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ABSTRACT

This paper focuses on the resilience quantification and critical node identification which can be applicable
to Bulk Power System (BPS). The Industrial Control System (ICS) is an integral part of the BPS. The
ICS itself is not vulnerable because of its proprietary technology. But when the control network and the
corporate network need to have communications to ICS for performance measurements and reporting, the
ICS become vulnerable to cyberattacks. Considering the need for developing an algorithm to improve the
resilience of a target network, we are proposing an MADM (Multiple Attribute Decision Making) based
ranking algorithm using a multi-layered directed acyclic graph (DAG) model. The node ranking process can
facilitate to harden the network from vulnerabilities and threats by ranking the critical nodes in the network.
Our proposed MVNRank (Multiple Vulnerability Node Rank) algorithm takes into account asset value of the
network nodes. Some of the other factors that are being considered for the formulation of the algorithm are
exploit scores and impact scores of vulnerabilities as quantified by CVSS (Common Vulnerability Scoring
System), the total number of vulnerabilities that a host may have and severity level of each vulnerability.
The algorithm also takes into account the degree centrality of the nodes and attacker’s distance from the
target node in the vulnerability graph. Simulation results show that the ranking can be used to identify the
critical network elements which can contribute to resilience improvement process of the BPS.
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1 INTRODUCTION

For decades, researchers have examined the methods and processes to safeguard the critical infrastructures
from cyberattacks and other malicious activities. Electric power system such as the substations, smart grids,
and ICS are lucrative targets for cybercriminals. In December 2015, a cyberattack incident took place in
the power grid of Ukraine which impacted 30 substations and resulted in the loss of electricity for nearly
230,000 people (Greenberg 2016). There is always need to harden the security measures of power system
network. One of the metrics to measure network strength against malicious activities is the resilience. In
this paper, we are considering the ICS and the field location devices as the target network. The corporate and
control network elements are being considered as the potential nodes to rank. We are using a directed acyclic
graph (DAG) model and ranking the critical nodes in the corporate and control network. We don’t rank the
ICS nodes, but use them to calculate the potential power loss capability of the control center nodes using
the assumed ICS connectivity to BPS. Thus this paper is more related to network security of the control
and corporate network considering the power system network as the target. The resilience equation that is
being used here is a work by Shetty et al. (Shetty, Kamdem, Krishnappa, and Nikol 2018). The resilience
computation process is highly time-consuming as it considers all the possible attack paths from the source to
the target node which increases in a multiplicative manner based on the number of nodes and vulnerabilities.
Thus one of the goals of this paper is to reduce the simulation time to compute resilience. The proposed
algorithm itself is not time-consuming. It can facilitate to achieve certain resilience value and provide a list
of critical nodes that can be considered sequentially to improve the resilience of BPS.

The rest of the paper is organized as follows. Section 2 discusses some of the current node ranking tech-
niques that have proposed for similar sort of scenarios and their applicability towards our goal to optimize
resilience. Section 3 describes the factors that we have considered important to rank the critical nodes.
Section 4 discusses simulation setup & results and finally, section 5 discusses our future plans.

2 REVIEW OF RELATED WORKS

Researchers have proposed numerous approaches to deal with the ranking of critical assets in a network. Ki-
jsanayothin and Hewett (2013) have done exploit-based analysis using Markov computational process and
ranked nodes in the attack model in order of their likelihoods of compromise. The authors have a similar
work in extended form in ( Hewett and Kijsanayothin (2015)). Li and Qiu (2012) have proposed an algorithm
namely NodeRank which is based on state enumeration attack graphs where the rank values of the nodes
show the likelihood of an intruder reaching the states. Both the works have considered most exploitable
vulnerability instead of the multiple vulnerabilities possessed by a host. The point missing in those analyses
is that a highly exploitable vulnerability may have least impact on the network if successfully exploited and
vice versa. Yang et al. (2010) have proposed DBRank for ranking vulnerabilities to patch in computing net-
works. DBRank prioritizes vulnerabilities based on the diffusibility and benefit of vulnerability exploitation.
We have also considered the benefits of the attacker in terms of the adverse impact that can be caused by
successfully exploiting a vulnerability. Again, what is missing in that analysis is only ranking the vulnera-
bility individually is not giving a comprehensive idea about the network security status; because an attacker
may compromise several vulnerabilities while exploiting a target. Mehta et al. (2006) have proposed a way
of ranking attack graphs where the authors have considered nodes as system states and edges as transitions
between states. Our approach of node ranking is different from most of the works in the sense that we have
taken into consideration the number of vulnerabilities each node possesses; because we never know what
vulnerability combinations an attacker may use on its way to exploit a target. Considering only the most
exploitable vulnerability may result in producing partial analysis because of the lack of consideration of
impact.
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3 MVNRANK ALGORITHM

MVNRank considers all the intermediate nodes in the paths from source to target because an attacker can
launch a multi-stage multi-host attack to compromise the security of the ICS system. The factors to formu-
late MVNRank are presented in the subsections below.

