
Resilient Data Collection Protocol with In-Network
Processing for Oil and Gas Refinery Networks

Hongpeng Guo∗, King-Shan Lui∗, Tianyuan Liu†, Klara Nahrstedt†
∗Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong
†Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA

Abstract—To facilitate efficient control and monitoring, mas-
sive wireless sensors and measurement devices are deployed in Oil
and Gas Refineries. These sensors are deployed along the pipes
and data measured are correlated. In-network processing with
enough data along a pipe allows abnormal events to be detected
early by an analyzer deployed on-site. The data collection
structure should then be carefully developed to facilitate each
pipe to be monitored efficiently. On the other hand, as the sensors
are deployed in harsh environment and subject to hardware
damages, they may fail. Sensor failures may disrupt the on-
site monitoring of pipes by analyzers. In this paper, we study
the resilience issue in refinery sensor networks to facilitate the
robustness of fast data collection and abnormal event monitoring
even some devices fail. We present a quorum scheme to ensure
every analyzer would get enough relevant data for analysis.
We apply a multi-tree data collection structure to achieve fast
data collection. To tolerate node failures, we present a novel
distributed Refinery Resilient Protocol (RRP), which enables the
affected nodes to discover an alternative path to relay data. The
simulation results show that the RRP maintains efficient data
collection and event monitoring even a significant portion of
sensors have failed.

I. INTRODUCTION

To monitor the health of oil and gas refineries, massive sen-
sors or measurement devices are installed around pipelines [1]
to collect real-time environment measurements and materials’
chemical properties [2]. These sensors form an ad hoc network
and report the monitoring data to the control center to facilitate
robust monitoring and control [3]. As the sensors installed
around the same pipeline measure the same chemical material
and collect data of strong relations, appropriate in-network
processing allows problems to be detected earlier. As a result,
it would be desirable to develop a data collection structure
that facilitates enough data of the same pipe to be accessed
by some devices within the network for analysis. The sensors
are deployed in an open area and subject to different kinds
of damages such as hurricanes [4]. Unfortunately, due to the
nature of the infrastructure, instant replacement may not be
feasible [3]. Sensor failures not only make the data of a certain
portion of the pipe unavailable but may also disrupt the on-
site analyses due to insufficient amount of data. Therefore, it is
very important to have a resilient data collection infrastructure
so that enough data can still be reported in a timely fashion
even if some devices fail.

In this paper, we consider the scenario where a large
amount of measurement devices (MDs) are deployed around
refinery pipelines and thus form a sensor network. Each MD

generates data periodically to be reported to the Control
Center (CC). Each MD is equipped with short-range wireless
communication capability. A subset of MDs is connected to
a long-distance wireless network so that they can directly
communicate with the remote CC. MDs that are not equipped
with long-distance communication ability have to rely on other
MDs to relay their data in a hop-by-hop manner to the CC.
We adopt the multi-tree (or forest) structure for data collection.
That is, the MDs that can talk to the CC directly are tree roots.
Each MD is associated with one and only one tree. The path
from the MD to the root is the data reporting path.

In this paper, we want to facilitate a fast and efficient in-
network processing so that pipe failures can be identified on-
site. We assume that the root MDs can perform some prelimi-
nary analysis to the data on the same pipe to identify abnormal
events happen on that pipe. We also assume that the root MD
requires enough amount of data to perform the analysis. That
is, a certain portion of the MDs on the same pipe have to
report to the same root MD. Pipes can be dozens of meters
long, and MDs on the same pipe cannot all communicate with
each other directly. On the other hand, in the case that pipes
align close to each other, an MD may have multiple neighbors
on the other pipes. Hence, existing data collection schemes
that assume in-network processing among neighbor nodes may
not suffice the requirement that the analyzed data must come
from the same pipe. This unique feature of refinery networks
makes data collection a challenging problem which cannot be
addressed directly by any conventional protocol investigated
before. In addition, due to the harsh environment that the MDs
are deployed, the data collection structure must be resilient. In
this paper, we aim at developing a data collection structure for
refinery networks so that monitoring can be done effectively
even when some devices fail. The contributions of this paper
are as follows:

C1 We incorporate the quorum requirement in our problem for-
mulation to facilitate in-network processing and efficient on-
site monitoring. The delay-optimal data reporting structure
with quorum requirement is formulated as an Integer Linear
Programming problem.

