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ABSTRACT
The principle of least privilege requires that components of a pro-
gram have access to only those resources necessary for their proper
function. Defining proper function is a difficult task. Existing meth-
ods of privilege separation, like Control Flow Integrity and Software
Fault Isolation, attempt to infer proper function by bridging the gaps
between language abstractions and hardware capabilities. However,
it is programmer intent that defines proper function, as the pro-
grammer writes the code that becomes law. Codifying programmer
intent into policy is a promising way to capture proper function;
however, often onerous policy creation can unnecessarily delay
development and adoption.

In this paper, we demonstrate the use of our ELF-based access
control (ELFbac), a novel technique for policy definition and enforce-
ment. ELFbac leverages the common programmer’s existing mental
model of scope, and allows for policy definition at the Application
Binary Interface (ABI) level. We consider the roaming vulnerability
found in OpenSSH, and demonstrate how using ELFbac would have
provided strong mitigation with minimal program modification.
This serves to illustrate the effectiveness of ELFbac as a means of
privilege separation in further applications, and the intuitive, yet
robust nature of our general approach to policy creation.
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1 INTRODUCTION
The principle of least privilege states that components of a sys-
tem should use the least set of privileges necessary for correct
operation [18]. The goal of this concept is to limit the exposure of
vulnerabilities within a system. A non-administrative user should
have more restrictive access control permissions than a system
administrator. A web browser should generally not have default
access to critical operating system files. In this way, ideally, a vul-
nerability in one component (e.g., a web browser) should have no
impact on the overall operation of the system.

More than twenty-five years after Saltzer and Schroeder’s work,
in 2003, Provos, Friedl, and Honeyman recognized that least privi-
lege should be applied not just to the interprocess workings of a
system (e.g., those between programs), but also to the interactions
amongst individual units of execution within a single program
(e.g., functions) [15]. Their idea was to divide system services (e.g.,
network daemons) into pre- and post-authentication phases, with
functionality and access control permissions restricted according
to the context of each phase.

In the last decade, the authors introduced Executable and Link-
able Format (ELF) based access control (ELFbac) [5, 6], a direct
successor to privilege separation as applied to intraprocess memory
isolation. ELFbac is a technique for constructing security policies
at the Application Binary Interface (ABI) level. ABIs establish the
rules of interaction between pre-compiled code objects, such as
functions, libraries and operating systems. These rules include defi-
nitions for primitive data types, calling conventions, and the binary
formatting of said objects. This is a natural place to denote privilege
separation because the semantics of scope and privilege already
exist.

In this paper, we present a case study of ELFbac’s use in miti-
gating CVE-2016-0777, the "roaming bug" found in the OpenSSH
client. Through this vulnerability, a malicious server can fool a
client into disclosing private data, including authentication keys.
ELFbac allows us to prevent this potential disclosure of client-side
private key material, and in general, to enforce the principle of least
privilege over multiple program execution units with existing mem-
ory isolation mechanisms. Utilizing ABI-level policy enforcement,
we recapture the privilege separation inherent in a programmer’s
mental model of scope, and thus reinvent the privilege drop at a
lower level than seen before.

Author copy. Do not redistribute. 
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The rest of this paper is organized as follows: Section 2 justifies
our choice of OpenSSH as a target, and presents our view of policy
in the role of vulnerability mitigation. Section 3 reviews the vul-
nerability found in OpenSSH. Section 4 re-introduces the reader
to ELFbac. In Section 5, we describe an ELFbac policy that isolates
the unintended access patterns that enabled the roaming bug. We
generalize a methodology for policy creation in Section 6. Finally,
we present our concluding thoughts in Section 7.

2 BACKGROUND
In this section, we provide background on OpenSSH, policy mitiga-
tions, and the role of intent in policy mechanisms.

Picking on OpenSSH
The Secure Shell (SSH) network protocols are the most popular
method of securing remote communications over insecure net-
works. The ubiquity of SSH is demonstrated by its being ported to
nearly all modern hardware and operating systems. The popularity
of SSH is such that adversarial scanning for SSH installations with
default credentials is continual on the internet. Any connected host,
unless protected by a firewall, can expect at least dozens, if not
hundreds, of scans in an hour. SSH is the primary means of securely
managing internet routers (e.g., Cisco and Juniper) and many other
devices that offer command line shell interfaces. In a nutshell, SSH
is a key part of the management infrastructure for both the internet
and the Internet of Things (IoT).

