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Abstract—Real-time systems (RTS) require end-to-end delay
guarantees for the delivery of network packets. In this paper, we
propose a framework to reduce the management and integration
overheads for such real-time (RT) network flows by leveraging the
capabilities of software-defined networking (SDN) – capabilities
that include global visibility and management of the network.
Given the specifications of flows that must meet hard real-
time requirements, our framework synthesizes paths through
the network. To guarantee that these flows meet both, their
bandwidth and end-to-end timing requirements, our framework
solves a multi-constraint optimization problem using a heuristic
algorithm. We use exhaustive emulations and experiments on
hardware switches to demonstrate our techniques and feasibility
of our approach. As a result of this work, SDNs become “delay-
aware” and thus can be adapted for use in safety-critical and
other delay-sensitive applications.

I. INTRODUCTION

Software-defined networking (SDN) [1] has become in-
creasingly popular since it allows for better management of
network resources, application of security policies and testing
of new algorithms and mechanisms. It finds use in a wide
variety of domains – from enterprise systems [2] to cloud
computing services [3], from military networks [4] to power
systems [5] [6], among others. The global view of the network
obtained by the use of SDN architectures provides significant
advantages when compared to traditional networks. It allows
designers to push down rules to the various nodes in the
network that can, to a fine level of precision, manage the
bandwidth and resource allocation for flows through the entire
network. However, current SDN architectures do not reason
about end-to-end delay experienced by individual flows. On
the other hand, real-time systems (RTS), especially those with
stringent timing constraints, need to reason about such delay.
Packets must be delivered between hosts with guaranteed
upper bounds on delay. Examples of such systems include
avionics, automobiles, industrial control systems, power sub-
stations, manufacturing plants, etc.
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While RTS can include different types of traffic1, in this
paper we focus on the high priority flows that have stringent
timing requirements, predefined priority levels and can tolerate
little to no loss of packets. We refer to such traffic as “Class I”
traffic. Typically, in many safety-critical RTS, the properties
of all Class I flows are well known, i.e., designers will make
these values available ahead of time. Any changes (addition/re-
moval of flows or modifications to the timing or bandwidth
requirements) often requires a serious system redesign. The
number (and properties) of other flows could be more dynamic
– consider the on-demand video situation in an airplane where
new flows could arise and old ones stop based on the viewing
patterns of passengers.

Current safety-critical systems often have separate networks
(hardware and software) for different classes of flows (for
safety and sometimes security reasons). This leads to signif-
icant overheads (equipment, management, weight, etc.) and
also potential for errors/faults and even increased attack sur-
faces and vectors. Existing systems, e.g., avionics full-duplex
switched Ethernet (AFDX) [7]–[9], controller area network
(CAN) [10], etc. that are in use in many of these domains are
either proprietary, complex, expensive or might even require
custom hardware. Despite the fact that AFDX switches ensure
timing determinism, packets transmitted on such switches may
be changed frequently at run-time when sharing resources
(e.g., bandwidth) among different networks [11]. In such
situations, a dynamic configuration is required to route packets
based on switch workloads and flow delays to meet all the
high priority Quality of Service (QoS) requirements (e.g., end-
to-end delay). In addition AFDX protocols require custom
hardware [12].

In this paper we present mechanisms to guarantee end-
to-end delays for high-criticality flows (Class I) on networks
constructed using SDN switches. The advantage of using SDN
is that it provides a centralized mechanism for developing and
managing the system. The global view is useful in providing
the end-to-end guarantees that are required. Another advantage

1For instance, (a) high priority/criticality traffic that is essential for the
correct and safe operation of the system; (b) medium criticality traffic that
is critical to the correct operation of the system, but with some tolerances
in delays, packet drops, etc.; and (c) low priority traffic – essentially all
other traffic in the system that does not really need guarantees on delays
or bandwidth such as engineering traffic in power substations, multimedia
flows in aircraft, etc.
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is that the hardware/software resources needed to implement
all of the above types of traffic can be reduced since we can use
the same network infrastructure (instead of separate ones as is
the case currently). On the other hand, the current standards
used in traditional SDN (OpenFlow [1], [13]) generally do
not support end-to-end delay guarantees or even existing
real-time networking protocols such as AFDX. Retrofitting
OpenFlow into AFDX is not straightforward and is generally
less effective [14].

A number of issues arise while developing a software-
defined networking infrastructure for use in real-time systems.
For example, the Class I flows need to meet their timing
(e.g., end-to-end delay) requirements for the real-time system
to function correctly. In order for these flows to meet their
requirements in the presence of other non-critical traffic, we
need to find a path through the network, along with neces-
sary resources. However, current SDN implementations reason
about resources like bandwidth instead of delays. Hence, we
devise a mechanism to extend the SDN infrastructure to reason
about delays for use in RTS. Further, in contrast to traditional
SDNs, it is not necessary to find the shortest path through the
network. Oftentimes, Class I flows can arrive just in time [15],
[16], i.e., just before their deadline – there is no real advantage
in getting them to their destinations well ahead of time. Path
layout for real-time SDN is a non-trivial problem since, (i)
we need to understand the delay(s) caused by individual nodes
(e.g., switches) on a Class I flow and (ii) compose them along
the delays/problems caused by the presence of other flows in
that node as well as the network in general.

As mentioned earlier, existing SDN systems can reason
about bandwidth and/or the number of hops in a network.
In our work, we reason about strict end-to-end delays for
admission control since simply apportioning the network based
on bandwidth/number of hops cannot guarantee that the flows
will meet their timing requirements (especially in the face of
other traffic). Also, we try to maximize the number of such
flows (that require end-to-end delays) that can fit into the given
network – using a heuristic method to solve a multi-constraint
optimization problem. We then realize the routes accepted
by the admission policy by over-provisioning (in terms of
one queue per real-time flow) – this circumvents the issue
of queuing delays (and hence avoids the lack of determinism
that is required for hard real-time systems).

In this work2 we consider Class I (i.e., high-criticality) flows
and develop a scheme to meet their timing constraints3. The
main contributions of this work are summarized as follows:

1) We motivate the need for isolating flows into different
queues to provide stable end-to-end delays (Section III-A)
even in the presence of other types of traffic in the system.

2) We developed mechanisms to guarantee delay constraints
for individual end-to-end flows in hard real-time systems

2A preliminarily version of the work was presented to the 2017 RTN
workshop [17]. In this paper we extend the workshop version with more
comprehensive experiments (Section VII) and evaluation on hardware switches
(Section III-A).

3We will work on integrating other types of traffic in future work.

based on COTS SDN hardware (Sections III, IV and V)
by formulating a multi-constraint problem.