3.1 Asset Value in the Vulnerability Graph

By Asset value, we refer to the importance of the files and data stored in a host or server. This is directly
related to how much damage an attacker can make to a network by compromising the asset. For example, if
an attacker can compromise a database server; the damage he can make to the network is much greater than
the damage by compromising a workstation. Our DAG model network topology is based on the NIST 800-
82 CSSP defense-in-depth architecture (Stouffer, Falco, and Scarfone 2013). In this topology, the nodes in
control LAN layer are more critical in terms of asset value than the nodes in corporate DMZ layer. If an
attacker can penetrate the control LAN system, he would have more access to the application of the power
station network consisting of the Remote Terminal Units (RTU), programmable logic controllers (PLC) and
other ICS. For determining the asset value of a node, we have considered the concepts similar to PageRank
centrality in graph theory. The equation that we have derived for asset value calculation is discussed in the
next paragraph.

Let us consider, a graph is denoted as G(V,E), where V is a set of vertices or nodes and E is the set of edges
between nodes. Let IN be the set of all the intermediate nodes that fall in the possible paths from the source
s to the target t. V is defined as V = {v1,v2,v3...,vn−2,vn−1,vn}. If there exist paths from source v1 to target
vn which pass through all the other nodes, then we can say, intermediate nodes set, IN = {v2,v3, ...,vn−1}
where v1 = s & vn = t. There are some nodes that may not fall in the paths from the specific source node to
the target node, hence, IN ⊂ V . The asset value of node i, Avi is given below in the equation (1):

Avi = NPR(vi)+ ∑
∀v j∈IN(vi)

∑
∀vk∈PR(v j)

1
1+D(vk,vi)

×NPR(v j) (1)

Here, IN(vi) is the set of all the intermediate nodes through which node vi is reachable from the source
node v1, PR(v j) is the set of immediate predecessor nodes of v j and NPR(v j) is the number of immediate
predecessors of node v j.

3.2 Reachability and Degree Centratlity

One of the crucial factors to consider for the node ranking is how far or close the attack launch node from
the target node. This refers to the attacker’s current position in the network and gives an idea about the
reachability to the target node. In the graph theory, geodesic distance is being used as a measure of the
shortest path length between two nodes. Eccentricity can be thought of as how far a node is from the most
distant node to it in the graph. The shortest path distance between two nodes is considered as a measure of
the reachability of the nodes. Rather than using the term "reachability", we are using the term "closeness"
which we take as the inverse of the shortest path distance between two nodes. For node vi, distance Di is
equal to the number of intermediate nodes in the shortest path to pass through to reach the target t. Thus,
distance Di=d(vi, t), where d(vi, t) is the shortest path length between node vi and target t. Closeness di is
defined by the following equation:
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di =
1
Di

(2)

The degree centrality of a node is the fraction of nodes connected to it. It usually refers to the number of
links incident upon a node or the number of connections the node has in the graph. We are considering
the degree centrality to distinguish the importance of the firewall nodes in the network because most of the
nodes are communicating between different layers through the firewalls. Degree centrality of node vi is
termed as Cd(i)=deg(vi).

3.3 Exploit and Impact Score

Each vulnerability is associated with CVSS base metrics (Mell et al. 2007) which are access vector (AV ),
access complexity (AC), access authentication (AA), confidentiality impact (IC), integrity impact (II) and
availability impact (IA). The quantification of those base metrics are given in Table 1 and Table 2.

Table 1: CVSS Exploit base metrics.

Access
Vector (AV )

Local (L) 0.395
Adjacent Network (A) 0.646
Remote Network (N) 1.0

Access
Complexity (AC)

High (H) 0.35
Medium (M) 0.61
Low (L) 0.71

Access
Authentication (AA)

Multiple (M) 0.45
Single (S) 0.56
None (N) 0.704

Table 2: CVSS Impact base metrics.