C2 We develop a distributed protocol that allows the MDs to
work together to re-build the data collection structure while
maintaining the quorum requirement when MDs fail.

C3 The simulation results suggest that our protocol outperforms
the conventional methods on failure tolerance significantly,
as well as maintaining nearly optimal data collection time.

Author copy. Do not distribute.

II. RELATED WORK

To the best of our knowledge, resilient data collection
protocol providing in-network data analysis and on-site sit-
uation detection for disjoint trees has not been studied in the
literature. Nevertheless, many works that study the following
three problems independently can be identified. They are
(1) Multi-sink data collection schemes in Wireless Sensor
Networks (WSNs), (2) Quorum based protocol in WSNs, and
(3) Fault tolerant techniques to maintain resilience.

Tree based multi-sink data collection in Wireless Sensor
Networks (WSNs) has been actively studied. The major objec-
tives of such designs [5–7] are optimizing energy consumption,
reducing data collection delay and maintaining traffic balance.
Data observed by each sensor will be relayed to the sink node
along tree branches. Shallow trees are usually adopted in these
data collection structures. The work in [8] makes use of two
sinks to provide resilience that every node has to establish two
node-disjoint paths to each sink. In order to achieve energy
efficiency, data compression techniques are also widely studied
to improve data collection performance [9].

Quorum based protocols are also widely used in WSNs
aiming to reduce energy consumption. Quorum here refers to
a minimal set of sensors to accomplish an operation. Quo-
rum systems usually improve energy efficiency by reducing
message transmissions and collisions [10]. [11] proposed a
quorum-based wake-up scheduling scheme to save energy
and prolong sensor’s lifetime. [12, 13] used quorum to avoid
message flooding and achieve energy-efficiency by reducing
traffic. However, applying quorum to primary data analysis
and event detection has not been studied in the literature.

A state of art class of fault tolerance techniques in WSNs
is redundant path routing [14–17]. WirelessHART [18] stan-
dard keeps resilience by maintaining the multi-path routing
structure that every intermediate node on a path must have
at least two neighbors for traffic routing. However, such
static resilient method does not perform well when massive
continuous failures happen in the networks and such method
also tends to break the quorum requirement while maintaining
the network connections.

III. PROTOCOL OVERVIEW

Many different tree structures can be used to connect
the MDs together, but they vary in performance. Figure 1
presents an example of 11 MDs deployed on 3 pipes (l1,
l2, and l3). MD5 and MD11 are equipped with long-distance
communication capability and can directly communicate with
the CC. Other MDs can only talk to their neighbors by short-
range wireless communication. Neighbors are connected by
lines in the figure. Suppose the quorum requirement is 75%,
then at least 75% of the MDs on the same pipe must be on the
same tree. Figure 2 shows a forest topology that satisfies the
requirement. The tree edges are represented using thickened
lines. Two trees are formed, one rooted at MD5 and the other
rooted at MD11. All the three MDs on pipe l1 are connected
to MD11. For pipes l2 and l3, at least three out of the four
MDs on the pipe are associated with the same tree. It is worth

noting that the quorum requirement may increase the height of
the tree(s). In Figure 2, the height of tree MD11 is 3 because of
MD1. Although the shortest path from MD1 to MD5 is 2 and
is shorter, MD1 cannot join that tree because of the quorum
requirement.

Fig. 1: Network Topology Fig. 2: Forest Topology

Therefore, the problem of identifying a minimum-height
multi-tree data collection structure with quorum requirement
is not trivial. Our goal is to develop and maintain a multi-tree
structure that (1) each MD is connected to one and only one
tree, (2) the quorum requiremet of each pipe is satisfied, and
(3) the height of the tallest tree is minimized.

Our protocol has two phases: development phase and main-
tenance phase. The development phase is the first phase that
constructs the initial multi-tree data collection structure before
any data collection. The CC, who has the global topology
information, computes the optimal structure and informs the
MDs through tree roots in a hop by hop manner. Data collec-
tion can then be conducted through the trees. The protocol is
now in the maintenance phase that the MDs work together to
re-establish broken data reporting paths if a node fails. In this
phase, new tree paths will be identified in a distributed and
localized manner. The CC will be informed of the changes but
does not have to participate in the computation process. This
ensures a fast recovery to minimize the data loss and delay
during the period that the paths are being re-established.

