
1

CREDC Technical Report:
Resilient Data Collection in Refinery Sensor

Networks Under Large Scale Failures
Tianyuan Liu1, Hongpeng Guo1, King-Shan Lui2, Haiming Jin1, and Klara Nahrstedt1

1Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA
2Department of Electrical and Electronic Engineering, The University of Hong Kong,

Hong Kong

Abstract

Wireless sensors and measurement devices are widely deployed in oil and gas refineries to monitor the health
of the pipes. These sensors are deployed along the pipes in an open area and thus are subject to large scale failures
due to cyber-physical attacks and hazardous environments. In this paper, we study the resilience issues in collecting
data from a dense and large scale set of sensors deployed over the physical refinery pipe network. We construct
a multi-tree sensor mesh network over the refinery sensors for data collection. The reporting messages within one
of the trees, while passing along the tree, are protected by a secret key shared among all sensors on the tree. Our
construction aims to minimize the data collection time and ensures that the information leakage probability of the
secret key is bounded. To tolerate large scale failures, we present a distributed self-healing protocol, which enables
a tree node to discover a secondary path when its parent fails. The simulation result shows that the self-healing
protocol tolerates large scale failures with high probability and has small overhead in data collection time.

I. INTRODUCTION

To monitor the health of oil and gas refineries, wireless sensors and measurement devices are massively
installed to collect various real-time measurements like temperature, pressure and corrosion [1]–[4]. Several
standards such as ISA100.11a [5] and WirelessHART [6] are actively updated for industrial applications.
These wireless devices form a wireless mesh network and pass the monitoring data through a gateway to
the control center to facilitate robust monitoring and control. As the sensors are often deployed around
pipes in an open area, they may be subject to different forms of attacks and damages, and thus become
faulty after installation. For example, the sensors around pipes can be damaged in pipe fire or compromised
by attackers.

Fast response to abnormal behaviors and situational awareness is very important to reduce the risk and
scope of accidents. A reliable communication network is thus necessary to ensure that alert messages can
be delivered in time. Therefore, the data collection infrastructure should be resilient in a way that sensors
should be accessible even if some relays fail. Although both ISA 100.11a and WirelessHART introduce
redundancy of gateways and paths as the reliability enhancement [7], [8], sensors can still be inaccessible
under large scale failures.

In addition to network reliability, information security is also an important issue in the refinery sensor
network. For the sensor network that uses a shared key, leakage of this shared key enables an attacker
to impersonate or eavesdrop the sensing devices. Both ISA 100.11a and WirelessHART support a shared
join key that a device can authenticate itself to the gateway [9]. Protecting the shared keys should be a
major security concern of the system administrator.

In this paper, we design a resilient data collection framework which provides reliability under large
scale failures and protection of shared security key. We consider the scenario where a large number
of wireless measurement devices (MDs) are deployed in a dense refinery sensor network. Each MD is
capable of communicating with nearby devices within a small range. A subset of MDs are selected as

Author copy. Do not distribute. 

amyclay
Highlight



2

access points (AP) and attached to the gateway. MDs that are not connected to the gateway directly relay
their data through the mesh network. Fig. 1 shows an example topology with ten MDs connecting to three
access points MD1, MD6 and MD9. The arrows represent the uplinks of each MD. We show the unused
communication links of MD7 by dashed lines. Therefore in this example, MD7 can communicate with
MD2, MD6, MD8 and MD9 by short-range wireless communication.

Fig. 1. An Example Topology

The multi-tree structure is easy to maintain as each node only needs to keep track of its parent and
children. Besides, as the MDs are divided into disjoint trees rooted at different nodes, data traffic becomes
isolated, and data protection becomes easier. For example, when we want to encrypt a command for
distributing among the trees, different tree can use a different security key. This security key can then
be selected according to the different situations of the tree. A tree with nodes that may be compromised
easier can opt for using a longer key or refreshing the key more frequently. Moreover, in case a key of
a certain tree is leaked, the other trees are still safe. In our formulation for tree construction, we will
consider the leakage probability of the security key used.

Before the first data collection, the tree collection structure is computed by a system administrator (SA)
based on the network topology. The SA then informs the MDs about their neighbors, parent, and children
to build the data collection paths. The time to collect data on a certain tree is related to the height of
the tree. Since each tree can collect data simultaneously, the amount of time needed to collect data from
the forest is the maximum height of all trees. We formulate the Resilient Data Collection Forest Problem
(RDCFP) using mixed-integer linear programming (MILP) to optimize the overall data collection time
with the consideration of key security.

