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Abstract—This paper introduces a potential learning scheme
that can dynamically predict the stability of the reconnection
of sub-networks to a main grid. As the future electrical power
systems tend towards smarter and greener technology, the deploy-
ment of self sufficient networks, or microgrids, becomes more
likely. Microgrids may operate on their own or synchronized
with the main grid, thus control methods need to take into
account islanding and reconnecting of said networks. The ability
to optimally and safely reconnect a portion of the grid is not
well understood and, as of now, limited to raw synchronization
between interconnection points. A support vector machine (SVM)
leveraging real-time data from phasor measurement units (PMUs)
is proposed to predict in real time whether the reconnection
of a sub-network to the main grid would lead to stability or
instability. A dynamics simulator fed with pre-acquired system
parameters is used to create training data for the SVM in various
operating states. The classifier was tested on a variety of cases and
operating points to ensure diversity. Accuracies of approximately
85% were observed throughout most conditions when making
dynamic predictions of a given network.

Keywords—Synchrophasor, machine learning, microgrid, island-
ing, reconnection

I. INTRODUCTION

As we make strides towards a smarter power system, it
is important to explore new techniques and innovations to
fully capture the potential of such a dynamic entity. Many
large blackout events, such as the blackout of 2003, could
have been prevented with smarter controls and better monitor-
ing [1]. Phasor measurement units, or PMUs, are one such
breakthrough that will allow progress to be made in both
monitoring and implementing control to the system [2]. PMUs
allow for direct measurement of bus voltages and angles at
high sample rates which makes dynamic state estimation more
feasible [3], [4]. With the use of PMUs, it is possible to
improve upon current state estimation [5] and potentially open
up new ways to control the grid. The addition of control
techniques and dynamic monitoring will be important as we
begin to integrate newer solutions, such as microgrids, into
the power network. With these advanced monitoring devices,
microgrids become more feasible due to the potential for real-
time monitoring schemes. The integration of microgrids bring
many benefits such as the ability to operate while islanded
as well as interconnected with the main grid; they provide
a smooth integration for renewable energy sources that match
local demand. Unfortunately the implementation of microgrids
is still challenging due to lacking experience with the behavior
of control schemes during off-nominal operation.
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Currently, microgrids are being phased in slowly due in
part to the difficulty of operating subnetworks independently
as well as determining when they can be reconnected to the
main grid. Upon reconnection of an islanded sub-network to
the main grid, instability can cause damage on both ends.
It is important to track instabilities on both the microgrid
and main grid upon reconnection to accurately depict the
outcome of reconnection. Works in the literature have focused
on the potential of reconnecting microgrids to the main grid,
in particular aiming at synchronizing the buses at points of
interconnect with respects to their voltages, frequencies, and
angles [6]—[8]. Effort has been directed at creating control
schemes to minimize power flow at the point of common
coupling (PCC) using direct machine control, load shedding,
as well as energy storage, to aid in smooth reconnection [9],
[10].

In some cases we may need to look at larger microgrids or
subnetworks in which multiple PCCs exist. In such scenarios,
it becomes much more difficult to implement a control scheme
that satisfies good reconnection tolerances in regards to min-
imizing bus frequency, angle, and voltage differences at each
PCC. In addition to the possibility of multiple PCCs, it is pos-
sible that direct manipulation of the system becomes limited,
compromised, or unsupported with respect to synchronization.
In order to address these shortcomings, we implement an
algorithm that dynamically tracks and makes predictions based
on the system states, providing real-time stability information
of potential reconnections.

Due to the complexity of the power grid, it is difficult to
come up with a verbatim standard depicting the potential sta-
bility after reconnection of a subnetwork. With advances in the
artificial intelligence community, we can make use of machine
learning algorithms in order to explore vast combinations of
sensor inputs, states, and control actions. This can be done
in a similar fashion to successful techniques applied to other
power system problems as seen in the research literature [11]—
[14]. In this paper we propose to use a machine learning
algorithm, specifically a Support Vector Machine, to predict
safe times to reconnect a portion of a grid. The Support
Vector Machines allow one to build a classifier predicated
upon training data by determining a linear separator in a
specific feature dimension [15]. As seen in [16] we can create
a knowledge base consisting of training and testing data using
an appropriate power system model and simulator. Diversity
of data points in the knowledge base can be achieved by
incorporating load changes allowing multiple operating points
[13], [16]. Simulators have been used prevalently to create
data and work has been performed to show the agreement
between different simulators [17]. As a result, we will assume
the creation of data for our technique is adequate upon diligent



modeling.

