Jack of All Trades, Master of All: The New D8 ADVANCE Plus with EIGER2 R 500K

D8 ADVANCE Plus The Perfect Balance of Simplicity and Sophistication

Effortless Equipment Setup

- No Touch Optics
- Bayonet-Mounted Stages
- Multi-Mode Detector Technology

Intuitive Instrument Control

- Guided Method Development with WIZARD
- Full Control with COMMANDER
- Unrestricted Access to Diagnostics with TOOLS

Advanced Analysis Techniques

- Rapid Results with Industry Standard Methods
- Dig Deeper with the Latest Analytical Techniques

D8 ADVANCE Plus Fundamentally Flexible

Primary Optic Bench

Goniometer Accessory Mount*

Sample Stage Bayonet

Secondary Optic Bench*

Universal Detector Mount

5/8/2019

TRIO Triple Beampath Primary Optics

 Beampath selection by one click No further realignment required

View in DIFFRAC.DAVINCI

1. Motorized divergence slit Bragg–Brentano geometry Powder XRD Bragg2D

2. Goebel mirror

Parallel Beam geometry X-ray Reflectometry Grazing Incidence XRD Residual Stress Texture Microdiffraction

3. Goebel mirror + Ge(004) monochromator Highly parallel Ka1 geometry High Resolution XRD Reciprocal Space Mapping X-ray Reflectometry (Thick Layers)

5/8/2019

POLYCAP High Intensity Point Focus Beam

TWIST.TUBE

- Fast switching between line focus (for TRIO) and point focus (for POLYCAP)
- Automatic focus direction recognition

POLYCAP SNAP-LOCK optic

- Same optic for all wavelengths
- Parallel beam optic (divergence ~0.25° in both directions)
- Beam diameter: 4 mm

UBC Magnetic Collimators

- Tool-free and alignment-free exchange
- Excellent reproducibility with remounting
- Sizes available (mm): 0.1, 0.3, 0.5, 1.0, 2.0

Primary Applications: Microdiffraction, In-Plane GID

D8 ADVANCE Plus Bayonet-Mounted Sample Stages

	Rotation Stage	CAPILLARY	COMPACT UMC	COMPACT CRADLE+	Non Ambient
Motorized Motion	Phi Rotation	Phi Rotation	XYZ	Phi, Chi, Z Manual X,Y	Various
Geometry	Reflection Transmission	Transmission	Reflection	Reflection	Various
oplications	 Powder Diffraction GID XRR 	 Powder Diffraction Structure Solution PDF SAXS 	 Powder Diffraction Well Plates XY Mapping GID XRR 	 Powder Diffraction Pseudo-Gandolfi HRXRD XRR IPGID 	 Heating/ Cooling Humidity Reactive Gases Tension Electrochemical

The New **EIGER2 R 500K** Ergonomic Design for Dynamic Detection

Ergonomic 0°/90° rotation

- Optimize for 2θ or γ coverage
- Tool-free switching
- Component recognition for rotation

Continuously Variable Sample-to-Detector Distance

- 100 mm to 350 mm (D8 Advance)
- Balance coverage and resolution
- Tool-free distance adjustment
- No alignment or calibration

The New **EIGER2 R 500K** A Multitude of Measurement Modes

5/8/2019

Phase ID of Geological Samples Bragg-Brentano Powder Diffraction

5/8/2019

Phase ID of Geological Samples Microdiffraction and Pseudo-Gandolfi

5/8/2019

Non-Ambient Diffraction Cubic to Tetragonal Transition of BaTiO₃ Powder

5/8/2019

D8 ADVANCE Plus

Non-Ambient Diffraction Reaction of CaCO₃ and TiO₂ to form CaTiO₃

Powder Diffraction with Ka1 only Structure of Paracetamol

5/8/2019

Pole Figures and Texture Analysis Rolled Al Foil vs. Rolled and Drawn Al Can

(331)

3.05 -0.22

2.45 0.19

(331)

(420)

4.62 -0.08

2.47 0.15

(420)

3.17

2.3

(311)

Max Min 7.83 -0.01

Soda Can ODF						
p1=0.0er-	φ1=5.0°	φ1=10.0°	φ1=15.0°	φ1=20.0°	φ1=25.0°	
					1 a	
p1=30.0°	φ1=35.0°	φ1=40.0°	φ1=45.0°	φ1=50.0°	φ1=55.0°	
•						
p1=60.0°	φ1=65.0°	φ1=70.0°	φ1=75.0°	φ1=80.0°	φ1=85.0°	
	٢	۲			۲	
o1=90.0°	φ1=95.0°	φ1=100.0°	φ1=105.0°	φ1=110.0°	φ1=115.0°	
•		(a)	0		•	
p1=120.0°	φ1=125.0°	φ1=130.0°	φ1=135.0°	φ1=140.0°	φ1=145.0°	
0	a	19	Ø	*	•	
p1=150.0°	φ1=155.0°	φ1=160.0°	φ1=165.0°	φ1=170.0°	φ1=175.0°	
0		0.6	ð .(

A pole figure maps the intensity of a single HKL reflection as a function of the angle of the diffraction vector relative to the surface normal.

The orientation distribution (ODF) of crystallites is usually plotted as intensity in a cubic volume, where each axis of the cube corresponds to one of the Euler angles.