OpenSSH is a free and open-source implementation of the SSH
protocols. Since its release in 1999, OpenSSH has been the most pop-
ular implementation for securing remote communications. OpenSSH
is the de-facto standard for encrypted remote communications on
Unix-like systems. Its usefulness is evidenced by the continual addi-
tion of new features, such as connection and credential forwarding,
fully functional virtual private networks (VPNs) and a variety of
methods for constructing fully functional VPNs. SSH is the most
light-weight method for remote access to embedded devices that
provides cryptographic protections without the full the weight of a
public key infrastructure (PKI).

The OpenSSH codebase is regarded to be one of the most depend-
able of its kind for security. Not surprisingly, announcements of
OpenSSH vulnerabilities are critical security news. These vulnera-
bilities are not frequent, owing to OpenSSH’s simple and principled
design and architecture. But their impact is so large that every
time they happen, they inspire not just fixes, but new security
mitigation mechanisms. Discovering pre-authentication vulnera-
bilities in OpenSSH has been enough for an attacker to achieve
instant notoriety (e.g., as with 2002 GOBBLES remote code exe-
cution bug [2]). The discovery of GOBBLES, a pre-authentication,
challenge-response vulnerability, underscored the point that input
parsing vulnerabilities are not a thing of the past, even in highly
audited and concise codebases, such as OpenSSH.

OpenSSH was the original target for Provos, Friedl, and Hon-
eyman’s privilege separation [15]. Their rearchitected design of
OpenSSH moved the handling of credentials into a separate re-
stricted environment. Each new remote connection spawns a new
process (referred to as the “master”) that must run in a privileged
mode in order to allow authentication of key exchanges and the

creation of further processes with the privileges of an authenti-
cated user. With privilege separation, instead of handling a new
connection on its own (within the context of its privileged mode),
the master process forks “slave” processes without privileges 1 to
handle new connections. These slave processes do not have the
access control permissions to create pseudo-terminals, authenticate
keys, or create new processes. Instead, they may only request these
actions be performed on their behalf by the master process. In this
manner, vulnerabilities exploited within a slave process should be
isolated by its unprivileged execution mode.

Thus, the discovery in 2016 of a new remote vulnerability in
OpenSSH, the “roaming bug” [4], has been big news in the security
world, and it was one of the vulnerabilities that got its own themed
coverage in industry press [20]. As before, the weakness behind this
vulnerability was due to parsing of attacker crafted data. Previous
mitigations for such parsing flaws have failed. Since there is no
generic way of eliminating parsing vulnerabilities in C/C++ code,
a new class of mitigation is in order. We present a policy and the
mitigation of this kind.

Our choice of OpenSSH as the target for applying our policy
mitigation is not accidental. As a direct successor to privilege sepa-
ration, ELFbac can be shown to easily mitigate certain classes of
vulnerabilities in a wide variety of applications, including OpenSSH.
Additionally, as in several prior instances, OpenSSH—due to its in-
frastructure importance and exposure—is perhaps the best target
for showcasing a new mitigation.

Vulnerability Mitigation with Policy
Many vulnerabilities arise as a result of a mismatch between a
programmer’s mental model of software and the reality that ex-
ists when computation is performed in real-world environments.
Software exploits, by definition, induce unintended computation;
thereby becoming proofs-by-construction (in a practical and mathe-
matical sense) to the discrepancies present between a programmer’s
intent and a program’s actual behavior. Were programmer intent
explicitly codified in policy, policy enforcement mechanisms would
become the de facto gatekeeper between intended computation and
exploitation.

Unfortunately, preceding policy approaches have fallen short
in protecting user space code from network inputs. The standard
process model lets all code touch all data in the address space.
Policy inferencemethods that rely on language features or hardware
capabilities ignore the programmer’s intent. In contrast, ELFbac
allows programmers to specify the intent of semantically distinct,
intra-process relationships (found between code and data) at the
granularity of ELF sections (the primary container of code and
data within ELF), and to separate program components (such as
functions, modules, and libraries) within a process’ address space.
This delineation of code and data relationships aligns naturally
with the common programmer’s understanding of scoping.

Policy definition and implementationmust be simple and straight-
forward to be useful. Policies must strike a balance between the
simplicity of creation, and the aggressiveness of enforcement. Prior

1In many Unix variants, the privileges of a child process are inherited from its parent.
These privileges must be abandoned by the child, effectively leading to the phrase
“privilege drop.”



