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A B S T R A C T

The integration of computing and communication capabilities with the power grid has led to numerous vul-
nerabilities in the cyber-physical system (CPS). This cyber security threat can significantly impact the physical
infrastructure, economy, and society. In traditional IT environments, there are already abundant attack cases
demonstrating that unauthorized users have the capability to access and manipulate sensitive data from a
protected network domain. Electric power grids have also heavily adopted information technology (IT) to
perform real-time control, monitoring, and maintenance tasks. In 2015, a sophisticated cyber attack targeted
Ukrainian’s power grid causing wide area power outages. It highlights the importance of investment on cyber
security against intruders. This paper provides a state-of-the-art survey of the most relevant cyber security
studies in power systems. It reviews research that demonstrates cyber security risks and constructs solutions to
enhance the security of a power grid. To achieve this goal, this paper covers: (1) a survey of the state-of-the-art
smart grid technologies, (2) power industry practices and standards, (3) solutions that address cyber security
issues, (4) a review of existing CPS testbeds for cyber security research, and (5) unsolved cyber security pro-
blems. Power grid cyber security research has been conducted at Washington State University (WSU) with a
hardware-in-a-loop CPS testbed. A demonstration is provided to show how the proposed defense systems can be
deployed to protect a power grid against cyber intruders.

1. Introduction

To improve the efficiency and reliability, a significant investment
has been made by industry and government to build a smarter and more
automated/connected power system. With the support of information
and communications technology (ICT), power system operators can
perform operation and control tasks based on data acquired from re-
mote facilities. For example, the advanced automation system isolates a
faulted segment by opening switching devices (e.g., circuit breakers and

automated reclosers), and sends the fault information back to the
control center. Since power grids span a wide geographic area, public
and private networks (e.g., fiber optics, RF/microwave, cellular) can
provide a communication path between remote sites and a control
center. These capabilities also open doors for attackers to access a
power grid and cause disruptions to the normal operation of the grid.
Cyber attackers also have the ability to access power system commu-
nication networks and connect to remote access points at a power
system infrastructure. This can lead to serious and harmful
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consequences. As a result, cyber security of smart grids has been re-
cognized as a critical issue.

In December 2015, Ukraine’s power system experienced a wide area
power outage in a cyber attack incident. The outage affected approxi-
mately 225,000 customers. The power companies, SANS institute and
Electricity Information Sharing and Analysis Center (E-ISAC), published
reports [1] about the event. The attack started from malware installa-
tions by phishing mails several months prior to the attack. During the
reconnaissance period, attackers monitored the operations of the tar-
geted power grid for planning of the attack steps. On the attack day,
human machine interface (HMI) was hijacked and used by the attackers
to remotely open a number of circuit breakers which directly cut power
to the customers. To further complicate the restoration process, the
telephone system and communication network were compromised by a
denial of service (DoS) attack so that the call-center could not accept
incoming trouble calls from customers. Furthermore, the malware on
the HMI was used to delete software on the system, which prevented
the operators from determining the extent of the power outage and
hampered restoration actions.

While numerous efforts have focused the development and de-
ployment of technologies to protect computer systems and networks,
these techniques do not provide perfect security. Hence, important is-
sues of cyber security research include classification of the normal or
abnormal system activities and identification of vulnerabilities. In order
to discover weaknesses of the smart grid communication systems, dif-
ferent cyber assessment approaches are proposed to support different
subsystems. The studies of attack/impact analysis provide the require-
ments to design cyber detection systems, e.g., intrusion detection sys-
tems (IDSs) and anomaly detection systems (ADSs).

In the remaining of this paper, Section 2 describes the state-of-the-
art of smart grid technology. Section 3 presents the cyber security
vulnerabilities in a smart grid. In Section 4, the solutions against cyber
intrusions are provided. Section 5 describes the potential cyber threats
yet to be solved. In Section 6, research on cyber security at WSU will be
used to demonstrate the emerging solutions, including the cyber-phy-
sical testbed and anomaly detection systems. The conclusions are given
in Section 7.

2. State-of-the-art

This section provides an overview of the emerging smart grid
technology and their impact on grid operations. Due to differences of
configurations and objectives between power transmission and dis-
tribution systems, they possess unique monitoring requirements, con-
trol systems, and embedded digital communication applications.

