We define the expected delay bound as the expected delay if
the packets are routed through the diameter of the topology
and given by Di(u, v)×δi and bounded by [25δi, 125δi] where
Di(u, v) ∈ [25, 125] is the delay between the link (u, v) in i-th
network realization.

In Fig. 3 we illustrate the 99th percentile round-trip delay
(represents the y-axis in the figure) with different number of
flows (x-axis). From our experiments we find that, the non-
critical flows do not affect the delay experienced by the real-
time flows and the 99th percentile delay experienced by the
real-time flows always meet their delay requirements. This is
because our flow rules and queue configurations isolate the
real-time flows from the non-critical traffic to ensure that
the end-to-end delay requirements are satisfied.

As shown in Figure 3, increasing the number of flows
decreases quality of experience (in terms of end-to-end
delays). With increasing number of packet flows the switches
are simultaneously processing forwarding rules received from
the controller – hence, it increases the round-trip delay.
Recall that the packets of a flow are sent in a bursty manner

7In real systems, the bandwidths allocation would be
overprovisioned (as mentioned earlier), our evaluation takes
a conservative approach.

using netperf. Increasing number of flows in the Mininet
topology increases the packet loss and thus causes higher
delay.

For our experiments with Mininet and netperf generated
traffic, we do not observe any instance for which a set of
schedulable flow misses its deadline (i.e., packets arriving
after the passing of their end-to-end delay requirements).
Thus, based on our empirical results and the constraints
provided to the path layout algorithm, we can assert that
the schedulable real-time flows will meet their corresponding
end-to-end delay requirements.

6. DISCUSSION
Despite the fact that we provide an initial approach to

leverage the benefits of the SDN architecture to guarantee
end-to-end delay in safety-critical hard RTS, our proposed
scheme has some limitations and can be extended in
several directions. To start with, we intend to validate
our implementations in actual hardware switches with
more complex topology and analyze the worst-case latency
experienced by the flows. Furthermore, most hardware
switches limit the maximum number of individual queues8

that can be allocated to flows. Our current intent realization
mechanism reserves one queue per port for each Class I flow.
This leads to depletion of available queues. Hence, we need
smarter methods to multiplex Class I flows through limited
resources and yet meet their timing requirements. Our
future work will focus on developing sophisticated schemes
for ingress/egress filtering at each RT-SDN-enabled switch.
This will also help us better identify the properties of each
flow (priority, class, delay, etc.) and then develop scheduling
algorithms to meet their requirements.

In this work we allocate separate queues for each flow
and layout paths based on the “delay-monotonic” policy.
However establishing and maintaining the flow priority is
not straightforward if the ingress policing requires to share
queues and ports in the switches. Many existing mechanisms
to enforce priority are available in software switches (e.g.,
the hierarchical token buckets (HTB) in Linux networking
stack). In our experience, enabling priority on hardware
switches has proven difficult due to firmware bugs.

7. RELATED WORK
There have been several efforts to study the provisioning

a network such that it meets bandwidth and/or delay
constraints for the traffic flows. For synthesis, the NP-
Complete MCP comes close and Shingang et al. formulated
a heuristic algorithm [10] for solving MCP. We model our
delay and bandwidth constraints based on their approach.
Azodolmolky et al. proposed a Network Calculus-based
model [8] for a single SDN switch that provides an upper
bound on delays experienced by packets as they cross
through the switch. Guck et al. used mixed integer program
(MIP) based formulation [12] for provisioning end-to-end
flows that provide delay guarantees – they do not provide a
solution of what traffic arrival rate to allocate for queues on
individual switches for a given end-to-end flow.

Avionics full-duplex switched Ethernet (AFDX) [4, 9]
is a deterministic data network developed by Airbus for
safety critical applications. Though such protocols aim
to guarantee deterministic QoS through static routing,
reservation and isolation, it imposes several limitations on
optimizing the path layouts and on different traffic flows.
With SDN architectures and a flexible QoS framework
proposed in this paper, one could easily configure COTS
components and meet QoS guarantees with optimized path
layouts and backup paths. There have been studies towards
evaluating the upper bound on the end-to-end delays in
AFDX networks [9]. The evaluation seems to depend

8For example, HPE FlexFabric 12900E switch supports at
most 8 queues.



on the AFDX parameters though. There are several
protocols proposed in automotive communication networks
such as controller area network (CAN) [15] and FlexRay [1].
These protocols are designed to provide strong real-time
guarantees but have limitations in how to extend it to varied
network lengths, different traffic flows and complex network
topologies.

Heine et al. proposed a design and built a real-time
middleware system, CONES (COnverged NEtworks for
SCADA) [13] that enables the communication of data/in-
formation in SCADA applications over single physical inte-
grated networks. However, the authors did not explore the
synthesis of rules or path optimizations based on bandwidth-
delay requirements – all of which are carried out by our
system. Qian et al. implemented a hybrid EDF packet
scheduler [26] for real-time distributed systems. Though
these strategies were adopted to make the system more pre-
dictable, due to partial information of the network, it leaves
lots of scope for improvements. The problem of end-to-end
delay bounding in RTS is addressed in literature [18]. The
proposed approach requires modification to the switches.
Besides the authors do not consider the bandwidth limita-
tions, variable number of flows and flow classifications (real-
time vs non-real-time). There is a lot of work in the field
of traditional real-time networking (too many to enumerate
here) but the focus on SDNs is what differentiates our work.

8. CONCLUSION
With the proliferation of COTS components, designers

are exploring new ways of using them, even in critical
systems (such as RTS). Hence, there is a need to understand
the inherent trade-offs (less customization) and advantages
(lower cost, scalability, better support and more choices)
of using COTS components in the design of such systems.
In this paper, we presented mechanisms that provide end-
to-end delays for critical traffic in real-time systems using
COTS SDN switches. Hence, future RTS can be better
managed, less complex (fewer network components to deal
with) and more cost effective.
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