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Abstract—Resilient operation of cyber-physical infrastructures
in adversarial environments requires i) toughness: maintenance
of core crucial sub-functionalities despite ongoing intrusions,
and ii) elasticity: recovery of the normal system operation
in a timely manner. Put in other words, it does not require
unrealistic assumptions about absolute preventative protection of
complex cyber-physical platforms that would disable any type
of malicious penetration and damage against the physical plant
at the first place. Instead, resilience is based on the assumption
that a sophisticated intrusion may succeed to evade the deployed
protection and runtime detection mechanisms and impact the
underlying system services and assets partially (except the core
sub-functionalities). The resilient system fights back through
reactive and proactive intrusion tolerance mechanisms to respond
to ongoing misbehaviors and recover the affected system services
and components within a reasonable time interval. In this paper,
we present a formal definition of resilience and assessment metric
for resilience. Our resilience metric quantifies the ability of
the system to recover from an attack provided the attack is
discovered within a fixed time interval, as well as the cost of
recovery. We analyze the metric properties for linear systems
and linear systems with actuator saturation. We then formulate
cyber defense policies that ensure the resilience conditions are
satisfied and validate our approach using a power system case
study.

Index Terms—Cyber-physical systems, cyber security, intru-
sion resilience.

I. INTRODUCTION

Traditionally, security intrusions would target cyber assets
through various attack vectors such as software vulnerability
exploitations and social engineering channels. Recent advances
in practical deployment of orchestrated operation of the cy-
ber computations and physical processes in safety-critical
infrastructures, so-called cyber-physical systems (CPS), have
expanded the attack surfaces and their ultimate impact. As
shown by the past real incidents, e.g., Stuxnet [1] and Black-
Energy3 [2] malware, cyber-originated misbehaviors can target
physical components through a variety of domain-specific
attack vectors such as sensor-based data corruptions, malicious
control command injection, and the controller compromises.

Recently increasing number and complexity of fast-
spreading and high-impact cyber-physical intrusions call for
effective protection solutions. Cyber-physical security han-
dling techniques can be categorized into three groups. First,
intrusion prevention techniques (e.g., end-to-end data encryp-
tion), attempt to ideally prevent any attacks from happening in
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the first place. Second, intrusion detection solutions (e.g., host-
based malware detection by anti-virus solutions) are designed
based on the practical assumption that absolute security is
infeasible and the attacks will still occur and need to be
identified. Finally, intrusion tolerance solutions (e.g., infected
asset containment by network firewalls) employ reactive and
proactive response and recovery mechanisms to bring the
affected system functionalities as the result of the successful
and ongoing attacks.

Cyber-physical intrusion resilience aims at i) full correct-
ness maintenance of the core (possibly empty) set of crucial
sub-functionalities despite ongoing adversarial misbehaviors.
Put in other words, it is acceptable for non-crucial sub-
functionalities to be affected (partially degraded or com-
plete failure) temporarily; and ii) guaranteed recovery of the
normal operation of the affected sub-functionalities within
a predefined cost limit, so-called resilience threshold. The
cost limit can be formulated using various criteria such as
time (recovery deadline), money (recovery expenses), etc. The
abovementioned functionalities may involve integrated sub-
components of the cyber network and physical platform.

Consequently, the required protection and Intrusion re-
silience is an overarching system property that requires a
well-integrated and targeted design and deployment of the
defense mechanisms (prevention, detection and tolerance)
within various components of the target system. To guarantee
permanent correct functionality of the crucial services, the
corresponding system components have to either implement
absolutely secure preventative measures, or leverage tolerance
techniques (e.g., redundancy) to eliminate the possibility of
any adversarial impact. The remaining components need the
security protection mechanisms to an extent that satisfies the
resilience threshold.

Our contributions in this paper are as follows:

• We provide a formal and abstract mathematical definition
for intrusion resilience in cyber-physical systems. We
characterize the resilience metric for linear systems and
actuator-saturated linear systems, and provide methodolo-
gies for synthesizing controllers that guarantee resilience
in such systems.

• We formulate a hierarchical game between the targeted
cyber-physical platform and a cyber adversary, in which
the value of each state of the game is equal to the
resilience of the system. We propose Markovian cyber
defense policies for maximizing resilience under cost
constraints.

• We evaluate our proposed resilience metric and cyber
assessment via power system case studies.
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The rest of the paper is organized as follows. Section II
describes the related work. Section III describes the class
of attacks considered in this paper. Section IV motivates the
need for a definition and metric for cyber-physical intrusion
resilience. Section V provides the physical system model,
intrusion resilience definition and the corresponding metric.
Section VI provides the resilience modeling and metric for the
cyber network, and Section VII explains how the cyber and
physical side resilience models are used by our framework
for a hybrid cyber-physical resilience metric and assessment.
Section VIII evaluates our resilience metric in a power system
case study. Section II reviews the most related past work in
the literature. Finally, Section IX concludes the paper.

II. RELATED WORK

Recent work on adversary-aware control has addressed a
range of topics such as models of attack and defense, risk
assessment, attack detection and forensics, and secure control
design. These contributions move towards development of a
principled approach to cyber-physical security of power grid
control systems [3].

SOCCA [4] presents a security assessment engine to iden-
tify the weaknesses of a smart grid topology against cyber
attacks. For improved resiliency of microgrid operations, Che
et al. [5] proposes to use a tertiary DC control. SCPSE [6]
presets an online smart grid monitoring and incident detection
framework to identify malicious misbehaviors on the control
network of the power system and perform bad-data detection
accordingly. Hossain et al. [7] proposed a resilience analysis
technique in a distributed power system control setting to
determine the redundant and critical controllers depending on
whether the power system maintains its controllability if a
particular controller is compromised. Zonouz et al. [8], [9]
proposes a embedded system security monitoring solution to
ensure the correct operation of the power system controller
devices.

Vulnerability assessment of smart grid critical infrastruc-
tures has been studied using network interdiction formulations,
e.g., sequential games [10], [11], where the operator (leader)
chooses a source-destination path, and then the interdictor
(follower) inspects one arc to maximize the probability with
which the operator is detected. In the model by Bertsimas et
al. [12], the operator chooses a feasible flow, and then the
interdictor disrupts a fixed number of edges. The interdictor’s
goal is to minimize the maximum flow that reaches the
destination node.

Bienstock [13] develops efficient mixed-integer linear net-
work models for the power system (N−k) problem. Salmeron
et al. [14] solved a network interdiction problem to iden-
tify maximally disruptive cyber-physical attacks. A resource-
constrained attacker (leader) targets a set of control system
components, and the defender (follower) uses an optimal-
flow model to implement response measures after the attack.
The important work by Verma and Bienstock [13] develops
network interdiction models to study the (N − k) problem
in power grids. State-of-the-art computational methods for
solving large-scale mixed integer programs have been applied
to solve these problems.

Still a major gap remains to propagate the effect of at-
tacks on smart grids at the level of mathematical control
specification to numerical solvers and optimization toolboxes,
and runtime machine code executions. Our project aims to
build a defense-in-depth resilient design to address this gap.
Standard control-theoretic techniques such as robustness aim
to ensure that a system is stable in the presence of arbitrary
disturbances. The assumptions underlying these approaches
are that the disturbances are bounded in energy and that the
robust controller is fixed. By comparison, our resilience metric
assumes that the disturbance signal can be arbitrary but is
of finite duration, and that the controller can be modified to
restore stability after a compromise is detected.

Furthermore, the cyber-physical smart-grid operations in-
clude close interactions between its cyber assets and physical
components. Modeling the involved cyber-physical interde-
pendencies concisely is a challenging endeavor. To that end,
we leverage game-theoretic modeling and control theoretic
analysis techniques to consider the cyber security interactions
between the adversaries and the system, and physical dynamics
of the power system, respectively. This hybrid modeling and
analysis framework enables us to investigate the effects of
any malicious cyber-originated misbehaviors (e.g., controller
injection by a computer virus) on the operation of the power
system (e.g., whether the generators are dispatched correctly).

III. ATTACK MODEL

Our proposed resilience definition and the corresponding
assessment metric mainly focus on attacks that originate from
the cyber network and then impact the physical components.
The physical plant is assumed to be controlled by a dis-
tributed set of (possibly redundant) controllers and actuation
points. The (possibly) multi-step cyber attack initiates from
an attacker-resident Internet node and traverses the control
network through several host compromises via vulnerability
exploitations. The adversary’s cyber-side goal is to compro-
mise and gain control over controllers that are in direct contact
with the physical plant actuators. Finally, the attacker will
leverage the malicious access to the compromised controllers
and issue unsafe control commands to drive the underlying
physical plant as much away as possible from the safe states.