After the tree structure is setup, it will be used for multiple data collection rounds. Since the MDs
are exposed to an insecure physical environment, an MD may fail and stop working. This failed MD
cannot relay data for its descendant MDs anymore. At this point, tree re-construction is needed. In a
dense network, an MD has an adequate number of neighbors within its communication range, so that it
can find another path among its neighbors to connect with SA when its parent fails. Therefore, we adopt
the self-healing approach that nodes affected would try to establish their data reporting paths locally
through negotiating with neighbors. With proper heuristics in path selection, the data collection time after
self-healing does not increase significantly compared with the optimal forest.

Our main contributions in this paper can be summarized as follows:
• We designed a resilient data collection framework for the refinery sensor network which has built-in

reliability and security features.
• We proposed a distributed self-healing protocol to tolerate large scale simultaneous relay failures.
• We optimized the data collection time by formulating the forest construction problem using MILP.



3

• We evaluated the self-healing protocol on refinery pipeline simulator and compare the reliability of
self-healing protocol to the approach adopted by WirelessHART.

II. RELATED WORK

Tree-based data collection in sensor networks has been actively studied [10]–[12]. Most work aims
at optimizing energy usage or sensor lifetime while reducing data reporting latency. Due to the massive
number of sensors, a hierarchical data collection structure is usually adopted. Cluster heads are selected
to collect data from sensors within its neighborhood, and then reports the data to the data sink. Some
recent studies on how to select cluster heads to balance energy and latency can be found in [13], [14].
As energy harvesting has been proposed to prolong the lifetime of a sensor, some researchers study data
collection with this emerging technology [15], [16]. To reduce traffic, compression techniques are studied
to improve the data collection performance [17], [18].

A major class of fault tolerance and recovery techniques in wireless sensor networks exploit the link
or path redundancy in the network. In a multi-path structure, packets are routed through disjoint backup
paths when the primary path fails [19], [20]. The resilience of WirelessHART is achieved by a special
multi-path structure [8], where each intermediate node on the path must have at least two neighbors to
forward the traffic. However, this approach does not consider the shared key security and we will show
that its performance under large scale failure is not satisfactory in section VI.

III. SYSTEM MODEL

A. Network Model
We consider the network model as a set of MDs {MD1,MD2, · · · ,MDn} densely placed in a 3-

dimensional space. All the MDs have an identical short communication range R and thus form an
underlying communication network. Two MDs are considered as neighbors if their distance is no larger
than R and can communicate with each other directly.

A subset of r MDs {MDi1,MDi2, · · · ,MDir} are given as roots (access points). Each non-root MD is
connected to one of the roots in a multi-hop manner and thus forms a forest in the network. For the rest
of the paper, we also use the term group referring to a set of MDs in the same tree.

B. Security Model
The data reported by each MD should be protected in terms of both integrity and confidentiality. The

data should be read only by the SA, but not intermediate MDs which help relaying the data. On the other
hand, the intermediate MDs should be able to authenticate the relayed message in order to defend data
injection attacks [21], [22].

Similar to [23], we develop the secure tree-based data collection framework that allows MDs to report
private data to SA while facilitating intermediate MDs to authenticate the messages. Diffie-Hellman key
exchange is used to establish an encryption key for the data between SA and every MD. Integrity check
along the tree path is supported by a group key which is known by all members in the tree.

If an adversary knows the group key, he can stealthily inject forged messages into the network. This
immediately leads to vulnerabilities such as data injection attack and denial-of-service attack. A secure
protocol should confine the risk of leaking a key to a certain acceptable bound. To model the group key
leakage probability, we assume that each MD leaks the key with a certain probability. The key leakage
probabilities of the MDs can then be used to develop the probability of leaking the group key to an
adversary. Our protocol ensures this probability is not greater a predefined threshold. Different MDs may
have different key leakage probabilities as the MDs in an oil refinery are subject to different risks according
to the positions and functions.

A risk introduced by using the group key is that, if an adversary knows the group key, he can inject
arbitrary messages without being detected by the integrity check. Although the SA can finally detect the



4

data carried in the message are not legitimate, network resource can be exhausted in transmitting the
messages. As the MDs may be exposed in an open environment, there is a risk that the group key is
leaked from a group member. We model the leakage probability of MDi to be pi, and control the risk of
group key leakage under a security threshold Pth.