Reinventing the Privilege Drop HoTSoS ’18, April 10–11, 2018, Raleigh, NC, USA

policy mechanisms have shown that, in practice, policies can be
overly pedantic and unwieldy, forcing great cognitive burden on
the policy creator. Alternatively, policies may be overly broad, and
thus, frustrate users, resulting in the circumvention or outright
abandonment of policy enforcement. Policy definition within ELF-
bac is less onerous than previous methods. Policies are defined in
a familiar language, and can be tailored to specific code and data,
whether functions, whole libraries, or entire applications. In this
way, policy creation may be limited to only those parts of an appli-
cation that are security critical. Meanwhile, policy enforcement still
allows for the broad capture of unintended computation. ELFbac
policy enforcement monitors the defined code and data units and
only allows explicitly defined interaction patterns. Enforcement is
accomplished through existing virtual memory management code
found within the kernel. Undesirable computation becomes illegal
memory access, resulting in a segmentation fault. This approach
to policy definition leverages a programmer’s own understanding
of security boundaries within a program, and enforcement renders
common classes of vulnerabilities inert by disallowing unspecified
computation and data disclosure.

Reinventing the Privilege Drop
We regard our policy approach as a continuation of the classic priv-
ilege separation design, which is an instance of the least privilege
principle. The classic privilege drop policy primitive postulates that
an application should signal the system when it no longer needs a
privilege it had to start with, so that any subsequent attempts by
the application code to perform the privileged operation are flagged
as policy violations and invoke a policy response, such as killing
the process. In network daemons, listening for connections on a
non-emphemeral port and spawning a user’s sessions required root
privilege; whereas, subsequent processing of the user’s data typi-
cally did not. Thus, dropping privileges expressed the programmer
intent to no longer use root privileges after a particular point in
time.

Some suggestions extended this further—for example, DJ Bern-
stein’s disablenetwork() system call [7] would signal the OS that a
program intended to initiate no new network operations from this
point on. Implementing some form of privilege drop has become
an expected design element for network daemons, proving to be
an effective mitigation. The idea of dropping privileges similarly
underlies the design of SELinux. SELinux mediates system calls
based on the security label of a process and the security label of
an object, such as a file or socket, involved in Linux system calls.
As processes get spawned by their respective parents (that chain
of parents ultimately going up to init), every execv() system call
checks the policy rules and assigns a new security domain to the
new process. These security domains restrict the access rights of the
child process to just the ones specified by policy. Notably, SELinux
treats the access permissions it enforces as a “bag of permissions”
that a process, once created with a particular security label, can
exercise in any order and any number of times.

Previous policy systems focused on access by processes to a sys-
tem’s objects, such as files. And aimed to capture the programmer
intent with regard to such accesses. Although classic and still indis-
pensable, this view of intents is insufficient for modern applications

which may keep their objects in memory and never really trigger a
disc operation (which is mitigated by the policy mechanism) until it
is too late. For example, the attacker may be after a cached copy of a
cryptographic key in a daemon’s memory, or after the integrity of a
memory representation of an object describing access permissions.
Thus, in the presence of ubiquitous caching and other performance
optimizations, the policy must also mitigate access to such objects
to be effective. SE Linux and other mandatory access control sys-
tems relying on file accesses have become less effective in a world
where not everything you care about is neatly encapsulated in a
file; contrary to the Unix guiding principle that everything is a file.

This brings us to the necessity of defining a new class of pro-
grammer intent, namely intraprocess memory references by units
of execution within a program. As a modern program gets assem-
bled out of many functions, classes, modules, and libraries, the
programmer intent with respect to these components’ ability to
access certain kinds of data becomes important. For example, the
programmer likely does not intend for an image processing library
used by a web-server to access the server’s certificates. Yet this is
exactly what happened in a number of exploits wherein a crafted im-
age triggered the image processing library vulnerability to corrupt
data units in memory unrelated to image processing [3].

Thus, a programmer may be interested in protecting his code
from unintended interactions with the library code that his pro-
gram would not use, but that is still loaded as a part of a DLL or
shared object. Conversely, a library author maybe interested in
protecting the integrity of the data his library handles from the
code that handles host-style inputs, and may be exploited by them.
Existing policy solutions provide no support for expressing such
intents, other than performing the library call into a dedicated,
newly spawned process. This solution is highly effective [8], but
too expensive for modern multithreaded servers.

Programmer intents and expectations with respect to libraries
can be generalized to any code units, such as those contained in a
C-compilation unit (where e.g, shared objects may be declared “file-
scoped” to underscore that they are not supposed to be referenced,
and therefore accessed outside of the file by any code outside the
given file). Indeed, such intent idioms are broadly used in the Linux
kernel itself.