Once the deployed defense mechanisms detect the compro-
mised controllers, it takes two types of response and recovery
actions. As the immediate response, the untrusted controllers
are contained and isolated through cyber-side actions (e.g.,
firewall ruleset updates and remote disconnect commands) so
that the compromised controllers cannot affect the underlying
physical plant actuators anyways anymore. The defense mech-
anisms will then take more time-consuming recovery actions
(e.g., via restoring a clean state of a compromised controller)
to recover normal secure operation of the controllers and
connect them back to the network.

IV. MOTIVATION AND OVERVIEW

A. Motivation: Power Grid Case-Study

Traditionally, purely-cyber intrusion resilience solutions
could be either model-based [10] that take advantage of system
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models for their response strategy optimization, or model-
free [15] that do not leverage system models and perform
their strategy selection based on sensor data only. In cyber-
physical settings, we believe that model-free approaches are
often of limited use due to the high system complexity and
sophisticated inter-dependencies among the cyber and phys-
ical components. For instance, cascading failures are widely
studied in the power systems domain and occur due to high
interconnectivity among the power assets. As a case in point,
a single malicious transmission line outage could indirectly
cause several subsequent line outages by forcing power redis-
tribution to adjacent lines, causing them to overload. Using
system models, an estimate of the post-outage flows can be
calculated using line outage distribution factors [16]. It is
noteworthy that similar cascading overload scenarios could
be caused by an ill-designed intrusion resilience engine that
attempts to fix a problem locally without consideration of the
action’s global impact on the power network. Model-based
techniques for cyber-physical intrusion resilience can poten-
tially consider such complex failure and recovery scenarios.

1) Integrated cyber-physical resilience: Cyber-based re-
silience represents strategies and actions that deal with cyber
components and their recovery from intrusions. For instance,
a firewall reconfiguration to proactively prevent an upcoming
attack is a cyber-based response action. Power-side intrusion
response actions support corrective manipulation of power
components, e.g., generation redispatch or line status changes
to tolerate a recent malicious line outage. Power-based strate-
gies and actions support corrective manipulation of power
components for resilience purposes such as power topology
changes to tolerate a recent malicious line outage. When re-
sponding to and recovering from intrusions, cyber- and power-
based resilience engines deal with two completely different
types of system dynamics and incidents (discrete sequential
logic within a computing platform vs. continuous differential
dynamics governing the physical power components). The
actions taken by cyber- and power-based resilience engines are
also radically different. The difference arises because physical
actions often occur on a continuum, e.g., a real number
representing the power generation set-point, whereas cyber
systems have a discrete action set, e.g., block/allow access
attempts to a particular system file.

A truly comprehensive cyber-physical intrusion resilience
architecture makes use of both cyber and physical resilience
engines in an integrated manner such that both discrete and
continuous dynamics are taken into account. Equivalently, it
requires extensions to i) cyber-based intrusion resilience to
make them power-aware so that they take into account the
power system dynamics and topologies when deciding upon
a cyber-based action. For instance, a cyber-based resilience
engine within a CPS setting may prioritize recovery of a
crashed cyber host in charge of a critical generator control
over a unavailable historian logging server host because its
failure leads to more severe physical impact; ii) power-based
fault resilience to make them cyber-security-aware such that
they make operating decisions on optimal response strategies
considering the cyber network status. For instance, a power-
based resilience engine within a CPS setting may choose to

isolate a particular generator from the rest of the power system
(e.g., through node-breaker reconfiguration at the substation)
and compensate for its missing power through secondary
generation plants after receiving a recent notification that the
first generator’s controller has been compromised.
Why consider physical system resilience actions as op-
posed to pure reliance on cyber-side capabilities? Com-
prehensive cyber-physical intrusion resilience requires power-
side response actions because of the following reasons: i) A
malicious attacker may break down a power component such
that the system cannot be restored without physical power-side
actions, e.g., by causing a generator to blow up. When cyber-
only capabilities cannot fix the compromise, automated fixing
via cyber-only capabilities is not possible, taking physical
power-side actions is necessary, e.g., switching to a redundant
component. ii) The consequence of a malicious attack on
the power side is occasionally fixable through automated
commands, e.g., a malicious relay opening could be reverted
simply through a cyber-side close command. However, the
attacker may open the relay again if the controller remains
compromised and its clean state cannot be fully recovered. In
those cases, cyber-side restoration is not feasible based on the
cyber system’s built-in capabilities and degree of redundancy,
and power-side response actions may be required. if the cyber
side restoration is not feasible based on the system’s built-in
capabilities and degree of redundancy. For instance, power-
side actions may be taken to physically isolate the compro-
mised controller through power topology reconfiguration using
other non-compromised breakers in the substation.
Why consider cyber-side response actions as opposed
to pure reliance on traditional control? This is the dual
problem to the one discussed above. Cyber-physical intrusion
resilience requires cyber-based response and recovery action
execution because of the following reasons: i) Pure reliance
on power-side fault resilience may be too costly and slow
for practical deployments. Power-aware cyber-side resilience
facilitates execution of corrective actions on the cyber side
to restore the physical system after an attack (e.g., recover
from a malicious relay opening) through timely restoration
of the compromised controller. In our example attack above,
once the cyber component has been recovered, the protective
relay can simply re-close. Without such cyber-side resilience
support, any potential malicious relay manipulation on a line
would require physical power system reconfiguration and/or
redispatch. ii) Permanent recovery from a cyber-originated
cyber-physical intrusion requires cyber resilience mechanisms;
otherwise, each time the physical resilience solution fixes
an attack consequence, e.g., re-closure of an opened circuit
breaker, the attacker could immediately cause the same con-
sequence again, because the physical resilience engine is not
aware of the compromised set of cyber assets and can only
take cyber-blind control actions that are never able to “clean”
the system from malicious parties or patch the cyber vulner-
abilities. Consequently, without knowledge of the cyber state,
any compromises and their impacts are essentially cumulative,
due to the fact that the system is never cleaned. The system
would only become more compromised, never less, and the
physical-only resilience engine would have an increasingly
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difficult time finding any feasible recovery strategy against
adversaries.

B. Resilience Metric Overview

Our approach to CPS resilience is illustrated in Figure 1.
The system is a hierarchy with two layers. The top (cy-
ber) layer represents the progress of the cyber attack and
is represented as a Markov decision process. The bottom
(physical) layer represents the impact of the attack on the
physical dynamics. For each cyber attack state, we quantify
the resilience of the physical system, which characterizes the
amount of control effort (cost) required to steer the system
back to a stable equilibrium state, which is assumed to be
at zero without loss of generality. The metric implements a
sequential optimization procedure to quantify the difficulty of
driving the under-attack system back to its resilient mode. The
following section describes the details of the proposed metric
and assessment algorithm.

V. METRIC FORMULATION

This section presents our proposed resilience metric. We
first describe the class of systems for which the metric is
defined, and then formulate the metric. We analyze this metric
for linear systems and linear systems with bounded actuation.

A. System Model

We consider attacks on cyber-physical systems in which
the physical plant can be modeled as a continuous dynamical
system with state x(t). The system is assumed to have control
input signal u(t)∈Rm. Furthermore, the adversary is assumed
to be able to introduce a disturbance signal v(t) ∈ Rl . The
disturbance signal of the adversary may represent a physical
attack on the plant, a change to the input signal via compro-
mised control software, or a false data injection. The temporal
dynamics of the state are described by the system

(Ω)

{
ẋ(t) = f (x(t),u(t),v(t))
y(t) = g(x(t),u(t),v(t)) (1)

The function f describes the impact of the adversarial signal
on the plant dynamics, while g describes the impact of the
signal on the observed output, as in the case of false data
injection attack.

A relevant special case of (1) occurs when the control input
u(t) is an affine feedback signal and the adversary is able to
compromise a set of controllers. Suppose that, in the absence
of any compromise, the system dynamics are given by ẋ(t) =
f (x(t)) +Bu(t), where the i-th column of B is denoted bi,
and that the adversary compromises a set of controllers with
indices S⊆ {1, . . . ,m}.