IV. DEVELOPMENT PHASE: BUILDING INITIAL FOREST

To support the quorum requirement, we first identify a data
collection structure before any data are collected. The data
collection structure is constructed by the CC with the global
topology information of pipes and MDs. We formulate the
Initial Trees Construction Problem (ITCP) using the Mixed
Integer Linear Programming (MILP) and solve it using an
optimal solver.

A. Problem Description

Suppose that we are given an Oil & Gas refinery sensor
network consisting of M pipelines and N MDs. We denote
the set of pipelines as L = {l1, l2, ..., lM} and the set of MDs
asM = {MD1,MD2, ...,MDN}. The subset of MDs that can
directly communicate with the CC is denoted as R ⊂ M.
Two MDs are considered neighbors if they can talk to each
other directly Each MD must be on one and only one pipe.
The association between MDs and pipes is defined by a binary
function q(i, s) that q(i, s) = 1 if MDi lies on pipe ls.

Similar to [6] and [19], our objective is to minimize the time
to collect data from every tree root. Since the data on each
tree can be collected simultaneously, the data collection time
of the whole forest depends on the maximum height among
the trees. We identify the optimal data collection structure by
selecting the appropriate path from each MD to a certain root.
Let Pki,j be the k-th precomputed shortest path from MDi to
MDj where MDj ∈ R. Denote Ki,j as a set of indices of all
these shortest paths and their length is Li,j . In Fig. 2, there are
two shortest paths from MD8 to MD11 (MD8−MD10−MD11

and MD8 −MD9 −MD11) whose length is 2. Therefore, we
have L8,11 = 2 and K8,11 = {1, 2}. Let xki,j be a binary
variable representing whether Pki,j is selected in the multi-tree
structure. Thus,

xki,j =

{
1 if Pki,j is selected
0 otherwise

(1)

The length of the longest path on the tree rooted at MDj ∈ R,
also known as the height of tree rooted at MDj , denoted as
Hj , is thus

max
i

∑
k∈Ki,j

xki,j · Li,j where MDi ∈M (2)

The time to collect data from all the tree roots is
maxj Hj , MDj ∈ R.

We now explain how we model the quorum requirement.
Let the number of MDs on pipe ls be Nls . The quorum
requirement is described using γ0 ∈ [0, 1]. That is, at least
γ0 ·Nls MDs should be included in the same tree. We assume
γ0 is the same for all pipes. The number of MDs on pipeline
ls that are connected to MDj ∈ R is thus,∑

i

(∑
k∈Ki,j

xki,j
)
· q(i, s), ∀MDi ∈M. (3)

In order to keep some resilience space such that the quorum
requirement would not be violated easily when MD failures
happen, we use a larger threshold γ to construct the initial
tree, where γ0 < γ ≤ 1.

Denote ∆(j, s) as a binary variable indicates whether the
quorum for pipeline ls is met by MDj ∈ R. ∆(j, s) can be
modeled as a flooring function

∆(j, s) =

⌊∑
i(
∑
k∈Ki,j

xki,j) · q(i, s) + (1− γ)Nls

Nls

⌋
(4)

∆(j, s) = 1 if at least γNls MDs on ls reporting to MDj , and
∆(j, s) = 0 otherwise.

B. Mathematical Formulation

The ITCP is a mixed integer linear programming formula-
tion as follows:

min max
j

Hj ∀MDj ∈ R (5)

s.t.
∑
j

∑
k∈Ki,j

xki,j = 1 ∀MDi ∈M,MDj ∈ R (6)

xki,j ≤ xli′,j if P li′,j ⊂ P ki,j (7)∑
j

∆(j, s) ≥ 1 ∀MDj ∈ R, ls ∈ L (8)

The intuition of these constraints can be interpreted as follows:
(6) Every MD is connected to one and only one tree.
(7) The selected paths should together form a forest of trees.

This constraint ensures that if a path Pki,j is selected, its
sub-path P li′,j must be selected. Therefore, the computed
graph will be a tree.

(8) For every ls ∈ L, there exists an MDj ∈ R meeting the
quorum requirement of ls.