Confidentiality
Impact (IC)

None (N) 0.0
Partial (P) 0.275
Complete (C) 0.660

Integrity
Impact (II)

None (N) 0.0
Partial (P) 0.275
Complete (C) 0.660

Availability
Impact (IA)

None (N) 0.0
Partial (P) 0.275
Complete (C) 0.660

Each vulnerability represents an edge in the graph with weights. Edge weights are the exploitability and
impact as calculated from the CVSS. Edge exploitability and impacts are the most important quantitative
parameters that we have in the quantification of the resilience of a network. The exploitability and impact
have been calculated in CVSS by the below equations (Mell et al. 2007):

ExploitabilityScore,ES = 20×AccessVector×AccessComplexity×AccessAuthentication

ImpactScore, IS = 10.41× (1− ((1−Con f Impact)× (1− IntegImpact)× (1−AvailImpact)))

Both exploit score and impact score are in between 0 to 10. To combine the effects of multiple vulnerabili-
ties, we have used the weighted average (WA) method. And to use WA, we have scaled down the ES and IS
to 1 and termed them as exploit factor (EF) and impact factor (IF).

EF =
ES
10

IF =
IS
10

}
(3)

Different vulnerabilities have different exploit and impact effect on the network. Treating each vulnerability
on the same scale would give us an inappropriate result. To combine their effects, we have come up with a
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weighted average method. Table 3 shows that highly severe vulnerabilities have a weight of 0.5, medium se-
vere vulnerabilities have a weight of 0.3, and low severe vulnerabilities have a weight of 0.2. The summation
of this three-category weights is equal to 1.0 as needed.

Table 3: Exploit and impact factor weight.

EF IF Severity Weight
0.7~1.0 0.7~1.0 High 0.5
0.4~0.69 0.4~0.69 Medium 0.3
0.0~0.39 0.0~0.39 Low 0.2

We use the following two weighted average method formulae to consider the combined effect of the severity
levels. The node vi, has vulnerabilities from 1 to n. Let, EFi and IFi are the array of all associated exploit
factor and impact factor for all the vulnerabilities of node vi and they are being defined as:

{
EFi = [EFi1 ,EFi2 ,EFi3 , ......,EFin ]

IFi = [IFi1 , IFi2 , IFi3 , ......, IFin ]

Weighted exploitability factor EFwi of node vi having n vulnerabilities is calculated as below:

EFwi =
∑

n
j=1 wi j ×EFi j

∑
n
j=1 wi j

(4)

Weighted impact factor IFwi of node vi having n vulnerabilities is calculated as below:

IFwi =
∑

n
k=1 wik × IFik

∑
n
k=1 wik

(5)

Both EFwi and IFwi have a value within 0 to 1.

3.4 Physical Impact Capability

In the section 3.3, we have considered the impact factor based on the software vulnerability. But the same
vulnerability may cause different impact when it belongs to the corporate DMZ layer than the control system
layer. Mostly in the power system domain, the physical loss is quantified by the amount of power outage
that can be caused by the attacker by exploiting a vulnerability. That is why it is important to consider the
physical impact of the vulnerability. In the power system domain, people are mostly concerned about the
availability impact and integrity impact rather than the confidentiality impact.

Now, let us consider the logical connections among different hosts in control layer and field location devices.
For example, the application software, already installed in the configuration server to operate the RTU’s
remotely, is a logical connection between the server and the remote terminal unit. Based on the logical
connections as we have assumed in the Figure 1, data acquisition server has logical connections with RTU1
and RTU1 is controlling 10 MW power distribution unit. Configuration server is logically connected to all
three RTU’s, engineering workstation 1 is logically connected to RTU1 only and engineering workstation 2
is logically connected to RTU2 and RTU3. RTU2 and RTU3 are controlling each 20 MW power distribution
unit. If RTU1 is being compromised, there is the chance of losing 10 MW power. Similarly, if RTU2 and
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Figure 1: Sample network connectivity between control system LAN and field device network for equation
demonstration.

