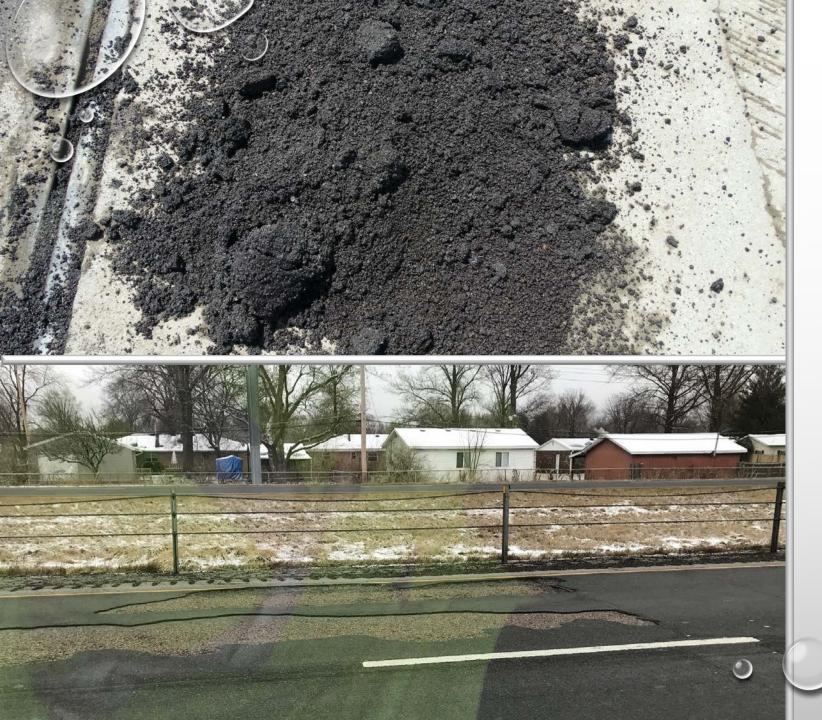
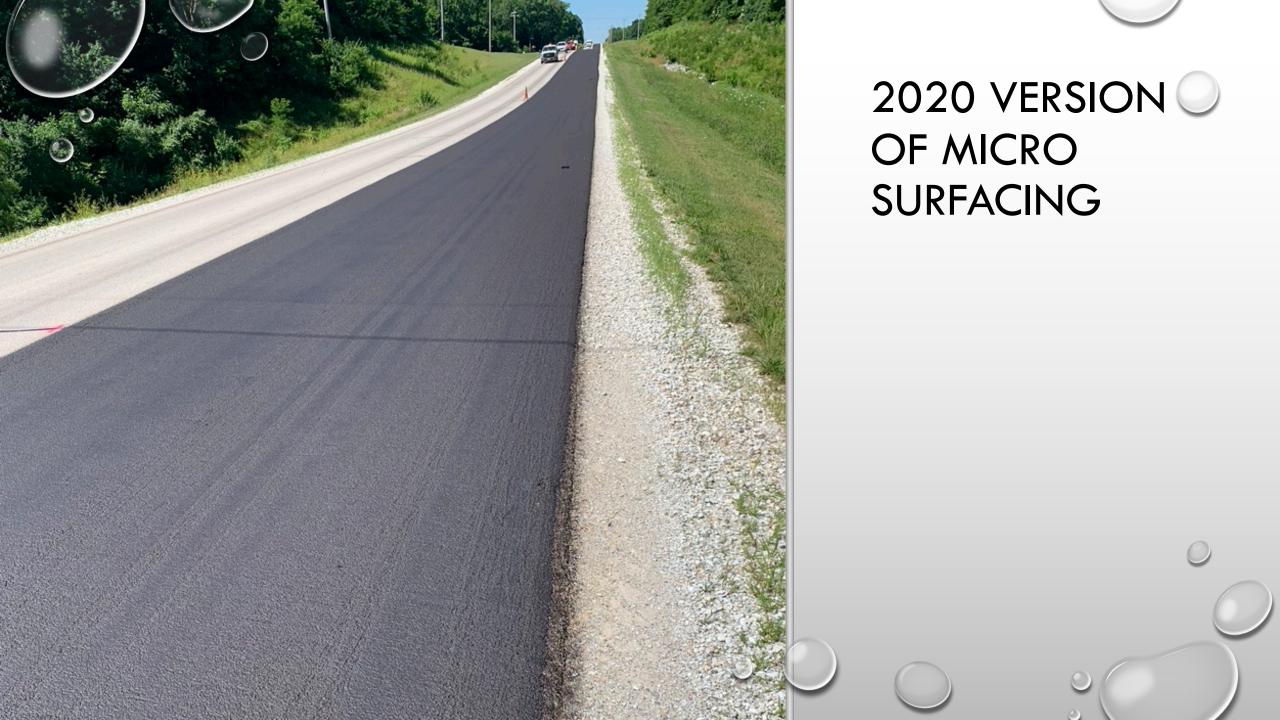

PAVEMENT PRESERVATION AND REHABILITATION PERFORMANCE: LOOKING BACK TO MOVE AHEAD

PAVEMENT PRESERVATION

- MICRO-SURFACING
- CHIP SEALS



"We cannot solve our problems with the same thinking we used when we created them" – Albert Einstein