The impact of the attack can be described by defining
matrices B(S) and E(S) as follows. For matrix B(S), let the i-
th column be given by bi if i∈ {1, . . . ,m}\S, and 0 otherwise.
For matrix E(S), let the columns be given by (bi : i ∈ S). The
system dynamics for this case are given by

(Ω)

{
ẋ(t) = f (x(t))+B(S)u(t)+E(S)v(t)
y(t) = g(x(t)) (2)

We assume that x = 0 is an equilibrium point of the
dynamics ẋ(t) = f (x,0,0), i.e., f(0,0,0) = 0. Our definition of
resilience also assumes that all attacks are detected via cyber
intrusions and not through their impact on the physical plant,
and plan to integrate observer-based detection of attacks into
our approach in future work.

B. Metric Definition

In order to define the metric, we first introduce the notion
of basin of attraction.

Definition 1: The basin of attraction is the set of states
D such that x(0) ∈ D and u(t) = v(t) ≡ 0 implies that
limt→∞ x(t) = 0.
Intuitively, the basin of attraction is defined as the set of
initial states such that the system will return to the equilibrium
point 0 if no additional input is provided. In addition to the
basin D, we define the a set of safe states S. Safe states
represent constraints on the basic functionality of the system,
e.g., ensuring that rotor angle separations in a power system do
not exceed π/2. We let W = S∩D. The definition of resilience
is given as follows.

Definition 2: Let T denote the time when a system com-
promise is detected and removed. A system (Ω) is resilient if,
for any adversarial input {v(t) : t ∈ [0,T ]}, the resulting state
x(T ) lies in the basin of attraction when x(0) = 0.

This definition of resilience is analogous to the definition of
resilience in materials science, namely, the amount of energy
that must be exerted to steer the system to a state from which
it cannot recover to the stable equilibrium. We further define
the cost of recovery as follows.

Definition 3: Let R denote the set of states x(T ) that are
reachable by the adversary within time T . For any state x0 ∈
R , define E(x0) to be the cost required to steer the system
state to the origin, i.e.,

E(x0),

min
{∫

∞

0
x(t)T Qx(t)+u(t)T Ru(t) : lim

t→∞
x(t) = 0,x(0) = x0

}
where Q and R are positive definite matrices that describe the
cost of deviating from the zero state and the cost of control,
respectively. The cost of recovery is defined by

max{E(x) : x ∈ R }.

The cost of recovery captures the additional energy required
to return the system to the stable state following a disturbance
or malicious attack. The quadratic metric E(x0) is chosen for
consistency with the standard cost functions from the control
theory literature.

C. Resilience of Linear Systems

We first consider linear systems, which will provide initial
insights towards our approach. The results of this subsection
are valid for linear systems, but may also be applicable to
nonlinear systems that can be approximated by linear systems,
such as the linearization of a nonlinear system around a stable
operating point. This approach to analysis of nonlinear systems
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Hence for t > T , the fact that (A+BiKi) is asymptotically stable
guarantees that the system state returns to 0 and resilience is satis-
fied.

In order to satisfy the conditions of Proposition 2, we consider
ellipsoidal R defined by

R :=
⇢

x : xT Px  1
a2

�
,

where a > 0 and P is a positive definite matrix. We compute a can-
didate value of P based on the solution to the optimization problem

minimize r
P,r
s.t. AT P+PA+rI > 0, P > 0

(3)

For any fixed r, the existence of a matrix P > 0 satisfying AT P+
PA+ rI > 0 can be obtained by solving the Lyapunov equation.
Hence (3) can be solved by a binary search over the possible values
of r.

Note that if the optimal value of r in (3) is negative, then the ma-
trix A is asymptotically stable and resilience is satisfied automati-
cally. We choose the matrix P based on (3) so that we can apply
Lyapunov theory to prove invariance of the set R , while the goal of
minimizing r can be interpreted as selecting the minimum-energy
controller needed to stabilize A.

Using this definition of P, it remains to find R and the controller
matrices. Turning to property (a) of Proposition 2, we have the
following sufficient condition.

LEMMA 1. Suppose that R = {x : xT Px  1
a2T } and for any

x 2 R ,

xT (AT
i P+PAi)x+2bET

i Px  1
a2T

.

Then {x(t) : t 2 [0,T ]}⇢ R for any adversarial input signal v(t).

PROOF. Define a function V (t) by V (t) = x(t)T Px(t). Since
V (0) = 0, a sufficient condition for {x(t) : t 2 [0,T ]}⇢ R is V̇ (t)

1
a2T for t 2 [0,T ]. We have that

V̇ (t) = x(t)T Pẋ(t)+ ẋ(t)T Px(t)

= xT (AT
i P+PAi)x(t)+2v(t)ET

i Px

yielding the desired result.

Lemma 1 implies that

max{xT (AT P+PA)x+2vET
i Px : xT Px  1

a2 , |v| b} 1
a2T

is a sufficient condition for (a) in Proposition 2. Since the maxi-
mum value occurs at v = b if ET

i Px > 0 and v =�b otherwise, we
obtain that this condition is equivalent to

max{xT (AT
i P+PAi)x+2bET

i Px : xT Px  1
a2 }

1
a2T

.

Finally, letting x̂ = ax and multiplying both sides by a2 gives the
equivalent condition

max{x̂T (AT
i P+PAi)x̂+2abET

i Px̂ : x̂T Px̂  1} 1
T

(4)

The left-hand side of (4) is a pointwise maximum of convex func-
tions in Ai and a, and hence is convex, making this a convex con-
straint for (a).

For condition (b) of Proposition 2, a sufficient condition is that

the matrix Ai := A+BiKi satisfies the Lyapunov equation

AT
i P+PAi < 0,

which is a linear matrix constraint. Finally, the condition

max{||Kx||• : xT Px  1
a2 }

can be made equivalent to

max{||Kx̂||• : x̂T Px̂  1} ga,

which is convex in Ki and a, by setting x̂ = ax. Combining these
conditions together yields the convex feasibility problem

minimize 1
a,K

K1, . . . ,Km
A1, . . . ,Am
A1, . . . ,Am

s.t. Ai = A+BiK, Ai = A+BiKi, i = 1, . . . ,m
max{x̂T (AT

i P+PAi)x̂+2abET
i Px̂ : x̂T Px̂  1} 1

T
AT

i P+PAi < 0,AT
i P+PAi < 0, i = 1, . . . ,m

max{Kix̂||• : x̂T Px̂  1} ag
max{||Kix̂||• : x̂T Px̂  1} ag

(5)
Minimizing the cost of recovery is described as follows. Suppose

the cost function is defined by

U = max
x(0)2R

Z •

0
x(t)T Qx(t)+u(t)Ru(t) dt.

A bound on the cost function is given by the following lemma.

LEMMA 2. Suppose that

max
i=1,...,m

smax(P�1/2(Q+KT
i RKi)P�1/2  s

and V̇ (t)�rV (t), where V (t) = x(t)T Px(t). Then U  1
a2

s
r .

PROOF. For any i = 1, . . . ,m, we have that

U = max
x(0)2R

Z •

0
x(t)T (Q+KT

i RKi)x(t) dt

= max
x(0)2R

Z •

0
x(t)T P1/2P�1/2(Q+KT

i RKi)P�1/2P1/2x(t) dt

 max
x(0)2R

Z •

0
x(t)T Px(t)smax(P�1/2(Q+KT

i RKi)P�1/2) dt

which follows from the definition of the singular value.
Furthermore, if V̇ (t)  �rV (t), then x(t)T Px(t) = V (t) 
e�rtx(0)T Px(0). Combining these inequalities yields

U  max
x(0)2R

Z •

0
e�rtx(0)T Px(0)smax(P�1/2(Q+KT

i RKi)P�1/2) dt.

By definition R = {x : xT Px  1
a2 }, and thus U  1

a2
s
r .

Lemma 2 implies that, in order to minimize the cost of recovery,
it suffices to find the minimum value of b := s

r such that

smax(P�1/2(Q+KT
i RKi)P�1/2) s (6)

V̇ (t)�rV (t) (7)

We have that (6) is equivalent to

P�1/2(Q+KT
i RKi)P�1/2 �sI  0,
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Fig. 1: Cyber-Physical Resilience Metric

is relevant to scenarios such as small-signal stability evaluation
in power systems. For a linear system with dynamics

ẋ(t) = Ax(t)+Bu(t) (3)
ẏ(t) = x(t)

the conditions for resilience can be described via controlla-
bility analysis of the system. Consider the controller com-
promised attack described by (2). As a preliminary, let
{q1, . . . ,ql} denote the set of unstable modes of A.

Proposition 1: Suppose that (A,B) is a linear system and that
A is diagonalizable. The system (3) is resilient to compromise
of a set of controllers S iff any unstable mode q of A that lies in
the controllable subspace of E(S) also lies in the controllable
subspace of B(S).