C. Resilience Model
Apart from security attacks, MDs along the pipes are subject to physical damages that they may fail

and stop functioning. When an MD fails and stops, it can no longer report data or relay messages for
other MDs. More precisely in a tree-based data collection scheme, a failed MD would lead to the loss
of the data of its whole subtree. To avoid this from happening, the data collection structure has to be
resilient so that when a certain node fails, the loss of data should be minimal. Our resilience strategy is
to design a distributed self-healing protocol, where MDs are able to find a secondary data path to the SA
when their parents fail.

We consider the fail-stop model for all MDs, i.e., once an MD fails, it does not recover. We consider
at most k− 1 simultaneous failures for each data collection round where k is the number of neighbors
for each MD, and suppose that at least one root does not fail. Furthermore, we assume that failures are
detected before a data collection round happens, i.e., the secondary paths should have been turned on
when a data collection command arrives.

IV. PROTOCOL DESIGN

A. Protocol Overview
After the MDs are deployed, we first compute the initial multi-tree data collection structure. This is

done by the SA which has the full topology information and the key leakage probability of each MD.
After the data collection structure is developed, SA tells each root its tree structure. Each tree root can
then distribute the relevant sub-tree structure to each of its children. The process continues until each
node knows its parent and its children (if any).

To protect the data, security keys have to be used. Necessary keys can be established and distributed in
the process of setting up the trees. In [23], we describe how to develop various keys on a tree to protect
the data reported by each MD. Our resilient data collection protocol in this paper does not assume any
particular cryptographic mechanism to be used or how the data are protected through the keys. Instead,
we consider the generic situation that there is a group key shared among all the MDs on a tree and the
risk of leaking this key by each MD is known. Our protocol would ensure the risk of leaking this group
key is bounded in the data collection structure.

B. Self-healing
The self-healing protocol aims at recovering network connectivity after some MDs fail. Two properties

must be held after the self-healing process: (1) the risk of leaking any group key is small; (2) the data
collection time is short. To maintain these properties, two types of information, accumulative leakage
probability and subtree height, must be spread through the group members.

a) Accumulative Leakage Probability: Sharing a group key introduces extra security concern because
an attacker can steal the group key from any of the group members. We model the key leakage probability
of MDi as pi, which is a pre-defined parameter while deploying the MD. Then, the accumulative leakage
probability of a tree T can be expressed as

Pleak(T ) = 1−∏
i∈T

(1− pi) .

In order to control the risk, we require the leakage probability on every tree to be smaller than a
predefined threshold Pleak(T )≤ Pth. Therefore, we have

Pleak(T ) = 1−∏
i∈T

(1− pi)≤ Pth. (1)



5

As keys are distributed, we also notify each MD about the tree structure and the leakage probability
of its group members. Therefore, MDi can compute the accumulative probability of its tree T and check
if the following constraint holds

∑
j

log(1− p j)≥ log(1−Pth), ∀MD j ∈ T .

This can be derived by taking log(·) for both sides in inequality (1). We will use the accumulative leakage
probability in the log form in the rest of our interpretation.

This constraint implies that the number of members in a group is upper-bounded. A group cannot admit
a new set of MDs if the accumulative leakage probability will exceed the security threshold. Therefore, we
define group capacity as the difference between security threshold and the current accumulative leakage
probability of the group. Suppose MD j is in tree T . The group capacity CT can be expressed as

CT = log(1−Pth)−∑
k

log(1− pk), ∀MDk ∈ T .

CT ≤ 0 must hold for all groups.
As MDi has the information about the structure of its subtree, it can compute the accumulative leakage

probability of its subtree. If the group capacities for its neighbors are also given, it can locally determine
which neighbor can be a valid candidate for a secondary path.

b) Extra Tree Height: If there are multiple candidates for the secondary parent, we should find the
best secondary parent so that the self-healing would add to the least extra data collection time. The data
collection time on a tree depends on the highest tree branch. We denote the height of a subtree rooted at
MD j as H j. If MDi joins the subtree rooted at MD j, the extra tree height added to the whole tree is

max(0, Hi−H j +1).

