
Analysis of In-order Packet Delivery Network Policy
Enforcement Function

Stuart Baxley
University of Houston

Houston, TX
smbaxley@uh.edu

Nick Bastin
University of Houston

Houston, TX
nick.bastin@gmail.com

Deniz Gurkan
University of Houston

Houston, TX
dgurkan@uh.edu

I. INTRODUCTION

Industrial Control System (ICS) networks face novel chal-
lenges in risk management, feature agility, and deployment
flexibility. Essential hardware control systems may have a
lifetime of decades while the need for business features and the
network security landscape evolve on a daily basis. Even the
mix of common protocols for network connectivity is likely
to undergo significant market disruption over the 50+ year
lifetime of a large industrial complex. Given this reality, the
University of Houston Networking Lab [4] has embarked upon
an effort, facilitated by the Department of Energy CREDC[2]
program, to decouple the long development cycles of hardened
industrial equipment from the ever-changing realities of both
the local and wide-area networks they must use to transport
essential sensor data and control messages.

We are developing a specification for a Network Function
(NF) with the express purpose of defining a standard behavior
for per-flow policy enforcement, allowing operators to specify
varying policies (or combinations of policies) for packet flows
being transmitted between two trusted and/or reliable enclaves
via an untrusted or unreliable segment. These policies allow
features – like packet signatures, sequence numbers, local
timestamping, etc – to be added without hardware downtime or
vendor firmware availability. For example, devices incapable
of running complex network state machines for protocols such
as TCP can nonetheless be relied on to provide reliable data
delivery given the application of appropriate policy. Similarly
sensors and control mechanisms designed decades ago can
benefit from modern HMAC [3] signatures to guarantee data
integrity, without ever having to be upgraded or replaced.

While our objective is a specification that will be handed
over to existing ICS vendors – and not a performant NF
implementation – we need to be able to quantify both the utility
of given policies and also their resource requirements such that
vendors can make reasonable business decisions about which
policies to support and what hardware will be required to
do so. The experiment outlined in this paper is one example
of how we are breaking up the specification evaluation into
discrete pieces (as partially exposed in Figure 1) and using the
flexibility and efficiency of GENI [7] to provide reproducible
methods, data and analytics for each draft policy in a wide
variety of configurable network conditions.

Find Matching Flow or Policy

policy =
state.policies.

next()

policy.LAN_ma
tch(pkt)

No

policy.WAN_ma
tch(pkt)

YesNo

F

Yes

GDone

E

active_flows.
match(pkt)

No

flow =
active_flows
.get(pkt)

Yes

flow =
active_flows.create

(pkt, policy)

Lost Packet
flow.missing_queue

== []
Drop

packetYes

pkt_in_queue(missing_queue,
pkt_info.seq)

flow.curr_seq
=

pkt_info.seq

flow.missing_queue =
flow.missing_queue[pkt_info.seq,

:]

M

Q

No

Yes

No

In order Policy

pkt_info.seq >
flow.curr_seq

Drop
packet

flow.curr_seq =
pkt_info.seq

No

policy.
sendack

flow.curr_seq >
flow.last_ack +
policy.ack_freq

substrate.send_ack
(flow.curr_seq)

flow.last_ack
 =

flow.curr_seq

Yes

End

No

substrate.send_pkt(pkt_info)

Yes

O No

Acknowledgment and Timeout

flow.ack_co
unt >=

policy.ack_
freq

substrate.s
end_ack(flo
w.curr_seq)

flow.ack_
count
 = 0

No

Yes

flow.timeout_co
unt >=

policy.timeout_
threshold

flow.timeout_c
ount = 0

flow.curr_seq =
min[flow.waiting_q

ueue] - 1

No

policy.los
sless

No

Stop flow,
send alertYes

J

K

L

M

Start Flow

flow.curr
_seq =

pkt_info.
seq

flow.
active

flow.sent_queue = []
flow.missing_queue = []
flow.waiting_queue = []

Yes

flow.waiting
_queue = []

send RFR for pkt
[pkt.start:min(w
aiting_queue)] &

add to
missing_queue

pkt_info.seq >
flow.start_seq

Drop
packet

Yes

No

flow.start_seq
= pkt_info.seq
flow.active =

true

S

R

Yes

No
No

Forward to LAN

flow.curr
_seq =

pkt_info.
seq - 1

pkt_in_queue(flow.w
aiting_queue,

flow.curr_seq + 1)