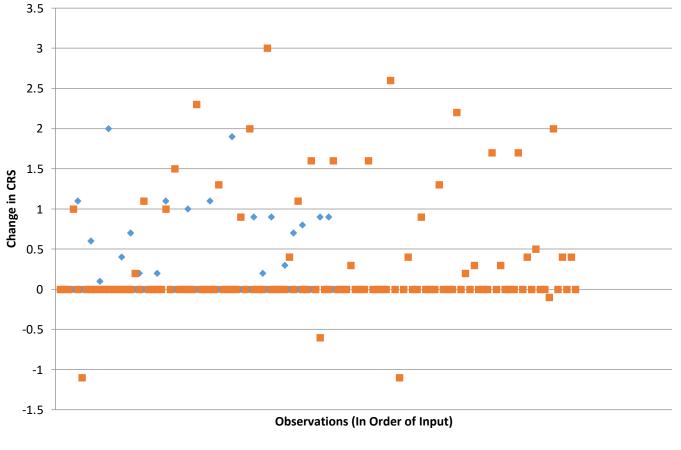

MICRO SURFACING

- SINGLE VS. TWO PASSES
- REQUIREMENT OF TACK COAT
- INCREASE IN MINIMUM RESIDUAL ASPHALT CONTENT
- USE OF ASPHALT EXTRACTION PROCEDURES AS QA TEST
- MOISTURE CONTENT VERIFICATION

POOR PERFORMANCE

"Failure is so important. We speak about success all the time. But it is the ability to resist or use failure that often leads to greater success." – J.K. Rowling

CHIP SEALS


ADDITION OF FOG SEAL

REHABILITATION - HMA OVERLAYS

- EXCESSIVE RUTTING LED TO MEASURES TO INCREASE DENSITY
 - LIFT THICKNESSES INCREASED TO MEET 3 TIMES NMAS CRITERIA
 - STARTED WITH IL 19.0 MM 1.75 IN. BINDER INCREASED TO 2.25 IN. BINDER
- INCREASED TACK COAT APPLICATION RATE
- POOR PERFORMANCE OF IL 9.5 AT 0.75"
 - ELIMINATED LEVELING BINDER, THICKNESS BASED ON GRADATION
- REQUIRING LJS ON ALL CENTERLINE AND LANE TO LANE JOINTS

INCREASED SERVICE LIFE THROUGH INCREASED DENSITY

◆ 1.0 Leveling Binder ■ 0.75 Leveling Binder

CRS Interval Analysis				
	3/4" Leveling Binder	1" Leveling Binder		
Average CRS Change Per Year	1.0606	0.8000		
Minimum CRS Change Per Year	-1.1000	0.1000		
Maximum CRS Change Per Year	3.0000	2.0000		
Std. Deviation in CRS Change Per Year	0.6530	0.4661		
Observation Intervals	33.0000	20.0000		
Maximum CRS Change Per Year Std. Deviation in CRS Change Per Year	3.0000 0.6530	2.0000 0.4661		

INCREASING
SERVICE LIFE
THROUGH BETTER
LONGITUDINAL
JOINTS

BETTER PERFORMANCE THROUGH MORE OPTIONS

- NEW SUBCATEGORIES OF REHABILITATION
 - MINOR AND MAJOR REHABILITATION
 - RANGE OF THICKNESS BASED ON FUNCTIONAL CLASS
 - DISTRICT SELECTS MIXTURE AND USES LIFT THICKNESS TO MATCH GRADATION

HMA OVERLAY GUIDANCE

Standard Overlay

- 3. <u>Thickness.</u> The resurfacing thickness for standard HMA overlays shall be according to the following.
 - a. Interstates. Two lifts with a total thickness of 3.00 to 4.25 in.
 - b. Other State Maintained Highways. Two lifts with a total thickness of 2.00 to 2.75 in. Bare PCC will require a minimum total thickness of 2.50 in.

Designed Overlay

- 3. <u>Thickness.</u> A thickness design procedure is still under development. Until the procedure is completed, HMA Designed Overlays will use the following default thicknesses.
 - a. Interstates. 5.00 in.
 - b. Other State Maintained Highways. 3.75 in.

The mixture gradations and lift thicknesses shall be selected from Figure 53-4.J.

HMA LIFT OPTIONS

Mixture Gradation	Type of Lift	Minimum Lift Thickness (in.)
IL-19.0	Binder only	2.25
IL-9.5	Surface or Binder	1.50
IL-9.5FG	Surface or Binder	1.25
IL-4.75	Binder only	0.75 – Over HMA Surface 1.00 – Over PCC Surface
SMA 12.5	Surface or Binder	2.00
SMA 9.5	Surface or Binder	1.50

LIFT THICKNESS REQUIREMENTS FOR HMA OVERLAYS

Figure 53-4.J

- CHIP SEAL
 - LOOKING TO DEVELOP FIELD TEST FOR EMBEDMENT DEPTH
- COLD RECYCLE TECHNOLOGIES
 - MOISTURE CONTENT TESTING WITH GPR
 - IN-PLACE DENSITY WITH GPR
 - ENHANCING MIX DESIGN METHODOLOGIES WITH IN-SITU TESTING
 - PERFORMANCE MONITORING
- ULTRA-THIN BONDED WEARING COURSE
 - HMA QC/QA TESTS

- USE OF LOCAL AGGREGATES FOR SMA
 - CAN SOME LOCAL AGGREGATES PERFORM IN SMA?
- HMA LIFT CONFIGURATION OPTIMIZATION
 - LARGE SCALE TESTING AND REAL-WORLD DATA ANALYSIS
- HMA POTHOLE MAINTENANCE BEST PRACTICES

QUESTIONS

"The only way to do great work is to love what you do. If you haven't found it yet, keep looking. Don't settle. As with all matters of the heart, you'll know when you find it." – Steve jobs

Illinois Department of Transportation

John Senger, P.E. Engineer of Pavement Technology

Bureau of Research 126 E. Ash St.

Springfield, IL 62704 Tel: 217-782-8582