RTU3 are being compromised, then 20 MW of power is possible to be made unavailable by the attacker.
So each RTU has a fraction of power loss capability. If data acquisition server is being compromised then
by compromising RTU1 a total of 10/(20+20+10) or 20% of the power can be taken out of service. Thus a
network element in control System LAN network can have a physical power loss capability ranging from 0
(no power outage) to 1 (maximum power outage). So, the expected fractional power loss can be defined as
below:

Expected power loss f actor,EPLFi =
∑

u
m=1 BimPm

∑
U
m=1 Pm

(6)

Here, Bim is a binary quantity (1,0) which means whether node vi is having an application or software
installed that can access the RTU m i.e., if node vi has logical connection to reach RTU m. If the application
is in place already, there is a logical connection between node vi and RTU m and then Bim = 1, otherwise
Bim = 0. ∑

U
m=1 Pm is the total power delivery capacity of the substation by all the generator units. ∑

u
m=1 Pm

is the summation of the power for all generators controlled by RTU m only, U is the total number of RTU’s
available in the physical power system network.

Using the integrity impact and availability impact, the impact factor is being modified for the case of physical
power loss as below:

IFPL = 1.1307× (1− (1− II)× (1− IA))) (7)

The factor 1.1307 comes from the calculation to make IFPL equal to 1.0 by excluding the effect of confiden-
tiality impact. The maximum value of II and IA is 0.660. Considering the physical power loss and using the
same weighted average approach as before as in Table 3, we can compute the weighted average power loss
impact factor for node vi as below:

IFPLwi = EPLFi ×
∑

n
l=1 wil × IFPLil

∑
n
l=1 wil

(8)

or,

IFPLwi =
∑

u
m=1 BimPm

∑
U
m=1 Pm

× ∑
n
l=1 wil × IFPLil

∑
n
l=1 wil

(9)
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3.5 MVNRank Algorithm Formula

By combining all the factors discussed in the previous sections, we can derive the node ranking (Ri) value
of node vi by using the below equation:

Ri = Avi ×di ×Cd(i)×Ni ×EFwi × (IFwi + IFPLwi) (10)

or,

Ri = Avi ×di ×Cd(i)×Ni ×
∑

Ni
j=1 wi j ×EFi j

∑
Ni
j=1 wi j

×

[
∑

Ni
k=1 wik × IFik

∑
Ni
k=1 wik

+
∑

u
m=1 BimPm

∑
U
m=1 Pm

× ∑
Ni
l=1 wil × IFPLil

∑
Ni
l=1 wil

]
(11)

Here, Ni is the total number of vulnerabilities of node vi. For the IT domain network except for the control
system LAN, the nodes would not have the second impact factor component in equation (11), because they
don’t have any potential power loss, they have a 0 value for the IFPLi . Only the control system LAN network
nodes have this physical impact factor, so those nodes have non zero IFPLwi

which give them some priority
over the other nodes. Maximum node rank value, Rmax = max

∀i| ∃ vi∈IN(vt)
[Ri], where IN(vt) is the set of all the

intermediate nodes of target node vt . Relative criticality is found by normalizing the node rank value. Thus,
relative criticality (RCi) of node vi is found by dividing each Ri value by the Rmax.

RCi =
Ri

Rmax
(12)

Here, 0 ≤ RCi ≤ 1. Based on RCi, the nodes are ranked and identified as the most important to the least
important. Figure 2 shows the node ranking algorithm psuedocode.

4 SIMULATION RESULTS AND ANALYSIS

In this section, we present the simulation network setup and the results & analysis.

4.1 Simulation Setup

Figure 3 shows the network that we have considered for our simulation setup & design. We have used differ-
ent product models corresponding to their functionality. We have considered last three years vulnerabilities
from the NVD database for simulation purposes. We have used python NetworkX module and a product
vulnerability database to simulate the results. No real network setup has done for this experiment. The work
is based on the simulation only.

4.2 Simulation Output and Analysis

One of the major concerns of the simulation of this type of network is that each node may have millions of
incoming paths combinations from the original entry point. For example, in our simulation Email Server1
has only 30 incoming paths, but Security Server1 has 129600 incoming paths which are the combination of
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Figure 2: Resilience improvement pseudocode using node ranking.

different exploitable vulnerabilities from the origin node. Again, Control Firewall2 has 8294400 (8.29M)
paths and Application Server1 has 248832000 (248.8M) paths. The more the total number of paths, the more
it takes to simulate the resilience of that node. In Figure 5, we have found that the resilience computation
time is sharply increased when the number of paths are increased. While Figure 4 shows the simulation
time for resilience and paths computation upto number of paths 0.13M, Figure 5 shows the simulation time
for the same upto 248.8M number of paths. Application Server1 has 248.8M paths and it takes 2537.342
seconds (42.23 min) to compute the resilience and 387.924 seconds (6.47 min) to compute the total number
of paths in vulnerability graph. The simulation time comparison is given here, because one of our objectives
of this ranking algorithm is to reduce the simulation time to reach to the target resilience value.