We use the example topology in Figure 1 for further explanation. Suppose MD6 fails and MD7 is
looking for a secondary parent from MD2 and MD9. Assume both G1 and G3 will not break the group
capacity constraint by accepting this request. In this case, the height of subtree at MD2, MD9 and MD7
are 2, 1 and 1 correspondingly. If MD7 joins G3, it turns out that the data collection time of G3 will
increase from 1 to 2. However, by joining G1, there is no extra height added to G1 because G1 already
has a longer branch MD1←MD2←MD3←MD5.

c) Self-healing Protocol: Now we start describing the detail of the protocol. Once MDi detects a
parent failure, it broadcasts a join message signed by its private sign key. While deploying the MDs,
we require each MD to store a list of public keys of its neighbors. Thus, the neighbors of MDi can
verify if the join message comes from a valid peer by verifying the signature. Once the join request is
authenticated, each neighbor MD j replies with a join-ack message. To facilitate the choice of secondary
parent, the group capacity and subtree height of MD j is included in this message.

After MDi receives all the join-acks, it computes the accumulative leakage probability of its subtree
and uses the group capacity to determine a set of neighbors whose group can admit the whole subtree.
If there are multiple candidate, it selects one with the least extra tree height. A join-proposal message is
then sent to the selected neighbor. This message includes the accumulative leakage probability of MDi’s
subtree.

d) Competing Requests: When multiple failures happen simultaneously in the system, a group can
receive several join request at the same time. If every group member approves these requests independently,
it may result in the violation of the security constraint.

To resolve the conflict, we require MD j to forward the join-proposal to its tree root and wait for the
approval from the root. The tree root approve the request based on first-come-first-serve criteria, and
replies with an approval or disapproval message to MD j.



6

e) Group Update: As soon as approving the join-proposal, the root MD also broadcasts the updated
membership list down to all the members in the tree. In this way, every member can be notified about
the join of MDi and update the membership list as well as the group capacity.

After joining the new group, the MDi and all the MDs in its subtree need to obtain the new group key
used in the tree of MD j. After getting approval from the root, MD j sends MDi its group key encrypted
using PKI. MDi continues to forward the group key down to its subtree until every MD in the subtree
gets the new group key.

f) Pruning: Sometimes MDi may find that it is impossible to join any of its neighbors’ trees. This
is more likely to happen when the accumulative leakage probability of MDi’ subtree is large. In order to
reconstruct the trees, MDi must prune some branches on its subtree so that the remainder of the subtree
is small enough. Once it decides which children to prune, it sends prune messages to all these children.
These children then run the self-healing protocol by their own.

g) Self-healing Failure: Occasionally, the self-healing protocol can not successfully identify a feasible
secondary path. This could happen if the group capacities of all the neighbors’ tree have reached the
security constraint. In such cases, the disconnected MD should notify the SA about the failure. Therefore,
we allow the disconnected MD to broadcast a disconnect message with its signature to all the neighbors.
This message is relayed to SA and SA should recompute the forest if there is a feasible solution.

V. PRECOMPUTING DATA COLLECTION FOREST

In this section, we describe how data collection forest is constructed in the tree computation phase. We
formulate the problem as a Resilient Data Collection Forest Problem (RDCFP) using mixed-integer linear
programming (MILP) and solve it by the Gurobi Solver [24].

A. Problem Description
We assume that SA knows the locations of all MDs and selects a set of roots such that a possible forest

exist. We denote the topology of MDs as a directed graph G = 〈R,M,E〉, where R is the set of root
candidates, M is the set of MDs and E is the set of edges. If MDi and MD j can communicate directly
without the help of any relay, two directed edges ei, j and e j,i are present in E . The edges are unweighted
so that the length of a path is equal to the hop count.

Our objective is to minimize the time to collect data from every tree root. Since the data on each tree
can be collected simultaneously, the data collection time of the whole forest depends on the maximum
height of all trees. The height of each tree can be calculated by the depth-first search (DFS) algorithm.

B. Problem Formulation
Before introducing the detail, we describe the general idea of the formulation. We address the objective

of minimizing data collection time from a “path” perspective. Let Pk
i j be the k-th pre-computed path from

MDi to MD j with minimum length Li, j, and use Ki j as a set of indices of all these paths. Then, the time
to collect data from a subtree rooted at MD j depends on the longest path on the subtree

H j = max
i∈M ∑

k∈Ki j

xk
i jLi j, (2)

where xk
i j is an indicator variable such that

xk
i j =

{
1, if Pk

i j is selected as a path from MDi to MD j;
0, otherwise.

