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This compact, one-semester textbook introduces the fundamental concepts of electromagnetics for
the technologies of electrical and computer engineering. It combines the approach of beginning
with Maxwell’s equations for time-varying fields with the treatment of the different categories of
fields as solutions to Maxwell’s equations and uses the thread of statics-quasistatics-waves to bring
out the frequency behavior of physical structures.

The text develops the bulk of the material through the use of the Cartesian coordinate system to
keep the geometry simple and compassionate, yet sufficient to learn the physical concepts and
mathematical tools, while employing other coordinate systems where necessary.

H I G H L I G H T S  I N C LU D E :

• A unique introduction of Maxwell’s equations for time-varying fields collectively, first in integral
form and then in differential form

• Introduction of uniform plane wave propagation in free space following Maxwell’s equations, and
then introducing materials by considering their interaction with uniform plane wave fields

• Development of the transmission line and the distributed circuit concept following from the dis-
cussion of the frequency behavior of physical structures

• Coverage of  the essentials of transmission line analysis in one chapter both in frequency
domain, including Smith Chart, and in time domain

• A chapter on waveguide principles for both metallic waveguides and dielectric waveguides

• Coverage of antenna basics, beginning with obtaining complete solution to the Hertzian dipole
fields through a successive extension of the quasistatic fields

• A chapter on supplementary topics for optional coverage
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Hertzian dipole antenna, superimposed on a historic depiction of the two hemispheres of the globe, 
reflecting the spirit of the dedication.

© 2018 Nannapaneni Narayana Rao 

Pearson Education, Inc. has transferred the rights of this 2009 edition to the author in
December 2017. The author has decided to make the book available on the web free of
charge to the teachers, students, and others all over the world for the purpose of teaching
and learning the fundamentals of electromagnetics. Any use involving monetary transaction 
violates the spirit of this decision. 

There is a Subhashitam (Worthy Saying) in Sanskrit, which says: 

Annadaanam param daanam 
Vidyadaanam atahparam 
Annena kshanikam triptih yaavajjiivamcha vidyayaa. 

The gift of food is a great gift 
Greater still is the gift of knowledge 
While food provides a momentary contentment, knowledge provides a lasting fulfillment. 

This “webook (web + book)” constitutes the gift, by the author and his department, of the
knowledge of the subject of electromagnetics, based on Maxwell’s equations, which “today
underpin all modern information and communication technologies.” 



“Fill your heart with love
and express it in everything you do.”

—Amma Mata Amritanandamayi Devi,
Chancellor, Amrita Vishwa Vidyapeetham

To students all over the world,
I offer to you this book on Electromagnetics,

the “Mother of Electrical and Computer Engineering,”
with the spirit of the above message from Amma,

the “Mother of Compassion!”
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Preface

“. . . I am talking about the areas of science and learning that have been at the heart of
what we know and what we do, that which has supported and guided us and which is
fundamental to our thinking. It is electromagnetism in all its many forms that has been
so basic, that haunts us and guides us. . . .”

—Nick Holonyak, Jr., the John Bardeen Endowed Chair Professor of Electrical and
Computer Engineering and Physics at the University of Illinois at Urbana–Champaign,
and the inventor of the semiconductor visible LED, laser, and quantum-well laser

“The electromagnetic theory, as we know it, is surely one of the supreme accomplish-
ments of the human intellect, reason enough to study it. But its usefulness in science
and engineering makes it an indispensable tool in virtually any area of technology or
physical research.”

—George W. Swenson, Jr., Professor Emeritus of Electrical and Computer Engineering,
University of Illinois at Urbana–Champaign

The above quotes from two of my distinguished colleagues at the University of Illinois
underscore the fact that electromagnetics is all around us. In simple terms, every time
we turn on a switch for electrical power or for electronic equipment, every time we
press a key on our computer keyboard or on our cell phone, or every time we perform
a similar action involving an everyday electrical device, electromagnetics comes into
play. It is the foundation for the technologies of electrical and computer engineering,
spanning the entire electromagnetic spectrum, from d.c. to light.As such, in the context
of engineering education, it is fundamental to the study of electrical and computer
engineering. While the fundamentals of electromagnetic fields remain the same, the
manner in which they are taught may change with the passing of time owing to the
requirements of the curricula and shifting emphasis of treatment of the fundamental
concepts with the evolution of the technologies of electrical and computer engineering.

Three decades ago, I wrote a one-semester textbook, the first edition of Elements
of Engineering Electromagnetics, dictated solely by the reduction in the curricular
requirement in electromagnetics at the University of Illinois from a three-semester re-
quired sequence to a one-semester course, owing to the pressure of increasing areas of
interest and fewer required courses.The approach used for the one-semester book was
to deviate from the historical treatment and base it upon dynamic fields and their engi-
neering applications, in view of the student’s earlier exposure in engineering physics to

ix
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x Preface

the traditional approach of static fields and culminating in Maxwell’s equations. Less
than ten years after that, a relaxation of the curricular requirements coupled with the
advent of the PC resulted in an expanded second edition of the book for two-semester
usage. Subsequent editions have essentially followed the second edition.

Interestingly, the approach that broke with the tradition with the first edition has
become increasingly relevant from a different context, because with the evolution of
the technologies of electrical and computer engineering over time, the understanding
of the fundamental concepts in electromagnetics based on dynamic fields has become
increasingly important. Another feature of the first edition of Elements of Engineering
Electromagnetics was the treatment of the bulk of the material through the use of the
Cartesian coordinate system.This was relaxed in the subsequent editions, primarily be-
cause of the availability of space for including examples involving the geometries of
cylindrical and spherical coordinate systems, although the inclusion of these examples
is not essential to the understanding of the fundamental concepts.

This book, which is a one-semester textbook, combines the features of the
first edition of Elements of Engineering Electromagnetics with the treatment of the
fundamental concepts in keeping with the evolution of technologies of electrical and
computer engineering. Specifically, the approach of beginning with Maxwell’s equa-
tions to introduce the fundamental concepts is combined with the treatment of the dif-
ferent categories of fields as solutions to Maxwell’s equations and using the thread of
statics-quasistatics-waves to bring out the frequency behavior of physical structures.
Thus, some of the salient features of the first nine chapters of the book consist of the
following:

1. Using the Cartesian coordinate system for the bulk of the material to keep the
geometry simple and yet sufficient to learn the physical concepts and mathemat-
ical tools, while employing other coordinate systems where necessary

2. Introducing Maxwell’s equations for time-varying fields first in integral form and
then in differential form early in the book

3. Introducing uniform plane wave propagation by obtaining the field solution to
the infinite plane current sheet of uniform sinusoidally time-varying density

4. Introducing material media by considering their interaction with uniform plane
wave fields

5. Using the thread of statics-quasistatics-waves to bring out the frequency behav-
ior of physical structures, leading to the development of the transmission line and
the distributed circuit concept

6. Covering the essentials of transmission-line analysis both in frequency domain
and time domain in one chapter

7. Introducing metallic waveguides by considering the superposition of obliquely
propagating uniform plane waves and dielectric waveguides following the discus-
sion of reflection and refraction of plane waves

8. Obtaining the complete solution to the Hertzian dipole fields through a succes-
sive extension of the quasistatic field solution so as to satisfy simultaneously the
two Maxwell’s equations, and then developing the basic concepts of antennas
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Preface xi

The final chapter is devoted to six supplementary topics, each based on one or more
of the previous six chapters. It is intended that the instructor will choose one or more
of these topics for discussion following the corresponding previous chapter(s). Material
on cylindrical and spherical coordinate systems is presented in appendices so that it
can be studied either immediately following the discussion of the corresponding mate-
rial on the Cartesian coordinate system or only when necessary.