2.1. Digital communication systems

In a traditional substation, analog communication between each
pair of devices requires an individual copper cable. Digital commu-
nication, on the other hand, enables interconnectivity among various
devices. Engineering costs can be reduced and the communication
configuration becomes easier by using Ethernet and/or Internet
Protocol (IP). It also improves the efficiency of data exchange since the
configuration of digital communication allows multiple signals to be
transmitted concurrently on the same line. Fig. 1 shows the differences
in configuration between traditional and digital substation commu-
nication networks. By connecting to the local area network (LAN),
gateway devices (e.g., remote terminal units (RTUs) and routers) can
aggregate the internal data in a substation and forward it to the desti-
nations (e.g., control centers and data centers).

2.2. Communication architecture of smart grids

2.2.1. ICT of transmission system
The primary purpose of a transmission system is to deliver electric

energy from generators to remote load centers. Dynamic interactions
among the large number of geographically dispersed generators,
transmission lines, and loads are key factors that affect the system
stability (e.g., small disturbance, transient, and voltage stability issues).
The ICT system supports on-line data acquisition for monitoring and
control in a power system. Fig. 2 shows the communication structure in
the transmission system operation level, such as operator level, control
center level, and substation level.

Supervisory control and data acquisition (SCADA): For on-line
operation and monitoring, SCADA systems have been installed in var-
ious industries (e.g., water, oil/gas, and power). In a power grid, the
SCADA system is a common tool for collecting measurements and status
data and sending control commands to switching devices (e.g., circuit
breakers). Based on the collected data, an energy management system
(EMS) provides analytical tools for operators to determine the system
state and take appropriate actions.

Substation automation system (SAS): The concept of SASs has
been the subject of Working Group (WG) 10 of International
Electrotechnical Commission (IEC) Technical Committee (TC) 57. IEC
61850 standard specifies the design of SASs [2]. It provides some ad-
vantages: (1) Reducing the engineering cost by integrating Ethernet-
based communication, (2) Enhancing interoperability of devices from
different vendors, and (3) Minimizing the impact when the commu-
nication topology is changed [3]. Ethernet-based communication net-
work supports multiple standards that encompass different media types,
such as copper and fiber-optic. Due to the ubiquitous nature of Ethernet
and large numbers of suppliers, the communication equipment cost is
reduced. In addition, utilization of substation configuration language
(SCL) improves the interoperability of IEC 61850 based devices. SCL
uses a standard file format to exchange information between proprie-
tary configuration tools for substation devices. It reduces the impact
when a device is added/removed from the substation communication
network. IEC 61850 provides high-speed communication protocols for
substation automation facilities. Generic object oriented substation
event (GOOSE) messages are used to send tripping signals from pro-
tective IEDs to circuit breakers. Measurement values (i.e., current and
voltage) are sent from merging units (MUs) to IEDs by sampled mea-
sured value (SMV). In addition, the manufacturing message specifica-
tion (MMS) is used for exchanging system data (e.g., measurement
readings and devices’ status) and control commands between a user
interface and IEDs.

Phasor measurement unit (PMU): The synchrophasor system has
been deployed in large scale over the last decade to enhance the power
system observability. The digital sensor of a standard PMU is able to
sample 60–120 data points per second. The collected data (e.g., voltage,
current, frequency, and phase angle) can be synchronized by time
stamps from the global positioning system (GPS). In 2017, over 2500 of
PMUs are installed and networked in North America [4]. The collected
measurements in each PMU are sent to a phasor data concentrator
(PDC) in a control center using IEEE C37.118 protocol [5]. Various
PMU applications (e.g., wide-area visualization, oscillation detection,
and voltage stability) have been proposed to improve the reliability of a
power grid.

2.2.2. Distribution system
The effort in distribution automation over the last decades helped to

increase the reliability of the grid, but also increased the complexity of
operation and control. These increasingly digital devices and systems
include remote controlled switching devices, protection relays, voltage
regulators, distributed energy resources, smart meters, and outage
management systems. The equipped network interfaces enable remote
monitoring and control from a distribution operating center. Fig. 3 il-
lustrates an ICT model of a distribution system.