Thus, the time to collect data from all the candidate roots can be expressed as max j∈RH j.
Now, we formally present the Resilient Data Collection Tree Problem (RDCTP) as follows:



7

minmaxxk
i jLi j (3)

s.t. ∑
j∈R, k∈Ki j

xk
i j = 1,∀i ∈M (4)

xk
i j ≤ xl

i′ j if Pl
i′ j ⊂ Pk

i j (5)

∑
i∈M, k∈Ki j

xk
i j log(1− pi)≥ log(1−Pth),∀ j ∈R (6)

The intuition of these constraints can be interpreted as follows:
(4) Every MD has a valid primary path to some candidate roots.
(5) The selected paths should together form a forest of trees. This constraint ensures that if a path Pk

i j
is selected, its subpath P l

i′ j′ must be selected. Therefore, the computed graph will be a tree.
(6) The accumulative leakage probability of MDs in the same tree is upper-bounded by the security

threshold.

VI. SIMULATION

In this section, we describe how we evaluate the self-healing protocol. First, we generate the network
topologies for refinery sensor networks. Then, we inject large scale failures into the network and measure
the success rate of self-healing as well as the data collection time. We use Gurobi Solver [24] to get
the optimal solution for RDCFP for comparison. Unfortunately, for large networks that are used in our
simulation, it takes too long for the solver to generate solutions. We thus only consider a subset of
shortest paths (subset approach) instead of all shortest paths (full path approach) described in the problem
formulation. We measure the difference in performance of the subset approach with the optimal solution
on small networks that are around 100 nodes. In the 200 topologies we tested, the results of subset
approach and full path approach are identical.

A. Topology Generation
The most important intuition we follow to generate our sensor topologies is that, the sensors are often

attached around pipes. These pipes often have linear structure and they are usually deployed horizontally.
Therefore, instead of placing MDs randomly in a 3D space, we first generate some pipes and then place
the MDs along these pipes.

Specifically, we assume that the refinery is a 50m×50m×30m box, and that the pipes are placed on four
horizontal planes with a height difference of 10m. On each plane, we randomly generate Np horizontal
lines of length Lp. These lines are parallel to either x-axis or y-axis. Then, we place different number of
sensors along the lines. For the sensors on the same pipe, we distributed them with equal distance D so
that the following relationship holds

Nnodes = 4×Np×
Lp

D
. (7)

In our simulation, Np ranges from 30 to 48 with a step of 6 and Lp ranges from 25m to 35m randomly.
We identically choose the communication range for all MDs to be 15m, and the distance between two

adjacent MDs on the same pipe to be 12m. We generate four experiment groups with the number of nodes
ranging from 360 to 576, where each node has 51.67 to 81.02 neighbors on average. For each group, we
generate ten different topologies. All the metrics are measured as an average of all the ten topologies.

In each topology, we randomly select the key leakage probability of each MD uniformly in the range
[0.008,0.012] . Furthermore, we set the security threshold as Pth = 0.3 so that on average, each tree can
have at most Nnodes

log(1−0.3)/ log(1−0.01) ≈
Nnodes
35.49 nodes. In order to have a feasible solution with high probability,

we select m MDs as root candidates such that m≥ N
30 . The m nodes with the most neighbors are selected

as roots.



8

B. Failure Injection
To evaluate the performance of self-healing protocol, we inject some random failures into the network

and measure the success rate and data collection time of the self-healing process. To simulate the real-
world failure where sensors fail simultaneously due to some physical damages to the pipes, we randomly
select a coordination in the 3-D space and fail 2% of the nodes around this location. Note that some
failures may not be helpful in evaluating the self-healing protocol, we selectively discard some failures if
one of the followings is true:

1) All failed MDs are leaf-nodes in the forest. In this case, no predecessors is disconnected and self-
healing does not happen at all.

2) The network is disconnected by the failure. In this case, it is impossible to construct a data collection
forest.

For each topology, we randomly inject Nfail = 1,000 failure instances using the above criteria.