From considerations of varying degrees of background preparation at different
schools, a greater amount of material than can be covered in an average class of three
semester-hour credits is included in the book. Worked-out examples are distributed
throughout the text, and in some cases, extend the various concepts. Summary of the
material and a number of review questions are included for each chapter to facilitate
review of the chapters.

I wish to express my gratitude to the numerous colleagues at the University of
Illinois at Urbana–Champaign (UIUC) who have taught from my books over a period
of 35 years, beginning with my first book in 1972, and to the numerous users of my
books worldwide. Technological advances in which electromagnetics continues to play
a major role have brought changes in this span of time beginning with the introduction
of the computer engineering curriculum in my department at UIUC in 1972, followed
by the name change of the department from electrical engineering to electrical and
computer engineering in 1984, to transforming the way of life in the present-day world
from “local” to “global.”

The title of this book is a recognition of the continuing importance of a core
course in electromagnetics in both electrical engineering and computer engineering
curricula, in this high-speed era. My joint affiliation with UIUC, my “home” institution
in the United States in the West, and Amrita Vishwa Vidyapeetham in my “homeland”
of India in the East is a gratifying happening owing to the state of the world that, with
the transformation from “local” to “global,” East is no longer just East, and West is no
longer just West, and the twain have met!

N. NARAYANA RAO
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About the Author

Nannapaneni Narayana Rao was born in Kakumanu, Guntur District,Andhra Pradesh,
India. Prior to coming to the United States in 1958, he attended high schools in
Pedanandipadu and Nidubrolu; the Presidency College, Madras (now known as
Chennai); and the Madras Institute of Technology, Chromepet. He completed high
school in Nidubrolu in 1947, and received the B.Sc. degree in Physics from the Univer-
sity of Madras in 1952 and the Diploma in Electronics from the Madras Institute of
Technology in 1955. In the United States, he attended the University of Washington,
receiving the M.S. and Ph.D. degrees in Electrical Engineering in 1960 and 1965,
respectively. In 1965, he joined the faculty of the Department of Electrical Engineering,
now the Department of Electrical and Computer Engineering, at the University of
Illinois at Urbana–Champaign (UIUC), Urbana, Illinois, and served on the faculty of
that department until 2007.

Professor Rao retired from UIUC in 2007 as Edward C. Jordan Professor of
Electrical and Computer Engineering, to which he was named to be the first recipient
in 2003. The professorship was created to honor the memory of Professor Jordan, who
served as department head for 25 years, and to be held by a “member of the faculty of
the department who has demonstrated the qualities of Professor Jordan and whose
work would best honor the legacy of Professor Jordan.” During the 42 tears of tenure
at the University of Illinois, Professor Rao was engaged in research, teaching, adminis-
tration, and international activities.

Professor Rao’s research focused on ionospheric propagation. In his teaching, he
taught a wide variety of courses in electrical engineering. He developed courses in
electromagnetic fields and wave propagation, and has published undergraduate text-
books: Basic Electromagnetics with Applications (Prentice-Hall, 1972), six editions of
Elements of Engineering Electromagnetics (Prentice-Hall, 1977, 1987, 1991, 1994, 2000,
and 2004), and a special Indian Edition of the sixth edition of Elements of Engineering
Electromagnetics (Pearson Education, 2006). In administration, he served as Associate
Head of the Department for Instructional and Graduate Affairs for 19 years, from 1987
to 2006.

Professor Rao has received numerous awards and honors for his teaching and cur-
ricular activities. These include the first Award in Engineering in 1983 from the Telugu
Association of North America (TANA), an association of Telugu-speaking people of
origin in the State of Andhra Pradesh, India, with the citation, “Dedicated teacher and
outstanding contributor to electromagnetics”; a plaque of highest appreciation from the
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Faculty ofTechnology,University of Indonesia,Jakarta, Indonesia, for curriculum devel-
opment in 1985–1986; the Campus Undergraduate Instructional Awards in 1982 and
1988, the Everitt Award for Teaching Excellence from the College of Engineering in
1987, the Campus Award for Teaching Excellence and the first Oakley Award for Inno-
vation in Instruction in 1989, and the Halliburton Award for Engineering Education
Leadership from the College of Engineering in 1991, all at the University of Illinois at
Urbana–Champaign; election to Fellow of the IEEE (Institute of Electrical and Elec-
tronics Engineers) in 1989 for contributions to electrical engineering education and
ionospheric propagation; the AT&T Foundation Award for Excellence in Instruction of
Engineering Students from the Illinois–Indiana Section of the ASEE (American Soci-
ety for Engineering Education) in 1991; theASEE Centennial Certificate in 1993 for ex-
ceptional contribution to the ASEE and the profession of engineering; the IEEE
Technical Field Award in Undergraduate Teaching in 1994 with the citation,“For inspi-
rational teaching of undergraduate students and the development of innovative instruc-
tional materials for teaching courses in electromagnetics”; and the Excellence in
Education Award from TANA in 1999. He is a Life Fellow of the IEEE and a Life Mem-
ber of the ASEE.

Professor Rao has been active internationally in engineering education. He
was involved in institutional development at the University of Indonesia in Jakarta
during 1985–1986. In summer 2006, he offered the first course on the EDUSAT satel-
lite network from the Amrita Vishwa Vidyapeetham (Amrita University) in Ettimadai,
Coimbatore, Tamil Nadu, India, under the Indo-U.S. Interuniversity Collaborative
Initiative in Higher Education and Research. In October 2006, Amrita University
named Professor Rao as its first Distinguished Amrita Professor.

Professor Rao will be continuing his academic activities, as Edward C. Jordan
Professor Emeritus of Electrical and Computer Engineering at the University of Illinois
and Distinguished Amrita Professor of Engineering at Amrita University.
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Gratitude and “Grattitude”

I came to the United States 50 years ago in 1958 with $50, a passport from my mother-
land, India, and undergraduate education in my then-technical field of electronics from
the Madras Institute of Technology in India. I received my Ph.D. in electrical engineer-
ing from the University of Washington and joined what is now the Department of
Electrical and Computer Engineering (ECE) at the University of Illinois at
Urbana–Champaign (UIUC) in 1965, attracted by the then-department head, Edward
C. Jordan, who brought the department to national and international fame as its head
for 25 years from 1954 to 1979. After 42 years of tenure in this department, I retired,
effective June 1, 2007, as the Edward C. Jordan Professor Emeritus of Electrical and
Computer Engineering.