Proof: Suppose that an unstable mode q lies in the
controllable subspace of E(S) but not the controllable subspace
of B(S). Then there is an input {v(t) : t ∈ [0,T ]} such that
x(T ) = q when u(t) = 0. Furthermore, by superposition and
the fact that q is not in the controllable subspace of B(S), for
any input u(t), x(T ) = q+ r where r is linearly independent
of q. Since q is not in the controllable subspace of (A,B(S)),
q is not in the span of the controllability Gramian for the
system (A,B(S)), the vector x(T ) is also not in the span, and
hence there is no input u(t) that can steer the system to a
neighborhood of the origin.

Conversely, suppose that every unstable mode that is in the
controllable subspace of (A,E(S)) is also in the controllable
subspace of (A,B(S)). Then x(T ) can be decomposed as
x(T ) = r′+r′′, where r′ is in the controllable subspace and r′′
is in the span of the stable modes, and hence will converge to 0
in the absence of any control action. Thus for any ε > 0, there
exists a time index T ′ and a control signal {u(t) : t ∈ [T,T ′]}
such that ||x(T ′)||< ε, implying that convergence to 0 can be

guaranteed.
Based on Proposition 1, we say that a set of controllers Z

is resilient if the set of unstable modes, denoted {u1, . . . ,ul},
satisfy {u1, . . . ,ul} ⊂ span(B(Z) AB(Z) · · · An−1B(Z)). A set
of controllers is denoted a critical resilient set if all non-trivial
subsets of Z are not resilient. Equivalently, Z is a critical
resilient set if for any j ∈ Z, there exists i ∈ {1, . . . , l} such
that ui /∈ span(B(Z \{ j}) · · ·An−1(B(Z \{ j})). The problem of
selecting a minimum-cardinality set of controllers satisfying
this condition has been considered in, e.g., [17], and is known
to be NP-hard but approximable within polynomial time up to
a provable optimality bound of O(logm).

The cost of recovery for a linear system can be computed
by minimizing the cost function

max
x(0)

{∫
∞

0
x(t)T Qx(t)+u(t)T Ru(t) dt

}
.

The controller that minimizes this cost function is a feedback
controller u(t) = K(S)x(t), where K(S) is obtained as K(S) =
−R−1B(S)T P and P is the solution to the algebraic Riccati
equation

AT P+PA−PB(S)R−1B(S)T P+Q = 0.

D. Resilience under Actuator Saturation

Another relevant case is linear systems with actuator satu-
ration, which have dynamics defined by

ẋ(t) = Ax(t)+Bsat(u(t)),

where sat : Rm→ Rm is a function defined by

(sat(u))i =

 −γ, ui <−γ

γ, ui > γ

ui else
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Actuator saturation is relevant to resilience because it provides
a natural scenario in which the adversary has a limited impact
on the system, while the system has a limit on its ability to
recover. For ease of analysis, we assume that only a single
controller is compromised; our approach, however, can be
extended to compromise of multiple controllers.

The resilient system design must ensure that, if the
adversary is detected within time T , the remaining non-
compromised controllers can still drive the system state back
to 0. Our approach is to synthesize a family of resilient
controllers u(t) = Kx(t) such that the system state is restricted
to a region where the actuator saturation constraints are never
binding, or equivalently, ||u(t)||∞ ≤ γ. We restrict to this set
of states in order to ensure computational tractability of the
controller design problem. Specifically, we synthesize a single
controller matrix K and a region R that guarantees that the
system remains in region R up to time T after a single
controller has been compromised, as well as a set of controllers
K1, . . . ,Km that steer the state back to the origin after the
compromise has been detected. Under this approach, the state
dynamics are given by

ẋ(t) =
{

Ax(t)+Bisat(Kx(t)), t ∈ [0,T ]
(A+Bisat(Kix(t))), t > T

where Bi is equal to the matrix B with the i-th column
(corresponding to the compromised controller) set to 0.

Proposition 2: Suppose that there exists a set R and a
set of controllers K1, . . . ,Km and K satisfying the following
conditions: (a) If node i is compromised at time 0 with
x(0) = 0, then {x(t) : t ∈ [0,T ]} ⊂ R when controller K is
active; (b) Controller Ki guarantees asymptotic stability of
the origin and positive invariance of R ; (c) ||Kix||∞ ≤ γ and
||Kix||∞ ≤ γ for all x ∈ R , where Ki is the matrix obtained by
removing the i-th column of K. Then the system is resilient
to compromise of any single controller.

Proof: If conditions (a)–(c) hold, then the system dynam-
ics are given by

ẋ(t) =
{

(A+BiKi)x(t)+Esat(v), t ∈ [0,T ]
(A+BiKi)x(t), t > T

where Esat(v) represents the impact of the malicious con-
troller. Hence for t > T , the fact that (A+BiKi) is asymp-
totically stable guarantees that the system state returns to 0
and resilience is satisfied.

In order to satisfy the conditions of Proposition 2, we
consider ellipsoidal R defined by

R :=
{

x : xT Px≤ 1
α2

}
,

where α > 0 and P is a positive definite matrix. We compute
a candidate value of P by solving

AT P+PA−ρP =−I, (4)

where ρ is the largest eigenvalue of A.
We choose the matrix P based on (4) so that we can apply

Lyapunov theory to prove invariance of the set R , while
the goal of minimizing ρ can be interpreted as selecting the
minimum-energy controller needed to stabilize A.

Remark 1: Certain types of safety constraint can also be
incorporated into this choice of R . For example, when the
set of safe states is an ellipsoidal region {xT Θx≤ ξ}, the set
{xT Px≤ 1

α2 } satisfies the safety requirement iff

α≥ 1√
ξ

λmax((P−1/2)T
ΘP−1/2).

Using this definition of P, it remains to find R and the
controller matrices. Turning to property (a) of Proposition 2,
we have the following sufficient condition.

Lemma 1: Suppose that R = {x : xT Px ≤ 1
α2T } and there

exists b > 0 such that for any x ∈ R ,

xT (AT
i P+PAi)x+2bET

i Px≤ 1
α2T

.

Then {x(t) : t ∈ [0,T ]} ⊂ R for any adversarial input signal
v(t).

Proof: Define a function V (t) by V (t)= x(t)T Px(t). Since
V (0) = 0, a sufficient condition for {x(t) : t ∈ [0,T ]} ⊂ R is
V̇ (t)≤ 1

α2T for t ∈ [0,T ]. We have that

V̇ (t) = x(t)T Pẋ(t)+ ẋ(t)T Px(t)
= xT (AT

i P+PAi)x(t)+2v(t)ET
i Px

yielding the desired result.

Lemma 1 implies that

max{xT (AT P+PA)x+2vET
i Px : xT Px≤ 1

α2 , |v| ≤ b} ≤ 1
α2T

is a sufficient condition for (a) in Proposition 2. Since the
maximum value occurs at v = b if ET

i Px > 0 and v = −b
otherwise, we obtain that this condition is equivalent to

max{xT (AT
i P+PAi)x+2bET

i Px : xT Px≤ 1
α2 } ≤

1
α2T

.

Finally, letting x̂ = αx and multiplying both sides by α2 gives
the equivalent condition

max{x̂T (AT
i P+PAi)x̂+2αbET

i Px̂ : x̂T Px̂≤ 1} ≤ 1
T

(5)

The left-hand side of (5) is a pointwise maximum of convex
functions in Ai and α, and hence is convex, making this a
convex constraint for (a).

For condition (b) of Proposition 2, a sufficient condition is
that the matrix Ai := A+BiKi satisfies the Lyapunov equation

AT
i P+PAi < 0,

which is a linear matrix constraint. Finally, the condition

max{||Kx||∞ : xT Px≤ 1
α2 }

can be made equivalent to

max{||Kx̂||∞ : x̂T Px̂≤ 1} ≤ γα,

which is convex in Ki and α, by setting x̂ = αx. Combining
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these conditions together yields the convex feasibility problem

variables: α,K,K1, . . . ,Km,A1, . . . ,Am,A1, . . . ,Am
constraints: Ai = A+BiK, Ai = A+BiKi, i = 1, . . . ,m

max{x̂T (AT
i P+PAi)x̂+2αbET

i Px̂ : x̂T Px̂≤ 1} ≤ 1
T

AT
i P+PAi < 0,AT

i P+PAi < 0, i = 1, . . . ,m
max{Kix̂||∞ : x̂T Px̂≤ 1} ≤ αγ

max{||Kix̂||∞ : x̂T Px̂≤ 1} ≤ αγ

(6)
Minimizing the cost of recovery is described as follows.