AMI: With the embedded digital sensors, a smart meter is able to
record the power consumption profile at a time scale of seconds.
Compared to the automatic meter reading (AMR) system, AMI has a

C.-C. Sun et al. Electrical Power and Energy Systems 99 (2018) 45–56

46



higher data exchange rate and is equipped with a full duplexed com-
munication module, sending and receiving meter readings and control
commands [6]. Generally, meter readings are sent to a control center
every 5–60min, depending on the meter configuration and availability
of a network [7]. The communication network of AMI is formed by
smart meters, local data aggregators, and meter data management
systems (MDMSs). With wireless communication protocols as defined in
IEEE 802.15.4 standard [8], the communication distance between a
local data aggregator and smart meters can be extended by the mesh
and point-to-multipoint networking topologies [9]. The wireless signal
strength of a local data aggregator is not necessary to cover all smart
meters in a neighborhood. This feature allows AMI devices to consume
less transmitting power (0 dBm) via low-gain antennas. Finally, the
meter data is sent to MDMS in a distribution operation center for fur-
ther analysis and planning purposes.

The real-time meter readings enable several on-line operations
which can improve system reliability and energy efficiency. For ex-
ample, demand response [10] has been developed for reshaping the
power demand curve. The peak load can be reduced by shifting energy
usage from the peak time to off-peak periods. It prevents overloading in
the power network and reduces the cost of electricity for consumers.
AMI also contributes to the outage management system (OMS) by

reporting power outage events with the embedded storage [11]. Com-
pared to trouble calls from customers, operators can respond to an
outage event faster and reduce the outage duration.

DER: DERs (e.g., distributed generators, renewable energy devices,
and energy storage) are usually deployed in a distribution system.
These devices may be owned and controlled by consumers, third-par-
ties, or utilities for local consumption and/or trading in the electricity
market [12]. These devices are also increasingly dependent on digital
control as many devices utilize smart inverters to provide improved
control over how the device is integrated with the grid and supports
advanced applications, such as fault ride-through and VAR support.
However, because these devices are increasingly owned by consumers,
they are often not configured as securely as smart meters and often
connected to other consumer devices (e.g., home WiFi routers). For a
utility scale DER system, facilities DER energy management systems are
used to manage a group of DER systems via WAN/LAN at the facility
[13].

Distribution Automation (DA): DA enables remote monitoring and
control in a distribution system; such remote controlled devices include
feeder switches, voltage regulators, and capacitor banks. It provides
functions of fault detection, isolation and recovery (FDIR) and volt-var
control that improves reliability indices, including system average

Fig. 1. Comparison of communication systems for traditional and digitalized substations.

Fig. 2. ICT model in a transmission system.
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interruption duration index (SAIDI) and system average interruption
frequency index (SAIFI). While many DA devices are found within
substations, which have some physical security and dedicated wired
communication, many are physically exposed pole-top devices that
depend on vulnerable wireless communication.

3. Cyber security

Many industry and government reports have identified that cyber
intruders have become a serious threat to the secure operation of a
smart grid. Forty-six cyber attack incidents have been reported in the
energy sector in 2015 [14], most of which targeted the IT system of
utilities and vendors. The U.S. Department of Energy (DOE) indicates
that the actual number of cyber attacks is higher than reported [15]. To
identify and eliminate cyber vulnerabilities in a smart grid, methods to
detect cyber intrusions and mitigate their impact need to be developed.

3.1. Vulnerabilities in cyber infrastructures

To prevent unauthorized access to a private network, firewalls are
installed behind an access point (e.g., router and gateway) in order to
filter incoming network traffic as a front line defense. Using the prop-
erties of packets, such as time delay, source/destination IP address and
port numbers, firewalls are capable of inspecting and discarding sus-
picious packets. However, the performance of firewalls relies on a pre-
defined rule set. Since a commercial grade firewall has hundreds of
configurable rules [16], which can often conflict in many cases [17].
Furthermore, developing accurate firewall rules requires that the utility

have perfect knowledge of all cyber assets in their network and all
authorized communications. However, this information is rarely
available, while the grid’s dependency on proprietary software plat-
forms further complicates this process. In [18–20], identification ap-
proaches have been proposed to discover anomalies in firewall policies.
In addition, America National Standards Institute (ANSI)/International
Society for Automation (ISA) also propose best practices (i.e., ANSI/ISA
62443-1-1) for a high-level security policy to mitigate threats in control
systems. Furthermore, firewalls have other limitations as they cannot
protect against spoofed messages which may bypass their filter rules,
and they may also contain software vulnerabilities that may allow an
attacker to bypass their protection.