This Paper
This case study focuses on a particular kind of intraprocess access
intent which is fundamental for network daemons and any other
code that must process untrusted data. The logic of input validation
implies that potentially host-style crafted data passes through a
validation code-unit after which it is assumed validated and safe
for the rest of the code to process. We regard the ability of code to
access raw input as a dangerous privilege that must be constrained
to only the code that needs it. This insight comes from experience of
exploitation of parser bugs and in the very code that was supposed
to validate inputs, as was the casewith several high profile OpenSSH
vulnerabilities, including the roaming bug. Conversely, the code
that validates input data is not intended to access other kinds of
data generated during the processing of inputs. Our policy system
allows the programmer to specify these expectations at the level
of code units, and to have them enforced by the kernel. In this
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sense, the policy mechanism we present is a direct successor of the
privilege drop applied to memory access.

3 ROAMING IN OPENSSH
OpenSSH is a free implementation of Secure Shell (SSH), a suite
of programs widely used to secure remote communications over
unsecured networks. As noted earlier, we consider it here because
of its open-source, modular architecture, and ubiquitous presence
on modern operating systems. Of particular interest to the authors
is its use within Industrial Control Systems (ICS) and the IoT. With
the growing prevalence of off-the-shelf hardware and commercial
software being utilized within industry, in conjunction with the
popularity of OpenSSH’s (often default) deployment and the re-
ality of recent vulnerabilities targeting it, the security of remote
communications is increasingly important and precarious.

In version 5.4, released in 2010, the OpenSSH client introduced an
experimental and undocumented "roaming" feature. The purpose
of roaming was to allow the resumption of suspended sessions,
e.g., in the case of unexpected network termination. To accomplish
this feature, upon session interruption, the client would maintain a
buffer of (unsent) messages to send to the server upon reconnect.

In 2016, CVE-2016-0777 disclosed an information leak present in
the implementation of OpenSSH’s roaming feature [4]. Although
roaming was never officially supported by the OpenSSH server-side,
a malicious or compromised server could persuade an OpenSSH
client (installed with default settings) to send arbitrary data via the
roaming protocol, including potentially exposing private SSH keys.

Client ServerEstablish connection.

key-exchange: resume@appgate.com

Disconnect.

Reconnect.

“Send me everything.”
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ro
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Roaming 
buffer

SSH keys

…

… Roaming messages and SSH keys.

Figure 1: The information leak within OpenSSH. A mali-
cious server convinces a client to return sensitive data upon
a roaming reconnect.

Figure 1 shows a simplified execution leading to data exposure.
Prior to an SSH session being established, connection parameters
are negotiated between client and server. Presumably, the client
will have previously loaded a user’s private SSH keys into mem-
ory. Ideally, these keys would be expunged; however, in practice
misuse of library functions (such as fopen()) and internal IO buffer-
ing allows the memory to persist. Part of the authentication pro-
tocol handshake permits a special key-exchange algorithm, “re-
sume@appgate.com”, sent by the server. A default client would see
this identifier, and initiate the roaming protocol. After successfully
establishing a connection and authenticating, a client-side buffer is
created to store messages in the event of an interruption. As shown
in the figure, the roaming buffer allocation overlaps the memory
currently storing the (un-expunged) private SSH keys. During a

disconnection, the client stores messages within this buffer. In the
event of a reconnect, the server can request an arbitrary amount of
the buffer to be re-sent, including parts of the buffer that were never
written. To successfully achieve full exploitation, a server needs to
perform some heap massaging to control the desired return-data,
guess the client-side buffer size, and request all available data within
that buffer. As a result, data that may have been previously free’d
but not overwritten (for example, private SSH keys) that overlap
the client-side buffer allocation are openly available to the server.

This exploit is not complicated, requiring no user interaction,
and the risk of confidentiality exposure is quite high [14]. However,
this vulnerability was given a medium ranking due to several miti-
gating factors, chief among them, the ease by which the roaming
feature could be turned off and that server-side roaming had never
been released. Therefore, the only vulnerability exposure was to
malicious servers.

However, its existence highlights a key concept of secure pro-
gramming, that of intent. An experimental feature was released
publicly on the client-side, without corresponding code on the
server-side. It is clear that, in the event of the feature’s release, the
developer(s) never intended for the server to control howmuch data
was returned, or that the returned data might include confidential
credentials. This is where security policy, and ELFbac in particular,
become relevant.

Several mismorphisms 2 in concert could contribute to this vul-
nerability being exploited: use of a server controlled buffer size, use
of previously allocated but uncleared memory (malloc vs. calloc),
unknown dependence on internal IO buffering, and trusting the
server to decide how much data is re-sent.

For amore detailed analysis, see theQualys security advisory [16].