Suppose the cost function is defined by

U = max
x(0)∈R

∫
∞

0
x(t)T Qx(t)+u(t)Ru(t) dt. (7)

A bound on the cost function is given by the following
lemma.

Lemma 2: Suppose that

max
i=1,...,m

σmax(P−1/2(Q+KT
i RKi)P−1/2 ≤ σ

and V̇ (t)≤−ρV (t), where V (t) = x(t)T Px(t). Then U ≤ 1
α2

σ

ρ
.

Proof: For any i = 1, . . . ,m, we have that

U = max
x(0)∈R

∫
∞

0
x(t)T (Q+KT

i RKi)x(t) dt

= max
x(0)∈R

∫
∞

0
x(t)T P1/2P−1/2(Q+KT

i RKi)P−1/2P1/2x(t) dt

≤ max
x(0)∈R

∫
∞

0
x(t)T Px(t)σmax(P−1/2(Q+KT

i RKi)P−1/2) dt

which follows from the definition of the singular value.
Furthermore, if V̇ (t) ≤ −ρV (t), then x(t)T Px(t) = V (t) ≤
e−ρtx(0)T Px(0). Combining these inequalities yields

U ≤ max
x(0)∈R

∫
∞

0
e−ρtx(0)T Px(0)σmax(P−1/2(Q+KT

i RKi)P−1/2) dt.

By definition R = {x : xT Px≤ 1
α2 }, and thus U ≤ 1

α2
σ

ρ
.

Lemma 2 implies that, in order to minimize the cost of
recovery, it suffices to find the minimum value of β := σ

ρ
such

that

σmax(P−1/2(Q+KT
i RKi)P−1/2)≤ σ (8)

V̇ (t)≤−ρV (t) (9)

We have that (8) is equivalent to

P−1/2(Q+KT
i RKi)P−1/2−σI ≤ 0,

which is in turn equivalent to σP−Q−KT
i RKi ≤ 0. Using the

Schur complement theorem, this inequality is equivalent to the
linear matrix inequality(

σP−Q KT
i

Ki R−1

)
≥ 0.

For constraint (9), we have that V̇ (t) ≤ −ρV (t) is equivalent
to

(A+BiKi)
T P+P(A+BiKi)+ρP≤ 0,

which is a linear matrix inequality in ρ and Ki.
Combining these inequalities with (6) yields a formulation

for synthesizing resilient controllers with minimum cost of

recovery.

minimize β

α2

variables: α,K,K1, . . . ,Km,A1, . . . ,Am,A1, . . . ,Am,σ
constraints: Ai = A+BiK, Ai = A+BiKi, i = 1, . . . ,m

max{x̂T (AT
i P+PAi)x̂+2αbET

i Px̂ : x̂T Px̂≤ 1} ≤ 1
T

AT
i P+PAi < 0,AT

i P+PAi < 0, i = 1, . . . ,m
max{||Kix̂||∞ : x̂T Px̂≤ 1} ≤ αγ

max{||Kix̂||∞ : x̂T Px̂≤ 1} ≤ αγ

σ≤ ρβ(
σP−Q KT

i
Ki R−1

)
≥ 0.

(A+BiKi)
T P+P(A+BiKi)+ρP≤ 0

(10)
Eq. (10) is convex for any fixed β; hence, an optimal

solution can be found in quasi-polynomial time by using a
bisection algorithm to iterate over the possible values of β.

As an example, consider a single-input, single-output sys-
tem with one state variable. The dynamics are given by

ẋ(t) = ax(t)+bsat(u1(t))+bsat(u2(t)),

where a and b are positive constants. The system is resilient
if the system can always be recovered to the 0 state when
the attack is detected within time T . Suppose without loss
of generality that the signal u2(t) is compromised first. We
observe that if x(0)> 0, then the adversary’s optimal strategy
will be to choose u2(t)≡ γ, while the best-case for the system
response will be u1(t)≡−γ. The resulting dynamics are given
by ẋ(t) = ax(t), so that x(t) = eaT x(0).

Now, we consider the set of states x such that the system
can be returned to 0 from state x after the attack is detected.
We have that ẋ(t) > ax(t)−bγ, and therefore the system can
be returned to 0 iff ax < bγ, or alternatively x < bγ

a . Hence,
if x(T ) > bγ

a at the detection time T , then the system state
cannot be returned to 0. Equivalently, if x(0) > e−aT bγ

a , then
the adversary can destabilize the system.

We therefore arrive at the following control strategy to
ensure resilience. When |x(t)| < e−aT bγ

a − ε for some ε > 0,
then the system follows a stabilizing linear control law, i.e.,
u1(t) = u2(t) =− (a+δ)

b x(t) for some δ > 0. For x(t) outside of
that range, follow the law u1(t) = u2(t) = γ when x(t)< 0 and
u1(t) = u2(t) =−γ when x(t)> 0. Following such a rule will
ensure resilience provided that the system is initialized close
to 0.

VI. CYBER-SIDE RESILIENCE

We explain how we model cyber network security attacks
using a hierarchical game scheme for resilience assessment.

A. Defense vs. Attacker Modeling

Generally, every cyber attack path consists of an escalating
series of vulnerability exploitations by the adversary. The
adversary initially has no access to the control network and
then achieves the privilege required to reach his or her mali-
cious goals, e.g., causing a power transmission line outage by
opening the corresponding relay. In particular, a state is defined
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as the compromised privilege domains in that state. Therefore,
the initial state is (∅), in which the attacker does not yet have
any privileges over the power network. Each adversarial state
transition represents a privilege escalation which is achieved
through a vulnerability exploitation.

Reciprocal interaction between the adversary and system
operator or automated response engine is a game in which
each player tries to maximize his or her own benefit. Formally,
the response selection process by system operators is modeled
as a sequential Stackelberg stochastic game [18] in which the
operator acts as the leader while the attacker is the follower;
however, in our infinite-horizon game model, their roles may
change without affecting the final solution to the problem.

More specifically, the game is a finite set of security states A
that cover all possible security conditions that the system could
be in. The system is in one of the security states s at each time
instant. From the system’s current state, the operator, i.e., the
leader, chooses and takes a response action ar ∈A admissible
in s, which leads to a security state transition to s′. The
attacker, which is the follower, observes the action selected
by the leader, and then chooses and takes an adversarial
action aa ∈ A admissible in s′, resulting in a state transition
to s′′. At each transition stage, players may receive some
reward according to the reward function for each player at the
destination state. The reward function value for the operator
is defined as the security measure of the corresponding state.
On the other hand, the reward function for an attacker is
usually not known accurately, because an attacker’s reward
depends on his final malicious goal, which is also not always
known. Therefore, assuming that the attacker takes the worst
possible adversarial action, the response actions are chosen
based on a security strategy called maximin (discussed later).
It is also important to note here that although S is a finite set,
it is possible for the game to revert back to some previous
state; therefore, the operator-adversary game can theoretically
continue forever. This stochastic game is essentially an an-
tagonistic multi-controller Markov decision process, called a
competitive Markov decision process (CMDP) [19].

Formally, a discrete competitive Markovian decision process
Γ is defined as a tuple (S ,A ,Res(.),P,γ) where S is the
security state space, assumed to be an arbitrary non-empty set
endowed with the discrete topology. A is the set of actions,
which itself is partitioned into response actions and adversarial
actions depending on the player. For every s ∈ S , A(s) ⊂ A
is the set of admissible actions at state s. The measurable
function Sec : S → [0,1] is the security measure calculated for
each state, and P is the transition probability function; that is,
if the present state of the system is s∈ S and an action a∈A(s)
is taken, resulting in state transition to state s′ with probability
P(s′|s,a), an immediate reward Res(s′), i.e., resilience measure
value of the state s′, is obtained by the player taking the action.
γ is the discount factor and is normalized, i.e., 0 < γ < 1.

B. Optimal response selection

We explain how we model the response action selection
procedure by the defense mechanism. Our solution solves the
generated CMDP to find the optimal action which maximizes

the expected accumulative long-run reward measure received
after a sequence of response and adversarial actions. Using the
infinite-horizon discounted cost technique [20], the solution
gives more weight to nearer future rewards by recursively
adding up the immediate reward, i.e., resilience measure value
Res(.), and the discounted expected game value from then on.