Network packets travelling in a WAN may not be protected by
firewalls as there is often a concern that the devices may introduce
excessive communication latency. To ensure confidentiality and in-
tegrity of the grid data, cryptographic protection mechanisms of com-
munication protocols are critical. Many communication protocols and
devices used by the power industry communications were developed
before cyber security becomes a serious concern and do not implement
strong cryptographic protection. For example, MODBUS and
Distributed Network Protocol 3.0 (DNP3) are used in SCADA, SAS, PMU
and DER systems [21,22]. However, they may not be well protected
against cyber attacks [23]. Moreover, DNP3 is used in WAN commu-
nication that increases security risks as WAN is accessible to many
users. To secure communication protocols, MODBUS authentication
frameworks have been proposed [24,25]. A lightweight security au-
thentication scheme [26,27] and a secured frame format are proposed
for DNP3 [28].

Fig. 3. ICT model in a distribution system.
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3.2. Vulnerability assessment in a smart grid

It is necessary to study the interactions between the cyber system
and physical system in a cyber attack event. As a core component in
control systems, SCADA is a primary target for attackers. Ref. [29] in-
dicates that information exchange among various power entities via
WANs is a source of vulnerabilities. SCADA integrates smart grid sub-
systems (e.g., AMI, DER, and DA) in a distribution system. Cyber attacks
become damaging once intruders gain access to the SCADA network. In
2010, Stuxnet, a computer worm, was deployed to infect programmable
logic controllers (PLCs) in an industrial control system [30]. It repro-
grammed the PLCs to act in a manner intended by the attacker and to
hide the modifications from the operators. The affected systems include
SCADA, PLCs, and nuclear facilities [31]. Ref. [32] provides an as-
sessment framework to evaluate the vulnerabilities of SCADA systems.
In [33], the mean-time-to-compromise (MTTC) is proposed as an index
to quantify the vulnerability of a SCADA system. Specific vulnerabilities
of SCADA and EMSs have been reported [34,35].

Power system operators rely on SCADA and SAS to perform opera-
tions via communications between a control center and remote sites. An
IEC 61850 based substation automation system contains various IEDs.
Ref. [36] indicates that multicast messages defined in IEC 61850 (e.g.,
GOOSE and SV) do not include cyber and information security features.
They are vulnerable to spoofing, replay, and packet modification, in-
jection and generation attacks. Although IEC 62351 proposes compre-
hensive security measures (e.g., authentication) to secure IEC 61850
based communication protocols, the weaknesses still exist by analyzing
the specifications of both IEC standards [37]. An attack example is
demonstrated in [38] in which attackers are able to modify the GOOSE
packets to trip circuit breakers. In a massive attack event, attackers can
trigger a sequence of cascading events by compromising critical sub-
stations, causing a catastrophic outage.

A high level penetration of smart meters brings advantages to dis-
tribution system operation. However, smart meters also bring cyber
security concerns, e.g., privacy, smart meter data modification attacks,
unauthorized remote load control, and interoperability problem. Note
that intruder(s) may access the AMI network from various nodes in a
public area, such as smart meters and local data collectors. These
problems indicate that a single layer of cyber security protection cannot
provide a higher level of cyber security. Several cyber attacks targeting
the AMI have been identified, including energy theft, false data injec-
tion, and leakage of the customer information [39–42].

3.3. Smart grid standard and regulations

To ensure system reliability, [43] proposes baseline requirements
and suggests implementation guidelines for data delivery systems in
power grids. Critical infrastructure protection (CIP) standards CIP-002
through CIP-009 are established by North American Electric Reliability
Corporation (NERC) [44]. The purpose is to “provide a cyber security
framework for the identification and protection of critical cyber assets
to support reliable operation of the bulk electric system.” A “Roadmap
to Achieve Energy Delivery System Cyber Security” is published by the
Energy Sector Control Systems Working Group (ESCSWG) for im-
proving cyber security of energy delivery systems [45]. A smart grid
cyber security guideline, NISTIR 7628, is published by National In-
stitute of Standards and Technology (NIST) [46,47]. Standard Devel-
opment Organizations (SDOs), such as IEC, ANSI, NIST, and IEEE,
publish multiple standards to serve as a paradigm for each subsystem of
a smart grid. Table 1 lists major standards for a smart grid.

4. Anomaly and intrusion detection systems

As previously mentioned, ADSs and IDSs are critical for detecting if
an attacker has compromised grid systems and gained access to power
grid networks. While these techniques have been heavily researched for

IT systems, the unique communication protocols and operations re-
quirements of the smart grid require the development of techniques
that are tailored towards these environments. This section will explore
the current types of IDSs and how they are integrated and validated on
CPS testbeds.