We empirically evaluate the effectiveness of the proposed
approach with various topologies and UDP traffic (Section
VII) on a widely-used emulation platform. Our results demon-
strate that the end-to-end delay experienced by the critical
class-I flows falls within user their specified timing deadline.

II. BACKGROUND

1) The Software Defined Networking Model: In traditional
networking architectures, control and data planes coexist on
network devices. SDN architectures simplify access the system
by logically centralizing the control-plane state into controller
(see Figure 1). This programmable and centralized state then
drives the network devices that perform homogeneous for-
warding plane functions [18] and can be modified to control
the behavior of the SDN in a flexible manner.

Fig. 1. An SDN with a six switch topology. Each switch also connects to the
controller via a management port (not shown). The QoS Synthesis module
(Section VI) synthesizes flow rules by using the northbound API.

In order to construct a logically centralized state of the SDN
system, the controller uses management ports to gauge the
current topology and gather data-plane state from each switch.
This state is then made available through a northbound API to
be used by the applications. An application (e.g., our prototype
proposed in this paper) uses this API to obtain a snapshot of
the SDN state. This state also includes the network topology.

2) The Switch: An SDN switch consists of a table pro-
cessing pipeline and a collection of physical ports. Packets
arrive at one of the ports and they are processed by the
pipeline made up of one or more flow tables. Each flow table
contains flow rules ordered by their priority. Each flow rule
represents an atomic unit of decision-making in the control-
plane. During the processing of a single packet, actions (e.g.,
decision-making entities) can modify the packet, forward it
out of the switch or drop it.

When a packet arrives at a switch, it is compared with flow
rules in one or more flow table pipelines. In a given table, the
contents of the packet header are compared with the flow rules
in decreasing order of rule priority. When a matching flow rule
is found, the packet is assigned a set of actions specified by the
flow rule to be applied at the end of table processing pipeline.
Each flow rule comprises of two parts:
• Match: is set of packet header field values that a given

flow rule applies to. Some are characterized by single



values (e.g., VLAN ID: 1, or UDP Destination Port:
80), others by a range (e.g., Destination IP Addresses:
10.0.0.0/8). If a packet header field is not specified then
it is considered to be a wild card.

• Instructions Set: is a set of actions applied by the flow
rule to a matching packet. The actions can specify the
egress port (OutputPort) for packets matching the rule.
Furthermore, in order to make the appropriate allocation
of bandwidth for the matching packets, the OpenFlow
[13] specification provides two mechanisms:
– Queue References: Every OpenFlow switch is capable

of providing isolation to traffic from other flows by
enqueuing them on separate queues on the egress port.
Each queue has an associated QoS configuration that
includes, most importantly, the service rate for traffic
that is enqueued in it. The OpenFlow standard itself
does not provide mechanisms to configure queues;
however, each flow rule can refer to a specific queue
number for a port, besides the OutputPort.

– Meters: Beyond the isolation provided by using
queues, OpenFlow switches are also capable of limiting
the rate of traffic in a given network flow by using
objects called meters. Meters on a switch are stored
in a meter table and can be added/deleted by using
messages specified in OpenFlow specification. Each
meter has an associated metering rate. Each flow rule
can refer to only a single meter.

III. SYSTEM MODEL

Consider an SDN topology (N ) with open flow switches and
controller and a set of real-time flows (F ) with specified delay
and bandwidth guarantee requirements. The problem is to find
paths for the flows (through the topology) such that the flow
requirements (i.e., end-to-end delays) can be guaranteed for
the maximum number of critical flows. We model the network
as an undirected graph N(V,E) where V is the set of nodes,
each representing a switch port in a given network and E is set
of the edges4, each representing a possible path for packets to
go from one switch port to another. Each port v ∈ V has a set
of queues vq associated with it, where each queue is assigned
a fraction of bandwidth on the edge connected to that port.

Consider a set F of unidirectional, real-time flows that
require delay and bandwidth guarantees. The flow fk ∈ F
is given by a four-tuple (sk, tk, Dk, Bk), where sk ∈ V and
tk ∈ V are ports (the source and destination respectively)
in the graph, Dk is the maximum delay that the flow can
tolerate and Bk is the maximum required bandwidth by the
flow. We assume that flow priorities are distinct and the flows
are prioritized based on a “delay-monotonic” scheme viz.,
the end-to-end delay budget represents higher priority (i.e.,
pri(fi) > pri(fj) if Di < Dj , ∀fi, fj ∈ F where pri(fk)
represents priority of fk).

For a flow to go from the source port sk to a destination
port tk, it needs to traverse a sequence of edges, i.e., a flow
path Pk. The problem then, is to synthesize flow rules that

4We use the terms edge and link interchangeably throughput the paper.

use queues at each edge (u, v) ∈ Pk that can handle all
flows F in the given system while still meeting each flow’s
requirement. If dfk(u, v) and bfk(u, v) is the delay faced by
the flow and bandwidth assigned to the flow at each edge
(u, v) ∈ E respectively, then ∀fk ∈ F and ∀(u, v) ∈ Pk the
following constraints need to be satisfied:

∑
(u,v)∈Pk

dfk(u, v) ≤ Dk, ∀fk ∈ F (1)

bfk(u, v) ≥ Bk, ∀(u, v) ∈ Pk,∀fk ∈ F. (2)

This problem needs to be solved at two levels:
• Level 1: Finding the path layout for each flow such that it

satisfies the flows’ delay and bandwidth constraints. We
formulate this problem as a multi-constrained path (MCP)
problem and describe the solution in Sections IV and V.

• Level 2: Mapping the path layouts from Level 1 on to
the network topology by using the mechanisms available
in OpenFlow. We describe details of our approach in
Section VI.

In addition to the aforementioned delay and bandwidth
constraints (see Eqs. (1) and (2)), we need to map flows
assigned to a port to the queues at the actual ports. Two
possible approaches are: (a) allocate each flow to an individual
queue or (b) multiplex flows onto a smaller set of queues and
dispatch the packets based on priority. In fact, as we illustrate
in the following section, the queuing approach used will
impact the delays faced by the flows at each link. Our intuition
is that the end-to-end delays are lower and more stable when
separate queues are provided to each critical flow – especially
as the rates for the flows get closer to their maximum assigned
rates. Given the deterministic nature of many RTS, the number
of critical flows are often limited and well defined (e.g., known
at design time). Hence, such over-provisioning is an acceptable
design choice – from computing power to network resources
(for instance one queue per critical real time flow). We carried
out some experiments to demonstrate this (and to highlight the
differences between these two strategies) – this is outlined in
the following section.