To formulate, we compute the optimal policy π∗ that asso-
ciates with any belief state b∈ B an optimal action π∗(b). Our
solution formulates the response action selection procedure as
a game-theoretic maximin problem. In particular, every policy
π is assigned a value function Vπ that associates every belief
state b ∈ B with an expected global reward Vπ(b) obtained
by applying π in b. For finite-horizon POMDPs, the optimal
value function is piecewise-linear and convex [21], and it
can be represented as a finite set of vectors. In the infinite-
horizon formulation, a finite vector set can closely approximate
the optimal value function V ∗, whose shape remains convex.
Bellman’s optimality equation (Equation (11)) characterizes
the unique optimal value function V ∗, from which an optimal
policy π∗ can be easily derived:

V ∗(b) = max
ar∈A(b)

Ψ(V ∗,b,ar), (11)

where Ψ denotes the value function given that a specific
response action is taken:

Ψ(V ∗,b,a) =

ρ(b′b,a)+
√

γ · min
aa∈A(b′b,a)

[ρ(b′′b′,aa
)+
√

γ ·V (b′′b′,aa
)]}, (12)

in which b′b,a denotes the updated next belief state if the current
state is b and action a is taken:

b′b,a(s
′) = ∑

s∈S
[P(s′|s,a).b(s)], (13)

and the ρ function computes security measure values for belief
states using security levels of individual states:

ρ(b) = ∑
s∈S

[b(s) ·Res(s)]. (14)

Briefly, to calculate V ∗ numerically, our solution uses the
value iteration algorithm [22] that applies dynamic program-
ming iterative updates to gradually improve on the value
until it converges to the ε-optimal value function [22], i.e.
| Vt(b)−Vt−1(b) |< ε. Through improvement of the value,
the policy is implicitly improved as well. Once the partially
observable decision process is formulated and the ε-optimal
value function is calculated, the solution determines the opti-
mal response strategy π∗ at any given belief state by choosing
the response action which maximizes V ∗. The optimal policy
π∗ maps the system’s current belief state b to a response action
using the following equation:

π
∗(b) = arg max

ar∈A(b)
Ψ(V ∗,b,ar). (15)

C. Automatic Cyber Model Generation
We discuss how one can generate the game-theoretic CMDP

for the target control network given the network topology,
access control policies and cyber-physical interconnections
among cyber and physical components.
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The control network’s access control policies, such as
firewall rulesets, are composed of rules about sources (IP/port
addresses) that are either allowed or not allowed to reach
a destination. Our implementation parses the rulesets and
creates a binary network connectivity matrix that is a Cartesian
product of host systems. The [i, j] entry of the matrix takes
on a true value if traffic from host hi to host h j is allowed,
and a false value if it is not allowed. The connectivity matrix
always includes an Internet node representing a group of hosts
outside of the network where attackers are assumed to initially
reside.

The implemented solution generates a comprehensive
CMDP model of the control network that represents all
possible attack paths. In particular, the generated CMDP by
design, would address all system vulnerabilities including pre-
viously unknown exploitations. Additionally, the monotonicity
property [23] is assumed; in other words, an attacker never
backtracks, and hence does not need to relinquish privileges
already gained.

To generate the CMDP model, our tool analyses the control
network topology input to find out about the set of known
system vulnerabilities and individual host computers, i.e.,
privilege domains. Given the set of system vulnerabilities,
the connectivity matrix is updated accordingly to encode
adversarial paths only. In particular, the tool automatically
generates a CMDP by traversing the connectivity matrix and
concurrently updating the CMDP. First, our solution creates
the CMDP’s initial state (∅) and starts the CMDP gener-
ation with the network’s entry point (Internet) node in the
connectivity matrix. Considering the connectivity matrix as a
directed graph, the solution runs a depth-first search (DFS) on
the graph. While DFS is recursively traversing the graph, it
keeps track of the current state in the CMDP, i.e., the set of
privileges already gained through the path traversed so far by
DFS. When DFS meets a graph edge [i, j] that crosses over
privilege domains hi to h j, a state transition aa ∈ A in CMDP
is created if the current state in CMDP does not include the
privilege domain of the host to which the edge leads, i.e.,
h j. The transition in CMDP is between the current state and
the state that includes exactly the same privilege set as the
current state plus the host h j directed by the graph edge [i, j].
The CMDP’s current state in the algorithm is then updated
to the latter state, and the algorithm proceeds until no further
updates to CMDP are possible according to the connectivity
matrix.

In addition to the adversarial transitions, the above algo-
rithm also updates the CMDP regarding possible response
and recovery actions ar ∈ A. In particular, host redundancies,
specified by the control network topology input, help to create
responsive state transitions. As a case point, consider that
for a control network data historian server in the control
network there exists a redundant hot spare server designated
for intrusion tolerance purposes. To model such a proactive
design, our solution creates a responsive state transition,
denoting the recover the historian server action, from any
state in which the historian server is compromised to states
containing the same privileges except the historian server. At
that point, the offline CMDP generation is complete, and by

design, the CMDP includes all possible attack paths launching
from remote (Internet) host systems against the network as
well as response and recovery scenarios.

VII. HYBRID CPS RESILIENCE METRIC

Our cyber-physical resilience metric employs the individual
resilience metrics for the physical plant (Section V) and the
cyber network (Section VI) to evaluate the resilience of the
whole cyber-physical platform against the malicious cyber-
originated misbehaviors.

Section V presented a resilience metric that considers only
the physical components given the subset of compromised con-
trollers regardless of how those controllers get compromised.
The difficulty of compromising a specific subset of controllers
heavily depends on the cyber network topology and its con-
figuration and global access control policies. Section VI-A
modeled this through the state-based CMDP model genera-
tion and analysis. The model can also be enhanced through
cyber security intrusion detection sensor alerts (observable
incidents), and treated as a hidden Markovian model (HMM)
to estimate the current state of the under-attack cyber network
given the last sequence of the triggered alerts1.

On the other hand, although the cyber-side network mod-
eling and analysis can assess the difficulty of compromising
any subset of controllers through cyber attack paths, it lacks
the information regarding the impact of those compromised
controllers on the resilience of the physical plant, which is
measured by the resilience metric discussed in Section V.
Section VI assumed the impact measure given as the function
Res : S→ R .

In particular, the impact of the compromised controllers
on the physical plant is measured by the recovery cost U
formulated in Equation 7. Therefore, through the following
assignment, our framework’s cyber-physical resilience metric
considers both cyber and physical topologies:

Res(s)←−Us, (16)

where Us denotes the recovery cost of the physical system for
the case, where the subset of the controllers defined by s∈ S (in
CMDP) have been compromised. Using the abovementioned
assignment, the cyber-based response system can leverage the
measured impact of the compromised controllers defined by
the CMDP’s state notion (defined in Section VI-C; shown on
Figure 1).

As a result, our framework can measure the resilience
metric Res for individual states of the generated CMDP model
si ∈ S by computing the physical system metric Usi for each
state. It is possible that, in the CMDP state si, none of the
controllers may be compromised yet, because the adversary
has not penetrated into the cyber control network sufficiently
deeply. For instance, in Figure 1, the CMDP state s3 = {D,E}
does not include a compromised controller, whereas, one of
its subsequent states s5 = {D,E,A} includes a compromised

1Such a cyber security state estimation can be accomplished using conven-
tional HMM techniques (e.g., Viterbi-based most likely path determination)
and is outside of the scope of our paper.
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controller A. The state transition s3→ s5 requires compromis-
ing a software vulnerability in controller A by the adversary,
whereas the state transition s5→ s3

2 requires recovery of the
compromised controller A through restoring its clean state by
the response system.

For the CMDP states s with no compromised controllers, our
solution assigns Res(s)← 0. For the states with a nonempty
subset of compromised controllers, we use Equation 16 to
calculate the resilience measure for the state. Once, the Res
function are evaluated for all the states, our solution will
implement the value iteration procedures to calculate the
optimal value function V : S→R using Equation 11. Once the
value iteration converges, the calculated values for individual
CMDP model states represent the cyber-physical resilience
metric for individual states:

CPR(s) =V ∗(s) ∀s ∈ S. (17)

The evaluated cyber-physical resilience metric CPR(s) in-
volves i) the difficulty of the cyber attack paths starting from
the current state s to gain control over any subset of the
controllers with actuation power on the physical plant, and
ii) the ultimate impact of the those attacks (if the path is
successfully traversed) on the physical plant’s resilience (i.e.,
whether the physical system’s safe state can be recovered, and
if so, what the recovery cost would be).

VIII. EVALUATION

In this section, we discuss the implementation and present
experimental evaluation results. All our experiments were
performed on a 32-bit system with an Intel Core 2 2.16 GHz
CPU, 3.00 GB of memory, and the Windows 7 Professional
operating system.