In the proposed machine learning approach, PMU measure-
ments are used as input features that will be used by a learning
algorithm to predict which class the features belong to, either
stable or unstable reconnection. As of now, PMUs are not
as prevalent in the system to assume full state observability
in real time, thus it is important to take into consideration
limited PMUs when implementing techniques [18]. This paper
borrows the concept of electrical distance which suggests
voltage changes propagate adhering to closeness of buses [19],
[20]. As a result, without getting into the PMU placement
optimization problem, this paper assumes that PMUs were
located nearby the PCCs.

The proposed method leverages real-time PMU data to
predict system stability upon reconnection. PMUs make use of
GPS synchronization [21] which can create an attack platform
for adversaries by changing or shifting the time synchroniza-
tion. Use of erroneous or compromised PMU data could lead
to incorrect predictions that would degrade system stability
due to hidden failures that remain dormant until triggered by
contingencies [22]. We demonstrate a potential framework that
can make accurate predictions in face of partially compromised
PMU data.

It is important to highlight the reasoning behind introducing
a learning based approach to the problem as previous methods
dealing with synchronization exist. By leveraging techniques
similar to a synchro-check relay [11]-[14], it is possible to
become confident of a stable reconnect for systems even in
the dynamic domain. Said technique focuses on limiting key
measurement differences in voltages, angles, and frequencies
between a select PCC in a connecting network. However, it is
difficult to set proper thresholds on the voltage, angle, and
frequency differences, below which we allow reconnection.
Too low thresholds may cause many opportunities for stable
reconnection missed, while too high thresholds may lead to
unstable reconnection. Further, thresholds for different relays
may have to be set differently as sensitivity changes for
different locations. In addition, such a reconnection strategy
limits the reconnection decision for certain tie line to depend
only on the tie line measurements thereby rendering the
decision possibly suboptimal. The proposed learning scheme
provides an integrated framework that takes into account all
the aforementioned challenges including the following:

e The challenge of setting up proper decision regions is
naturally handled in the training phase of the learning
scheme.

e Our prediction of stable reconnection timing for certain
tie line relies on data-stream from diverse PMUs, not
limited to those associated with a single tie line.

e The learning scheme improves upon the synchro-check
relay scheme in a sense that the possible decision rules
of synchro-check relays are included in the collection of
decision rules to be considered by our learning scheme,
for most choices of learning methods.

The proposed technique is not without its flaws. While the
learner does a good job improving on being less restrictive on
PMU locations and can provide a better confidence interval for
stability, it is associated with required computation time. The

learner needs to be fed unique data based on the network at
hand in order to see improvements on the previous methods.
Using the learner in a real-time environment is trivial, however
the actual training of said learner needs careful consideration
along with a unique skill-set. If the learner is correctly set up
it could become a potentially powerful tool for determining
real-time stability of network reconnection.

The contributions of this paper are as follows. We propose
a machine learning framework to learn a classifier that can
predict the stability of potential reconnections of a sub-network
regardless of the number of PCCs. The proposed scheme is
evaluated using the RTS-96 case and the Poland case and
demonstrates high classification accuracy, around 90%. We
demonstrate the scalability [23] of the proposed scheme using
the Poland case; the amount of required computation scales
reasonably as the network size grows. Lastly, we present that
the proposed scheme can succeed for a large-scale grid even
when only a few PMUs are available for use. This implies
that the proposed scheme is feasible even when the number of
trustworthy PMUs is quite limited.

The remainder of this paper is organized as follows. Section
IT gives a brief background of Support Vector Machines
(SVM). Section III covers the methodology to create a power
system classifier. Section IV discusses results from experi-
ments with the proposed algorithm. Section V provides the
conclusions.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this section, we formulate stability prediction of micro-
grid reconnection as a machine learning problem and provide
the preliminaries describing the SVM. While we describe
the problem formulation in the context of SVM, the pro-
posed framework is applicable to generic machine learning
approaches.

We propose to leverage SVM to predict stable reconnection
timings of a microgrid based on real-time PMU measurements.
Conceptually, the SVMs transform an input feature vector into
a higher-dimensional space and applies a linear classification
rule to predict its class label [24].

In our context, real-time measurements collected from
PMUs at certain time point form an input feature vector. The
input vector is associated with a binary class label, either 1
or —1, depending on whether reconnection of the microgrid
at the current time would lead to a stable operating point or
an unstable point, respectively. We assume that there exists an
unknown conditional probability distribution that characterizes
the conditional distribution of the true class label given an
input vector. Under this assumption, we will use the SVM
framework to learn a classifier that maps input vectors to true
class labels with high probability. The learned classifier can be
used in practice to predict the consequence of a reconnection
when certain PMU measurements are observed.