A. Queue Assignment Strategies

We intend to synthesize configurations for Class I traffic
such that it ensures complete isolation of packets for each
designated class I flow at each switch in its path.

In order to test how using output queues can provide
isolation to flows in a network so that each can meet its delay
and bandwidth requirements simultaneously, we performed
experiments using OpenFlow enabled hardware switches5. The
experiments use a simple topology that contains two white
box Pica8 P-3297 [20] switches (s1, s2) connected via a
single link as shown in Figure 2(a). Each switch has two hosts
connected to it. Each host is a Raspberry Pi 3 Model B [21]
running Raspbian Linux.

5We also conduct similar experiments with software emulations (e.g., by
using Mininet [19] topology) and observe similar trends (see Appendix B).
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Fig. 2. Delay measurement experiments: (a) The two-switch, four host topology used in the experiments with the active flows. (b) The measured mean and
99th percentile per-packet delay for the packets in the active flows in 30 iterations.

We configured flow rules and queues in the switches to
enable connectivity among hosts at one switch with the hosts
at other switch. We experimented with two ways to queue the
packets as they cross the switch-to-switch link: (i) in one case,
we queue packets belonging to the two flows separately in two
queues (i.e., each flow gets its own queue), each configured
at a maximum rate of 50 Mbps (ii) in the second case, we
queue packets from both flows in the same queue configured
at a maximum rate of 100 Mbps.

After configuring the flow rules and queues, we used
netperf [22] to generate the following packet flows: the
first starting at the host h1s1 destined to host h1s2 and the
second starting at host h2s1 with a destination host h2s2.
Both flows are identical and are triggered simultaneously to
last for 15 seconds. We changed the rate at which the traffic is
sent across both flows to measure the average per-packet delay.
Figure 2(b) plots the average value and standard error over 30
iterations. The x-axis indicates the rate at which the traffic is
sent via netperf, while the y-axis shows the average per-
packet delay. The following key observations stand out:

1) The per-packet average delay increases in both cases as
traffic send rate approaches the configured rate of 50
Mbps. This is an expected queue-theoretic outcome and
motivates the need for slack allocations for all applica-
tions in general. For example, if an application requires
a bandwidth guarantee of 1 Mbps, it should be allocated
1.1 Mbps for minimizing jitter.

2) The case with separate queues experiences lower average
per-packet delay when flow rates approach the maximum
rates. We observed this effect even more strongly in the
case of software switches (Appendix B). This indicates
that when more than one flow uses the same queue, there
is interference caused by both flows to each other. This
becomes a source of unpredictability and eventually may
cause the end-to-end delay guarantees for the flows to be
not met or perturbed significantly.

Thus, isolating flows using separate queues results in lower
and more stable delays especially when traffic rate in the
flow approaches the configured maximum rates. Such isolation
leads to a correct-by-design approach that ensures that each
flow is allocated bandwidth at each switch such that it does not

experience queueing delays. The maximum processing delay
along a single link can be measured and used as input to a path
allocation algorithm that we describe in the following section.

IV. PATH LAYOUT: OVERVIEW AND SOLUTION

We now present a more detailed version of the problem
(composing paths that meet end-to-end delay constraints for
critical real-time flows) and also an overview of our solution.

Problem Overview: Let Pk be the path from sk to tk for
flow fk that needs to be determined. Let D(u, v) be the delay
incurred on the edge (u, v) ∈ E. The total delay for fk over
the path Pk is given by

Dk(Pk) =
∑

(u,v)∈Pk

D(u, v). (3)

Therefore we define the following constraint on end-to-end
delay for the flow fk as

Dk(Pk) ≤ Dk. (4)

Note that the end-to-end delay for a flow over a path
has following delay components6: (a) processing time of a
packet at a switch, (b) propagation on the physical link, (c)
transmission of packet over a physical link, and (d) queuing
at the ingress/egress port of a switch. As discussed in the
Section III, we use separate queues for each flow with assigned
required rates. We also slightly overprovision the bandwidth
for such flows so that critical real-time flows do not experience
queueing delays. Hence, we consider queuing delays to be
negligible. We discuss how to obtain the values of other
components of delay in Appendix A.

The second constraint that we consider in this work is
bandwidth utilization, that for an edge (u, v) for a flow fk,
can be defined as:

Bk(u, v) =
Bk

Be(u, v)
(5)

6While network links are non-preemptive, we model the time for trans-
mitting the largest packet as part of the amortized processing delay that can
be calculated for a given switch (see Appendix A). As such, our method
can incorporate any method to estimate such delays and is analogous to
scheduling algorithms that can benefit from, yet are completely separate from
the mechanisms for, worst-case execution time (WCET) analysis.



where Bk is the bandwidth requirement of fk and Be(u, v)
is residual (viz., available) bandwidth of an edge (u, v) ∈ E.
Therefore, bandwidth utilization over a path (Pk), for a flow
fk is defined as:

Bk(Pk) =
∑

(u,v)∈Pk

Bk(u, v). (6)

Note that the bandwidth utilization over a path Pk for flow fk
is bounded by

Bk(Pk) ≤ max
(u,v)∈E

Bk(u, v)|V |. (7)

where |V | is the cardinality of a set of nodes (ports) in the
topology N . Therefore in order to ensure that the bandwidth
requirement Bk of the flow fk is guaranteed, it suffices to
consider the following constraint on bandwidth utilization

Bk(Pk) ≤ B̂k (8)

where B̂k = max
(u,v)∈E

Bk(u, v)|V |

Remark 1. The selection of an optimal path for each flow
fk ∈ F subject to delay and bandwidth constraints in Eq. (4)
and (8), respectively can be formalized as a multi-constrained
path (MCP) problem that is known to NP-complete [23].

Therefore we extend a polynomial-time heuristic similar
to that presented in literature [24] and apply for our context
(Algorithm 2). The key idea is to relax one constraint (e.g.,
delay or bandwidth) at a time and try to obtain a solution. If
the original MCP problem has a solution, one of the relaxed
versions of the problem will also have a solution [24]. In what
follows, we briefly describe the polynomial-time solution for
the path layout problem.