Figure 6 shows the paths reduction over simulation trials for the three selected nodes and Figure 7 shows
the resilience value increment over simulation trials where nodes are being selected as per rank order. As
after 3rd trials no paths exist from source to the target node, so the resilience reaches to 1.0. For the number
of paths, we have used the log scale for proper demonstration and actual value is being shown in (x,y) co-
ordinate format. Although after 3rd trials, the value of paths become 0, but due to the use of log scale we
have taken it as 1.
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Figure 3: Simulation network setup.

Figure 4: Simulation time (maximum attack paths
number ≤ 129600).

Figure 5: Simulation time (maximum attack paths
number ≤ 248832000).

Figure 8 and Figure 9 show a comparison of the required simulation time to reach to the resilience value of
1.0 for some of the selected nodes in control DMZ layer and control system LAN layer. Some nodes take
less time to reach 1.0 value resilience and some other nodes take a long time to reach 1.0 resilience value
based on their number of attack paths. The figures compare cumulative simulation time using the rank order
and without using the rank order. Figure 8 shows the simulation time of the 100 Monte Carlo simulation
average and Figure 9 shows the simulation time of the 20 Monte Carlo simulation average . For both cases,
it is found that the simulation time using the ranking order is reduced almost by half than using the random
order.



Haque, Shetty and Kamdem

Figure 6: Number of attack paths reduction over
simulation trials (for selected nodes in control DMZ
layer).

Figure 7: Resilience improvement over simulation
trials (for selected nodes in control DMZ layer).

Figure 8: Comparison of cumulative simulation
time (in sec) to reach 1.0 resilience value, nodes
belong to control DMZ layer.

Figure 9: Comparison of cumulative simulation
time (in sec) to reach 1.0 resilience value, nodes
belong to control system LAN layer.

To find the relationship between the simulation time using the rank order and using the random order, we
have performed a regression analysis as shown in Figure 10. It is being found that the use of random orders
take almost double time to compute the resilience than using the ranked order of nodes. It means the use of
the ranked order can save nearly 50% of the simulation time.

There may be questions regarding the ranking computation time. In Figure 11 we have presented the sim-
ulation time required to compute the rank and the resilience to demonstrate a comparison between these
two timing requirements. Here, Y-axis is in log scale. The figure shows that the rank computation time is
much less than the resilience computation time for the same node. We have done the simulation for nodes
starting from 20 to 200 with an increment of 20 nodes in each time. This time, we have considered only 1
vulnerability between two nodes throughout the network. This is used to demonstrate the scalability of the
ranking algorithm.
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Figure 10: Regression analysis of required simula-
tion time by using rank order and random order.

Figure 11: Comparison of resilience computation
time and ranking computation time using different
number of network nodes.

5 LIMITATIONS AND FUTURE WORK

In this work, we didn’t consider the firewall policies, we have only considered the product vulnerabilities.
Also, we didn’t consider the physical bus systems to compute the power damage capability of each RTU.
In future, we have plans to include the firewall policies and the physical bus system based calculation of
potential power damage of RTU to resemble real & robust cyber-physical network scenarios.

6 CONCLUSION

Improving resilience is not a straightforward process. It accounts for the combination of the effects by
changing different parameters of the intermediate nodes as can be ranked by MVNRank. The factors we
have considered in calculating the criticality are important in network security analysis perspective. As
the network grows larger, the computation time to improve the resilience can be very high. Using the
ranking algorithm, the resilience computation time can be reduced by almost half. MVNRank considered
the possibility of potential electric power loss that the attacker can cause to the network, which distinguishes
the importance between traditional corporate network elements and control system elements. This node
ranking algorithm can be useful in bulk power system network cyber resilience optimization process.
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APPENDIX

This paper doesn’t derive the equation for the resilience computation. We have used the resilience equation
from the work by (Shetty, Kamdem, Krishnappa, and Nikol 2018) (under publication). The equation is given
below:

R =
1
|E|

× ∑
e∈E

c(e)
cmax

×
[

1
T

∫ T

0
Ke(t)dt

]
(13)

where, E is the set of all possible attack paths from source to target, |E| is the cardinality of E, c(e) is the
exploitable path cost, cmax is the upper limit of the path exploit costs and Ke(t) is the critical functionality
over time.
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