Yes

pkt =
POP(waiting_queue[curr_seq

+1])

flow.timeout_c
ount = 0

flow.ack_count
+= 1

flow.curr_seq
= pkt_info.seq

No

pkt_in_queue
(missing_que

ue,
pkt_info)

flow.missing_queue.remov
e(pkt_info)

L

MST

substrate.send_packet_by_polic
y(policy, pkt_info)

Yes

No

Received Out of Order

pkt_info.seq <
flow.curr_seq

pkt_info.seq >
flow.curr_seq

+ 1

pkt_in_queue(mis
sing_queue,
pkt_info)

missing_queue.remove
(pkt_info)

Yes

Yes

Drop

No

No

Append values from
curr_seq + 1 to
pkt.seq - 1 to
missing_queue

(not in waiting
or missing) with
pkt.RFR_count =
0 and send RFR

waiting_queue.appe
nd(pkt_info)

Yes

No

pkt_in_queue(mis
sing_queue,
pkt_info)

missing_queue.remove(pkt_info)

No

Yes Send RFR
for most
recent
START

V

W

J

Retransmit Packets

pkt_info.start
== true

substrate.resend_start(
flow.start_pkt)

flow.resend_pkt_seq =
pkt_info.rfr_seq.next()

flow.sent_queue.ma
tch(flow.resend_pk

t_seq)

flow.lost_queue.append
(flow.resend_pkt_seq)

No

substrate.resend(flow.
sent_queue.get(flow.re

send_pkt_seq))

flow.lost_queue.e
mpty()

EndYes

substrate.send_lost(flow.lost_qu
eue.max)

flow.lost_que
ue = []

No

P

Yes

Yes

No

Handle Missing Packets

flow.missing_
queue = []

End

flow.missing_pkt
.rfr_count >=

policy.rfr_freq

flow.missing_pkt.rfr
_count = 0

No

Done

flow.missing_pkt
.rfr_count += 1

K

flow.missing_pkt
=

Next(flow.missin
g_queue)

substrate.send_rfr(flow.
missing_pkt)

Yes

Yes

No

pkt_info.typ
e == start

flow.activ
e

pkt_info.seq
==

flow.curr_se
q + 1

No

Yes

No

Forward to
LAN

No

pkt_info.type
== rfr

Yes

has nf
Header?

Yes

flow.policy.type
== inorder

Yes

pkt_info.type
== ack

No

No

Yes

No

pkt_info.type
== stop

Yes

No

pkt_info.type
== lost

No

Yes

policy.
store

stats.collect_nonnf
No

Yes

E

F

pkt_info = new
PacketMetadata(pkt)

No

flow.sent_queue =
flow.sent_queue[pkt_info.seq,:]

Yes

Yes

V

W

O

P

Q

R

flow.last_ack =
pkt_info.seq

T

U

policy.store_receiv
ed

No
flow.rec_queue.append(pkt_

info)

Yes

B

Fig. 1. Draft specification flow chart of WAN-side packet handling for several
concurrent policies

 Author Copy. Accepted for publication. Do not distribute.

II. EXPERIMENT GOALS

The experiment described here evaluates a guaranteed in-
order delivery policy for existing connectionless packet flows,
expected to be used in commodity transport environments
where satellite or long range MIMO radio links [6, 10] alter
the order of packet delivery. The same baseline configuration
(number of sites, sensors, etc.) is run under varying network
conditions to explore how an increasing percentage of re-
ordered packets will impact final message forwarding delay
in the control application, as well as resource requirements for
buffered packets at the Network Function.

III. EXPERIMENT DETAILS

The experiment topology deployed on the GENI VTS
testbed [8] consists of groups of sensor sites with a config-
urable number of sensor nodes transmitting emulated control
data across an unreliable network to a management site. To
quantify resource usage we must track the queue depth at the
network function as well as recording the timing in which
events (such as queuing or forwarding packets) occur under
a wide range of network conditions (in this case, increasing
amounts of reordered packets), so the deployed NF endpoints
record a log of these events. For validation purposes the exper-
iment also orchestrates packet capture at various points in the
network – as seen in Figure 2 – in order to provide reference
timing data and allow for debugging and investigating any
unexpected behavior.