In order to learn a classifier, we need training data consisting
of a number of input vectors zy, ..., x,, and their associated
class labels y1,...,yn € {—1,1}. The methodology to obtain
the training data will be explained in Section III. Given a set
of training data, the SVM uses a basis function, denoted by



@(+), to map input vectors into a higher-dimensional space
in order to enhance linear separability. The SVM takes these
feature vectors as inputs with their corresponding labels and
is trained with the information. Specifically, a separating
affine hyperplane is obtained by solving the following primal
problem:
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where the regularization term with the parameter C' penalizes
the training data points that are on the wrong side of the
margin. The solutions w* and b* to the above optimization
define the SVM classifier as follows:
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where the offset b* is derived from the dual solutions [24].

The example in Fig. 1 depicts a classifier built for prediction
of two classes. In this example, the squares represent one class
and the circles the other. The separating hyperplane is found
by solving the optimization problem (1), with margins existing
for each class. The support vectors, seen in bold, are examples
closest to the margins. A solution may not always have classes
completely separated; the penalty will be associated to the
distance past the margin, (;, and the weight, C.

In the case that the dimension of ¢(z;) is significantly
higher than that of x;, solving the dual of (1) can lead to
an alternative expression of the classifier that is substantially
easier to compute. The dual of (1) is:

1
min iaTQoz —eTa (@Y)
subject to
yla=0, 0<o<C,i=1,2,....n (5)

where «; denotes the Lagrangian multiplier for the ith con-
straint of (1), and e denotes a vector of all ones. In the
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Fig. 1. Example representation of decision and error boundaries for a Support
Vector Machine

dual formulation, the basis function ¢(-) is integrated into
the matrix @ by the use of a kernel function K(z;,z;) £
&(x;)T p(z;). Specifically, the (4,7) entry of Q is equivalent
to y;y; K (z;,z;). Many kernels exist, but the most relevant
one used in this paper is the Radial Basis Function (RBF), or
Gaussian, kernel shown below:
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where v is the hyperparameter to be optimized via cross-
validation. The solutions of the dual problem provide an
alternative expression of the classifier (3):

flz) = sign{Z(aiyiK(m, ;) +b)} )

Using the above expression has computational advantages
over the use of (3), because K(z,z;) is in general easier
to compute than w*T'¢(z;). This is true for kernels with the
dimension of ¢(x) being significantly larger than = such as
the RBF kernel. Further, the majority of weights, «;, will be
zero; only the support vectors will have nonzero weights.

III. TRAINING THE SVM USING A DYNAMIC SIMULATOR

In this section, we present the machine learning framework
for predicting stable reconnection timings of a microgrid as
well as the detailed procedure to train the classifier with a
power system dynamic simulator. As suggested earlier, we
train the SVM to predict the stability of reconnection for
a microgrid when certain PMU measurements are observed.
In order to train the SVM, we need to first acquire a set
of training examples, each of which is a pair of an input
vector (i.e., a vector of PMU measurements) and the true class
label (i.e., stability of reconnection when the input vector is
observed as PMU measurements). Unfortunately, it is difficult
in practice to obtain sufficient training data from realistically
sized power systems as obtaining a pair requires disconnecting
and reconnecting the microgrid. Thus, we resort to leveraging
a power system dynamic simulator to create training data by
running a variety of scenarios for the target system.

A. Overview

Fig. 2 illustrates the procedure that we follow for the
experiments in this paper. We begin this procedure by breaking
up a test case into different operating points. Each of these
operating points are used to create different initial conditions
unique to their operating point. These new initial conditions
are built by randomly scaling the load throughout the network.
We perform dynamic simulations consisting of islanding and
reconnecting the microgrid to create our synthesized PMU
measurements and determine the stabiliy of said reconnection.
After gathering the data, we break our data into training and
testing sets which are used to train the classifier. We then use
the classifier to monitor PMU streams and predict the potential
stability of a microgrid reconnection.

We chose the 73-bus version of the IEEE Reliability Test
System (RTS-96) [25] and the 2383-bus version of the Poland



Test Case as test cases for evaluation of our approach as they
are well tested in the community [26]. The RTS-96 provides a
convenient topology to implement and test islanding, whereas
Poland serves as a larger network to more closely model a
practical system. For the RTS-96 and Poland case we used the
procedure described below to create several operating points.
The Poland test case used a modified winter peak snapshot to
ensure diverse data could be gathered during the creation of
different initial conditions.