4 ELF-BASED ACCESS CONTROL
Modern programming is a miracle of abstraction. Complex pro-
grams are built through the composition of variables, functions,
classes, modules, and libraries pulled from an increasingly complex
hierarchy of code sources, both internal and external to a given
project. Trustworthy computation is an intricate dance among the
wildflowers of intent—those being planted by the programmer (un-
der the design constraints of the current project), and those seeded
by the creators of ABIs, compilers, and libraries used and borrowed
from to create the final result.

Executable and Linkable Format (ELF) files contain the code
and data for a given executable, as well as metadata necessary
for the creation of a process address space. The operating system
kernel utilizes the information within the ELF file to link, load, and
ultimately construct a runtime process.

ELF files comprise sections and segments. Sections contain the
code and data of a program, with as many 30 sections within a single
executable. Each section defines semantically distinct units of code
and data; with many having exclusive intersectional relationships,
such as certain data readable or writable by only specific code.
Many of the default relationships are predefined by language or
runtime standards, such as glibc’s initialization prior to main(),

2The authors kindly appropriate this term from the work of Smith, Koppel, Blythe,
and Kothari on human policy and the reality of security circumvention. [19] We view
software vulnerabilities as a natural extension of such differential perception.
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code relocation, and dynamic linking. However, sections and their
relationships are easily customizable at compile time with special
compiler pragmas and linker scripts.

Sections are packed together by the linker to create segments.
This packing is primarily a hold-over optimization based on limited
memory, smaller caches, and perceived address space scarcity. The
ELF format naturally captures code and data semantics intended
by the programmer—but the loader then discards this information!
For example, read-only data contained in non-executable sections
can be grouped with default, executable code sections. This often
violates the mental model and intent of the programmer. As a result,
several “weird machines” [9], or unexpected computational engines,
have been developed to take advantage of these mismorphisms via
techniques such as memory corruption, control flow manipulation,
and code reuse.

ELF sections are vehicles for programmer intent, and are thus
natural security policy primitives. In this light, the linker becomes
an expressive policy tool, useful for defining intersectional rela-
tionships between code and data. ELFbac attempts to reclaim the
intended semantics of the programmer by leveraging an “unfor-
getful” loader to preserve the section identity of loaded memory
segments. Thus, the loader becomes a policy enforcement mecha-
nism, responsible for mapping sections into a process address space
and setting up traps for unintended accesses within the virtual
memory system.

Figure 2 shows the ELFbac architecture. The compilation phase of
legacy code requires minimal, if any, modification. ELFbac policies
are defined separately in a standard linker script format. An ELFbac-
aware linker3 then maps the legacy object code according to the
defined policy. The final step prior to runtime is to create a process
address space and load the now-combined objects into place. This
is done with the help of ELFbac’s “unforgetful” loader, that does not
discard the section metadata, but rather enforces the relationships
specified. During runtime, a kernel shim utilizes the policy state
machine to enforce access control.

ELFbac policies define a set of rules codifying the semantic rela-
tionships between data and code, specifically the access controls
(i.e., read, write, and execute permissions) associated with their
encapsulating sections. Policies are represented by finite state ma-
chines (FSM), with each state defining a particular abstract phase
of program execution driven by a given section of code. State tran-
sitions are achieved via memory accesses (“data transitions”) and
function calls (“call transitions”). Each transition rule specifies a
source and a destination state and the interval of virtual addresses
that trigger the transition. Throughout program execution, state
integrity is maintained via the following invariants: (1) the program
counter points to a location within the current state’s code section,
and (2) control flow has proceeded from either the initial state or
an allowed previous state.

Policy implementation relies on replacing the kernel’s view of
a process’ virtual memory context with a diversified collection of
“shadow” contexts, each representing a single policy state. Each
shadow context only maps those regions of memory that can be
accessed in the current state according to the policy. Permitted

3The code for this linker can be found at https://github.com/sergeybratus/elfbac-arm/
tree/master/tools/elfbac-ld
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kernel shim

Figure 2: The ELFbac architecture. Legacy code is com-
piled and linked with an ELFbac policy. During runtime, an
ELFbac-aware loader and kernel shim enforce the policy via
FSM state transitions.

accesses transition the state machine, and may update the virtual
memory context of the process. Meanwhile, any policy violations
(unintended memory accesses or function calls) are trapped, leading
to error handling code or ultimately a segmentation fault.

Utilizing ELFbac policy allows the enforcement of simple seman-
tics, such as “input data can only be read by parsing routines” or
“cryptographic keys should only be read or modified by crypto-
graphic code.” In general, Turing-completeness makes it difficult
to issue substantive statements about a program and its execution.
In fact, the Rice-Shapiro theorem [17] shows that proving such
sufficiently complex statements about a program is undecidable.
However, as finite state machines, ELFbac policies are, at least com-
putationally, much easier to reason about. For example, it is trivial
to prove a policy that enforces “data from the filesystem must be en-
crypted before being sent over the network.” This could be achieved
simply by isolating all network related code into a single state, and
requiring all data transitions into that state to originate from a
cryptographic state. In this way, ELFbac guarantees that all data
will have been encrypted before being sent over the network.