A. Cyber Resilience

Implementations. A unified XML [24] format was used
to describe the power system control network topology and
network access policy rules (e.g., firewall rules). During the
offline phase, we use the NetAPT tool [25] to perform a
comprehensive security analysis of the access policy rules and
to produce the network connectivity matrix according to the
control network topology input. The matrix is later translated
to the corresponding CMDP model. On the power side, we
used PowerWorld Simulator [26] to simulate the underlying
system. In particular, we used the SimAuto toolbox to set up
a real-time connection to PowerWorld.

In our experiments, we evaluated the solution on a simulated
power grid infrastructure [4]. The control network models
were built based on topology of a real power control network.
Figure 2 shows the topology of a single control network
that has 59 nodes, e.g., host systems and firewalls. The first
control network monitors and controls buses 1− 12 in the
power system, and the second network monitors and controls
buses 13−24. In particular, each power bus is monitored and
controlled by a single host system in the corresponding control

2For presentation simplicity, the response and recovery transitions are not
shown in Figure 1, but are discussed in Section VI-A.
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Fig. 2: Experimental Power Grid Testbed Architecture

network. Gray nodes show host systems; blue nodes are local
network routers; red nodes represent firewalls; and the green
node illustrates the organizational major router.

Model generation. Given the network topology and the
access policy rules, i.e., about 100 firewall rules, the engine
constructed the network connectivity matrix and generated the
corresponding CMDP model. It is noteworthy that because
the CMDP models may not be scalable specially for large-
scale power-grid infrastructures, we use the envelope algorithm
[27], where the CMDP is generated partially, and hence, not
every individual state needs to enumerated and analyzed. More
technically, given the current system state, only reachable
states up to some finite horizon are explored and used for the
contingency analysis. Figure 3 illustrates a simplified version
of the generated CMDP in which states with incidents that
are exclusively cyber are drawn in white, while states with
physical consequences are in gray. The first number on each
state represents its ID. Table I maps each state ID to the IDs
of the compromised assets in each state.

As shown on the generated CMDP, the attacker initially
resides remotely in the Internet with no privilege on the power
network (CMDP’s state 0) and can then traverse different
attack paths to access a particular host in the power network.
Each CMDP edge represents an access (i.e., possibly a vul-
nerability exploitation) allowed from a source to a destination
host in the power network.

Metrics. In our experiments, we pessimistically assumed
that all the hosts include security vulnerabilities in order to
perform a worst case performance analysis. We calculated
the resilience measure for individual states in the generated
CMDP (i.e., shown as second and third number on each state
in Figure 3, respectively). In a CMDP, there are usually many
states with an identical set of physical contingencies that result
in equal performance index values. To accelerate the metric
calculation and minimize the number of connections to and
calculations by PowerWorld, which is a time-consuming step
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Fig. 3: Automatically Generated Model of the Power Grid for the Game-Theoretic Intrusion Resilience

TABLE I: Mappings between CMDP State IDs (Figure 3) and Compromised Asset IDs
State Assets State Assets State Assets State Assets State Assets State Assets State Assets State Assets State Assets
0 6 1 61 2 610 3 6102 4 61023 5 610234 6 6102349 7 61023495 8 610234957
9 6102349578 10 610234958 11 61023497 12 610234978 13 61023498 14 610235 15 6102354 16 61023547 17 610235478
18 61023548 19 6102357 20 61023578 21 6102358 22 610237 23 6102374 24 61023748 25 6102378 26 610238
27 6102384 28 6103 29 61034 30 610349 31 6103495 32 61034957 33 610349578 34 61034958 35 6103497
36 61034978 37 6103498 38 61035 39 610354 40 6103547 41 61035478 42 6103548 43 610357 44 6103578
45 610358 46 61037 47 610374 48 6103748 49 610378 50 61038 51 610384 52 6104 53 61049
54 610492 55 6104925 56 61049257 57 6104927 58 610495 59 6104957 60 610497 61 6105 62 61052
63 610524 64 6105247 65 610527 66 61054 67 610547 68 61057 69 6107 70 61072 71 610724
72 61074 73 617 74 60 75 61024 76 602 77 6023 78 60234 79 602349 80 6023495
81 60234957 82 602349578 83 60234958 84 6023497 85 60234978 86 6023498 87 60235 88 602354 89 6023547
90 60235478 91 6023548 92 602357 93 6023578 94 602358 95 60237 96 602374 97 6023748 98 602378
99 60238 100 602384 101 603 102 6034 103 60349 104 603495 105 6034957 106 60349578 107 6034958
108 603497 109 6034978 110 603498 111 6035 112 60354 113 603547 114 6035478 115 603548 116 60357
117 603578 118 60358 119 6037 120 60374 121 603748 122 60378 123 6038 124 60384 125 604
126 6049 127 60492 128 604925 129 6049257 130 604927 131 60495 132 604957 133 60497 134 605
135 6052 136 60524 137 605247 138 60527 139 6054 140 60547 141 6057 142 607 143 6072
144 60724 145 6074 146 67

due to the AC power flow solution procedures, the implemen-
tation uses a caching solution to calculate the performance
index value for each physical contingency set only once.

Incident ranking. We implemented the resilience metric
to rank various security incidents that could occur accord-
ing to the system’s current state and the generated CMDP
model once the resilience indices are calculated for the power
grid’s corresponding CMDP model. Figure 4 shows the time
requirement of the index calculations for system models with
different sizes. Table II shows the ranked list of cyber-physical
contingencies for each state in our case study power grid. It
is important to mention that the reported results are for the
case in which the attacker has not yet caused any contingency
in the power grid, i.e., the current state is s0 = ∅ with ID
0. As shown, the edge s0− > s74 is ranked as the most
critical contingency as it allows the attacker to get to the most
impactful physical consequence with the least amount of cyber
exploitation effort.

B. Physical Resilience
We evaluated our proposed resilience assessment metric

through a numerical study using Matlab. Our study evaluated
the resilience of the IEEE 57 bus power system test case [28]
(Figure 5(a)) with linearized generator swing dynamics.

The states corresponded to the generator rotor angles. Since
there are 7 generators in this system, the dimension of the state
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Fig. 4: Time Requirement for the Index Calculation

space is N = 7. In order to compute the state dynamics matrix
A, we solved an optimal power flow problem to obtain an
initial operating point using the Matpower utility [29]. This
operating point is identical to the Matpower IEEE 57 bus
test case, except with the load demands increased by 10% to
create additional unstable modes (since stable linear systems
are trivially resilient under our formulation). The generator
dynamics were then computed by taking the Kron reduction
of the admittance matrix to obtain an N×N admittance matrix
Y , and then setting