- Al Foil shows three distinct texture components in the ODF
- Soda can ODF shows the same three components, but with less broadening since it was not rolled as thin
- Soda can also shows a fourth component not present in the Al foil, due to the drawing process

5/8/2019

Residual Stress in 1D Polycrystalline Ta Coating Deposited at High Temp.

The classic $\sin^2(\psi)$ technique determines the stress of a material by the shift of a high-angle diffraction peak as a function of the tilt angle ψ of the diffraction vector away from the sample normal. Iso-inclination mode: ψ tilt is in the diffraction plane Side-inclination mode: ψ tilt is perpendicular to the diffraction plane

- Measured in iso-inclination mode using a line-focus beam and EIGER2 in 1D snapshot mode, resulting in extremely short measurement times (~10 s per scan)
- · Suitable for large, flat samples
- This stress result represents an average value over a large surface area

Stress tensor (MPa)					
	-1995.3 ± 23.8	65.5 ± 20.5	-3.8 ± 5.3		
	65.5 ± 20.5	-2008.6 ± 23.8	6.3 ± 5.3		
	-3.8 ± 5.3	6.3 ± 5.3	0.0 ± 0.0		

5/8/2019

Residual Stress in 2D Polycrystalline Ta Coating Deposited at High Temp.

The 2D stress method extends the $\sin^2(\psi)$ technique by including the deformation of the Debye ring at several points, rather than just at the center

(tilting out of the page)

- Measured in side-inclination mode using a point-focus beam and EIGER2 in 2D snapshot mode
- Suitable for measuring small areas and features
- This stress result represents a local value
- Agreement between 1D and 2D methods suggests uniformity over the sample surface

φ=0.0 * ψ=5.0 *	φ=0.0 γ ψ=18.3 κ κ κ κ	φ=0.0 ψ=31.	Φ=0.0 ψ=45.0	φ=45. Q , ψ=5.0	φ=45.0 ψ=18.3	φ=45. q ψ=31. 7	φ=45.0 ψ=45.0 * *
****		****	****	***			*****
φ=90% ψ=5.0 × × ×	φ=90 X ψ=18.3 X X X X X	φ=90 % ψ=31 % * *	¢=90. % ⊎=45. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	φ=1800 ψ=5.0	φ=1800 ψ=18.3 × × ×	Φ=18%0 ψ=31.\$ * * * *	φ=18%0 ψ=45 * * *
φ=22%0 Ψ=5.0	φ=22%0 ψ=18 * * *	φ=2290 ψ=31 * * * * *	φ=2250 ψ=45.0 × ×	φ=2790 ψ=5.0	φ=270% ψ=18.3	Φ=27%0 Ψ=31% * * *	φ=27k0 ψ=45 *****

Stress tensor (MPa)		
-2027.3 ± 19.2	10.3 ± 19.5	-1.6 ± 5.6
10.3 ± 19.5	-2027.7 ± 19.1	-0.1 ± 5.5
-1.6 ± 5.6	-0.1 ± 5.5	0.0 ± 0.0

5/8/2019

Residual Stress Depth Profile Polycrystalline Ta Coating Deposited at High Temp.

 The bulk value is in good agreement with the results of the 1D and 2D methods

5/8/2019

0.04

0.06

0.08

0.1

Thickness. um

0.12

0.14

0.02

0.18

0.16

X-ray Reflectometry Thin Ta Coating on Si

5/8/2019

X-ray Reflectometry GaN/AIN Superlattice on Si

5/8/2019

High-Resolution X-ray Diffraction Characterization of an LED multilayer structure

5/8/2019

Large-Area Reciprocal Space Mapping AlGaN LED on Sapphire

Instrument Settings TRIO: Ge004 Monochromator Beam Path Stage: Compact Cradle+ EIGER2: 1D Snapshot Mode

5/8/2019

Large-Area Reciprocal Space Mapping Single Layer Epitaxial Films

In-plane Grazing Incidence Diffraction Fiber-Textured Cu Film on Si

5/8/2019

In-plane Grazing Incidence Diffraction Polycrystalline W Film on Si

2D Transmission Two Polypropylene Sheets

5/8/2019

Grazing-Incidence Small-Angle X-ray Scattering Ordering of Au Nanoparticles on a Surface

5/8/2019

D8 ADVANCE with TRIO and EIGER2 R 500K Applications Summary

- Powder Diffraction in Bragg-Brentano or Parallel Beam
 - Phase ID
 - Quantification
 - Indexing
 - Rietveld Refinement
 - Structure Solution
 - Bragg 2D
 - Non-Ambient Diffraction
 - Microdiffraction
 - Transmission
- Residual Stress Analysis
 - 2D Method
 - Sin²(Psi) Method
 - Multi-HKL method
- Texture Analysis
 - Pole Figures
 - Orientation Distribution Function
 - Component Fitting
 - Harmonic Fitting
 - Inverse Pole Figures

- High-resolution XRD
 - Rocking Curves
 - On-Axis Coupled Scans
 - Reciprocal Space Mapping
- Grazing Incidence Diffraction
 - Phase ID
 - Depth Profiling
 - GI-SAXS
- In-Plane Grazing Incidence Diffraction
 - 2D Materials and ultra-thin films
 - Surface oxides
 - In-plane lattice parameters and crystallite size
 - Epitaxial films relationship to substrate
- X-ray Reflectometry
 - Thickness, density, roughness of single and multi-layered films
 - Crystalline, amorphous, or liquid layers

Innovation with Integrity

© Copyright Bruker Corporation. All rights reserved.