We began with a specific network and created different oper-
ating points by uniformly changing load locations throughout
the network. Loads were also uniformly scaled at random when
building these new operating points. We then simulate the
dynamics of the system with Siemens PTI PSS/e and perform
the islanding and reconnection scenarios. Upon completion of
simulations, bus voltages and angles before the reconnection
of islands are used as features and the outcome of the case
(stable or unstable) are used to label the set. The raw data
produced are separated into training and testing sets in which
cross-validation is performed exclusively on the training set to
build an adequate classifier.

B. Diversifying Operating Points

It is important to take into account test cases that can re-
produce various operating points depending upon, for example,
time of the day, day of the week, or season [27]. In this way, the
classifier will be useful for a diverse set of network states. We
created different operating points by shuffling and scaling loads
at random throughout the system. Upon obtaining the new
demand distribution, we ran a steady state solution of the case
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New Initial New Initial New Initial
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Fig. 2. High level overview of the process to create a classifier

and considered it stable and usable if the voltage magnitude
set was between 0.9 p.u. and 1.1 p.u. for the RTS-96 case or
0.8 p.u. and 1.1 p.u. for the Poland case. For each operating
point we created different initial conditions by changing active
and reactive loading on each bus, according to Egs. (8) and
9):

Prew = Poa + 9P01d7

Qnew = Qold + '_Yinda

where P, and Fpg denote the new system active power
and original system active power, respectively; Quew and Qg
denote the new system reactive power and original system re-
active power respectively. For scaling, # and y are independent
and identically distributed random variables that are uniformly
distributed in [—a, b].

0~ U(—a,b) 3
v~ U(—a,b) )

C. Dynamic Simulation

We are interested in the interaction between the sub-network
and main grid upon reconnection. In order to observe the
main reconnection mechanisms, we simulate the power system
dynamics with a time-domain simulator software (Siemens
PTI PSS/e) along with a custom built command line interface
(Python API'). We first used a research-grade dynamic simula-
tor alongside PSS/e to cross-validate and tune the dynamic ma-
chine models [28], [29]. The dynamic models selected consist
of salient machines for the generators, IEEE Type 1 exciters,
and IEEE Type 2 governors. We initiate each simulation run
in PSS/e with a flat start check in order to ensure the dynamic
models do not alter the steady state solution and also that
no protective elements are operating during the steady state.
We added relay models and protection schemes to our test
cases, including overcurrent, undervoltage, and underfrequency
relays. The overcurrent relays are set up using the line limit
standard data that come with the selected test cases. We config-
ured load-shedding, line-tripping, and generator disconnection
actions for undervoltage and underfrequency situations. During
the dynamic simulation we monitor bus voltages, angles, and
frequencies.

For each initial condition obtained for a given operating
point of the original test case we run a dynamic simulation.
After the initialization period we proceed to island a pre-
defined portion of the test case in which the two isolated
systems run independently for a certain amount of time.
The sub-network is then reconnected with the main grid and
continues to run until the end of our simulation time.

D. Data Generation and Labeling

The proposed learning scheme necessitates the collection of
training examples which will be used for training an SVM
classifier. We exploit the aforementioned dynamics simulation
module and various initial conditions to create diverse training
examples. As stated earlier we create different operating points
for our test cases, and we then create new initial conditions
for each operating point for diversity. Each initial condition

! Application Program Interface



case will give us a single feature vector along with a single
label. The feature vector for each case consists of the bus
voltages and angles measured by PMUs at the time point
before reconnection. Angles were unwrapped to the first turn,
between -180 and 180 degrees. We assume that the PMU set
is fixed for clarity.

The label for each initial condition case represents whether
the case became stable or unstable upon reconnection of the
sub-network to the main grid. Labeling was done based on
the PSS/e convergence monitor which would alert the Python
interface if the network did not converge at any point in time.
If the API observes the ‘network not converged’ message,
we assume immediately that the PSS/e was unable to solve
the differential-algebraic system of equations and label the
case unstable. We added additional convergence rules during
labeling which allowed more cases to be labeled unstable if
voltage collapses, there are very large oscillations, divergence
or intolerable frequency spikes occurred. If the case satisfied
the rules of stability we provided, it was labeled as stable.
We store all case data in the form of their feature vectors and
associated class labels.

E. Test Scenarios

We split the full data set into two subsets; one representing
the training set to create the classifier, and the other one to test
the accuracy of the classifier. Three main methods of creating
the training and testing set were used and described below.

1) Single Operating Point Case: To assess the baseline
capability of the classifier we start with the simplest case by
assuming our classifier is trained and tested on examples orig-
inating from a single operating point. We create the training
and testing sets with a single operating point. The different
initial conditions from said operating point will be the only
examples populating the training and testing sets. The created
sets will be used independently from other operating points.
This test proves the ability for the classifier to make predictions
with PMU data streams coming from a well known network
operating point.