4.1. Types of IDSs

The design of an IDS includes three parts: (1) Detection technique,
(2) IDS type, and (3) Active/passive detection. IDSs can be categorized
by different ways as shown in Table 2.

4.1.1. Detection techniques
Knowledge based (or signature based) IDSs possess a database of

attack patterns or footprints. By comparing the signatures, intrusion
events are identified as the network traffic matches the same pattern in
a pre-defined database. Knowledge based IDSs have a low false positive
rate for detecting known attacks, however, this depends on a strong set
of rules that is tailored for the environment. While these are effective
against known attack patterns, they are not able to detect attacks which
do not have previously developed signatures and also require frequent
database updates.

Unlike knowledge based IDSs, behavior based (or anomaly based)
IDSs overcome the disadvantage by using profiles of network traffic
rather than searching for specific signatures. A base-line profile of
normal network traffic is constructed to serve as the standard of normal
conditions. Once the deviation of an inspected network profile from the
standard is significant, an anomaly alarm will be triggered. However, a
major drawback of anomaly based detection is the difficulty in defining
anomaly patterns of network traffic, along with the fact that many
system anomalies may be benign, such as system maintenance session
or upgrades. If the malicious behavior falls under the accepted areas,
the attack is regarded as normal.

4.1.2. Anomaly data types
Detection approaches can be categorized based on the type of data

they monitor. A network-based IDS (NIDS) monitors traffic in a network
segment. With a physical network interface card connected to a LAN, a
NIDS is able to access network flows in the same network segment.
Some techniques only inspect the lower-level network data, such as
network flows, which include the Ethernet and IP addresses, along with
the source and destination ports. Other techniques inspect the header
information and contents in higher layers of the communication
structure, such as the SCADA protocol and payload. According to the
unique defined format and structure of each communication protocol, a
predefined rule set is used to inspect the incoming network traffic.

A host-based IDS (HIDS) is installed in each communication device
individually. It monitors network activities and the device status in a
single host system by analyzing log files, executables, system calls,
process memory contents, and host network traffic. Since a HIDS does
not utilize a LAN, the detection range is limited in the host devices.

4.1.3. Active and passive detection
A passive IDS only analyzes network flows and detects anomalies.

When an anomaly is detected, a passive IDS triggers alarms. However,
operators need to mitigate and clear the incident manually. In contrast,
active IDSs are configured to disconnect suspicious connections auto-
matically. Hence, an active IDS is also called intrusion detection and
prevention system (IDPS).

4.2. Detection systems in smart grids

Research has been conducted to explore the development of IDS
techniques applied to an array of smart grid environments and appli-
cations. Table 3 provides an overview of the proposed techniques in-
cluding network-based, host-based, or integrated methods. However,
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while many approaches have been proposed, most have not yet been
integrated into industry due to insufficient verification and validation
on realistic environments.

4.3. CPS testbed

Since a field test of cyber attacks may cause damages to the real
world power grid, a real-time CPS testbed is an alternative for study of
the interactions between cyber and physical systems. In general, a CPS
testbed has three parts: (1) Power systems simulation tools (e.g., real
time digital simulator (RTDS), DIgSILENT, PowerWrold, TSAT, and
PSS/E), (2) Communication system simulation/emulation tools (e.g.,
network simulator3, Mininet, and OPNET), and (3) Connection between
(1) and (2), e.g., object linking and embedding (OLE) for process con-
trol (OPC) communication. A hardware-in-the-loop testbed involves
physical devices (e.g., smart meters, IEDs, PMUs and switching devices)
for the study of specific cyber security areas, e.g., distribution system,
transmission system, SCADA, AMI network, and DERs. Testbed-based
research is essential for research concerning: (1) Vulnerability assess-
ment, (2) Impact analysis, and (3) Attack-defense evaluation and vali-
dation. Table 4 lists a number of CPS testbeds in the U.S.

5. Potential threats

5.1. Overview

Existing security protection and mitigation mechanisms do not ne-
cessarily apply to the smart grid environment. Difficulties arise from the
strict availability requirements of a power grid. For example, the
GOOSE protocol used between protection IEDs and smart controllers
(circuit breakers) in a SAS requires 4ms latency, while many other grid
applications require latencies of 30, 40 and 100ms. The process time in

most protection mechanisms cannot meet this requirement. Since
analog communication systems have been deployed with various types
of physical equipment in a power grid, it is necessary to upgrade them
to be compatible with the smart grid technology.