5 MITIGATION OF CVE-2016-0777
To demonstrate the effectiveness of ELFbac, we looked at CVE-2016-
0777, the “roaming bug,” within OpenSSH 6.4p1. As stated above,
the primary issue was an information leak within the roaming
code that could result in cryptographic key disclosure. This is a
mismorphism: access that was not possible in a programmer’s mind
is possible in reality. Conceptually, our goal was simple: to isolate
the network code from the crytographic key material. ELFbac is
the intuitive means of expressing this isolation as a policy goal.

Retrofitting policy into existing software of any complexity
can be painful. However, thanks to OpenSSH’s modular architec-
ture, ELFbac policy and enforcement can be realized with minimal
changes. First, a code review was required to identify the code
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modules and functions related to cryptography and network com-
munications. Once the requisite code and data are found, a policy
can be crafted to define and isolate the desired relationships.
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Figure 3: The ELFbac policy for CVE-2016-0777. Three states
(start, packet, and crypto) represent the various phases of
program execution. Each state is associated with a private
and shared process memory layout. This dissection allows
ELFbac to enforce separation between crypto-related mem-
ory and network traffic.

Figure 3 describes an ELFbac policy FSM compatible with the
existing composition of OpenSSH that isolates cryptographic code
and data from network communication. The policy does not attempt
to enumerate all possible states within OpenSSH, rather we limit
the scope to only those states of interest to the vulnerability at
hand. The start state represents any setup and initialization that
OpenSSH would normally perform, as well as the default state for
execution. Code and data related to network communication are
given a separate state, labelled packet. Finally, a crypto state collects
the cryptographic code and data related to, for example, encryption
and private keys.

Each state maintains a private view (or “shadow”) of the process’
memory, including private heaps. This is the primary method of
isolation within ELFbac. In addition, a separate view of the process
address space is created to allow any necessary data sharing. For
example, a packet_heap is created that allows code within the crypto
and packet states to communicate. There are many function call
transitions that exist within OpenSSH. For brevity and conciseness,
only a few function calls that trigger state changes are shown.

Figure 4 shows the policy in action, as we walk back through
the information leak demonstrated prior. To the server, ELFbac’s
protections are transparent. To establish the remote connection,
OpenSSH will transition between the start and packet states with
ssh_connect(). Part of this connection will require authentication,

Client Server
Establish connection.

key-exchange: resume@appgate.com

Disconnect.

Reconnect.

“Send me everything.”

Roaming messages (no SSH keys).

Roaming

heap

Crypto

heap

Packet

heap

Default

heap

Figure 4: The information leak in OpenSSH with ELFbac’s
memory isolation policy in place.

which means a transition into the crypto state. At this point, cryp-
tographic keys have been written to memory within the crypto
heap, inaccessible to any other states. Similarly, once the connection
has been completed, the client-side roaming buffer will be stored
within the roaming heap, again isolated from other states. Upon
a disconnect, and subsequent resumption of session, the server
may request as much of the buffer as desired. While it may be
poor practice to ignore consistency checks between the client-side
data-written versus the amount of buffer requested, the result is
unaffected. Cryptographic keys no longer share the same memory
space as the roaming buffer, and the information leak is mitigated.

Policy Definition
The policy is defined in JSON, using a format familiar to anyone
with knowledge of linker scripts. Each state is defined, with the
associated sections created or shared appropriately. Listing 1 is a
condensed view of the policy state and transition definitions.

Due to this breakdown, any cryptographic keys stored will be
on the crypto-state heap. In the event that a rogue server is able
to perform the exploits necessary for the roaming vulnerability to
trigger, any attempts to access the crypto-heap from packet-code
will be caught by ELFbac, resulting in a segmentation fault.

To utilize the newly created, custom state-heaps, OpenSSH’s
buffer initialization routine must be made “heap-selective.” This
requires the addition of a custom memory manager; however, the
only functionality that was used was that required to wrap the
existing buffer_init() function call found in OpenSHH’s buffer.c file.
The wrapping allows buffers to be initialized on the custom created
heaps. Listing 2 shows the necessary code changes required to wrap
buffer_init(). Now, heap selection is as simple as replacing a single
function call. Only two files, authfile.c and packet.c, required this
selectivity.