Polynomial-time Solution to the Path Layout Problem: Let
us represent the delay and bandwidth constraint as follows

D̃k(u, v) =

⌈
Xk ·D(u, v)

Dk

⌉
(9)

B̃k(u, v) =

⌈
Xk ·Bk(u, v)

B̂k

⌉
(10)

where Xk is a given positive integer. For instance, if we relax
the bandwidth constraint (e.g., represent Bk(Pk) in terms of
B̃k(Pk) =

∑
(u,v)∈Pk

B̃k(u, v)), Eq. (8) can be rewritten as

B̃k(Pk) ≤ Xk. (11)

Besides, the solution to this relaxed problem will also be a
solution to the original MCP [24]. Likewise, if we relax the
delay constraint, Eq. (4) can be rewritten as

D̃k(Pk) =
∑

(u,v)∈Pk

D̃k(u, v) ≤ Xk. (12)

Let the variable dk[v, i] preserve an estimate of the path
from sk to tk for ∀v ∈ V , i ∈ Z+ (refer to Algorithm 1).
There exists a solution (e.g., a path Pk from sk to tk) if any of
the two conditions is satisfied when the original MCP problem
is solved by the heuristic.

• When the bandwidth constraint is relaxed: The delay and
(relaxed) bandwidth constraints, e.g., Dk(Pk) ≤ Dk and
B̃k(Pk) ≤ Xk are satisfied if and only if

dk[t, i] ≤ Dk, ∃i ∈ [0, Xk] ∧ i ∈ Z.

• When the delay constraint is relaxed: The (relaxed)
delay and bandwidth constraints, e.g., D̃k(Pk) =∑

(u,v)∈Pk
D̃k(u, v) ≤ Xk and Bk(Pk) ≤ B̂k are

satisfied if and only if

dk[t, i] ≤ Xk, ∃i ∈ [0, B̂k] ∧ i ∈ Z.

V. ALGORITHM DEVELOPMENT

A. Path Layout

Our proposed approach is based on a polynomial-time
solution to the MCP problem presented in literature [24].
Let us consider MCP HEURISTIC(N, s, t,W1,W2, C1, C2), an
instance of polynomial-time heuristic solution to the MCP
problem that finds a path P from s to t in any network N ,
satisfying constraints W1(P) ≤ C1 and W2(P) ≤ C2.

The proposed heuristic solution of MCP problem, as sum-
marized in Algorithm 1 works as follows. Let

∆(v, i) = min
P∈P (v,i)

W1(P) (13)

where P (v, i) = {P |W2(P) = i,P is any path from s to t}
is the smallest W1(P) of those paths from s to v for which
W2(P) = C2. For each node v ∈ V and each integer
i ∈ [0, · · · , C2] we maintain a variable d[v, i] that keeps an
estimation of the smallest W1(P). The variable initialized to
+∞ (Line 3), which is always greater than or equal to δ(v, i).
As the algorithm executes, it makes better estimation and
eventually reaches ∆(v, i) (Line 8-15). Line 3-17 in Algorithm
1 is similar to the single-cost path selection approach presented
in earlier work [24, Sec. 2.2] and for the purposes of this work,
we have extended the previous approach for our formulation.

We store the path in the variable π[v, i],∀v ∈ V,∀i ∈
[0, · · · , C2]. When the algorithm finishes the search for path
(Line 17), there will be a solution if and only if the following
condition is satisfied [24]

∃i ∈ [0, · · · , C2], d[t, i] ≤ C1. (14)

If it is not possible to find any path (e.g., the condition in
Eq. (14) is not satisfied), the algorithm returns False (Line
41). If there exists a solution (Line 19), we extract the path
by backtracking (Line 21-29). Notice that the variable π[v, i]
keeps the immediate preceding node of v on the path (Line
13). Therefore, the path can be recovered by tracking π starting
from destination t through all immediate nodes until reaching
the source s. Based on this MCP abstraction, we developed
a path selection scheme considering delay and bandwidth
constraints (Algorithm 2) that works as follows.

For each flow fk ∈ F , starting with highest (e.g.,
the flow with tighter delay requirement) to lowest prior-
ity, we first keep the delay constraint unmodified and re-
lax the bandwidth constraint by using Eq. (10) and solve
MCP HEURISTIC(N, sk, tk,Dk, B̃k, Dk, Xk) (Line 3) using



Algorithm 1 Multi-constraint Path Selection
Input: The network N(V,E), source s, destination t, constraints on links

W1 = [w1(u, v)]∀(u,v)∈E and W2 = [w2(u, v)]∀(u,v)∈E , and the
bounds on the constraints C1 ∈ R+ and C2 ∈ R+ for the path from s
to t.

Output: The path P∗ if there exists a solution (e.g., W1(P∗) ≤ C1 and
W2(P∗) ≤ C2), or False otherwise.

1: function MCP HEURISTIC(N, s, t,W1,W2, C1, C2)
2: /* Initialize local variables */
3: d[v, i] :=∞, π[v, i] := NULL, ∀v ∈ V , ∀i ∈ [0, C2] ∧ i ∈ Z
4: d[s, i] := 0 ∀i ∈ [0, C2] ∧ i ∈ Z
5: /* Estimate path */
6: for i ∈ |V | − 1 do
7: for each j ∈ [0, C2] ∧ j ∈ Z do
8: for each edge (u, v) ∈ E do
9: j′ := j + w2(u, v)

10: if j′ ≤ C2 and d[v, j′] > d[u, j] + w1(u, v) then
11: /* Update estimation */
12: d[v, j′] := d[u, j] + w1(u, v)
13: π[v, j′] := u /* Store the possible path */
14: end if
15: end for
16: end for
17: end for
18: /* Check for solution */
19: if d[t, i] ≤ C1 for ∃i ∈ [0, C2] ∧ i ∈ Z then
20: /* Solution found, obtain the path by backtracking */
21: P := Ø, done := False, currentNode := t
22: /* Find the path from t to s */
23: while not done do
24: for each j ∈ [0, C2] ∧ j ∈ Z do
25: if π[currentNode, j] not NULL then
26: add currentNode to P
27: if currentNode = s then
28: done := True /* Backtracking complete */
29: break
30: end if
31: /* Search for preceding hop */
32: currentNode := π[currentNode, j]
33: break
34: end if
35: end for
36: end while
37: /* Reverse the list to obtain a path from s to t */
38: P∗ := reverse(P)
39: return P∗
40: else
41: return False /* No Path found that satisfies C1 and C2 */
42: end if
43: end function

Algorithm 1. We only consider the feasible links in the
topology, e.g., the links with residual bandwidth Be′(u, v) ≥
Bk,∀e′ ∈ E.