Although ITCP is an NP-hard MILP, we only need to com-
pute the optimal multi-tree structure once for the initial con-
struction in the CC, which should have enough computational
resources. It is thus feasible to apply some optimal solver (i.e.
GUROBI [20]) to develop the exact optimal solution. Note that
when massive failure happens and the quorum requirement
is thus violated, the CC will recompute the data collection
forest for the MDs who are still alive. In the case that the
CC cannot compute a feasible data collection structure, it
indicates the surviving MDs no longer form a network with
the desired quality in monitoring. The system administrator
can then consider installing new MDs to restore the network
connectivity.

V. MAINTENANCE PHASE: RESILIENT PROTOCOL

After the forest is developed, the CC informs each root MD
its own tree structure. The root can then inform its children to
further establish the tree. The children inform their children
and so on. MDi should keep the following connectivity and
tree information:
1) Ni: the set of MDi’s neighbors that can directly talk to

MDi.
2) ri: index of MDi’s tree root.
3) pi: index of MDi’s parent.
4) Ci: the set of MDi’s children on the tree. Ci = ∅ when

MDi is a leaf node in the tree.
5) Ti: The subtree structure rooted at MDi. That is, MDi

knows all its descendants on the tree. MDi also knows
which pipelines they lie on. The height of Ti is denoted as
H(Ti).

Once all MDs know their tree neighbors (parent and chil-
dren), they can report data through the tree according to the
application requirement. In this work, we use the fail-stop
failure model, the failed MDs will never recover. As each MD
has only one data reporting path, it is very important to identify
node failures as soon as possible so that an alternate reporting
path can be established quickly. We assume the HeartBeat
Protocol is used for failure detection. Every MD broadcasts
its heart-beat to all its neighbors periodically. In this case,
an MD can tell whether the tree parent has failed. If so, it
should establish another tree path to report data. Details will
be described in Sections V-A and V-B. The HeartBeat Protocol
also allows a parent to detect whether a child has failed. The
tree branch rooted at the failed child no longer belongs to the

(a) Identify an alternate path
through non-tree neighbors

(b) Resultant forest after re-
connected through neighbors

(c) Identify an alternate path
through exploring descen-
dants

(d) Resultant forest after
seeking a path through de-
scendants

Fig. 3: Examples of Tree Reconstruction Process.

tree. The parent should report this to the root. We will explain
the details in Section V-C.

A. Find A New Parent From Neighbors.

When MDi finds the parent has failed, it would first consider
to report data through its non-tree neighbors. Note that the
non-tree neighbors of MDi refer to the set of MDi’s neighbors
who are not in the subtree Ti. If a non-tree neighbor finds
that it is possible (details will be described later) for MDi
to join the tree it lies on, it acknowledges MDi. MDi can
then decide which neighbor it wants to be its new parent if
several neighbors provide positive responses. We now describe
the details of this process. We will explain how to handle the
situation where no non-tree neighbor can take MDi as a child
later.
1) MDi sends a join request to all its non-tree neighbors.

In our mechanism, all non-tree neighbors would reply
whether the join request can be accepted or not. Refer to
the example network in Fig. 3a, there are 10 MDs in the
figure represented by circles. Tree links are represented
in solid lines and the dash lines denote some non-tree
connectivities. There are two trees rooted at MD1 and MD2

in this example. Suppose MD4 fails. Its children MD7

and MD8 detect the failure of the parent and send out
join request to their non-tree neighbors. MD7 sends a join
request to MD3, MD6, and MD8, while MD8 sends the
join request to MD3, MD5 and MD7.

2) MDj which receives the join request of MDi acquires
information from its root to reply to the request.
In our protocol, we let MDi decide which tree to join.
Therefore, when MDj receives a join request, it should
reply positive as long as it is still connected to a tree. It
should also provide the tree height information so that MDi
can optimize the tree height in its decision. If MDj knows
that it has also been disconnected, it should reply negative
to the join request right away.
The tree root of MDj is MDrj . To acquire the height of
Trj , denoted as H(Trj), MDj sends the root check message
to MDrj . Upon receiving the message, MDrj replies height
information H(Trj) and Lj,rj , the path length between
MDj and MDrj . The information allows MDi to compute

