
Input Handling Done Right: Building Hardened
Parsers using Language-theoretic Security

Prashant Anantharaman∗, Michael C. Millian∗, Sergey Bratus
Dartmouth College
Hanover, NH 03755

{pa, mcm, sergey}@cs.dartmouth.edu

Meredith L. Patterson
Upstanding Hackers, Inc.

Brussels, Belgium
mlp@upstandinghackers.com

Abstract—Input-handling vulnerabilities have been a constant
source of security problems for decades. Many famous recent
bugs are in fact input-handling bugs. We argue that the tech-
niques for writing parsers in its present form are insufficient, and
hence we propose a new pattern. In this tutorial, we will show
participants a new design pattern for designing and implementing
parsers using this new method. Participants will witness how this
new method leads to more readable code that is easier to audit
- while also inherently preventing many input-handling mistakes
and having a small CPU footprint.

I. INTRODUCTION

Parsing input strings is one of the earliest-studied problems
in computer science [10]. All modern software programs
involve parsing input, and yet alarmingly little care is given
to this task despite how much is known about the topic.
Whenever someone writes a parser, they implicitly declare a
formal language they want to accept. However, too often the
intended language and the actual language differ. This input
validation problem is the source of countless vulnerabilities,
including HeartBleed [1], [5], [6]. The problem of insufficient
input-handling has been studied in the Internet-of-Things [3],
Android applications [11] and extensively in the DNP3 power
grid protocol [4].

Language-theoretic Security (LangSec) identifies several
anti-patterns ubiquitous in the software development process
that directly cause classes of vulnerabilities [6]. These anti-
patterns include:

• Shotgun Parsers - code in which parsers are interspersed
with code that does processing of input.

• Overly Complex Parsers - where the computing power of
the parser exceeds the complexity of the input language.

• Overly Complex Input Languages - input languages must
be deterministic context-free to avoid parser differentials
and ensure that parsers are equivalent.

A. Hammer parser-combinator toolkit

Hammer is a tool, written in C with bindings for other lan-
guages, that tackles the problem of writing correct parsers[8].
Hammer implements combinators taken from formal language
theory such as character matching and kleene star. Hammer

∗Prashant Anantharaman and Michael C. Millian contributed equally to
this paper, and will be leading the tutorial.

code looks like a grammar, so it is easy to check that the
implementation matches the intent.

II. SUMMARY OF TUTORIAL

In this tutorial, participants will build secure parsers for sev-
eral protocols using the hammer parser-combinator toolkit [8].
Users will then fuzz the parsers they have build using lib-
fuzzer [9]. This process will demonstrate the resilience of the
LangSec methodology. The protocols we cover come from a
set including power grid protocols, like Modbus and ICCP,
and others that are widely used, such as DNS, Base64, JSON,
MQTT or XMPP.

We will follow this format for our tutorial:
• Provide an overview of LangSec and the hammer parser-

combinator toolkit.
• Build a parser for one of the above mentioned protocols

and fuzz-test it.
• Ask participants to build parsers on their own for another

protocol, providing help as needed.
• As a conclusion, show pre-written parsers for the

participant-chosen protocols and discuss parser differen-
tials if any different implementations are seen.

III. EXPECTED AUDIENCE AND LEARNING OUTCOMES

The hammer parser-combinator has bindings in various
languages. We intend to cover C, Python, and Ruby in our
tutorial. The audience must be familiar with one of these
languages. Further, knowledge of basic linux shell commands
and a laptop with an Ubuntu 14.04 – 64 bit VM is required.

The audience will build parsers for protocols on their
own from scratch. Then, they will fuzz their parsers with
libfuzzer [9], to identify mistakes made in the implementation.

The audience will gain understanding and experience pro-
gramming with a new design pattern. They will think critically
about protocols and parsers for protocols. As a result, they will
be able to better handle input by treating all input as formal
languages.

IV. PRIOR TALKS

Prashant has previously given two talks on the use of
Language-theoretic Security. Prashant presented “Building
Hardened Implementations of SCADA/ICS Protocols Using

Author Copy. Accepted for publication. Do not distribute. 



Language-Theoretic Security” at the CREDC Industry Work-
shop, Tempe, AZ on the 28th of March, 2017 [2]. Prashant also
presented his work on “Building Hardened Internet-of-Things
Clients with Language-theoretic Security” at the LangSec
Workshop at IEEE Symposium on Security and Privacy [3].
Both talks had 50-100 attendees and were well received.

V. CONCLUSION

We believe that this tutorial will be a good fit for the Secure
Software Development community as the LangSec framework
aims to eradicate categories of vulnerabilities arising from
input-handling vulnerabilities. We hope to make use of this
tutorial to train more people to write better parsers, which
will prevent vulnerabilities from occurring in the future.

ACKNOWLEDGMENT

This material is based upon work supported by the Depart-
ment of Energy under Award Number DE-OE0000780.

REFERENCES

[1] Cve-2014-0160. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2014-0160, 2014.

[2] Prashant Anantharaman. Building Hardened Implementations of
SCADA/ICS Protocols Using Language-Theoretic Security. https:
//publish.illinois.edu/2017credciw/agenda/showcase-credc-research/,
March 2017. CREDC Industry Workshop.

[3] Prashant Anantharaman, Michael Locasto, Gabriela F Ciocarlie, and Ulf
Lindqvist. Building Hardened Internet-of-Things Clients with Language-
theoretic Security. In IEEE Symposium on Security and Privacy
Workshops (SPW), 2017.

[4] Sergey Bratus, Adam J Crain, Sven M Hallberg, Daniel P Hirsch,
Meredith L Patterson, Maxwell Koo, and Sean W Smith. Implementing
a vertically hardened dnp3 control stack for power applications. In
Proceedings of the 2nd Annual Industrial Control System Security
Workshop, pages 45–53. ACM, 2016.

[5] Zakir Durumeric, James Kasten, David Adrian, J Alex Halderman,
Michael Bailey, Frank Li, Nicolas Weaver, Johanna Amann, Jethro
Beekman, Mathias Payer, et al. The matter of heartbleed. In Proceedings
of the Conference on Internet Measurement Conference, pages 475–488.
ACM, 2014.

[6] Falcon D Momot, Sergey Bratus, Sven Hallberg, and Meredith L
Patterson. The seven turrets of babel: A taxonomy of langsec errors and
how to expunge them. In IEEE Cybersecurity Development Conference
(IEEE SecDev), 2016.

[7] Meredith Patterson, editor. Hammer Tutorial, May 2017. Hackathon
preceding the LangSec Workshop at IEEE Security and Privacy.

[8] Meredith L. Patterson. Hammer. https://github.com/UpstandingHackers/
hammer, 2017. Parser combinators for binary formats, in C.

[9] K. Serebryany. Continuous Fuzzing with libFuzzer and AddressSanitizer.
In IEEE Cybersecurity Development (SecDev), pages 157–157, Nov
2016.

[10] Alan Mathison Turing. On computable numbers, with an application
to the entscheidungsproblem. Proceedings of the London mathematical
society, 2(1):230–265, 1937.

[11] Katherine Underwood and Michael E Locasto. In Search of Shotgun
Parsers in Android Applications. In Security and Privacy Workshops
(SPW), IEEE, pages 140–155. IEEE, 2016.


	Introduction
	Hammer parser-combinator toolkit

	Summary of Tutorial
	Expected Audience and Learning Outcomes
	Prior Talks
	Conclusion
	References