If a solution exists, the corresponding path Pk is assigned
for fk (Line 6). However, if relaxing the bandwidth constraint
does not return a path, we further relax the delay constraint
by using Eq. (9), keeping the bandwidth constraint unmodified
and solve MCP HEURISTIC(N, sk, tk, D̃k,Bk, Xk, B̂k) (Line
9). Once the path is found, we allocate the bandwidth for
the scheduled flow and update the residual link bandwidth
(Line 15). If the path is not found after both relaxation steps,
the algorithm returns False (Line 17) since it is not possible
to assign a path for fk such that both delay and bandwidth
constraints are satisfied. Note that the heuristic solution of the
MCP depends of the parameter Xk. From our experiments we
find that if a solution exists, the algorithm is able to find a

Algorithm 2 Layout Path Considering Delay and Bandwidth
Constraints
Input: The network N(V,E), set of flows F , delay and bandwidth uti-

lization constraints on links Dk = [Dk(u, v)]∀(u,v)∈E , D̃k =

[D̃k(u, v)]∀(u,v)∈E and Bk = [Bk(u, v)]∀(u,v)∈E , B̃k =

[B̃k(u, v)]∀(u,v)∈E , for each flow fk ∈ F , respectively, and the delay
and bandwidth bounds Dk ∈ R+ and B̂k ∈ R+, respectively, and
positive constant Xk ∈ Z, ∀fk ∈ F .

Output: The path vector P = [Pk]∀fk∈F where Pk is the path if the delay
and bandwidth constraints (e.g., Dk(Pk) ≤ Dk and Bk(Pk) ≤ B̂k)
are satisfied for fk , or False otherwise.

1: for each fk ∈ F (starting from higher to lower priority) do
2: Discard the the links for which Be′ (u, v) < Bk, ∀e′ ∈ E
3: /* Relax bandwidth constraint and solve */
4: Solve MCP HEURISTIC(N, sk, tk,Dk, B̃k, Dk, Xk) by using Algo-

rithm 1
5: if SolutionFound then /* Path found for fk */
6: /* Add path to the path vector P */
7: Pk := P∗ where P∗ is the solution obtained by Algorithm 1
8: else
9: /* Relax delay constraint and try to obtain the path */

10: Solve MCP HEURISTIC(N, sk, tk, D̃k,Bk, Xk, B̂k) by using
Algorithm 1

11: if SolutionFound then
12: /* Path found by relaxing delay constraint */
13: Pk := P∗ /* Add path to the path vector */
14: /* Update remaining available bandwidth */
15: Be(u, v) := Be(u, v)−Bk, ∀(u, v) ∈ Pk
16: else
17: Pk := False /* Unable to find any path for fk */
18: end if
19: end if
20: end for

path as long as Xk ≥ 10.

B. Complexity Analysis

Note that Line 8 in Algorithm 1 is executed at most
(C2 + 1)(V − 1)E times. Besides, if there exists a path, the
worst-case complexity to extract the path is |P|C2. Therefore,
time complexity of Algorithm 1 is O(C2(V E + |P|)) =
O(C2V E). Hence the worst-case complexity (e.g., when both
of the constraints need to be relaxed) to execute Algorithm 2
for each flow fk ∈ F is O((Xk + B̂k)V E).

VI. IMPLEMENTATION

We implement our prototype as an application that uses the
northbound API for the Ryu controller [25]. The prototype
application accepts the specification of flows in the SDN.
The flow specification contains the classification, bandwidth
requirement and delay budget of each individual flow. In order
for a given flow fk to be realized in the network, the control-
plane state of the SDN needs to be modified. The control-
plane needs to route traffic along the path calculated for each
fk as described in Section V. In this section, we describe
how this is accomplished by decomposing the network-wide
state modifications into a set of smaller control actions (called
Intents) that occur at each switch.

A. Forwarding Intent Abstraction

An intent represents the actions performed on a given
packet at each individual switch. Each flow fk is decomposed
into a set of intents as shown in Figure 3. The number of



h1 h2

s1
s2 s3

InPort	=	1,	OutPort	=	2,
Match	=	<UDP	Port	=	20000>,

Rate	=	5	Mbps

InPort	=	1,	OutPort	=	2,
Match	=	<UDP	Port	=	20000>,

Rate	=	5	Mbps
InPort	=	1,	OutPort	=	2,

Match	=	<UDP	Port	=	20000>,
Rate	=	5	Mbps

Intent@s1
Intent@s2

Intent@s3

Fig. 3. Illustration of decomposition of a flow fk into a set of intents: fk
here is a flow from the source host h1 to the host h2 carrying mission-critical
DNP3 packets with destination UDP port set to 20, 000. In this example, each
switch that fk traverses has exactly two ports.

intents that are required to express actions that the network
needs to perform (for packets in a flow) is the same as the
number of switches on the flow path. Each intent is a tuple
given by (Match, InputPort,OutputPort,Rate). Here, Match
defines the set of packets that the intent applies to, InputPort
and OutputPort are where the packet arrives and leaves the
switch and finally, the Rate is intended data rate for the packets
matching the intent. In our implemented mechanism for laying
down flow paths, each intent translates into a single OpenFlow
[13] flow rule that is installed on the corresponding switch in
the flow path.

B. Bandwidth Allocation for Intents

In order to guarantee bandwidth allocation for a given flow
fk, each one of its intents (at each switch) in the path must
allocate the same amount of bandwidth. As described above,
each intent maps to a flow rule and the flow rule can refer to a
meter, queue or both. However, meters and queues are limited
resources. Also not all switch implementations provide both of
them. As mentioned earlier (Section III), we use the strategy
of one queue per flow that guarantees better isolation among
flows and results in stable delays.

C. Intent Realization

Each intent is realized by installing a corresponding flow
rule by using the northbound API of the Ryu controller. Other
than using the intent’s Match and OutputPort, these flow rules
refer to corresponding queues and/or meters. If meters are
used, then they are also synthesized by using the controller
API. However, OpenFlow does not support installation of
queues in its controller-switch communication protocol, hence
the queues are installed separately by interfacing directly with
the switches by using a switch API or command line interface.

VII. EVALUATION

The goal of the evaluation in this section is two-fold: (a)
schedulability of a given set of flows across various topologies
to explore the design space/performance of the path layout
algorithm in Section VII-A, and (b) an empirical evaluation,
using Mininet, that demonstrates the effectiveness of our end-
to-end delay guaranteeing mechanisms even in the presence of
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Fig. 4. Schedulability of the flows in different network topology. For each of
the (delay-requirement, number-of-flows) pair (e.g., x-axis and y-axis of the
figure), we randomly generate 250 different topology. In other words, total 8
× 7 × 250 = 14,000 different topology were tested in the experiments.

other traffic in the network (Section VII-B). The parameters
used in the experiments are summarized in Table I.