the height of the tree if MDi joins Trj . When MDj receives
the information, it sends a positive reply to MDi.
If the path from MDj to MDrj is also broken, MDj would
not receive a reply. We adopt the timeout mechanism for
all messages that a reply is expected to avoid deadlocks. If
MDj is no longer connected to a tree root, timeout would
occur for the root check message, and it replies negative to
the join request of MDi.
In Fig. 3a, MD3, MD5, and MD7 receive the join request
message from MD8. Since MD7 has also known that its
parent has failed and it is disconnected from the tree
by the time that it receives the join request of MD8, it
sends a negative reply right away. MD3 and MD5, on
the other hand, would send the root check messages to
their corresponding tree roots. When MD5’s root check
is delivered to MD2, MD2 immediately replies the height
information H(T2) = 1 and L5,2 = 1. MD3 gets the root
response from MD1 in a similar way. The join requests
sent by MD7 will be handled in a similar manner.

3) MDi receives the replies from its non-tree neighbors
and decides which tree to join.
The non-tree neighbor MDj which replies positive becomes
a candidate parent for MDi to join. MDi then selects
a parent from these candidates. In order not to violate
the quorum requirement, MDi should select a candidate
that belongs to the same tree if possible. If there is no
such candidate available or there are multiple candidates
belonging to the same tree as MDi, MDi computes the
height of the tree for each candidate after MDi joins the
tree. That is, if MDi selects the new parent to be MDj , the
longest branch from the tree root to any MD in Ti would
be Lj,rj + H(Ti) + 1, which may or may not increase
the height of Trj . Thus, the tree height increase upon MDi
joining MDj is simply max

(
0, Lj,rj +H(Ti)+1−H(Trj)

)
.

MDi selects the tree with the minimum height increase.
Refer to Fig. 3a, MD7 has two candidate parents, MD3 and
MD6. They are both not connected to the original parent
of MD7. If MD7’s subtree (MD7 − MD9) joins at MD3,
the height of T1 will be increased by 1, which is smaller
than the case where the subtree joins at MD6. Therefore,
MD7 would select MD3 as its new parent.

MD8 has two candidates, MD3 and MD5. MD5 belongs to
the same tree that MD8 is lying on. Therefore, MD8 would
join at MD5. The final tree is illustrated in Fig 3b.

4) MDi informs the selected new parent MDj∗ and its
descendants to update tree information.
MDi must inform its descendants the new tree root they
are now connected to. MDi also tells MDj∗ that it has
decided to be a child of MDj∗ and sends MDj∗ the sub-tree
structure Ti. The tree of MDj∗ is now changed. All nodes
from MDj∗ to the root should be informed and update their
sub-tree structure accordingly. When the tree root knows
that there is a structural change, it should examine whether
the change affects the quorum requirement of any pipe. The
details will be discussed in Sec. V-C

B. Find A New Path Through the Descendants

In Sec V-A, we discussed the details about how to find a
new parent from MDi’s non-tree neighbors. It is possible that
all non-tree neighbors cannot help MDi to connect back to the
data collection structure. In this case, MDi should explore to
connect through its children. That is, if a child can identify an
alternate tree path, MDi can connect back to the tree as well.
The following is the detailed procedure:
1) MDi tells its children to find new parents.

When MDi found that it could not find a new parent from
its non-tree neighbors, it will send a find a new parent
message to all its children. Refer to Fig. 3c, suppose MD5

fails. MD8 does not have any non-tree neighbor. It thus
tells its children (MD7, MD9 and MD11) to find a new
parent by themselves.

2) MDk, a child of MDi, tries to find a new parent.
To identify a new parent, MDk follows the procedure in
Section V-A. There are two cases, MDk could find a new
parent and MDk could not find a new parent.
If a new parent is identified by MDk and thus MDk can
reconnect to the data collection structure, MDk will send
join invitation message to invite its original parent. The join
invitation message also contains the new tree height and
tree root information of MDk’s data collection tree. MDi
can select the best former child as the new parent based
on the information when multiple invitations are received.
If no alternate parent can be identified by MDk, MDk will
also report this issue to MDi. MDk will also tell its children
to find a new parent by themselves by sending them a find
a new parent message, which is the same process as MDi
tells its children. Note that this process can explore all of
MDi’s descendants recursively.
Refer to Fig. 3c. After MD7, MD9 and MD11 have received
the find a new parent message from MD8, they start to seek
an alternate parent from their non-tree neighbors. MD7

and MD9 successfully identify their new parents (MD4

and MD6) and then send join invitation to MD8. MD11,
on the other hand, cannot identify any alternate parent. It
reports this issue to MD8 and then tells its children to find
a new parent on their own. Since MD11 has no children,
MD11 then starts to wait for the join invitation from other