Sensor Site

s0-dp

s0-sen0

s0-sen1

s0-sen2
s0-rtr

s0-nf

Management Site

mgmt-dp

mgmt-rtr

nf2
EL

P

P
OS

mgmt
OS

P

P P

OS

OS

OS

OSEL

P PCAP file capture

EL Event log OS OS Configuration

Fig. 2. Data capture points in component topology sites

Each network function relies on an ICS system operator to
set per flow polices defining the actions the network function
should take to buffer, drop, or forward packets. Packets are

matched via a filter that passes matching packets to the
appropriate handler to enforce policy decisions. In the case
of our experiment we configure the experiment orchestration
system [5] to allocate a lossless policy function for each unique
sensor. The orchestration system utilizes the input from the
GENI Manifest RSpec to extract the number of sensors at
each site, as well as their interface MAC addresses for policy
matching.

In the case of in-order policy, control data leaving the
sensor site is encapsulated in a header containing a sequence
number (incurring an additional packet overhead of four bytes).
The sequence number identifies the ordering of the flow as it
left the originating facility and allows for flow reassembly on
the receiving side in the original order.

The ”commodity transport” core between the sites is where
network impairments (delay and reordering) are applied. The
degree and character of unreliability is easily managed by the
VTS aggregate manager through the GENI Request RSpec,
as well as dynamically during experiment runtime via the
GENI Perform Operational Action API [1]. The configuration
for the experiment results in this paper is 1000ms of delay
(common for geosynchronous satellite transport) and 6-22%
packet reordering in 2% increments. The number of sensor
sites and number of sensors within each site, as well as the
core impairments, are fully programmable resulting in quick
scalability as VTS allows for rapid buildup and teardown of
entire test networks in minutes.

The series of experiment runs are performed through a
set of purpose built scripts, utilizing a custom experiment
orchestration system written at the University of Houston, as
well the standard geni-lib [9] Python library. A reservation
script creates the topology at your site of choice, configurable
with the number of sites and sensors at each site, as well
as the network impairments. The topology is configurable to
exclude the network functions in order to collect baselining
data as well. A second script orchestrates the experiment
by connecting to the remote devices via SSH, installing the
necessary files, writing the packet filters, and starting the
necessary services (network functions at each site, sensor
emulators, etc). After the designated sensor run duration, the
orchestrator stops the processes, terminates the connections,
and uploads generated data files (event logs, pcaps, OS data,
etc.) to the user’s Dropbox.

IV. DATA ANALYSIS

Network Function event data uploaded to Dropbox from
within each experiment run is extracted and passed into an
analysis script. This script produces two panel plots: the first
shows a histogram of the frequency in which packets are
delayed by the network function as shown in Figure 5, the
second shows the total amount of time each network function
contains the specified number of packets in the queue as shown
in Figure 4. Note the broken y-axis scale on both panel plots,
allowing for minor changes in additional delay and queue
depth to be assessed. Each subplot of the figure is generated
using data from the six sensors running for each experiment
allowing for quick turn-around time while providing repro-
ducibility. The queue depth bar chart is generated by taking
the average of the total time spent per queue depth of each

0 5 10 15 20 25 30 35
Time (sec)

0.0

0.5

1.0

1.5

2.0
Pa

ck
et

s i
n

Qu
eu

e
Handler ID: 2

Queue Depth vs Time

0 200 400 600 800
Sequence Number

0.00

0.02

0.04

0.06

Fo
rw

ar
din

g
De

lay
(se

c)

Forwarding Delay vs Sequence Number

Fig. 3. Combined plot of a single sensor queue depth and forwarding time with 12% reordering

10
20
30

Reorder: 06

0 1 2
0.0

0.5

1.0

10
20
30

Reorder: 08

0 1 2
0.0

0.5

1.0

10
20
30

Reorder: 10

0 1 2
0.0

0.5

1.0

10
20
30

Reorder: 12

0 1 2
0.0

0.5

1.0

10
20
30

Reorder: 14

0 1 2
0.0

0.5

1.0

10
20
30

Reorder: 16

0 1 2
0.0

0.5

1.0

10
20
30

Reorder: 18

0 1 2
0.0

0.5

1.0

10
20
30

Reorder: 20

0 1 2
0.0

0.5

1.0

10
20
30

Reorder: 22

0 1 2
0.0

0.5

1.0

Fig. 4. Time spent per queue depth

of the six runs. The histogram data combines all of the six
packet streams received and processed by the NF during the
experiment run. The analysis script is configurable to generate
arbitrary panel dimensions (NxM plots) and can also generate
individual plots of instantaneous queue depth and per-packet
forwarding delay as seen in Figure 3.