C. Metrics and Baseline
Two metrics are measured in each failure instance. First, we count the number of instances Nrecover

where our self-healing protocol succeeds to recover the network. We refer the ratio of Nrecover to Nfail
as Recovery Success Ratio (RSR). The RSR indicates how likely our self-healing protocol can recover
from a random large scale simultaneous failure. Second, we use the Maximum Tree Height (MTH) as
an indication of the data collection time. Three measurements are made in the network. Before we inject
any failures, we measure the MTH of the forest. Since the forest is constructed by Gurobi Solver, this
measurement always has smallest MTH. After we inject a failure instance, we remove the failed nodes
from the network and run the Solver again to recompute the optimal MTH of the remainder network.
Then, we run our self-healing protocol on the remainder network, and measure the MTH after the recovery
is done.

We choose the reliable graph routing algorithm of WirelessHART as the baseline [8]. The reliable graph
routing of WirelessHART builds a broadcast graph where each node has at least two parents to forward
its packets. Therefore, it is guaranteed that each node has at least two paths to the gateway. Note that
WirelessHART does not have the concept of shared key security built in its heart, we relax this constraint
in our simulation. Without the shared key security constraint, the maximum tree height is naturally smaller
because there is no limit on the number of nodes on a tree. Hence, it is not fair to compare the maximum
tree height of these protocols. Instead, we only focus on evaluating the reliability these protocols.

We construct the reliable graph routing paths and inject the same failure instances that are used to
measure the RSR of self-healing. We count the number of instances Nconnected that every living node in
the reliable graph routing is still connected to at least one root. Similar to RSR, we use the ratio of
Nconnected to Nfail to measure how likely the reliable graph routing can survive a large scale failure.

D. Result and Discussion

TABLE I
RSR OF SELF-HEALING V.S. RELIABLE GRAPH ROUTING

Nnode Self-healing Reliable Graph Routing
360 91.1% 33.8%
432 92.3% 34.3%
504 92.4% 36.2%
576 93.0% 36.9%

Table I shows that our self-healing protocol can successfully recover over 90% of the injected large
scale failures With an increasing node density in the network, our protocol achieves better RSR. This is
expected because the self-healing protocol has a better chance to succeed if each node has more neighbors.



9

However, reliable graph routing fails to connect some of the living nodes in most of these cases. This
implies that the reliable graph routing approach is not suitable for dealing with large scale simultaneous
failures.

360 432 504 576
Number of Nodes

0

1

2

3

4

5

A
v
g
. 

M
a
x
im

u
m

 T
re

e
 H

e
ig

h
t

Tree Height under Failures

Opt w/o failure
Opt w/ failure
SH w/ failure

Fig. 2. Maximum Tree Height with and without Failure

We calculate the average of MTH over all the injected failure instances for each topology and show
the three MTH measurements in Fig. 2. With a higher density of the network, the maximum tree height
decreases consistently. In the worst case, the optimal forest reconstructed after failure introduces about
1% extra data collection time. The data collection time resulted from self-healing is about 7% higher than
the optimal reconstruction. Considering that the computation of optimal forest is costly (it takes about 20
mins to construct the largest topology with 576 nodes), it is a reasonable tradeoff to recover connectivity
with self-healing protocol.

VII. CONCLUSION

In this paper, we design a resilient data collection protocol in oil and gas refinery network. We propose
a distributed self-healing mechanism that tolerates multiple simultaneous failures in a dense network.
Through simulation on generated refinery network topologies, we show that the self-healing protocol can
successfully recover most failures with a small amount of overhead on data collection time.

VIII. ACKNOWLEDGMENT

This material is based upon work supported by the Department of Energy under Award Number DE-
OE0000780.

REFERENCES

[1] T. Arampatzis, J. Lygeros, and S. Manesis, “A survey of applications of wireless sensors and wireless sensor networks,” in Proceedings
of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, 2005. IEEE,
2005, pp. 719–724.

[2] J. Chow, J. Watson, L.-W. Chen, G. Paredes-Miranda, M.-C. Chang, D. Trimble, K. Fung, H. Zhang, and J. Zhen Yu, “Refining
temperature measures in thermal/optical carbon analysis,” Atmospheric Chemistry and Physics, vol. 5, no. 11, pp. 2961–2972, 2005.

[3] M. reza Akhondi, A. Talevski, S. Carlsen, and S. Petersen, “Applications of wireless sensor networks in the oil, gas and resources
industries,” in Advanced Information Networking and Applications (AINA), 2010 24th IEEE International Conference on. IEEE, 2010,
pp. 941–948.