TABLE I
EXPERIMENTAL PLATFORM AND PARAMETERS

Artifact/Parameter Values

Number of switches 5
Bandwidth of links 10 Mbps
Bandwidth requirement of a flow [1, 5] Mbps
SDN controller Ryu 4.7
Switch configuration Open vSwitch 2.3.0
Network topology Synthetic/Mininet 2.2.1
OS Debian, kernel 3.13.0-100

A. Performance of the Path Layout Algorithms

Topology Setup and Parameters: In the first set of ex-
periments we explore the design space (e.g., feasible delay
requirements) with randomly generated network topologies
and synthetic flows. For each of the experiments we randomly
generate a graph with 5 switches and create fk ∈ [2, 20] flows.
Each switch has 2 hosts connected to it. We assume that the
bandwidth of each of the links (u, v) ∈ E is 10 Mbps (e.g.,
IEEE 802.3t standard [26]). For this experiment the link delays
are randomly generated within [5, 25] µs. For each randomly-
generated topology, we consider the bandwidth requirement as
Bk ∈ [1, 5] Mbps, ∀fk.

Results: We say that a given network topology with set of
flows is schedulable if all the real-time flows in the network
can meet the delay and bandwidth requirements. We use the
acceptance ratio metric (z-axis in Fig. 4) to evaluate the
schedulability of the flows. The acceptance ratio is defined as
the number of accepted topologies (e.g., the flows that satisfied
bandwidth and delay constraints) over the total number of
generated ones. To observe the impact of delay budgets in
different network topologies, we consider the end-to-end delay
requirement Dk, ∀fk ∈ F as a function of the topology.
In particular, for each randomly generated network topology
Gi we set the minimum delay requirement for the highest



priority flow as Dmin = βδi µs, and increment it by Dmin

10
for each of the remaining flows. Here δi is the diameter (e.g.,
maximum eccentricity of any vertex) of the graph Gi in the
i-th spatial realization of the network topology, β = Dmin

δi
and Dmin represents x-axis values of Fig. 47. For each (delay-
requirement, number-of-flows) pair, we randomly generate 250
different topologies and measure the acceptance ratios. As
Fig. 4 shows, stricter delay requirements (e.g., less than 60
µs for a set of 20 flows) limit the schedulability (e.g., only
60% of the topology is schedulable). Increasing the number
of flows limits the available resources (e.g., bandwidth) and
thus the algorithm is unable to find a path that satisfies the
delay requirements of all the flows.

B. Emulation experiments using Mininet

While the flow paths are laid out in a correct-by-
construction manner (see Algorithm 2), our evaluation in
this section tests our algorithms with a variety of cases to
demonstrate that our delay-based admission control algorithms
work as they are intended to. This is akin to demonstrating
the workings and checking the performance of a proven
scheduling algorithm with synthetic task sets.

Experimental Setup: The purpose of the experiment is to
evaluate whether our controller rules and queue configurations
can provide isolation guarantees so that the real-time flows can
meet their delay requirement in a practical setup.

We evaluate the performance of our proposed scheme using
Mininet [19] (version 2.2.1) that has widely been used by
SDN research community [27]–[31]. Mininet is an open source
platform that emulates real-world SDN setup by utilizing
virtualization on top of a Linux kernel. Mininet has the
capability to emulate different kinds of network elements such
as host, switches (layer-2), routers (layer-3) and links.

We configured switches using Open vSwitch (OVS) [32]
(version 2.3.0) and use Ryu [25] (version 4.7) as our SDN
controller. For each of the experiments we randomly generate
a Mininet topology using the parameters described in Table
I. We develop flow rules in the queues to enable connectivity
among hosts in different switches. The packets belonging to
the real-time flows are queued separately in individual queues
and each of the queues are configured at a maximum rate of
Bk ∈ [1, 5] Mbps. If the host exceeds the configured maximum
rate of Bk, our ingress policing throttles the traffic before it
enters the switch8.

We use netperf (version 2.7.0) [22] to generate the UDP
traffic [12], [33] between the source and destination for any
flow fk. Once the flow rules and queues are configured, we
send packets from source sk to host tk for each of the flows
fk. The packets are sent in a burst of 5 with 1 ms inter burst
time. All packet flows are triggered simultaneously and last
for 10 seconds.

7Remember our “delay-monotonic” priority assignment where flows with
lower end-to-end delays have higher priority.

8In real systems, the bandwidths allocation would be overprovisioned (as
mentioned earlier), our evaluation takes a conservative approach.
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Fig. 5. The empirical CDF of: (a) average round-trip delay when using paths
generated by MCP and giving each flow its own queue. worst-case round-trip
delay; (b) average round-trip delay experienced when using shortest paths and
a single queue. We set the number of flows fk = 7 and examine 7 × 25 ×
5 packet flows (each for 10 seconds) to obtain the experimental traces.

To measure the effectiveness of our prototype with mixed
(e.g., real-time and non-critical) flows, we enable [1,3] non-
critical flows in the network. All of the low-criticality flows
use a separate, single queue and are served in a FIFO manner
– it is the “default” queue in OVS. Since many commercial
switches (e.g., Pica8 P-3297, HPE FlexFabric 12900E, etc.)
supports up to 8 queues per port (and 52 ports per switch),
in our Mininet experiments we limit the maximum number of
real-time flows to 7. We performed experiments for a single
port where each of the 7 real-time flows uses a separate queue
and the remaining 8th queue is used for non-critical flows. Our
flow rules isolate the non-critical flows from real-time flows.
All the experiments are performed on an Intel Xeon 2.40 GHz
CPU and Linux kernel version 3.13.0-100.

We assume flows are indexed based on priority, i.e., D1 <
D2 < · · · < D|F | and randomly generate 25 different network
topologies. We set D1 = 10δi µs and increment with D1

10 for
each of the flow fk ∈ F, k > 1 where δi is the diameter
of the graph Gi in the i-th spatial realization of the network
topology. For each topology, we randomly generate the traffic
with required bandwidth Bk ∈ [1, 5] Mbps and send packets
between source (sk) and destination (tk) hosts for 5 times
(each transmission lasts for 10 seconds) and log the worst-
case round-trip delay experienced by any flow. We define the
expected delay bound as the expected delay if the packets
are routed through the diameter (i.e., the greatest distance
between any pair of hosts) of the topology and given by
Di(u, v) × δi where Di(u, v) = 5 µs is the delay between
the link (u, v) in i-th network realization (refer to Appendix
A for the calculation of link delay parameters).

Experience and Evaluation: Recall that we use a correct-
by-design principle to lay out the flows in the network. Fig
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Fig. 6. End-to-end average round-trip delay with varying number of flows.
For each set of flow fk ∈ [2, 7], we examine fk× 25× 5 packet flows (each
for 10 seconds). The blue boxes represent inter-quartile range (e.g., 50% of
values for the group) while the inside red lines indicate median value. The
upper and lower whiskers represent values outside the middle 50%.