MDs. MD8 receives two invitations from MD7 and MD9.
It will then select the new parent following the same rule
described in Sec V-A(3). MD7 is finally selected as smaller
extra tree height will be introduced upon MD8’s joining.
When MDi confirms the join invitation from MDk, it will
directly establish the link to MDk by passing its subtree
structure Ti to MDk. MDk receives Ti and knows MDi has
accepted the invitation. MDk will further relay the update
message to the tree root to complete the join process of
MDi.

3) MDi helps its children if needed.
After MDi has reconnected to the data collection structure,
it will send join invitation to its children who have not sent
join invitation to MDi. This join invitation message also
contains the tree height and tree root information. Because
MDi’s child may also receive invitations from its children,
the information can help it to select the best new parent. As
shown in Fig. 3c, MD11 receives MD8’s join invitation and
joins its tree. Thus the reconnection process is complete
and the final topology is shown in Fig. 3d.

In the case when massive MDs fail, no descendant of MDi
can identify a new parent from its non-tree neighbors and the
tree reconstruction thus fails. The reconstruction failure will
always be known by MDi’s original tree root and reported to
the CC. Details will be discussed in Sec. V-C. Our resilient
protocol can also deal with the case when tree roots fail.
The disconnected MDs can explore another tree to join using
their connectivities as described in Sec. V-A and Sec. V-B.
However, in the very rare case that all root MDs fail, no MD
can contact with the CC anymore and the data data cannot
be relayed to the CC. In this case, we have to restore the
connectivity between the CC and some MDs, such as, extend
the communication range of some non-root MDs so that they
can talk to the CC directly. The details will be developed in
our future work.

C. Structural Change Reporting

Tree structure changes can influence the quorum require-
ment of a pipe. That is, when a new subtree joins a tree, the
tree may now satisfy the quorum requirement of more pipes.
On the other hand, if a subtree is disconnected from a current
tree, the quorum requirement of one or more pipes may be
violated.

When a new sub-tree T joins the tree rooted at MDr, MDr
should examine whether its tree now satisfies the quorum
requirement of any new pipe that the nodes on T lie on. If
so, it should inform the CC.

When an MD fails, the failure will be detected by its parent.
The parent MD thus eliminates its subtree information and
reports this failure to the tree root in a hop by hop manner.
The tree root will then calculate whether this failure causes any
quorum requirement violation for the pipes it is responsible
for. When a violation happens, the tree root will then wait
for some time in case the lost MDs may be reconnected back
to the same tree. When the timeout occurs, the tree root will
re-calculate the quorum requirement. If quorum violation still

occurs (when many MDs are reconnected to another tree or
reconstruction process fails), the tree root would report quorum
change to the CC. The CC, knowing the quorum situation of
all pipes and all root MDs, can decide whether there is a
need to re-establish the whole data collection structure. The
mechanism in Section IV can be used. If no solution can
be found, it means the current network no longer supports
the original services. The administrator should decide how to
restore the network by installing new MDs or repairing failed
ones.

Apart from the quorum change information, every root
should also report its structural changes to CC every time a
subtree join or is disconnected. CC will thus have a global
knowledge of the forest real-time structure and can provide
global solution to reconstruct the data collection forest when
needed.

VI. SIMULATION

In this section, we model the refinery topology in a 3D space
and inject random MD failures in each time slot. We evaluate
the performance of our Refinery Resilient Protocol (RRP) on
three metrics: (1) number of MDs that are still connected to
the data structure, (2) quorum requirement of the pipes, and (3)
height of the data collection forest. The three measurements
will be taken after each time slot. We also compare RRP with
two baseline protocols.

A. Topology Generation & Failure Injection

Instead of placing MDs randomly, we generate the MD
topology following the intuition that MDs are usually placed
around pipes to measure refineries’ health condition and most
pipes have a linear structure in the physical world. We assume
the refinery as a 50m × 50m × 10m box. We first randomly
generate M pipelines whose length ranges from 30m to 40m
randomly. These pipes are parallel to either the x-axis or y-
axis. We then place MDs along these pipelines spaced with
same distance d. There are N MDs in total. Every MD in
the same topology has the same short communication range
r, where r ≥ d. Optimal initial tree will be computed using
the topology information.