[4] K. Wold and H. Jenssen, “Solutions for corrosion monitoring in refineries,” 2014.
[5] ISA. Isa100, wireless systems for automation. [Online]. Available: https://www.isa.org/isa100/
[6] F. Group. Hart technology. [Online]. Available: https://fieldcommgroup.org/technologies/hart/hart-technology
[7] S. Petersen and S. Carlsen, “Wirelesshart versus isa100. 11a: The format war hits the factory floor,” IEEE Industrial Electronics

Magazine, vol. 5, no. 4, pp. 23–34, 2011.



10

[8] S. Han, X. Zhu, A. K. Mok, D. Chen, and M. Nixon, “Reliable and real-time communication in industrial wireless mesh networks,”
in Real-Time and Embedded Technology and Applications Symposium (RTAS), 2011 17th IEEE. IEEE, 2011, pp. 3–12.

[9] M. Nixon and T. Round Rock, “A comparison of wirelesshart and isa100. 11a,” Whitepaper, Emerson Process Management, pp. 1–36,
2012.

[10] O. D. Incel, A. Ghosh, B. Krishnamachari, and K. Chintalapudi, “Fast data collection in tree-based wireless sensor networks,” IEEE
Transactions on Mobile computing, vol. 11, no. 1, pp. 86–99, 2012.

[11] C.-T. Cheng, N. Ganganath, and K.-Y. Fok, “Concurrent data collection trees for iot applications,” IEEE Transactions on Industrial
Informatics, 2016.

[12] J. Fei, H. Wu, and W. Y. Alghamdi, “Lifetime and latency aware data collection based on k-tree,” in Intelligent Sensors, Sensor
Networks and Information Processing (ISSNIP), 2015 IEEE Tenth International Conference on. IEEE, 2015, pp. 1–6.

[13] R. Zhang, J. Pan, D. Xie, and F. Wang, “NDCMC: A hybrid data collection approach for large-scale wsns using mobile element and
hierarchical clustering,” IEEE Internet of Things Journal, to appear.

[14] Z. Xu, L. Chen, C. Chen, and X. Guan, “Joint clustering and routing design for reliable and efficient data collection in large-scale
wireless sensor networks,” IEEE Internet of Things Journal, to appear.

[15] A. Mehrabi and K. Kim, “Maximizing data collection throughput on a path in energy harvesting sensor networks using a mobile sink,”
IEEE Transactions on Mobile Computing, vol. 15, no. 3, March 2016.

[16] C. Wang, S. Guo, and Y. Yang, “An optimization framework for mobile data collection in energy-harvesting wireless sensor networks,”
IEEE Transactions on Mobile Computing, toappear.

[17] Y. Yao, Q. Cao, and A. V. Vasilakos, “Edal: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for
heterogeneous wireless sensor networks,” Networking, IEEE/ACM Transactions on, vol. 23, no. 3, pp. 810–823, 2015.

[18] X.-Y. Liu, Y. Zhu, L. Kong, C. Liu, Y. Gu, A. V. Vasilakos, and M.-Y. Wu, “Cdc: Compressive data collection for wireless sensor
networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 8, August 2015.

[19] J. Kamato, L. Qian, W. Li, and Z. Han, “Biconnected tree for robust data collection in advanced metering infrastructure,” in Proc. of
IEEE WCNC, 2015.

[20] J. Silber, S. Sahu, J. Singh, and Z. Liu, “Augmenting overlay trees for failure resilency,” in Proc. of IEEE Globecom, 2004.
[21] Z. Yu and Y. Guan, “A dynamic en-route scheme for filtering false data injection in wireless sensor networks,” in SenSys, vol. 5, 2005,

pp. 294–295.
[22] X. Yang, J. Lin, W. Yu, P.-M. Moulema, X. Fu, and W. Zhao, “A novel en-route filtering scheme against false data injection attacks

in cyber-physical networked systems,” IEEE Transactions on Computers, vol. 64, no. 1, pp. 4–18, 2015.
[23] H. Jin, S. Uludag, K.-S. Lui, and K. Nahrstedt, “Secure data collection in constrained tree-based smart grid environments,” in Proc. of

IEEE SmartGridComm, 2014.
[24] Gurobi. Gurobi optimization - the best mathematical programming solver. [Online]. Available: http://www.gurobi.com/