In recent years, I have been engaged in engineering education in India. In
December 2005, I got connected to the “Hugging Saint,” and “Mother of Compassion,”
the humanitarian and spiritual leader Amma Mata Amritanandamayi Devi, Chancellor
of Amrita Vishwa Vidyapeetham (Amrita University), popularly known as “Amma,”
meaning “Mother,” all over the world. Since then, I have been involved with Amrita
University, where I now have the position of Distinguished Amrita Professor of Engi-
neering, offered to me in October 2006. My involvement with Amrita began in a special
way, as the first faculty member from the United States teaching from the Amrita cam-
pus in Ettimadai, Coimbatore, Tamil Nadu, to students at remote locations on the in-
teractive satellite E-learning Network, under the Indo-U.S. Inter-University
Collaborative Initiative in Higher Education and Research, in summer 2006.

I am grateful to many individuals, beginning with my late parents, and for many
things. I came with the solid foundation laid at my alma mater in India and acquired
more education at my alma mater in the United States and prospered in my profession
at Illinois. For all of this, I am grateful to my two Lands, the land of my birth, India, for
the foundation, and the land of my work, America, for the prosperity. I am grateful to
Amma Mata Amritanandamayi Devi for attracting me to Amrita University, thereby
giving me the opportunity for “serving the needs of students of various parts of the
world,” in the words of former President of India, Bharat Ratna, Dr. A. P. J. Abdul
Kalam, with this book, bearing my joint affiliation with Illinois and Amrita.

In the words of the late Gurudeva Sivaya Subramuniyaswami of the Kauai
Aadheenam, Kauai, Hawaii: “Gratitude and appreciation are the key virtues for a

xv
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xvi Gratitude and “Grattitude”

better life.They are the spell that is cast to dissolve hatred,hurt and sadness, the medicine
which heals the subjective states of mind,restoring self-respect,confidence,and security.”
I am grateful that I am the author of this book and its predecessor books, over the span
of more than 35 years, for introducing electromagnetic theory, commonly known as
electromagnetics (EM), to students all over the world. Here, I would like to reconstruct
the trail of this gratitude beginning in the 1950s.

One day during the academic year 1957–1958, I had the pleasure of having after-
noon refreshments with William L. Everitt in the dining hall of the Madras Institute of
Technology (MIT), Chromepet, along with some others in the electronics faculty of
MIT.William L. Everitt was then the dean of the College of Engineering at the Univer-
sity of Illinois, Urbana, as it was then known. Dean Everitt was visiting India because
the University of Illinois was assisting with the development of IIT (Indian Institute of
Technology), Kharagpur, the first of the IITs. Dean Everitt came to Madras (presently
Chennai) at the invitation of William Ryland Hill, who was the visiting head of the elec-
tronics faculty of MIT during that one year, on leave from the University of Washington
in Seattle, Washington.

I happened to be on the staff of the electronics faculty then, having completed my
diploma in electronics after three years of study during 1952–1955 and six months of
practical training, following my B.Sc. (Physics) from the University of Madras, having
attended the Presidency College. One of the subjects I studied at MIT was electromag-
netic theory, from the book Electromagnetic Waves and Radiating Systems, by Edward
C. Jordan, who was then the head of the Department of Electrical Engineering at the
University of Illinois. I can only say that my learning of electromagnetic theory at that
time was hazy at best, no reflection on Jordan’s book.

While I was a student at MIT, one of our great lecturers, by the name of S. D.
Mani, was leaving to take a new job in Delhi, for which we gave him a send-off party.
After the send-off party, we all went to the Chromepet Railway Station adjacent to the
Institute to bid a final goodbye to him on the platform. While on the platform waiting
for the electric train to arrive from the neighboring station, Tambaram, he specifically
called to me and said, “Narayana Rao, someday you will become the president of a
company!”

Contrary to what S. D. Mani said, with his great characteristic style, I did not go
on to even work in a company. Instead, William Ryland Hill “took” me to the EE
Department at the University of Washington in 1958, then chaired by Austin V. Eastman,
a contemporary of Edward Jordan. There, I pursued my graduate study in electrical
engineering and received my Ph.D. in 1965, with Howard Myron Swarm as my advisor,
in the area of ionospheric physics and propagation, and taking courses from Akira Ishi-
maru, among others. Eastman gave me the opportunity of teaching courses just like a
faculty member, as an instructor, because of my teaching experience at MIT, and the
good word of Ryland Hill. That was when I fell in love with the teaching of
“transmission lines,” from the electromagnetics aspect, which then extended beyond
transmission lines and later led to the writing of my books.

Never did I envision during those years that in 1965, after completing my Ph.D. at
the University of Washington, I would become a faculty member and be writing my
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Gratitude and “Grattitude” xvii

books in the Jordan-built Department of Electrical and Computer Engineering (as it is
now called) in the Everitt-built College of Engineering at the University of Illinois at
Urbana-Champaign, as it is now known. Never did I envision that I would spend my
entire professional career since 1965 in the hallowed halls of the William L. Everitt
Laboratory of Electrical and Computer Engineering, which I call the “Temple of Elec-
trical and Computer Engineering,” along with personalities such as distinguished col-
leagues Nick Holonyak, Jr., and George W. Swenson, Jr. Never did I envision that not
only would I be writing books for teaching electromagnetics, following the tradition of
Jordan, but also would be holding a professorship, and now an emeritus professorship,
bearing his name.

I believe that gratitude is something you can neither express adequately in words
nor demonstrate adequately in deeds. Nevertheless, I have tried on certain occasions to
express it in words, and demonstrate it in deeds, which I would like to share with you
here:

To my alma mater, the Madras Institute of Technology, on the occasion of the
Institute Day on February 26, 2004, in the presence of the then-Governor of Tamil
Nadu, Sri P. S. Ramamohan Rao, a classmate of mine while in Presidency College, for
presenting the sixth edition of my book, Elements of Engineering Electromagnetics:

So, Madras Institute of Technology, my dear alma mater
Where I went to school fifty years ago this year
Today I present to you this historic volume
The product of the work of my lifetime
For which fifty years ago you laid the foundation
That I cherished all these years with much appreciation
Please accept this book as a token of my utmost gratitude
Which I offer to you in the spirit of “Revere the preceptor as God”
Hopefully I will be back with Edition No. 7
To express my gratitude to you again in 2007!

And I did go back to my alma mater in January 2007, not to present Edition No. 7,
but rather a special Indian Edition of Edition No. 6, which could be considered as
Edition No. 7!

At the conclusion of the response speech on the occasion of my investiture as the
Edward C. Jordan Professor of Electrical and Computer Engineering, on April 14, 2004:

To Edward C. Jordan, the “father” of my department
Fifty years ago, I may have studied EM from your book with much bewilderment
But today, I offer to you this book on EM which I wrote with much excitement
In appreciation of your profound influence on my professional advancement.