V. CONCLUSION

Both panels confirm the assumption that increasing reorder-
ing on the network results in longer delay times for out-of-
order packets and higher utilization of Network Function buffer
space. Still, the delay histogram reveals that in networks with
large amounts of existing delay the additional overhead is min-
imal even with large amounts of reordered packets. Throughout
all of the experiment runs up to twenty-two percent reordering
the maximum additional packet delay incurred by the Network
Function is under one hundred milliseconds and is more likely
closer to fifty milliseconds. Furthermore, the queue depth bar
charts show that the additional buffer required by a Network
Function operating in these conditions is at most three packets
per flow, and is likely bounded to a reasonable amount even
in extremely poor network conditions.

This data is extremely valuable to operators in understand-
ing where to apply certain policies – if the value of in-order
delivery is worth minor jitter in extraordinary environments –
as well as to vendors when determining how much overhead
they will need to build into their products to support these poli-
cies. A similarly thorough evaluation of each policy is essential
to vendor and operator acceptance of our specification, and
the scripting allowing reproducible results on GENI resources
provides for rigorous expansion of analysis as novel questions
arise from real-world use of this function.

2000

4000

Reorder: 06

0.00 0.05
0

50
100
150
200

2000

4000

Reorder: 08

0.00 0.05
0

50
100
150
200

2000

4000

Reorder: 10

0.00 0.05
0

50
100
150
200

2000

4000

Reorder: 12

0.00 0.05
0

50
100
150
200

2000

4000

Reorder: 14

0.00 0.05
0

50
100
150
200

2000

4000

Reorder: 16

0.00 0.05
0

50
100
150
200

2000

4000

Reorder: 18

0.00 0.05
0

50
100
150
200

2000

4000

Reorder: 20

0.00 0.05
0

50
100
150
200

2000

4000

Reorder: 22

0.00 0.05
0

50
100
150
200

Fig. 5. Distribution of additional forwarding delay

VI. ACKNOWLEDGMENTS

This material is based upon work supported by the Depart-
ment of Energy under Award Number DE-OE0000780. 1

1Disclaimer: This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise
does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The views
and opinions ofauthors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof.

REFERENCES

[1] GENI Community. GENI AM API Specification - POA.
URL: http://groups.geni.net/geni/wiki/GAPI AM API
V3#PerformOperationalAction (visited on 01/22/2018).

[2] Cyber Resilient Energy Delivery Consortium. URL:
https://cred-c.org/ (visited on 01/22/2018).

[3] et. al. H. Krawczyk. HMAC: Keyed-Hashing for Mes-
sage Authentication. RFC 2104. RFC Editor, Feb. 1997.
URL: http://www.rfc-editor.org/rfc/rfc2104.txt.

[4] UH Networking Laboratory. URL: http://www.uh.edu/
tech/netlab/ (visited on 01/22/2018).

[5] UH Networking Laboratory. UH Experiment Orchestra-
tion Library. URL: https : / / bitbucket . org / UH - netlab /
uhexp (visited on 01/22/2018).

[6] J. Li et al. “A survey of packet disordering existing
in networked control systems”. In: 2015 IEEE Interna-
tional Conference on Cyber Technology in Automation,
Control, and Intelligent Systems (CYBER). June 2015,
pp. 1797–1801. DOI: 10.1109/CYBER.2015.7288219.

[7] Rick McGeer et al., eds. The GENI Book. Cham:
Springer International Publishing, 2016. ISBN: 978-3-
319-33767-8. DOI: 10.1007/978-3-319-33769-2. URL:
http://dx.doi.org/10.1007/978-3-319-33769-2.

[8] Barnstormer Softworks. GENI Virtual Topology Service.
URL: http : / / geni - vts . readthedocs . io (visited on
01/22/2018).

[9] Barnstormer Softworks. geni-lib. URL: http://geni- lib.
readthedocs.io (visited on 01/22/2018).

[10] A. L. Toledo and Xiaodong Wang. “TCP performance
over wireless MIMO channels with ARQ and packet
combining”. In: IEEE Transactions on Mobile Comput-
ing 5.3 (Mar. 2006), pp. 208–223. ISSN: 1536-1233.
DOI: 10.1109/TMC.2006.37.