2) Multiple Operating Points Case: To build on the previous
test, we use multiple operating point to form training/testing
sets for our classifier. We previously demonstrate a method
to test individual operating points, however a more universal
classifier would leverage all available data from different
operating points. This test allows a more generalized baseline
accuracy to be derived. This can be achieved by mixing the
initial conditions from all available operating points from the
full data set. We create the training set by randomly selecting
a subset of the mixed data. The remaining unselected data
is placed into the testing set. This suggests that the classifier
may be trained on a set consisting of examples from different
operating points and make predictions on different examples
from the same operating points.

3) Unseen Operating Points Case: It is important to assess
the ability of the classifier in the face of unknown oper-
ating points. The baseline accuracies to be produced from
the previous test scenarios implies predictions would rely on
the network having a finite set of most common operating

points. It can be assumed that larger networks would create an
exponential number of potential stable operating points. It is
necessary to show that large networks could adopt the proposed
technique by populating the testing set with examples from
unknown operating points unseen in the training set. Unlike
the last test scenario, we keep the different initial condition
data from each operating point separate. We create a random
subset of operating points that will be used to populate the
training set with their different initial conditions. The initial
conditions created from the remaining operating points are
then put into the testing set. The exclusion of certain operating
points from the training set ensures that the classifier must
make predictions on a testing set that contains only examples
from unobserved operating points. The unknown operating
points represent potential distributions of load in the network
that are unaccounted for in training, but may still exist at any
given time.

FE. Classifier

Given the prepared training and testing sets, the next step
is to define and build the classifier. As stated earlier, it may
be necessary to remap the features to another dimension in
which classification is easier, this leads us to choose from
different kernels and hyperparameters. SVM is very sensitive
to the kernel and hyperparameters chosen, thus it is important
to setup the classifier in a way that maximizes our prediction
accuracy. In order to find optimal kernel and hyperparameters,
we use k-fold cross validation on the training set [30]. Random
oversampling is employed to balance the training set such that
the classifier will not be over-fitted to the majority class [31].

The next step is to train the classifier with the entire set
of training data available. Upon completion of training, the
classifier is able to make predictions of classes for unseen input
feature vectors. Specifically, the classifier predicts whether the
system it has been trained on will be stable or unstable if it
were to reconnect at the given time. We made use of the Python
library scikit-learn [32], which includes implementations of
machine learning algorithms such as SVM.

IV. RESULTS

In this section, we present the performance of the proposed
method for predicting stability of microgrid reconnection. For
evaluation, we used first the RTS-96 test case to demon-
strate the approach and the Poland case to benchmark the
methodology against a real sized power system [33]. As stated
previously, the proposed classifier can account for multiple
PCCs in a network. For example, due to the choice of islanding
Zone 3 in the RTS-96, we consider the two PCCs shown in
Fig. 3.

A. RTS-96

For the RTS-96 case we created nine different operating
points and gathered 400 different initial conditions for each.
The RTS-96 case is made up of three sub-networks that are
mostly identical to one another, and we chose to island Zone
3 which contained bus numbers in the 300s. The intentional



22 71318
.

223

315

314
'

- <324 311
212 T EAA312

210 303 309

206 ! '|308 306
' 3044 3070 1 T
T

3057
'

301 ¢y ¢ @

Fig. 3. Points of interconnection in the RTS-96 case.

islanding occurred five seconds into the simulation, the recon-
nection event occurred at 45 seconds, and we terminated the
simulation at 120 seconds. We did not implement protection
schemes for this baseline scenario. We leveraged data from all
buses in the RTS-96 case to test the classifier to begin with.
These buses were chosen due to their proximinity to the PCCs.

1) Single Operating Point Case: We began by creating a
classifier for each operating point and observed the accuracy
attained on each class. For each operating point we chose 100
cases of class stable and 100 cases of class unstable to train the
classifier. We applied 10-fold cross validation to the training
data to find optimal kernel and hyperparameter values. From
these we observed the best performance was achieved with
the RBF kernel along with a specific set of hyperparameters.
Some operating points had differing hyperparameters when
their classifiers were built. As such, Table I shows the selected
hyperparameters for each operating point.