To my alma mater, the EE Department at the University of Washington, giving
the keynote speech and presenting the sixth edition of Elements of Engineering
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Electromagnetics, at the kick-off event for the Centennial Celebration of the Depart-
ment on April 28, 2006:

To the EE Department at the University of Washington
From this grateful alumnus who received from you his graduate education
Not just graduate education but seven years of solid academic foundation
For my successful career at the University of Illinois at Urbana–Champaign
During which I have written six editions of this book on electromagnetics
Besides engaging in the variety of all the other academic activities
I present to you this book with utmost appreciation
On the occasion of your centennial celebration!

And when you are grateful in life, things continue to happen to you to allow you
to be even more grateful. Even as late as November 2005, I did not envision that I
would become connected to Amrita University of Amma Mata Amritanandamayi
Devi. The opportunity came about as a consequence of the signing of a memorandum
of understanding (MOU) in December 2005 between a number of U.S. Universities, in-
cluding UIUC and the University of Washington, and Amrita University in partnership
with the Indian Space Research Organization (ISRO) and the Department of Science
and Technology of the Government of India. The MOU had to do with an initiative,
known as the Indo-U.S. Inter-University Collaborative Initiative in Higher Education
and Research, and allowed for faculty from the United States to offer courses for 
e-learning on the ISRO’s EDUSAT Satellite Network and to pursue collaborative re-
search with India. The Initiative was launched by the then President of India, Bharat
Ratna, A. P. J. Abdul Kalam, from New Delhi on the EDUSAT Satellite Network on
December 8, 2005.

A delegation from the United States went to India on this occasion, and follow-
ing the launching ceremony at Ettimadai, Coimbatore, Tamil Nadu, where the main
Amrita campus is located, the delegation went to Amritapuri in the state of Kerala to
meet with Amma on December 9.That was when I got connected to Amma, and things
began to happen.Within the next year, I became the first professor to offer a course on
the EDUSAT Satellite Network—a 5-week course in summer 2006, entitled “Electro-
magnetics for Electrical and Computer Engineering,” in memory of Edward C. Jordan,
using as the textbook a special Indian Edition of Elements of Engineering Electromag-
netics, Sixth Edition, published in this connection by Pearson Education and containing
a message by former President Abdul Kalam, forewords by UIUC Chancellor Richard
Herman, UIUC Provost Linda Katehi, and ECE Professor Nick Holonyak, Jr., and an
introductory chapter called “Why Study Electromagnetics?” offering 18 very thought-
ful responses to that question, most of them provided by UIUC ECE faculty members.

So, I did not become the “president” of a company, as S. D. Mani proclaimed on
the platform of the Chromepet Railway Station. Instead, I went on to become a “resi-
dent” of the William L. Everitt Laboratory of Electrical and Computer Engineering,
the “Temple of Electrical and Computer Engineering,”—the crown jewel of the cam-
pus that provided education to numerous presidents of companies—located at the
northeast corner of the intersection of Wright and Green Streets in Urbana, Illinois, on
the Campus of the University of Illinois at Urbana–Champaign!
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And from the “Temple of Electrical and Computer Engineering” in Urbana,
shown above, my gratitude took me to my motherland, halfway around the world, as an
“IndiAmerican,”a word that I coined implying that the“Indian”and the“American”are
inseparable, and which inspired former President Abdul Kalam. There, I reached the
destination in my journey at Amma Mata Amritanandamayi Devi’s Amrita Vishwa
Vidyapeetham,where I got connected to the“young minds”of my motherland, shown in
the picture below, along with some staff and my wife and our daughter, taken on August
11, 2006, the last day of the class in front of the beautiful main building of the campus.
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I have read somewhere that destination is a journey and not a success in itself.
And therefore, the journey began at Amrita and is continuing! As though for this pur-
pose and owing to a combination of circumstances, I became the first Distinguished
Amrita Professor of Engineering in October 2006, at which time I decided to write this
book, and hence began working on it while at Amrita in Ettimadai. Subsequently, I re-
tired from UIUC effective June 1, 2007, becoming the Edward C. Jordan Professor
Emeritus of Electrical and Computer Engineering, so that my journey is now continu-
ing as Jordan Professor Emeritus from Illinois and Distinguished Amrita Professor
from Amrita, wherever I am in this global world.

I always believed in the power of education—transcending the boundaries of na-
tional origin, race, and religion—to assure the future of the world. Throughout my life,
I have been involved in education, as a student, professor, researcher, teacher, author,
and administrator. The sheer enjoyment of my work led me to coining the word “grat-
titude,” in 2005, in answer to people wondering if I would ever retire from my job at
Illinois. “Grattitude” is a word combining “gratitude” and “attitude,” and meaning an
“attitude of gratitude.” In my journey, I feel grattitude for the opportunity I have been
given to help facilitate the education of the wonderful youth from countries all over
the world, through my books, teaching, and international activities. I have learned that
engaging in an activity with “grattitude” yields immediate enjoyment. I conclude this
story of “gratitude and grattitude” with the following poem:

To the students from all around the world
And to the students all over the world
EMpowered by the Jordan name
And inspired by the Amrita name
I offer to you this book on EM
Beginning with this poem which I call PoEM
If you are wondering why you should study EM
Let me tell you about it by means of this PoEM
First you should know that the beauty of EM
Lies in the nature of its compact formalism
Through a set of four wonderful EMantras
Familiarly known as Maxwell’s equations
They might be like mere four lines of mathematics to you
But in them lie a wealth of phenomena that surround you
Based on them are numerous devices
That provide you everyday services
Without the principles of Maxwell’s equations
Surely we would all have been in the dark ages
Because there would be no such thing as electrical power
Nor would there be electronic communication or computer
Which are typical of the important applications of ECE
And so you see, EM is fundamental to the study of ECE.

So, you are curious about learning EM
Let us proceed further with this PoEM
First you should know that E means electric field
And furthermore that B stands for magnetic field
Now, the static E and B fields may be independent
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But the dynamic E and B fields are interdependent
Causing them to be simultaneous
And to coexist in any given space
Which makes EM very illuminating
And modern day life most interesting
For it is the interdependence of E and B fields
That is responsible for electromagnetic waves
In your beginning courses you might have learnt circuit theory
It is all an approximation of electromagnetic field theory
So you see they put the cart before the horse
But it is okay to do that and still make sense
Because at low frequencies circuit approximations are fine
But at high frequencies electromagnetic effects are prime
So, whether you are an electrical engineer
Or you happen to be a computer engineer
Whether you are interested in high frequency electronics
Or maybe high-speed computer communication networks
You see, electromagnetic effects are prime
Studying the fundamentals of EM is sublime.

If you still have a ProblEM with EM,
Because it is full of abstract mathematics,
I say, my dear ECE student who dislikes electromagnetics
Because you complain it is full of abstract mathematics
I want you to know that it is the power of mathematics
That enabled Maxwell’s prediction through his equations
Of the physical phenomenon of electromagnetic radiation
Even before its finding by Hertz through experimentation
In fact it was this accomplishment
That partly resulted in the entitlement
For the equations to be known after Maxwell
Whereas in reality they are not his laws after all
For example the first one among the four of them
Is Faraday’s Law expressed in mathematical form
You see, mathematics is a compact means
For representing the underlying physics
Therefore do not despair when you see mathematical derivations
Throughout your textbook on the Fundamentals of Electromagnetics
Instead look through the derivations to understand the concepts
Realizing that mathematics is only a means to extend the physics
Think of yourself as riding the horse of mathematics
To conquer the new frontier of electromagnetics
Let you and me together go on the ride
As I take you through the steps in stride, with grattitude!