5(a) illustrates the results for the schedulable flows (viz., the
set of flows for which both delay and bandwidth constraints
are satisfied). The y-axis of Fig. 5(a) represents the empirical
CDF of average round-trip delay experienced by any flow.
From our experiments we find that, the non-critical flows do
not affect the delay experienced by the real-time flows and
the average delay experienced by the real-time flows always
meets their delay requirements. This is because our flow rules
and queue configurations isolate the real-time flows from the
non-critical traffic. As seen in Fig. 5(a), the average round-trip
delays are less than the maximum expected round-trip delay
bound (e.g., 2 × 5 × 4 = 40 µs).

To contrast, we conducted an experiment of laying out the
same set of flows but without our mechanisms in place. This
experiment used shortest-path routing and did not separate the
queues for any flows (in contrast to the separate queues for
real-time flows in our work). Figure 5(b) plots the empirical
CDF of the mean delays experienced by the real-time flows in
this setting. As the plot shows, these flows experienced higher
and more variable latency than when our mechanisms were in
place, thus highlighting the need for the proposed mechanisms
being presented in this paper. The 99th-percentile delays were
also much higher than when using our mechanisms.

Fig. 6 illustrates the impact of number of flows on the
average round-trip delay (represented by y-axis in the figure)
with different number of flows (x-axis). Recall that in our
experimental setup we assume at most 8 queues per port are
available in the switches where 7 real-time flows are assigned
to each of 7 queues and the other queue is used for [1, 3]
non-critical flows. As shown in Fig. 6, increasing the number
of flows slightly decreases quality of experience (in terms of
end-to-end delays). With increasing number of packet flows
the switches are simultaneously processing forwarding rules
received from the controller – hence, it increases the round-
trip delay. Recall that the packets of a flow are sent in a bursty
manner using netperf. Increasing number of flows in the
Mininet topology increases the packet loss and thus causes
higher delay.

VIII. DISCUSSION

The approach described in this paper leverages the benefits
of the SDN architecture to guarantee end-to-end delays in

safety-critical hard RTS. Our proposed scheme has some
limitations and can be extended in several directions. Most
hardware switches limit the maximum number of individual
queues9 that can be allocated to flows. Our current intent
realization mechanism reserves one queue per port for each
Class I flow and thus can lead to depletion of available queues.
However, we found commodity hardware switches (with both
meters and queues) that provide 52 ports per switch (with
8 queues per port) and hence may not run out of resources
for most RTS application (especially when multiple physical
ports are logically combined to form a single virtual port,
thus increasing number of queues available along a path).
Furthermore, unlike other domains, in RTS, the number of
flows are known ahead of time and, based on our proposed
method, can be allocated resources accordingly.

Although over-provisioning (in terms of one queue per real-
time flow) circumvents the issue of queuing delays, in future
work, we intend to overcome this shortcoming by multiplexing
more than one such flow over a queue, while still meeting
the real-time, end-to-end requirements. There are two possible
approaches that can be taken. One is to use meters for ingress
filtering, but meters themselves are a limited resource. The
second is design and implement conditional queueing schemes
where a programmable data-plane exposes a mechanism that
allows the use of queues based on network conditions instead
of it being a static decision. Such mechanisms need to be
validated for safety and ultimately they need to ensure that
class-I flows shall always meet their timing requirements. Our
future work is focused on developing such mechanisms. To
do this, we intend to make changes to the “scheduler” inside
the switch (that decides what packets go to which queues)
and also meters. In addition, changes may be required to the
OpenFlow protocol itself so that the controller can track what
is happening to the critical (real-time) flows.

Furthermore, in this work we allocate separate queues for
each flow and layout paths based on the “delay-monotonic”
policy. However establishing and maintaining the flow priority
is not straightforward if the ingress policing requires sharing
queues and ports in the switches. Many existing mechanisms
to enforce priority are available in software switches (e.g., the
hierarchical token buckets (HTB) in Linux networking stack).
In our experience, enabling priority on hardware switches has
proven difficult due to firmware bugs.

Finally, we do not impose any admission control policy
for the unschedulable (i.e., the flows for which the delay and
bandwidth constraints are not satisfied) flows. One approach
to enable admission control is to allow m out of k (m < k)
packets of a low-priority flow to meet the delay budget by
leveraging the concept of (m, k) scheduling [34] in traditional
RTS.

IX. RELATED WORK

There have been several efforts to study the provisioning a
network such that it meets bandwidth and/or delay constraints

9e.g., Pica8 P-3297 and HPE FlexFabric 12900E switches support at most
8 queues.



for the traffic flows. Results from the network calculus (NC)
[35] framework offer a concrete way to model the various
abstract entities and their properties in a computer network.
NC-based models, on the other hand, do not prescribe any
formulation of flows that meet given delay and bandwidth
guarantees. For synthesis, the NP-complete MCP comes close
and Shingang et al. formulated a heuristic algorithm [24] for
solving MCP. We model our delay and bandwidth constraints
based on their approach.

There are recent standardization efforts such as IEEE
802.11Qbv [36] which aim to codify best practices for provi-
sioning QoS using Ethernet. These approaches focus entirely
on meeting guarantees and do not attempt to optimize link
bandwidth. However, the global view of the network provided
by the SDN architecture allows us to optimize path layouts by
formulating it as an MCP problem.

There are prior attempts at provisioning SDN with worst-
case delay and bandwidth guarantees. Azodolmolky et al.
proposed a NC-based model [37] for a single SDN switch that
provides an upper bound on delays experienced by packets as
they cross through the switch. Guck et al. used mixed integer
program (MIP) based formulation [38] for provisioning end-
to-end flows with delay guarantees, however their approach
does not optimize the bandwidth allocation to each queue
used by the end-to-end flows at an individual switch. There
are approaches [39], [40] that have used queues to rate-
limit network traffic and improve end-to-end delay for cloud
applications (e.g., MapReduce). However, they do not try to
meet a specific end-to-end delay deadline for a given flow,
rather accumulate all traffic belonging to a given tenant VM
and apply the queue constraints on the host level.

A QoS-enabled management framework for SDN using
flow priorities and queueing mechanism was proposed by Xu
et al. [41]. However, their approach requires discretization of
flow delays delays. A QoS routing model was developed in
literature [33] that re-configures existing paths and calculates
new paths based on the global view and bandwidth guarantees.
However, the model requires that the end-to-end delay for a
flow is less than or equal to minimum separation times be-
tween two consecutive messages, thus limiting its applicability.