TABLE 1. CLASSIFIER SETUP AFTER CROSS-VALIDATION
Operating point ~ Kernel ¥ c
1 RBF 0.000001 100

RBF 0.0001 10
RBF 0.000001 10
RBF 0.000001 10
RBF 0.00001 1

RBF 0.0001 10
RBF 0.00001 1

RBF 0.000001 10
RBF 0.00001 0.1

||| ||| wW|N

We observed that training and testing on individual operating
points yields results that suggest some are easier to predict than
others. The worst case operating point can predict unstable

TABLE II. ACCURACIES FOR RTS-96 OPERATING POINTS

INDEPENDENTLY TRAINED
Operating point

Class 1 accuracy [%] Class 0 accuracy [%]

1 97.8 100
2 80 99.2
3 90.7 97.1
4 97 80
5 84.7 89.6
6 91.3 85.9
7 89.5 86.0
8 96.7 90.6
9 90.6 81.3
Average 90.9 90

cases with an accuracy of 80%, as seen in Table II, however
most other operating points can make predictions at a much
higher accuracy. In Table II, Class 1 accuracy and Class 0
accuracy represent the probabilities of detecting stable re-
connections and unstable reconnections correctly, respectively.
It isn’t feasible to assume a system will be operating with
one specific load distribution which is why multiple operating
points were introduced. At the same time, the operating point’s
load distributions were created semi-stochasticaly in the sense
that loads were introduced to value changes consistent with
equations (8) and (9) and randomized, but still had to satisfy
the voltage p.u. stability requirements. These distributions
ensured operating points were different enough that it would
cover a a case in which the system operates with high
randomness, which is harder to make predictions for than most
systems.

2) Multiple Operating Point Case: We also investigated
a universal classifier that assumes an operator would not
have immediate access to detailed knowledge of the current
operating point of the system. With this assumption, we create
a universal classifier training it with the training set consisting
of cases from all nine operating points, 100 stable and 100
unstable cases from each operating point. The reason for
training with the same number of stable and unstable cases
is to prevent a classifier from being potentially being skewed
based on the priori of the class distributions in the training set.
Similarly we use 200 cases from each operating point to ensure
no operating point dominates the classifier during training.

TABLE III. ACCURACIES FOR RTS-96 OPERATING POINTS JOINTLY

TRAINED
Operating point

Class 1 accuracy [%] Class 0 accuracy [%]

1 86.8 100
2 97 72
3 79.2 99.4
4 90.1 82.9
5 89.4 88.7
6 100 78
7 91.2 88.8
8 95.6 92.5
9 93 74
Average 91.4 86.3

We performed the aforementioned cross-validation tech-



nique and obtained the best classifier, which is an RBF kernel
with a v value of 0.00001 and a C value of 1. We tested it
on the test set, and the results are shown in Table III. The
accuracies when jointly trained perform relatively well as a
whole, however some operating points can result in difficult
to classify examples. We kept the operating points separate
to observe how well the universal classifier does on each
particular case and then obtained the average accuracy over
the whole test set to demonstrate overall performance.

3) Inference with trustworthy PMUs: We investigated the
performance of the proposed method when only a small subset
of PMUs are used for classification. We created a small subset
of PMUSs to choose from located at buses: 118, 121, 218, 221,
223, 318, 321, 323, 325. It turned out that using a smaller
subset of PMUs does not substantially degrade performance
if the subset is properly chosen. Among the assumed PMU
locations, we selected a PMU to be allowed in the trusted
subset only if they were immediately adjacent to a PCC in
the network. As a result we can choose a handful of desired
PMUs to be used. Out of these PMUs, for this experiment
we only selected either two or three to be secure, then we
trained and tested on the smaller subset. Table IV illustrates the
results of this experiment, whereby Class 1 represents a stable
reconnection and Class 0 represents an unstable reconnection.

TABLE IV. ACCURACIES FOR RTS-96 OPERATING POINTS WITH

SUBSETS OF TRUSTED PMUs
PMU location [bus number]

Class 1 accuracy [%] Class 0 accuracy [%]

118, 318 92.7 87.6
118, 321 92.8 87.6
121, 318 92.4 87.5
118, 121 90.1 85.6
323, 325 922 86.8
218, 321, 325 93.4 87.2
221, 223, 323 94.1 86.6
121, 218, 318 93.2 87.3
118, 121, 218 90.2 86.0
318, 323, 325 94.3 86.4

The main reason for obtaining better results with limited
PMUs in some test cases is due to the exclusion of PMUs
that are either adding noise to the classifier or not providing
relevant information. A higher number of features leads to the
need for more training data to create an adequate classifier. If
we use PMUs that do not provide useful information, building
the classifier becomes difficult with limited training data. We
observe that it may not be feasible to produce large quantities
of training data which can lead to better results from subsets
of PMUs rather than the entire set. This is shown in randomly
chosen subsets in Table IV for RTS-96 as well as in the
following section for the Poland case.