5.2. Synchronization of smart grid data

GPS provides precise timing information to synchronize the large
number of measurements. However, civilian GPS bands do not provide
authentication and encryption mechanisms. GPS spoofing attacks can
disrupt time synchronization of measurements in a WAMS, causing
misoperations in a power system [70–72]. Although detection systems
for time stamp attacks have been proposed, as shown in Table 3, there is
not an effective method to restore correct time stamps for attacked data
points. Thus, a mitigation method should remove the attack source
quickly.

5.3. Vulnerability of wireless communication

Wireless technology enables communication among devices without
being limited by physical cables and rugged terrain. In a smart grid, DA,
AMI and PMU systems utilize wireless systems to transmit/receive data.
Based on current regulations on the frequency spectrum, most wireless
communications use industrial, scientific, and medical (ISM) radio band
for communication channels [73,74]. Since ISM band is license-free,
adversaries can legally access the bandwidth, causing an increase in
cyber security risks. Under this circumstance, reliable encryption and
authentication mechanisms are critical for protection of data con-
fidentiality and integrity. As a matter of fact, latest cryptographic me-
chanisms already made eavesdropping difficult. However, data avail-
ability is not ensured in a wireless communication environment. A
portable software defined radio transmitter is able to emit wireless
signals at the designated frequency bandwidth in an open space [75]. If
attackers launched a jamming attack near smart grid devices (e.g.,
smart meters, meter data collectors, DA remote control devices, and
GPS antenna of PMUs), components can be disconnected in a certain
area. The effective area depends on the emission power of a jamming
device (i.e., signal transmitter).

5.4. Validation of ADS and IDS

Tests can be conducted to determine a system's vulnerabilities with
respect to cyber attacks. However, most of the validation work involves
either cyber or physical system simulators. It is not necessarily applic-
able to the real world environment. Taking the communication protocol
as an example, a practical encryption mechanism can secure data
against eavesdropping. Nonetheless, it requires extra time to encrypt
and decrypt the data. To avoid the problem, a unified benchmark
system is needed for the performance evaluation of an ADS/IDS. For
example, [76] provides a framework to evaluate cyber protection sys-
tems in AMI.

Table 1
Major standards for operating a smart grid.

Subsystem name Standard name Applied system

SCADA IEC 60870-6 Monitoring and control over a WAN
PMU IEEE C37.118 Phasor data exchange
Substation IEEE 61850 Substation communication networks and systems

IEEE C37.1 Definition, specification, and application for monitoring and control function
IEEE 1379 Communication and interoperation of IEDs and RTUs.
IEEE 1646 Communication delay time among internal or external devices
IEEE C37.111 Define file format of measurement from IEDs

AMI ANSI C12 series (i.e., C12.18 to C12.22) Define communication protocol for metering applications

Table 2
Structure of cyber protection systems.

Detection technique IDS type Active/passive detection

Knowledge based Network based Passive (intrusion detection)
Behavior based Host based Active (intrusion prevention)

Table 3
Intrusion detection techniques in a smart grid.

Protection range Category Detection system

SCADA Network-based [48–50]
Host-based [51,52]

Substation Network-based [53]
Host-based [54]
Integrated [38,55,56]

Wide area monitoring system (WAMS) Host-based [57]
GPS (PMU) Host-based [58]
Distribution system Host-based [59]
AMI Host-based [60–63]
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5.5. Coordinated attacks

Since power grids are designed to be robust, simple cyber attacks
are unlikely to cause operational impacts to the grid. In recent attack
events on Ukraine's power grids [1] and the physical attack on PG&E’s
transmission substation in San Jose, California [77], attackers have a

well-organized plan including multiple attack steps within a time
window. Unfortunately, most ADS/IDS cannot handle coordinated
cyber attack events since they are designed to monitor a local area. In a
coordinated cyber attack, decoys might deceive defenders to waste the
protection resource on minor abnormality in a power system.

Table 4
Some CPS testbeds in the U.S.