N. NARAYANA RAO
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Vectors and Fields

Electromagnetics deals with the study of electric and magnetic fields. It is at once
apparent that we need to familiarize ourselves with the concept of a field, and in par-
ticular with electric and magnetic fields. These fields are vector quantities and their
behavior is governed by a set of laws known as Maxwell’s equations. The mathematical
formulation of Maxwell’s equations and their subsequent application in our study of
the fundamentals of electromagnetics require that we first learn the basic rules perti-
nent to mathematical manipulations involving vector quantities.With this goal in mind,
we shall devote this chapter to vectors and fields.

We shall first study certain simple rules of vector algebra without the implica-
tion of a coordinate system and then introduce the Cartesian coordinate system,
which is the coordinate system employed for the most part of our study in this book.
After learning the vector algebraic rules, we shall turn our attention to a discussion
of scalar and vector fields, static as well as time-varying, by means of some familiar
examples. We shall devote particular attention to sinusoidally time-varying fields,
scalar as well as vector, and to the phasor technique of dealing with sinusoidally
time-varying quantities. With this general introduction to vectors and fields, we shall
then devote the remainder of the chapter to an introduction of the electric and
magnetic field concepts, from considerations of the experimental laws of Coulomb
and Ampere.

1.1 VECTOR ALGEBRA

In the study of elementary physics we come across several quantities such as mass, tem-
perature, velocity, acceleration, force, and charge. Some of these quantities have associ-
ated with them not only a magnitude but also a direction in space, whereas others are
characterized by magnitude only. The former class of quantities are known as vectors,
and the latter class of quantities are known as scalars. Mass, temperature, and charge
are scalars, whereas velocity, acceleration, and force are vectors. Other examples are
voltage and current for scalars and electric and magnetic fields for vectors.

1

CHAPTER

1
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2 Chapter 1 Vectors and Fields

FIGURE 1.1

Graphical representation of vectors.

Vector quantities are represented by boldface roman type symbols, for example,A,
in order to distinguish them from scalar quantities, which are represented by lightface
italic type symbols, for example, A. Graphically, a vector, say A, is represented by a
straight line with an arrowhead pointing in the direction of A and having a length pro-
portional to the magnitude of A, denoted or simply A. Figures 1.1(a)–(d) show
four vectors drawn to the same scale. If the top of the page represents north, then
vectors A and B are directed eastward, with the magnitude of B being twice that
of A.Vector C is directed toward the northeast and has a magnitude three times that of
A. Vector D is directed toward the southwest and has a magnitude equal to that of C.
Since C and D are equal in magnitude but opposite in direction, one is the negative of
the other. It is important to note that the lengths of the lines are not associated with the
physical quantity distance, unless the vector quantity represents distance; they are as-
sociated with the magnitudes of the physical quantity that the vector represents, such
as velocity, acceleration, or force.

ƒ A ƒ

Since a vector may have in general an arbitrary orientation in three dimensions,
we need to define a set of three reference directions at each and every point in space in
terms of which we can describe vectors drawn at that point. It is convenient to choose
these three reference directions to be mutually orthogonal as, for example, east, north,
and upward or the three contiguous edges of a rectangular room. Thus, let us consider
three mutually orthogonal reference directions and direct unit vectors along the three
directions as shown, for example, in Figure 1.2(a). A unit vector has magnitude unity.
We shall represent a unit vector by the symbol a and use a subscript to denote its di-
rection. We shall denote the three directions by subscripts 1, 2, and 3. We note that for
a fixed orientation of two combinations are possible for the orientations of and

as shown in Figures 1.2(a) and (b). If we take a right-hand screw and turn it from 
to through the 90°-angle, it progresses in the direction of in Figure 1.2(a) but op-
posite to the direction of in Figure 1.2(b). Alternatively, a left-hand screw when
turned from to in Figure 1.2(b) will progress in the direction of Hence, the set
of unit vectors in Figure 1.2(a) corresponds to a right-handed system, whereas the set
in Figure 1.2(b) corresponds to a left-handed system. We shall work consistently with
the right-handed system.

a3.a2a1

a3

a3a2

a1a3,
a2a1,

A B

DC

(a) (b)

(d)(c)
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1.1 Vector Algebra 3

A vector of magnitude different from unity along any of the reference directions
can be represented in terms of the unit vector along that direction.Thus, represents
a vector of magnitude 4 units in the direction of represents a vector of magni-
tude 6 units in the direction of and represents a vector of magnitude 2 units in
the direction opposite to that of as shown in Figure 1.3. Two vectors are added by
placing the beginning of the second vector at the tip of the first vector and then draw-
ing the sum vector from the beginning of the first vector to the tip of the second vector.
Thus to add and we simply slide without changing its direction until its
beginning coincides with the tip of and then draw the vector from the
beginning of to the tip of as shown in Figure 1.3. By adding to this vector

in a similar manner, we obtain the vector as shown
in Figure 1.3. We note that the magnitude of is , or 7.211, and
that the magnitude of is or 7.483. Conversely to the242 + 62 + 22,14a1 + 6a2 - 2a32 242 + 6214a1 + 6a2214a1 + 6a2 - 2a32,(4a1 + 6a2)

- 2a36a2,4a1

(4a1 + 6a2)4a1

6a26a2,4a1

a3,
- 2a3a2,

a1, 6a2

4a1

a3
a2

a1

4a1

6a2

4a1 ! 6a2 " 2a3

4a1 ! 6a2

6a2

–2a3

"2a3 FIGURE 1.3

Graphical addition of vectors.

(a) (b)

a3

a3a2

a2

a1 a1

FIGURE 1.2

(a) Set of three orthogonal unit vectors in a right-handed system. (b) Set of three
orthogonal unit vectors in a left-handed system.
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4 Chapter 1 Vectors and Fields

foregoing discussion, a vector A at a given point is simply the superposition of three
vectors and that are the projections of A onto the reference direc-
tions at that point. and are known as the components of A along the 1, 2,
and 3 directions, respectively. Thus,

(1.1)

We now consider three vectors A, B, and C given by

(1.2a)

(1.2b)

(1.2c)

at a point and discuss several algebraic operations involving vectors as follows.