With a policy defined, all that remains is to annotate the nec-
essary C-files within OpenSSH to utilize the defined state heaps.
These annotations take the form of a common C-compiler pragma,
__attribute__((section(...)), as seen below:

_ _ a t t r i b u t e _ _ ( ( s e c t i o n ( " . b s s . sha red " ) ) )
i n t d ebug_ f l a g = 0 ;

In total, 27 annotations in 4 files were all that was necessary to
achieve the critical isolation. Our complete EFLbac-based patch can
be found online. [1]
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Listing 1: The JSON definitions for the ELFbac FSM policy
state and call transitions.

"states ": [

{

"name": "packet",

"stack ": "stack",

"sections ": [

{ "name": "packet_heap", "description ": "*(.

data.packet_heap)", "flags": "rw" },

{ "name": "roaming_heap", "description ": "*(.

data.roaming_heap)", "flags": "rw" }

]

}, {

"name": "crypto",

"stack ": "stack",

"sections ": [

...

{ "name": "crypto_heap", "description ": "*(.

data.crypto_heap)", "flags": "rw" },

{ "name": ".data.packet_heap", "create ":

false , "flags": "rw" },

]}, ... ]

"call_transitions ": [

{

"from": "start",

"to": "crypto",

"address ": "seed_rng",

"param_size ": 0,

"return_size ": 0

}, {

"from": "start",

"to": "packet",

"address ": "ssh_connect",

"param_size ": 0,

"return_size ": 0

}, {

"from": "packet",

"to": "crypto",

"address ": "cipher_init",

"param_size ": 0,

"return_size ": 0

}, ... ]

6 ELFBAC POLICY CREATION
In general, the authors believe that ELFbac policy creation should
take place during development. The programmer is best suited to
create policy based on the domain knowledge and mental model
already guiding the rest of development. Identifying code paths
or data segments that must needs be isolated is already a priority.
ELFbac policy captures the programmer’s intent to isolate security
critical sections within a program, and enforces the boundaries
presumed by the common scoping model. Were ELFbac policy to
have been utilized as part of the OpenSSH development process this
roaming vulnerability would never have seen the light of day. Using

Listing 2: The wrapping of buffer_init() in buffer.c by the
ELFbac memory manager.
void

− b u f f e r _ i n i t ( B u f f e r ∗ b u f f e r )
+ b u f f e r _ a r e n a _ i n i t ( B u f f e r ∗ bu f f e r , enum a r ena s

a r ena_ i dx ) {
const u_ i n t l en = 4 0 9 6 ;

bu f f e r −> a l l o c = 0 ;
− bu f f e r −>buf = xma l l oc ( l en ) ;
+ bu f f e r −>buf = xmemmgr_alloc ( len , a r ena_ i dx ) ;

b u f f e r −> a l l o c = l en ;
bu f f e r −> o f f s e t = 0 ;
bu f f e r −>end = 0 ;

+ bu f f e r −>arena = a r ena_ i dx ; }
+
+void
+ b u f f e r _ i n i t ( B u f f e r ∗ b u f f e r ) {
+ b u f f e r _ a r e n a _ i n i t ( b u f f e r , SHARED) ;
}

policy to reclaim and enforce programmer intent for intraprocess
interactions mitigates an entire class of bugs that depend on manip-
ulating the broad interactions of code and data within a process.

As shown above, it is possible with minimal effort to retrofit
an ELFbac policy into existing software. The process for doing
this is largely one of intuition. It is tempting to begin with policy
definition; however, in practice, it is likely infeasible to isolate every
third-party library, function, and shared memory array. Familiarity
with a codebase is essential to understanding potential areas of
vulnerability. Not every codepath will be vulnerable, and not every
piece of data is critical to an application’s security. So, a first step
to ELFbac policy creation is to identify what needs to be isolated.

The following step is to decide how isolation can be achieved.
There may be no single answer at this stage. It is important to
identify the default behavior of an application, e.g., which external
libraries are being loaded and where they are being used. Common
areas of concern may be input processing or memory buffers. As
with OpenSSH’s roaming bug, and so many other famous vulnera-
bilities, mistakes in input processing and buffer control can spiral
into a multitude of unintended computations. Equipped with the
knowledge of what needs to be isolated, a starting place may be
a simple grep to identify relationships between an area of interest
and functions, files, or libraries. Once relationships are identified,
they must be codified into policy.

ELFbac only permits explicit relationships. As a result, policy
creation can be an iterative process. Beginning with a simple set
of states and relations, and refining acceptable transitions based
on varied inputs and codepaths. Unfortunately, this process is not
currently automated.