The above results suggest that the proposed method can
be adjusted to be resilient to potential cyber attacks that may
manipulate part of PMU data. In the event that the integrity of
PMU measurement data is not fully guaranteed due to cyber
threats [34], we cannot rely on the classifier processing the
full set of PMU measurements. To effectively handle such a
case, we can prioritize protection of a certain small subset of

PMUs such that the integrity of their measurements can be
strongly guaranteed even in the presence of cyber adversaries.
Our results imply that if the trusted subset is properly chosen,
the classifier can perform with high accuracy based on the
trusted PMU measurements.

B. Poland Network

For the Poland case we created twenty-four different oper-
ating points and generated roughly 240 different initial condi-
tions total. On top of the steady state diversity implemented,
we obtained data from 50 reconnection points spanning ran-
domly between 40-55 seconds from each initial condition to
implement more temporal diversity. We incorporated a protec-
tive scheme by adding overcurrent relays on each transmission
line, as well as undervoltage and underfrequency relays on
each bus. We allowed relay operation to trip lines, shed load,
or disconnect generators. The overcurrent relays were set based
upon the transmission line limits from the original test case.
Table V provides an overview on the relay configuration.

TABLE V. OVERCURRENT RELAY CONFIGURATION
Point Pickup [%] Trip time [sec.]
1 100 5
2 125 0.2
3 137.5 0.15
4 150 0.1

Underfrequency and undervoltage relays were used for bus
and generator monitoring and protection. Setting the voltage
thresholds is straightforward given the baseline variability of
voltages for each bus. Frequency variability is more chal-
lenging to set up without obtaining more information from
the operation of a large network. Thus, we grouped buses
with similar frequency response and introduced different fre-
quency threshold points throughout the system. As a result,
load shedding and generator tripping due to underfrequency
events allowed for heterogeneous disconnection, generally a
more accurate depiction of system survival in a real case.
Synthesized time-dial points for underfrequency bus relays
were setup as shown in Table VI, depicted by rows (LS). For
generator relays, a random value (y = {1, 2, 3,4}) was chosen
and scaled for the time-dial points shown in Table VI, depicted
by rows (GR).

TABLE VI UNDERVOLTAGE/UNDERFREQUENCY LOAD SHEDDING

(LS) AND UNDER/OVER FREQUENCY GENERATOR (GR) RELAY
CONFIGURATIONS

Point Pickup volt. [p.u.] Trip [sec.] Pickup freq. [Hz.] Trip [sec.]

LS1 0.92 5 49.5 5,4,3,2

LS 2 0.88 0.5 49 2,15,1,0.5

LS3 0.75 0.2 48.5 1, 0.75, 0.5, 0.25

GR 1 - - 48.5, 51.5 Y

GR 2 - - 475, 52.5 y/2

GR 3 - - 46, 54 y/4

Since the Poland test case is divided by default into five
zones, we solved the steady state of the case when islanding



TABLE VIIL BASELINE POLAND NETWORK ACCURACIES

PMU location [bus number]
Unseen Operating Point Case

Class 1 accuracy [%]
94.4%

Class 0 accuracy [%]
96.0%

certain zones. Zone 5 was a good candidate for intentional
islanding due to a low mismatch for generation and demand, as
well a voltages within acceptable operating limits, thus it was
selected to be the sub-network of interest in this experiment.
During the dynamic simulations we islanded the sub-network
at 2 seconds. We implemented a more temporal approach
with respect to reconnection to capture real-time changes in
the network. As a result, reconnection times ranged from 40-
55 seconds for each dynamic simulation. Unlike the RTS-96
experiment, we did not assume full PMU coverage of a large
scale network to begin with. We only allowed a PMU on a bus
if it is immediately attached to the interconnection between
the sub-network and the main grid. We were left with 30
available PMUs in the Poland network to build a feature vector.
Since each PMU contains a voltage and angle measurement the
dimension of the feature vector is 60 (if using the entire set
of PMUs). As we stated earlier in the procedure description,
the next step was to create labels based on the convergence
of the case. Figures 4 and 5 illustrate labeling examples for
stable and unstable cases, respectively.

Figs. 4-5 depict frequencies of two buses on either side of
an interconnection point. One can observe that case labeled as
stable case exhibits a reconnect where the frequency signals
converge to a common operating state. The unstable case
shows the frequency of Bus 126 spike and immediately flat-
line representing a bus trip. As described in the methodology
section, if the network did not converge, it would have immedi-
ately been labeled unstable. The rules of stability in the Poland
case additionally enforced that at least 2370 of the 2383 buses
in the case were in service after reconnection of the island.