Vector Addition and Subtraction

Since a given pair of like components of two vectors are parallel, addition of two vec-
tors consists simply of adding the three pairs of like components of the vectors. Thus,

(1.3)

Vector subtraction is a special case of addition. Thus,

(1.4)

Multiplication and Division by a Scalar

Multiplication of a vector A by a scalar m is the same as repeated addition of the
vector. Thus,

(1.5)

Division by a scalar is a special case of multiplication by a scalar. Thus,

(1.6)

Magnitude of a Vector

From the construction of Figure 1.3 and the associated discussion, we have

(1.7)ƒ A ƒ = ƒ A1 a1 + A2 a2 + A3 a3 ƒ = 4A1
2 + A2

2 + A3
2

B
n

= 1
n

 1B2 =
B1

n
 a1 +

B2

n
 a2 +

B3

n
 a3

mA = m1A1 a1 + A2 a2 + A3 a32 = mA1 a1 + mA2 a2 + mA3 a3

 = 1B1 - C12a1 + 1B2 - C22a2 + 1B3 - C32a3

 B - C = B + 1 - C2 = 1B1 a1 + B2 a2 + B3 a32 + 1 - C1 a1 - C2 a2 - C3 a32
 = 1A1 + B12a1 + 1A2 + B22a2 + 1A3 + B32a3

 A + B = 1A1 a1 + A2 a2 + A3 a32 + 1B1 a1 + B2 a2 + B3 a32

 C = C1 a1 + C2 a2 + C3 a3

 B = B1 a1 + B2 a2 + B3 a3

 A = A1 a1 + A2 a2 + A3 a3

A = A1 a1 + A2 a2 + A3 a3

A3A1, A2,
A3 a3A1 a1, A2 a2,
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1.1 Vector Algebra 5

(a) (b) (c)

a a

B cos a

A
 co

s a

A
A

A

B B B
C

B ! C

FIGURE 1.4

(a) and (b) For showing that the dot product of two vectors A and B is the product of
the magnitude of one vector and the projection of the second vector onto the first vector.
(c) For proving the distributive property of the dot product operation.

Unit Vector Along A

The unit vector has a magnitude equal to unity but its direction is the same as that
of A. Hence,

(1.8)

Scalar or Dot Product of Two Vectors

The scalar or dot product of two vectors A and B is a scalar quantity equal to the product
of the magnitudes of A and B and the cosine of the angle between A and B. It is
represented by a boldface dot between A and B. Thus if is the angle between A
and B, then

(1.9)

For the unit vectors we have

(1.10a)

(1.10b)

(1.10c)

By noting that we observe that the dot prod-
uct operation consists of multiplying the magnitude of one vector by the scalar ob-
tained by projecting the second vector onto the first vector as shown in Figures 1.4(a)
and (b). The dot product operation is commutative since

(1.11)B # A = BA cos a = AB cos a = A # B

A # B = A1B cos a2 = B1A cos a2, a3 # a1 = 0 a3 # a2 = 0 a3 # a3 = 1

 a2 # a1 = 0 a2 # a2 = 1 a2 # a3 = 0

 a1 # a1 = 1 a1 # a2 = 0 a1 # a3 = 0

a1, a2, a3,

A # B = ƒ A ƒ ƒ B ƒ  cos a = AB cos a

a

 =
A12A2

1 + A2
2 + A2

3

 a1 +
A22A2

1 + A2
2 + A2

3

 a2 +
A32A2

1 + A2
2 + A2

3

 a3

 aA = A

ƒA ƒ
=

A1a1 + A2a2 + A3a32A2
1 + A2

2 + A2
3

aA
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6 Chapter 1 Vectors and Fields

The distributive property also holds for the dot product, as can be seen from the con-
struction of Figure 1.4(c), which illustrates that the projection of onto A is
equal to the sum of the projections of B and C onto A. Thus,

(1.12)

Using this property, and the relationships (1.10a)–(1.10c), we have

(1.13)

Thus, the dot product of two vectors is the sum of the products of the like components
of the two vectors.

Vector or Cross Product of Two Vectors

The vector or cross product of two vectors A and B is a vector quantity whose magni-
tude is equal to the product of the magnitudes of A and B and the sine of the smaller
angle between A and B and whose direction is the direction of advance of a right-
hand screw as it is turned from A to B through the angle as shown in Figure 1.5. It is
represented by a boldface cross between A and B. Thus if is the unit vector in the
direction of advance of the right-hand screw, then

(1.14)

For the unit vectors we have

(1.15a)
(1.15b)
(1.15c)

Note that the cross product of identical vectors is zero. If we arrange the unit vectors in
the manner and then go forward, the cross product of any two successive
unit vectors is equal to the following unit vector, but if we go backward, the cross product
of any two successive unit vectors is the negative of the following unit vector.

a1 a2 a3 a1 a2

 a3 : a1 = a2     a3 : a2 = - a1     a3 : a3 = 0
 a2 : a1 = - a3     a2 : a2 = 0     a2 : a3 = a1

 a1 : a1 = 0     a1 : a2 = a3     a1 : a3 = - a2

a1, a2, a3,

A : B = ƒ A ƒ ƒ B ƒ  sin a aN = AB sin a aN

aN

a,
a

 = A1 B1 + A2 B2 + A3 B3

 + A3 a3 # B1 a1 + A3 a3 # B2 a2 + A3 a3 # B3 a3

 +  A2 a2 # B1 a1 + A2 a2 # B2 a2 + A2 a2 # B3 a3

 = A1 a1 # B1 a1 + A1 a1 # B2 a2 + A1 a1 # B3 a3

 A # B = 1A1 a1 + A2 a2 + A3 a32 # 1B1 a1 + B2 a2 + B3 a32
A # 1B + C2 = A # B + A # C

(B + C)

aN

a

A

B
FIGURE 1.5

The cross product operation A : B.
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1.1 Vector Algebra 7

The cross product operation is not commutative, since

(1.16)

The distributive property holds for the cross product (we shall prove this later in this
section) so that

(1.17)

Using this property and the relationships (1.15a)–(1.15c), we obtain

(1.18)

This can be expressed in determinant form in the manner

(1.19)

A triple cross product involves three vectors in two cross product operations.
Caution must be exercised in evaluating a triple cross product since the order of evalu-
ation is important, that is, is not equal to This can be
illustrated by means of a simple example involving unit vectors.Thus if 
and then

whereas

Scalar Triple Product

The scalar triple product involves three vectors in a dot product operation and a cross
product operation as, for example, It is not necessary to include parenthe-
ses, since this quantity can be evaluated in only one manner, that is, by evaluating

first and then dotting the resulting vector with A. It is meaningless to try to
evaluate the dot product first since it results in a scalar quantity and hence we cannot
proceed any further. From (1.13) and (1.19), we have

(1.20)A # B : C = 1A1 a1 + A2 a2 + A3 a32 # 3 a1 a2 a3

B1 B2 B3

C1 C2 C3

3 = 3A1 A2 A3

B1 B2 B3

C1 C2 C3

3
B : C

A # B : C.