To evaluate the performance of the resilient protocol. We
introduce failures at discrete time. We divide the time line into
T slots, and introduce k random independent MD failures in
each time slot. The resilient protocol tries to get the affected
MDs reconnected to the data collection forest in the same time
slot. We take the three measurements at the end of each time
slot to observe the network’s condition with time going on.

Setting N M γ0 γ r d k T

I 594 54 50% 80% 6 3 2 30
II 309 36 50% 70% 8 4 1 50

TABLE I: Simulation settings

The parameter settings in our simulation are given in Table
I. Setting I is a dense network with 594 MDs and 54 pipelines,
while Setting II network contains 309 MDs and 36 pipelines.
There are 30 time slots with two random failures occur in each
time slot in Setting I,and there will be 60 MDs fail in the end,

which is 10.10% of the total number of MDs. In Setting II,
there are 50 time slots and one MD fails in each time slot,
which causes 16.18% of total MDs fail at the end. We repeat
these two simulation settings each for 100 times and present
the average values and standard deviations in Fig. 4.

B. Two Baseline Protocols
We compare our protocol with two other protocols. All three

protocols start with the same initial forest configuration which
satisfies the quorum requirement with minimized forest height.
We only measure the resilience behaviors against failures
of the three protocols. The first one is Biconnected Tree
Protocol (BTP) [15, 16]. BTP assigns every non-root MD a
secondary parent from its uncle or cousin nodes which can
lead a secondary path to the same tree root. When MD failure
happens, the affected MDs try to connect to the original tree
through their secondary parent. However, the MD who lost
both its original and secondary parents will not get reconnected
to the data collection trees again. The second baseline protocol
is None Resilient Protocol (NRP). NRP is a data collection
protocol without resilient property. When failure happens,
NRP will not try to get the disconnected MDs reconnect to
the data collection trees.

C. Simulation Results & Discussion
In Fig. 4a and Fig. 4d, we show the number of MDs that are

still connected to the data collection trees after the continuous
failures happen of the three protocols. It can be observed
that the Refinery Resilient Protocol (RRP) keeps much more
MDs connected in the network than BTP and NRP under both
Settings I and II.

In Fig. 4b and Fig. 4e, we show the number of pipes that
have at least γ0 (50%) of MDs on the pipe connecting to the
same tree when applying the above three protocols. As the
figures show, RRP can keep nearly every pipe preserving this
property through the whole time line, which is far better than
BTP and NRP under both settings.

Fig. 4c and Fig. 4f show the tallest tree height while failures
happen. As NRP has no resilient re-connection in the whole
process, MD’s failure will only prune the trees and never cause
tree height increase. As RRP has a relatively complicated
resilient process, it may explore every possible path to get
the disconnected MDs back to the data collection structure
and cause many tree structural changes. The results show that
even the tree height would increase after re-construction, the
increase is less than 1 in most situations, which is very small,
or even still optimal. It is also worth noting that the decrease
in height of BTP and NRP means some nodes have been
disconnected as the original tree height should be minimal.

To conclude the observation from the above experiment,
RRP performs much better than the other two baseline pro-
tocols to minimize the affected MDs and pipelines when
continuous failures happen.

VII. CONCLUSION

In this paper, we identify the unique feature of oil and gas
refinery sensor networks of in-network processing and develop

(a) Node Count (Setting I) (b) Pipe Count (Setting I) (c) Tallest Tree Height (Setting I)

(d) Node Count (Setting II) (e) Pipe Count (Setting II) (f) Tallest Tree Height (Setting II)

Fig. 4: Experimental Results

the quorum requirement. We then develop a resilient protocol
to establish an efficient data collection structure that allows
fast recovery upon device failures.

VIII. ACKNOWLEDGMENT

This material is based upon work supported by the De-
partment of Energy under Award Number DE-OE00007801

and the University of Hong Kong Internal Grant Number
104003580.

REFERENCES

[1] S. Savazzi, S. Guardiano, and U. Spagnolini, “Wireless sensor network modeling
and deployment challenges in oil and gas refinery plants,” International Journal of
Distributed Sensor Networks, 2013.