We partitioned the 722 different initial conditions in ac-
cordance to the two test cases described in Section III-E:
multiple operating point case and unseen operating point case.
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Fig. 4. Stable reconnection of Poland microgrid and main grid.
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Fig. 5. Unstable reconnection of Poland microgrid and main grid.

For each test case, we used 10-fold cross validation together
with random oversampling to learn optimal hyperparmaters
and train the classifier (see [30], [31] for details of these
methods). The set aside test set was then used to determine
the classifier’s accuracy.

The baseline accuracies of the Poland network are seen in
Table VII. The unseen operating point case represents the case
in which the testing set contains data from operating points that
do not exist in the training set. With the unseen operating point
test, the proposed algorithm demonstrated over 90% accuracy.
In particular, the results from the unseen operating point case
suggest that our classifier can demonstrate this accuracy even
when the classifier is trained based on a few operating points
and tested for an unseen operating point case. This implies
that the proposed method is scalable and suitable for use in a
large-scale grid; the classifier does not have to be trained for
all possible operating points, and training with a few suffices.
As stated earlier for the smaller test case experiments, we also
investigate the accuracy of the classifier for a scenario when the
system is compromised. As a response, our classifier makes use
of a trusted set of PMUs and makes predictions based on their
measurements. A variety of subsets from the available PMU
full set make up our possible trusted scenarios, as shown in
Table VIII. The results indicate that some subsets still perform
well even in the face of unknown operating points.

In the larger Poland case it seems more prevalent that de-
creasing the amount of features can lead to similar performance
to the full set. The adoption of this control technique would
bring into question whether a utility could provide enough
training data, specifically the number of training examples, for
the classifier. If limited training data is provided, the usage of
an optimal subset of PMUs instead of the entire available set
could yield adequate accuracies. Indeed it is always interesting
to observe that less amount of information give similar results.
It is explained in this case by considering a high dimension
of the feature space. For high dimensional feature vectors, it
is difficult to learn an accurate classifier with limited amount
of training data. Utilities with the ability to archive and make



TABLE VIII. UNSEEN OPERATING POINT CASE ACCURACIES FOR POLAND NETWORK WITH SUBSETS OF TRUSTED PMUS
PMU location [bus number] Class 1 accuracy [%] Class 0 accuracy [%]
2218, 171, 118, 335, 2249, 214, 126, 139, 125, 303, 174, 2226, 186, 1607, 165, 1761 94.3% 95.6%
186, 2331, 315, 139, 167, 10, 2234, 2124, 225, 2218, 2226, 178, 125, 2249, 126, 1607 95.8% 95.3%
303, 2234, 2124, 315, 225, 335, 10, 118, 140, 2226, 2218, 214 88.4% 96.3%
2218, 140, 174, 126, 125, 118, 2234, 171, 2124, 15, 167, 139 94.6% 95.6%
167, 139, 214, 335, 178, 2226, 315, 118 89.8% 96.1%
174, 2249, 2218, 118, 2331, 1607, 141, 166 95.6% 95.5%
139, 165, 2218, 2226 96.0% 95.1%
127, 2249, 118, 166 96.3% 94.3%

available relatively large amounts of training data could still
make use of a a large set of PMUEs, if available, and potentially
observe higher accuracies with respect to the quantity of
training examples provided in these experiments.

V. CONCLUSION

This paper presents a machine learning approach for the
prediction of stable reconnections of a power system sub-
network. The proposed approach leverages a power system
dynamics simulator to generate synthetic, yet realistic in terms
of size, training examples that are subsequently employed
to train a classifier. The interactions between power system
dynamics and protection mechanisms are complex, and the
exact derivation of an optimal control strategy is not always
feasible. However, as demonstrated in this paper, a machine
learning approach can be useful to capture many unintuitive
behaviors and make predictions in real-time based on PMU
measurements. Future improvements on the training aspect
may be necessary as the procedure to build said classifier is
relatively sophisticated and requires in depth knowledge. The
method may not be directly usable by operators as a result of
the necessary understanding to build a well trained classifier.
The classifier was tested on a variety of cases and operat-
ing points to ensure diversity. Accuracies of approximately
90% were observed throughout most conditions when making
dynamic predictions of a given network. Existing work in
literature is limited to the dynamic realization of reconnection
stability, however future work may leverage said technique in
a more time sensitive way. In addition, cyber attacks on PMUs
in a subset may distort the classifier thus creating the need to
implement techniques on verifying the authenticity of the data
streams.
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