1A : B2 : C = 1a1 : a12 : a2 = 0 : a2 = 0

 A : 1B : C2 = a1 : 1a1 : a22 = a1 : a3 = - a2

C = a2,
A = a1, B = a1,

1A : B2 : C.A : 1B : C2
A : B = 3 a1 a2 a3

A1 A2 A3

B1 B2 B3

3 +  1A1 B2 - A2 B12a3

 = 1A2 B3 - A3 B22a1 + 1A3 B1 - A1 B32a2

 +  A3 B1 a2 - A3 B2 a1

 = A1 B2 a3 - A1 B3 a2 - A2 B1 a3 + A2 B3 a1

 +  A3 a3 : B1 a1 + A3 a3 : B2 a2 + A3 a3 : B3 a3

 +  A2 a2 : B1 a1 + A2 a2 : B2 a2 + A2 a2 : B3 a3

 = A1 a1 : B1 a1 + A1 a1 : B2 a2 + A1 a1 : B3 a3

 A : B = 1A1 a1 + A2 a2 + A3 a32 : 1B1 a1 + B2 a2 + B3 a32
A : 1B + C2 = A : B + A : C

B : A = ƒ B ƒ ƒ A ƒ  sin a 1 - aN2 = - AB sin a aN = - A : B
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8 Chapter 1 Vectors and Fields

Since the value of the determinant on the right side of (1.20) remains unchanged if the
rows are interchanged in a cyclical manner,

(1.21)

We shall now show that the distributive law holds for the cross product operation
by using (1.21). Thus, let us consider Then, if D is any arbitrary vector,
we have

(1.22)

where we have used the distributive property of the dot product operation. Since
(1.22) holds for any D, it follows that

Example 1.1

Given three vectors

let us carry out several of the vector algebraic operations.

(a)

(b)
(c)

(d)

(e)

(f)

(g)

(h)

(i) A # B : C = 3 1 1 0
1 2 - 2
0 1 2

3 = 112162 + 1121 - 22 + 102112 = 4

1A : B2 : C = 3 a1 a2 a3

- 2 2 1
0 1 2

3 = 3a1 + 4a2 - 2a3

 = - 2a1 + 2a2 + a3

 A : B = 3 a1 a2 a3

1 1 0
1 2 - 2

3 = 1 - 2 - 02a1 + 10 + 22a2 + 12 - 12a3

A # B = 1a1 + a22 # 1a1 + 2a2 - 2a32 = 112112 + 112122 + 1021 - 22 = 3

aB = B
ƒ B ƒ

=
a1 + 2a2 - 2a3

3
= 1

3
 a1 + 2

3
 a2 - 2

3
 a3

ƒ B ƒ = ƒ a1 + 2a2 - 2a3 ƒ = 41122 + 1222 + 1 - 222 = 3

4C = 41a2 + 2a32 = 4a2 + 8a3

B - C = 1a1 + 2a2 - 2a32 - 1a2 + 2a32 = a1 + a2 - 4a3

A + B = 1a1 + a22 + 1a1 + 2a2 - 2a32 = 2a1 + 3a2 - 2a3

 C = a2 + 2a3

 B = a1 + 2a2 - 2a3

 A = a1 + a2

A : 1B + C2 = A : B + A : C

 = D # A : B + D # A : C = D # 1A : B + A : C2 D # A : 1B + C2 = 1B + C2 # 1D : A2 = B # 1D : A2 + C # 1D : A2
A : 1B + C2.

A # B : C = B # C : A = C # A : B
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1.2 Cartesian Coordinate System 9

1.2 CARTESIAN COORDINATE SYSTEM

In the previous section we introduced the technique of expressing a vector at a point in
space in terms of its component vectors along a set of three mutually orthogonal direc-
tions defined by three mutually orthogonal unit vectors at that point. Now, in order to
relate vectors at one point in space to vectors at another point in space, we must define
the set of three reference directions at each and every point in space.To do this in a sys-
tematic manner, we need to use a coordinate system.Although there are several differ-
ent coordinate systems, we shall use for the most part of our study the simplest of these,
namely, the Cartesian coordinate system, also known as the rectangular coordinate system,
to keep the geometry simple and yet sufficient to learn the fundamentals of electro-
magnetics. We shall, however, find it necessary in a few cases to resort to the use of
cylindrical and spherical coordinate systems. Hence, a discussion of these coordinate
systems is included in Appendix A. In this section we introduce the Cartesian coordi-
nate system.

The Cartesian coordinate system is defined by a set of three mutually orthogonal
planes, as shown in Figure 1.6(a).The point at which the three planes intersect is known
as the origin O. The origin is the reference point relative to which we locate any other
point in space. Each pair of planes intersects in a straight line. Hence, the three planes
define a set of three straight lines that form the coordinate axes. These coordinate axes
are denoted as the x-, y-, and z-axes. Values of x, y, and z are measured from the origin
and hence the coordinates of the origin are (0, 0, 0), that is, and 
Directions in which values of x, y, and z increase along the respective coordinate axes
are indicated by arrowheads. The same set of three directions is used to erect a set of
three unit vectors, denoted and as shown in Figure 1.6(a), for the purpose of
describing vectors drawn at the origin. Note that the positive x-, y-, and z-directions are
chosen such that they form a right-handed system, that is, a system for which

On one of the three planes, namely, the yz-plane, the value of x is constant and
equal to zero, its value at the origin, since movement on this plane does not require any
movement in the x-direction. Similarly, on the zx-plane the value of y is constant and
equal to zero, and on the xy-plane the value of z is constant and equal to zero.Any point
other than the origin is now given by the intersection of three planes obtained by in-
crementing the values of the coordinates by appropriate amounts. For example, by dis-
placing the plane by 2 units in the positive x-direction, the plane by 5 units in
the positive y-direction, and the plane by 4 units in the positive z-direction, we
obtain the planes and respectively, which intersect at the point
(2, 5, 4), as shown in Figure 1.6(b). The intersections of pairs of these planes define
three straight lines along which we can erect the unit vectors and toward the
directions of increasing values of x, y, and z, respectively, for the purpose of describing
vectors drawn at that point. These unit vectors are parallel to the corresponding unit
vectors drawn at the origin, as can be seen from Figure 1.6(b). The same is true for any
point in space in the Cartesian coordinate system. Thus, each one of the three unit vec-
tors in the Cartesian coordinate system has the same direction at all points and hence
it is uniform. This behavior does not, however, hold for all unit vectors in the cylindri-
cal and spherical coordinate systems.

azax, ay,

z = 4,x = 2, y = 5,
z = 0

y = 0x = 0

ax : ay = az.

az,ax, ay,

z = 0.x = 0, y = 0,
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10 Chapter 1 Vectors and Fields

It is now a simple matter to apply what we have learned in Section 1.1 to vectors
in Cartesian coordinates. All we need to do is to replace the subscripts 1, 2, and 3 for
the unit vectors and the components along the unit vectors by the subscripts x, y, and z,
respectively, and also utilize the property that and are uniform vectors. Thus
let us, for example, obtain the expression for the vector drawn from point

to point as shown in Figure 1.6(c). To do this, we note that
the position vector drawn from the origin to the point is given by

(1.23)

and that the position vector drawn from the origin to the point is given by

(1.24)r2 = x2 ax + y2 ay + z2 az

P2r2

r1 = x1 ax + y1 ay + z1 az

P1r1

P21x2, y2, z22,P11x1, y1, z12 R12

azax, ay,

(a) (b)

x # 0 y # 0

z # 0
y # 5

x # 2

z # 4

x

x

y

y

z

z

az

az

az

ay

ay

ax

ax

2
5

4

(2, 5, 4)

O

O ay
ax

x

z

y

(c)