[2] T. Arampatzis, J. Lygeros, and S. Manesis, “A survey of applications of wireless
sensors and wireless sensor networks,” in IEEE International Symposium on,
Mediterrean Conference on Control and Automation, 2005.

[3] N. A. Pantazis, S. A. Nikolidakis, and D. D. Vergados, “Energy-efficient routing
protocols in wireless sensor networks: A survey,” IEEE Communications surveys
& tutorials, 2013.

[4] Forbes. The impact of hurricanes harvey and irma on energy
operations. [Online]. Available: https://www.forbes.com/sites/tortoiseinvest/2017/
09/11/hurricanes-harvey-and-irmas-impact-on-energy-operations/#5c2e63d9341f

1Disclaimer: The material was prepared as an account of work sponsored
by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

[5] O. D. Incel, A. Ghosh, B. Krishnamachari, and K. Chintalapudi, “Fast data
collection in tree-based wireless sensor networks,” IEEE Transactions on Mobile
computing (TMC), 2012.

[6] H. Jin, S. Uludag, K.-S. Lui, and K. Nahrstedt, “Secure data collection in
constrained tree-based smart grid environments,” in IEEE SmartGridComm, 2014.

[7] Y. K. Sia, H. G. Goh, S.-Y. Liew, and M.-L. Gan, “Spanning multi-tree algorithm
for node and traffic balancing in multi-sink wireless sensor networks,” in IEEE
FSKD, 2015.

[8] P. Thulasiraman, S. Ramasubramanian, and M. Krunz, “Disjoint multipath routing
to tow distinct drains in a multi-drain sensor network,” in IEEE INFOCOM, 2007.

[9] Y. Yao, Q. Cao, and A. V. Vasilakos, “Edal: An energy-efficient, delay-aware,
and lifetime-balancing data collection protocol for heterogeneous wireless sensor
networks,” IEEE/ACM Transactions on Networking (TON), 2015.

[10] D. Tulone and E. D. Demaine, “Revising quorum systems for energy conservation
in sensor networks,” in IEEE International Conference on Wireless Algorithms,
Systems and Applications (WASA), 2007.

[11] S. Lai, B. Ravindran, and H. Cho, “Heterogenous quorum-based wake-up schedul-
ing in wireless sensor networks,” IEEE Transactions on Computers, 2010.

[12] K. Kweon, H. Ghim, J. Hong, and H. Yoon, “Grid-based energy-efficient routing
from multiple sources to multiple mobile sinks in wireless sensor networks,” in
IEEE International symposium on wireless pervasive computing (ISWPC), 2009.

[13] J. Lee, J.-Y. Jang, E. Lee, S.-H. Kim, and M. Gerla, “Efficient sink location service
for prolonging the network lifetime in wireless sensor networks,” in IEEE Annual
Consumer Communications & Networking Conference (CCNC), 2016.

[14] S. Han, X. Zhu, A. K. Mok, D. Chen, and M. Nixon, “Reliable and real-time
communication in industrial wireless mesh networks,” in IEEE RTAS, 2011.

[15] J. Kamto, L. Qian, W. Li, and Z. Han, “Biconnected tree for robust data collection
in advanced metering infrastructure,” in IEEE WCNC, 2015.

[16] J. Silber, S. Sahu, J. Sing, and Z. Liu, “Augmenting overlay trees for failure
resiliency,” in IEEE GLOBECOM, 2004.

[17] C. Sergiou, V. Vassiliou, C. Georgiou, C. Ioannou, N. Temene, and A. Paphitis,
“Competition: Dynamic alternative path selection in wireless sensor networks,” in
International Conference on Embedded Wireless Systems and Networks (EWSN),
2017.

[18] F. Group. Hart technology. [Online]. Available: https://fieldcommgroup.org/
technologies/hart/hart-technology

[19] T. Liu, H. Guo, K.-S. Lui, H. Jin, and K. Nahrstedt. Resilient
data collection in refinery sensor networks under large scale failures.
[Online]. Available: https://www.ideals.illinois.edu/bitstream/handle/2142/97951/
CREDC tianyuan klara.pdf?sequence=2&isAllowed=y

[20] Gurobi. Gurobi optimization - the best mathematical programming solver.
[Online]. Available: http://www.gurobi.com/