Avionics full-duplex switched Ethernet (AFDX) [7]–[9] is
a deterministic data network developed by Airbus for safety
critical applications. The switches in AFDX architecture are
interconnected using full duplex links, and static paths with
predefined flows that pass through network are set up. Though
such solutions aim to provide deterministic QoS guarantees
through static routing, reservation and isolation, they impose
several limitations on optimizing the path layouts and on dif-
ferent traffic flows. There have been studies towards evaluating
the upper bound on the end-to-end delays in AFDX networks
[9]. The evaluation seems to depend on the AFDX parameters
though.

There are several protocols proposed in automotive commu-
nication networks such as controller area network (CAN) [10]
and FlexRay [42]. These protocols are designed to provide
strong real-time guarantees but have limitations in how to

extend it to varied network lengths, different traffic flows and
complex network topologies. With SDN architectures and a
flexible QoS framework proposed in this paper, one could
easily configure COTS components and meet QoS guarantees
with optimized path layouts.

Heine et al. proposed a design and built a real-time mid-
dleware system, CONES (COnverged NEtworks for SCADA)
[43] that enables the communication of data/information in
SCADA applications over single physical integrated networks.
However, the authors did not explore the synthesis of rules
or path optimizations based on bandwidth-delay requirements
– all of which are carried out by our system. Qian et al.
implemented a hybrid EDF packet scheduler [15] for real-
time distributed systems. The authors proposed a proportional
bandwidth sharing strategy based on number of tasks on a
node and duration of these task, due to partial information of
the network. In contrast, the SDN controller has a global view
of the network, thus allowing for more flexibility to synthesize
and layouts the paths and more control on the traffic.

The problem of end-to-end delay bounding in RTS is ad-
dressed in literature [44]. The authors choose avionics systems
composed of end devices, and perform timing analysis of the
delays introduced by end points and the switches. However,
the proposed approach requires modification to the switches.
Besides the authors do not consider the bandwidth limitations,
variable number of flows and flow classifications.

There is a lot of work in the field of traditional real-time
networking (too many to enumerate here) but the focus on
SDN is what differentiates our work.

X. CONCLUSION

With the proliferation of commercial-off-the-shelf (COTS)
components, designers are exploring new ways of using them,
even in critical systems (such as RTS). Hence, there is a
need to understand the inherent trade-offs (less customization)
and advantages (lower cost, scalability, better support and
more choices) of using COTS components in the design
of such systems. In this paper, we presented mechanisms
that provide end-to-end delays for critical traffic in real-time
systems using COTS SDN switches. Hence, future RTS can
be better managed, less complex (fewer network components
to deal with) and more cost effective.
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APPENDIX A
DELAY CALCULATIONS

Remember that some of the critical pieces of information
that is required for any such scheme (for ensuring end-to-end
delays) is a measure of the delays imposed by the various
components in the system. Hence, we need to obtain network
delays at each link. We use these estimated delays as the
weights of edges of the network graph in the MCP algorithm
within the experimental setup to obtain solutions. As discussed
earlier, we assume zero queuing delay. The transmission and
propagation delays are a function of the physical properties
of the network topology. For instance, the transmission delay
is calculated as packet length

bandwidth allocated . For a fixed packet size and
specific link bandwidth we consider this as a constant. Besides,
the processing delay of an individual switch for a single packet
can be empirically obtained. Here we describe our method to
obtain upper-bounds on each of these delay components.

Estimation of Propagation Delay

The propagation delay depends on the physical link length
and propagation speed in the medium. In the physical media,
the speed varies .59c to .77c [45] where c is speed of light in
vacuum. We assume that the length of any link in the network
to be no more that 100 m. Therefore the propagation delay is
upper bounded by 100m

0.66×3×106 = 505 ns in fiber-link media.



Fig. 7. Interaction of kernel timing module with the existing OVS architecture.

Estimation of Processing Delays

We experimented with a software switch, Open vSwitch
(OVS) [32] version 2.5.90 to compute the time it takes to
process a packet within its data path. Since this timing infor-
mation is platform/architecture dependent, we summarized the
hardware information of our experimental platform in Table II.

TABLE II
HARDWARE USED IN TIMING EXPERIMENTS

Artifact Info

Architecture i686
CPU op-modes 32-bit, 64-bit
Number of CPUs 4
Threads per core 2
Cores per socket 2
CPU family 6
L1d and L1i cache 32K
L2 and L3 cache 256K and 3072K, respectively

We modified the kernel-based OVS data path module called
openvswitch.ko to measure the time it takes for a packet
to move from an ingress port to an egress port. We used
getnstimeofday() for high-precision measurements. We
also developed a kernel module called netlinkKernel.ko
that copies the shared timing measurement data structure
between the two kernel modules and communicates it with
a user space program called netlinkUser. We disabled
scheduler preemptions in the openvswitch.ko by using
the system calls get_cpu() and put_cpu(), hence the
actual switching of the packets in the data path is not interfered
by the asynchronous communication of these measurements
by netlinkKernel.ko. We also used compilation flags to
ensure that openvswitch.ko always executes on a speci-
fied, separate, processor core of its own (with no interference
from any other processes, both from the user space or the
operating system). For fairness in the timing measurements
and stabilized output, we disabled some of the Linux back-
ground processes (e.g., SSH server, X server) and built-in
features (e.g., CPU frequency scaling). Figure 7 illustrates the

interaction between the modified kernel data path and our user
space program.

We used the setup described above with Mininet and Ryu
Controller. We evaluated the performance and behavior of
OVS data path under different flows, network typologies and
packet sizes. We executed several runs of the experiment with
UDP traffic with different packet sizes. We observed that
average processing time for a single packet within the software
switch lies between 3.2 µs to 4.1 µs with average being 3.6
µs and standard deviation being 329.61 ns.

Therefore delay of the edge, i.e., Dk(u, v), ∀(u, v) ∈ E is
upper bounded by 3.6+0.505 ≈ 4.2 µs. These were the values
that were used in the path allocation calculations.

APPENDIX B
QUEUE ASSIGNMENT: MININET OBSERVATIONS
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Fig. 8. The mean and 99th percentile per-packet delay for the packets in
the active flows in 25 iterations using a two-host four-switch (see Fig. 2(b))
Mininet topology.

We also perform experiments with a two switch, four host
topology similar that of presented in Section III-A using
Mininet. The purpose of this experiment is to observe the
performance impact on software simulations (e.g., Mininet
topologies) over the actual ones (hardware switches and ARM
hosts). As we can see in Fig. 8 the trends (e.g., isolating flows
using separate queues results in lower delays) are similar in
both Mininet and hardware experiments – albeit the latencies
are higher due to it being a software simulation and also
affected by other artifacts (e.g., the experiments are involved
in generating traffic on the same machine).