Testbed Name Institute Features

Smart City Testbed [64] Washington State University ▪ Multiple industry standards based network simulation environment, covering
transmission and distribution systems

▪ Power systems simulator
▪ Physical devices integration

National SCADA Test Bed [65] U.S. National Labs (Argonne, Idaho, Oak Ridge,
Pacific Northwest, and Sandia)

▪ Comprehensive components of cyber and physical systems, including full size
physical substations

Virtual Power System Testbed [66] University of Illinois at Urbana-Champaign ▪ Real-time immersive network simulation environment.
▪ Power system simulator

PowerCyber Security Testbed [67] Iowa State University ▪ Accessible to remote users
▪ Wide-area network emulation (ISEAGE)
▪ Power system simulator

Distribution Cyber Security
Testbed [68]

National Renewable Energy Laboratory ▪ Focus on cyber security of distribution systems
▪ Able to interact with field equipment

SCADA Security Testbed [69] Mississippi State University ▪ Integration with PMUs and the communication system
▪ Power system simulation

Fig. 4. SCT at WSU.
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Table 5
Modules of SCT at WSU.

Subsystem Physical devices Cyber components

Transmission Control Center HMI and data servers EMS, firewalls, DNP 3.0
SAS Protective IEDs and data servers HMI, firewalls, IEC 61,850 and DNP 3.0

Distribution Operation Center HMI and data servers DMS, firewalls, DNP 3.0
Distribution Automation Feeder protection relays and automated switches DNP 3.0
AMI Smart meters and data collector IEEE 802.15.4 and ANSI C12.19
DER Solar panels (72 kW) and smart inverters MODBUS and VOLTTRON [80]

Fig. 5. Attacks trigger cascading events in IEEE 39-bus system.

Fig. 6. HMI of the proposed IADS.
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5.6. Modeling of human factor

In some cyber attack scenarios, intruders use incorrect system in-
formation to mislead operators. A power system can become unstable
due to inappropriate operations. Under this circumstance, cyber pro-
tection systems cannot trigger warning signals since the abnormal ac-
tions are taken by operators. The other issue is the cyber attack from
insiders. According to the statistical data in 2013 [78], 34% of reported
cyber crimes in the U.S. are committed by insiders. Comparing with
outside attackers, insiders have better knowledge of the vulnerabilities
of a power grid. Unfortunately, insider attacks are difficult to prevent
and detect [79].

6. Demonstration with WSU testbed

6.1. Smart City Testbed (SCT)

SCT is a hardware-in-a-loop CPS testbed at WSU [64]. Fig. 4 and
Table 5 describe the architecture of SCT. In the cyber module, SCT
includes EMS/DMS and SCADA system and uses multiple communica-
tion protocols, including DNP 3.0, IEC 61,850, IEEE 802.15.4, ANSI
C12.19, and Modbus. The physical system module consists of feeder
protection relays, protective IEDs, smart meters and meter data col-
lector, and solar panels with smart inverters. DIgSILENT PowerFactory
is used as a power system simulation tool. The simulation functions
include time domain simulation, dynamic analysis, state estimation,
and optimal power flow. It also supports transmission and distribution
system modeling. With the OPC communication, PowerFactory can be
connected with the cyber module to provide a simulation environment
for cyber system events.

6.2. Cyber physical system security

Researchers are working to develop trustworthy defense against
cyber attacks on a smart grid. In [38], an integrated ADS (IADS) is
proposed for securing the substation communication system. The pro-
posed IADS combines the capabilities of network- and host-based ADSs.
To detect anomalies in a substation, a signature database is established
for inspection of GOOSE and SV packets by NIDS. Violations of pre-
defined rules trigger an intrusion alarm. HADS, on the other hand,
applies a temporal anomaly detection method to generate an event log
matrix by recording each type of anomalies in physical devices. The
proposed IADS also validates its performance in a simulated substation
attack using SCT. Ukrainian’s power grid incident shows that the co-
ordinated cyber attacks can make a significant impact. A coordinated
cyber attack detection system (CCADS) [81] is proposed based on the
work of IADS.

Fig. 7. The HMI of CCADS.

Fig. 8. HMI of CCADS presenting the criticality and geography relations of targeted substation.
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A coordinated cyber attack has unique features: (1) A well-orga-
nized attack plan before the attack, and (2) Each attack step related to
other step(s). Based on these observations, CCADS is designed to
identify pre-defined relations among detected events captured by IADS.
Three pre-defined relations are developed: anomalies, targeted substa-
tion locations, and criticality of substations. The proposed Relation
Algorithm (RA) provides a reasoning process to quantify the likelihood
of coordinated cyber attack events. The index ranges from 0 to 1, re-
presenting the strength of the relations. Finally, a relation correlation
system combines the indices from all relations to calculate the simi-
larity index. If the similarity index is greater than a user-defined
threshold, the attack event is judged to be a coordinated cyber attack.
The threshold represents the sensitivity of CCADS.