ẋi(t) = ∑
j 6=i

Yi jEiE j cos(θi−θ j)(x j− xi),
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TABLE II: Ranked (R) List of Security Incidents (CMDP edges) using the Resilience Metric
R Edge R Edge R Edge R Edge R Edge R Edge R Edge R Edge R Edge R Edge
0 0,74 1 0,1 2 0,146 3 74,125 4 74,101 5 74,2 6 74,134 7 74,142 8 74,76 9 1,2
10 1,73 11 146,142 12 146,73 13 125,126 14 101,123 15 101,102 16 101,111 17 101,119 18 101,28 19 101,77
20 2,52 21 2,28 22 2,3 23 2,61 24 2,69 25 134,139 26 134,111 27 134,61 28 134,135 29 134,141
30 142,145 31 142,119 32 142,69 33 142,143 34 142,141 35 76,77 36 73,69 37 126,53 38 126,127 39 126,103
40 126,131 41 126,133 42 123,99 43 123,124 44 123,118 45 123,122 46 123,50 47 102,103 48 111,118 49 111,112
50 111,116 51 111,38 52 111,87 53 119,122 54 119,120 55 119,46 56 119,116 57 119,95 58 28,50 59 28,29
60 28,38 61 28,46 62 28,4 63 77,99 64 77,78 65 77,95 66 77,4 67 77,87 68 52,53 69 52,75
70 52,29 71 52,66 72 52,72 73 3,75 74 3,4 75 3,62 76 3,70 77 61,66 78 61,38 79 61,62
80 61,68 81 69,72 82 69,46 83 69,70 84 69,68 85 139,131 86 139,66 87 139,136 88 139,112 89 139,140
90 135,136 91 135,87 92 135,62 93 135,138 94 141,140 95 141,116 96 141,68 97 141,138 98 145,133 99 145,72
100 145,144 101 145,120 102 145,140 103 143,144 104 143,95 105 143,70 106 143,138 107 53,54 108 53,30 109 53,58
110 53,60 111 127,79 112 127,54 113 127,128 114 127,130 115 103,79 116 103,104 117 103,108 118 103,30 119 103,110
120 131,58 121 131,128 122 131,104 123 131,132 124 133,60 125 133,130 126 133,108 127 133,132 128 99,100 129 99,94
130 99,98 131 99,26 132 124,110 133 124,100 134 124,115 135 124,121 136 124,51 137 118,94 138 118,115 139 118,117
140 118,45 141 122,98 142 122,121 143 122,117 144 122,49 145 50,26 146 50,51 147 50,45 148 50,49 149 112,104
150 112,115 151 112,113 152 112,39 153 112,88 154 116,117 155 116,113 156 116,43 157 116,92 158 38,45 159 38,39
160 38,43 161 38,14 162 87,94 163 87,88 164 87,14 165 87,92 166 120,108 167 120,121 168 120,113 169 120,47
170 120,96 171 46,49 172 46,47 173 46,43 174 46,22 175 95,98 176 95,96 177 95,92 178 95,22 179 29,30
180 29,51 181 29,39 182 29,47 183 29,5 184 4,26 185 4,5 186 4,22 187 4,14 188 78,79 189 78,100
190 78,96 191 78,5 192 78,88 193 75,54 194 75,5 195 75,63 196 75,71 197 66,58 198 66,63 199 66,39
200 66,67 201 72,60 202 72,71 203 72,47 204 72,67 205 62,63 206 62,14 207 62,65 208 70,71 209 70,22
210 70,65 211 68,67 212 68,43 213 68,65 214 136,128 215 136,63 216 136,88 217 136,137 218 140,132 219 140,137
220 140,113 221 140,67 222 138,137 223 138,92 224 138,65 225 144,130 226 144,71 227 144,96 228 144,137 229 54,6
230 54,55 231 54,57 232 30,6 233 30,31 234 30,35 235 30,37 236 58,55 237 58,31 238 58,59 239 60,57
240 60,35 241 60,59 242 79,80 243 79,84 244 79,6 245 79,86 246 128,55 247 128,80 248 128,129 249 130,57
250 130,84 251 130,129 252 104,80 253 104,105 254 104,31 255 104,107 256 108,35 257 108,84 258 108,105 259 108,109
260 110,86 261 110,107 262 110,109 263 110,37 264 132,59 265 132,129 266 132,105 267 100,86 268 100,91 269 100,97
270 100,27 271 94,91 272 94,93 273 94,21 274 98,97 275 98,93 276 98,25 277 26,27 278 26,21 279 26,25
280 115,107 281 115,114 282 115,42 283 115,91 284 121,109 285 121,114 286 121,48 287 121,97 288 51,37 289 51,27
290 51,42 291 51,48 292 117,93 293 117,114 294 117,44 295 45,21 296 45,42 297 45,44 298 49,25 299 49,48
300 49,44 301 113,105 302 113,114 303 113,40 304 113,89 305 39,31 306 39,42 307 39,40 308 39,15 309 88,80
310 88,91 311 88,15 312 88,89 313 43,44 314 43,40 315 43,19 316 92,93 317 92,89 318 92,19 319 14,21
320 14,15 321 14,19 322 47,35 323 47,48 324 47,40 325 47,23 326 96,84 327 96,97 328 96,23 329 96,89
330 22,25 331 22,23 332 22,19 333 5,6 334 5,27 335 5,23 336 5,15 337 63,55 338 63,15 339 63,64
340 71,57 341 71,23 342 71,64 343 67,59 344 67,40 345 67,64 346 65,64 347 65,19 348 137,129 349 137,89
350 137,64 351 6,7 352 6,11 353 6,13 354 55,7 355 55,56 356 57,11 357 57,56 358 31,7 359 31,32
360 31,34 361 35,11 362 35,32 363 35,36 364 37,13 365 37,34 366 37,36 367 59,56 368 59,32 369 80,81
370 80,7 371 80,83 372 84,11 373 84,81 374 84,85 375 86,83 376 86,85 377 86,13 378 129,56 379 129,81
380 105,32 381 105,81 382 105,106 383 107,83 384 107,106 385 107,34 386 109,85 387 109,106 388 109,36 389 91,83
390 91,18 391 91,90 392 97,85 393 97,24 394 97,90 395 27,13 396 27,18 397 27,24 398 93,90 399 93,20
400 21,18 401 21,20 402 25,24 403 25,20 404 114,106 405 114,41 406 114,90 407 42,34 408 42,41 409 42,18
410 48,36 411 48,41 412 48,24 413 44,20 414 44,41 415 40,32 416 40,41 417 40,16 418 89,81 419 89,90
420 89,16 421 15,7 422 15,18 423 15,16 424 19,20 425 19,16 426 23,11 427 23,24 428 23,16 429 64,56
430 64,16 431 7,8 432 7,10 433 11,8 434 11,12 435 13,10 436 13,12 437 56,8 438 32,8 439 32,33
440 34,10 441 34,33 442 36,12 443 36,33 444 81,8 445 81,82 446 83,82 447 83,10 448 85,82 449 85,12
450 106,82 451 106,33 452 18,10 453 18,17 454 90,82 455 90,17 456 24,12 457 24,17 458 20,17 459 41,33
460 41,17 461 16,8 462 16,17 463 8,9 464 10,9 465 12,9 466 33,9 467 82,9 468 17,9

TABLE III: Evaluation of resilience metric for each possible set of compromised controllers.

Set S Cost Set S Cost Set S Cost Set S Cost
/0 {1} 2.72×107 {2} 3.01×107 {3} 8×107

{4} 1.42×108 {5} 1.04×108 {6} 2.42×107 {7} 2.40×107

{1,2} 3.58×107 {1,3} 1.23×108 {1,4} 1.39×108 {1,5} 1.40×108

{1,6} 2.75×107 {1,7} 2.72×107 {2,3} 2.10×108 {2,4} 1.69×108

{2,5} ∞ {2,6} 3.09×107 {2,7} 3.01×107 {3,4} 7.99×107

{3,5} 2.02×108 {3,6} 1.06×108 {3,7} 7.99×107 {4,5} ∞

{4,6} 3.31×108 {4,7} ∞ {5,6} 2.88×108 {5,7} 1.35×1010

{6,7} 2.42×107
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Fig. 5: Numerical evaluation of proposed resilience assessment framework. (a) IEEE 57 bus network used in the numerical
study. The network contains 7 generators and 80 transmission lines. (b) Effect of variations in load at the given bus on the
system resilience to compromise of any single generator. The cost of recovery fluctuates as the load increases. (c) Effect of
removing transmission lines on the system resilience. The impact on resilience varies between transmission lines, and in some
cases causes the unstable modes to become uncontrollable, thus violating the definition of resilience.
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where Ei and E j are the excitations of generators i and j, and
θi and θ j are the rotor angles at the power flow solution. The
control matrix B was modeled as the N×N identity matrix.

We first computed the recovery cost for this system, for
each set of compromised generators S, using the matrices Q =
R = I. The results are summarized in Table III. We observe
that the cost of recovery is monotonically increasing in the
set of compromised controllers, i.e., if S⊆ S′ then the cost of
recovery from compromise of S′ exceeds the cost of recovery
from S.

The resilience of the system also depends on the power
system operating conditions. We analyzed two of those factors,
namely, the amount of system load and the system topology.
The impact of changing the system load on the worst-case cost
of recovery from compromising any single generator is shown
in Figure 5(b). In this figure, the load at the bus with given
index is doubled and the change in resilience is observed.
Increasing the load had little impact on the resilience. On the
other hand, deleting edges from the network topology resulted
in a large increase in the recovery cost, with significant
variation between edges, in some cases causing the system
to become non-resilient.

IX. CONCLUSIONS

We presented a formal definition of cyber-physical re-
silience, and a metric to quantify the resilience level of a given
cyber-physical system. Our metric leverages the conceptual
ideas from the resilience terminology used in material science,
and considers the resilience in both cyber and physical compo-
nents as well as their interdependencies. Our proposed metric
uses discrete stochastic models (competitive Markov decision
processes) to encode the dynamics and interdependencies of
the cyber network along with the dynamical linear system
models to capture the continuous dynamics of the underly-
ing physical processes. We implemented a prototype of the
proposed metric for case study systems, and demonstrate its
capabilities for joint consideration of the cyber and physical
incidents.
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