7 CONCLUSIONS
Mismorphisms between a programmer’s mental model of software
and actual program execution lead to vulnerabilities. Unintended
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computation due to such vulnerabilities results in exploitation. Ex-
plicitly codifying programmer intent into policy allows enforcement
mechanisms to prevent exploits. The authors previously introduced
ELFbac as a technique for specifying intent via kernel enforceable
policies. In this work, we demonstrate the power and flexibility of
ELFbac in mitigating a real-world software vulnerability, namely,
the roaming bug found in OpenSSH.

For this work, we have produced a software patch to OpenSSH
version 6.4p1 [1]. This patch is minimal in lines of code and allows
the desired and necessary memory isolation between network and
cryptographic code sections. In addition, we have written an ELFbac
policy that defines the desired intraprocess isolation that we believe
an OpenSSH programmer would have originally intended; that is,
a separation between code that handles network connections and
code that handles private authentication keys. The linker, loader,
and kernel mechanisms of ELFbac work together to enforce this
ideal scoping. Were these principles to have been utilized at design
time, this unintended, experimental roaming feature could never
have been weaponized and may have been identified sooner.

ELFbac shows tremendous promise as a mitigation tool. Many
methods exist to identify and enforce privilege separation. How-
ever, ELFbac allows complex policy to be written in a simple to
understand, commonly used syntax at the ABI level, with minimal
changes to an underlying codebase. At design-time, policies are
easily built and incorporated from a programmer’s familiar under-
standing of scope. In addition, enforcement takes place within the
kernel, utilizing the existing framework of virtual memory man-
agement.

Future Work
Work remains to further ease the burden of intuition in policy cre-
ation. Additional tooling with techniques from static analysis, such
as data and control flow analysis, may be helpful in understanding
the relationships inherent in extant software. While retrofitting
software with ELFbac policy is not ideal, we have shown it feasible
with minimal mental overhead.

As with any security primitive, there is likely to be a trade-off
between performance and security. Analyzing the performance
impact of ELFbac is situationally dependent on the software that is
being protected, the hardware on which it is run, and the granular-
ity at which the desired policy is implemented. Naturally, repeatedly
forcing many heavy context switches will result in a significant
performance penalty. In previous case studies, we have seen the
performance degradation be as low as 3% with libpng on an AMD
system, and as high as 30% with Nginx on an Intel system [6]. With
software like OpenSSH, the performance bottleneck is bounded by
the user interaction; otherwise, the performance hit should be neg-
ligible. Clearly, however, there is significant room for performance
optimizations to ELFbac mechanisms.

Modern software development is a mix and mash of black-box
pieces arranged in often precarious ways to achieve some ad hoc
functionality. ELFbac’s mitigations are as good as the modularity
of a program. In fact, ELFbac is a simple mechanism of enforcing
the intents expressed by a program’s modularity. Library writers
may find ELFbac an ideal method of isolating the internals of their
code from its consumers. Similarly, application programmers can

utilize ELFbac to more precisely specify the interactions of their
code with that of utilized libraries. In this mutually-distrusting
view of software development, the developers of each black-box
component may define their own policies. Managing these various
policies and their interactions is a challenging, but interesting task
that we leave for future work.

Much of security policy has been predicated on the assumption
of capabilities provided by hardware, namely memory isolation
enforced by the processor and memory management unit (MMU).
Page tables have typically been regarded as only a bookkeeping
optimization. The contents of the page tables themselves were not
considered policy objects, but rather artifacts in the mechanism of
policy enforcement. Security policies may dictate access controls
within a page table, but not the contents of the page table itself.
ELFbac changes this paradigm by considering page tables as first-
class objects of security policy, and using the existing page table
mechanisms to isolate intraprocess memory.

Recent attacks exploiting previously unconsidered, latent mi-
croarchitectural effects have shaken the foundations of the afore-
mentioned assumptions. The Meltdown [13] attack relies on out-
of-order execution and kernel memory mapping. While ELFbac
could be ported to the Linux kernel, that is not our current research
direction. Luckily, Kernel Address Isolation to have Side-channels
Efficiently Removed (KAISER) [11] does prove to be an effective mit-
igation. Unfortunately, Spectre [12] is a different story, notmitigated
by KAISER. Spectre relies on speculative execution and specifically
assumes “that speculatively executed instructions can read from
memory that the victim process could access normally, e.g., without
triggering a page fault or exception.” We theorize that ELFbac may
be able to partially mitigate variant 1 of Spectre by isolating those
sensitive code and memory sections within a process. As seen in
this work, isolating process memory and triggering exceptions is
part and parcel of ELFbac’s mitigating protections. We are pursuing
this lead, but do not have conclusive results to share at this time.
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