In this paper, a demonstration with two attack scenarios on the IEEE
39 bus system is provided to:

1. Demonstrate how the SCT supports cyber security research.
2. Demonstrate the collaboration between the proposed IADS and

CCADS.
3. Demonstrate how the proposed ADSs protect a power grid against

coordinated cyber attacks.

In this demonstration, attackers are assumed to have the knowledge
to access multiple substation communication systems. By capturing and
analyzing unencrypted GOOSE packets, attackers are able to modify
and resend them to trip circuit breakers in targeted substations.

In the first attack scenario, attackers' targets are substations 38, 35,
33 and 32 since these substations connect to generation sources. The
attack starts at t= 5 s, and the targets are compromised one by one
every 5 s. Once the last targeted substation (i.e., substation 32) is
compromised, this power system collapses due to insufficient power
generation. Fig. 5 is a screenshot from PowerFactor with the mea-
surements (i.e., voltage and frequency) during the cyber attack. After 4
generators are disconnected from the power grid, cascading events are
triggered. Finally, a wide area power outage is caused by the co-
ordinated cyber attacks.

In the second scenario, the same attack is simulated with the pro-
posed ADSs. Fig. 6 shows the interface of IADS in one of targeted
substations. It indicates the number of malicious GOOSE packets that
have been detected. Once the CCADS receives the information from
IADS, it performs the reasoning to calculate the index value for each
pre-defined relation and the final result. Fig. 7 shows that the relation
correlation system gives an index value of 0.9892 which is higher than
the user-defined threshold, 0.9. Thus, the CCADS triggers the alarm to
report a coordinated cyber attack. Fig. 8 shows the criticality and
geographic relations of targeted substations by graphical interfaces.
During the cyber attack, circuit breakers remain closed in targeted
substations since the proposed IADS captures the malicious network
packets. Thus, effectiveness of the proposed ADSs is validated by the
SCT.

7. Conclusion

ICT systems have become a backbone of modern power grids. Cyber
security is important for stability and reliability of the smart grid. This
paper is a state-of-the-art survey of cyber security R&D for a smart grid.
Vulnerabilities are increasingly present in the cyber-power system en-
vironment due to the growing dependency on computer systems and
digital communication. Since there are limitations for firewalls to
identify malicious packets, ADSs/IDSs are critical to detect anomalies
inside a private network (e.g., LAN, HAN, and NAN). Furthermore, the
performance of detection systems should meet the requirements for
power systems, such as accuracy and communication delay. With a
realistic CPS testbed, researchers can test their cyber protection systems
to evaluate whether requirements are met.

Research results on cyber security of a smart grid are demonstrated

on a cyber-power system testbed. Test cases of coordinated cyber attack
show that attackers are able to impact a power system by compromising
critical substations. Furthermore, the proposed IADS and CCADS are
applied to validate the anomaly detection capabilities. Once the mal-
icious network packets are detected by IADSs, CCADS analyzes the
predefined relations by collecting attack information from each tar-
geted substation. Based on the similarity index which is calculated by
CCADS, the coordinated cyber attack alarm is triggered. Concurrently,
IADSs execute the mitigation process, blocking the circuit breaker op-
erations and sending a disconnect command to firewalls to block the
intruders’ connections.

In order to prevent unknown cyber attacks, Section 5 summarizes
the potential cyber security vulnerabilities to indicate research needs
for enhancing cyber security of a smart grid. Wireless communications
are threatened by jamming attacks since the absence of mitigation
approaches creates a weakness in connectivity of smart grid compo-
nents. GPS signals are vulnerable to spoofing attacks that may impact
the time-based synchronization requirements for PMU data. Then, there
is no standard to assess the performance of ADSs/IDSs. Although sev-
eral detection systems have been proposed and tested for different
sectors of a smart grid, there is no guarantee for the detection rate in
practice. Finally, further research on coordinated cyber attacks is much
needed. The Ukrainian power grid attack has shown that coordinated
cyber attacks increase the success rate of cyber intrusions. Also, the
response of operators should be taken into account in the cyber security
studies. In a cyber attack event, an operator could be deceived by fal-
sified data.
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