O

r1

r2

P1 (x1, y1, z1)
R12

P2 (x2, y2, z2)

x

y

z az

ax

ay

dy

dz
dzdz

dy

dy

dx

dx

dx

O

P
Q

(d)

FIGURE 1.6

Cartesian coordinate system. (a) The three orthogonal planes defining the coordinate
system. (b) Unit vectors at an arbitrary point. (c) Vector from one arbitrary point to another
arbitrary point. (d) Differential lengths, surfaces, and volume formed by incrementing the
coordinates.
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1.2 Cartesian Coordinate System 11

The position vector is so called because it defines the position of the point in space rel-
ative to the origin. Since, from the rule for vector addition, we obtain

(1.25)

In our study of electromagnetic fields, we have to work with line integrals, surface
integrals, and volume integrals. As in elementary calculus, these involve differential
lengths, surfaces, and volumes, obtained by incrementing the coordinates by infinitesi-
mal amounts. Since in the Cartesian coordinate system the three coordinates represent
lengths, the differential length elements obtained by incrementing one coordinate at a
time, keeping the other two coordinates constant, are and for the 
x-, y-, and z-coordinates, respectively, as shown in Figure 1.6(d), at an arbitrary point

The three differential length elements form the contiguous edges of a rec-
tangular box in which the corner Q diagonally opposite to P has the coordinates

The differential length vector dl from P to Q is simply the
vector sum of the three differential length elements. Thus,

(1.26)

The box has six differential surfaces with each surface defined by two of the three length
elements, as shown by the projections onto the coordinate planes in Figure 1.6(d). The
orientation of a differential surface dS is specified by a unit vector normal to it, that is, a
unit vector perpendicular to any two vectors tangential to the surface. Unless specified,
the normal vector can be drawn toward any one of the two sides of a given surface.Thus,
the differential surfaces formed by the pairs of differential length elements are

(1.27a)

(1.27b)

(1.27c)

Finally, the differential volume formed by the three differential lengths is simply the
volume of the box, that is,

(1.28)

We shall now briefly review some elementary analytic geometrical details that
will be useful in our study of electromagnetics. An arbitrary surface is defined by an
equation of the form

(1.29)

In particular, the equation for a plane surface making intercepts a, b, and c on the x-,
y-, and z-axes, respectively, is given by

(1.30)

Since a curve is the intersection of two surfaces, an arbitrary curve is defined by a pair
of equations

(1.31)f1x, y, z2 = 0  and  g1x, y, z2 = 0

x
a

+
y
b

+ z
c

= 1

f1x, y, z2 = 0

dv = dx dy dz

dv

 ;  dS ay = ;  dz dx ay = ;  dz az : dx ax

 ;  dS ax = ;  dy dz ax = ;  dy ay : dz az

 ;  dS az = ;  dx dy az = ;  dx ax : dy ay

dl = dx ax + dy ay + dz az

(x + dx, y + dy, z + dz).

P(x, y, z).

dz azdx ax, dy ay,

R12 = r2 - r1 = 1x2 - x12ax + 1y2 - y12ay + 1z2 - z12az

r1 + R12 = r2,
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12 Chapter 1 Vectors and Fields

Alternatively, a curve is specified by a set of three parametric equations

(1.32)

where t is an independent parameter. For example, a straight line passing through the
origin and making equal angles with the positive x-, y-, and z-axes is given by the pair
of equations and or by the set of three parametric equations 
and 

Example 1.2

Let us find a unit vector normal to the plane

By writing the given equation for the plane in the form

we identify the intercepts made by the plane on the x-, y-, and z-axes to be 4, 10, and 5,
respectively. The portion of the plane lying in the first octant of the coordinate system is shown
in Figure 1.7.

x
4

+
y

10
+ z

5
= 1

5x + 2y + 4z = 20

z = t.
x = t, y = t,z = x,y = x

x = x1t2, y = y1t2, z = z1t2

x

y

z

C (0, 0, 5)

B (0, 10, 0)

A (4, 0, 0)FIGURE 1.7

The plane surface .5x + 2y + 4z = 20

To find a unit vector normal to the plane, we consider two vectors lying in the plane and
evaluate their cross product. Thus considering the vectors and , we have from (1.25),

The cross product of and is then given by

This vector is perpendicular to both and and hence to the plane. Finally, the required
unit vector is obtained by dividing by its magnitude. Thus, it is equal to

50ax + 20ay + 40az

ƒ50ax + 20ay + 40az ƒ
=

5ax + 2ay + 4az225 + 4 + 16
= 1

325
 (5ax + 2ay + 4az)

RAB : RAC

RACRAB

RAB : RAC = † ax ay az

- 4 10 0
- 4 0 5

† = 50ax + 20ay + 40az

RACRAB

RAC = (0 - 4)ax + (0 - 0)ay + (5 - 0)az = - 4ax + 5az

RAB = (0 - 4)ax + (10 - 0)ay + (0 - 0)az = - 4ax + 10ay

RACRAB
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1.3 Scalar and Vector Fields 13

1.3 SCALAR AND VECTOR FIELDS

Before we take up the task of studying electromagnetic fields, we must understand what is
meant by a field. A field is associated with a region in space and we say that a field exists
in the region if there is a physical phenomenon associated with points in that region. For
example, in everyday life we are familiar with the earth’s gravitational field. We do not
“see” the field in the same manner as we see light rays, but we know of its existence in the
sense that objects are acted upon by the gravitational force of the earth. In a broader
context, we can talk of the field of any physical quantity as being a description, mathemat-
ical or graphical, of how the quantity varies from one point to another in the region of the
field and with time.We can talk of scalar or vector fields depending on whether the quan-
tity of interest is a scalar or a vector.We can talk of static or time-varying fields depend-
ing on whether the quantity of interest is independent of or changing with time.

We shall begin our discussion of fields with some simple examples of scalar fields.
Thus, let us consider the case of the conical pyramid shown in Figure 1.8(a). A descrip-
tion of the height of the pyramidal surface versus position on its base is an example of
a scalar field involving two variables. Choosing the origin to be the projection of the
vertex of the cone onto the base and setting up an xy-coordinate system to locate
points on the base, we obtain the height field as a function of x and y to be

(1.33)

Although we are able to depict the height variation of points on the conical surface
graphically by using the third coordinate for h, we will have to be content with the
visualization of the height field by a set of constant-height contours on the xy-plane if
only two coordinates were available, as in the case of a two-dimensional space. For the
field under consideration, the constant-height contours are circles in the xy-plane cen-
tered at the origin and equally spaced for equal increments of the height value, as
shown in Figure 1.8(a).

For an example of a scalar field in three dimensions, let us consider a rectangular
room and the distance field of points in the room from one corner of the room, as shown
in Figure 1.8(b). For convenience, we choose this corner to be the origin O and set up a
Cartesian coordinate system with the three contiguous edges meeting at that point as
the coordinate axes. Each point in the room is defined by a set of values for the three
coordinates x, y, and z. The distance r from the origin to that point is
Thus, the distance field of points in the room from the origin is given by

(1.34)

Since the three coordinates are already used up for defining the points in the field
region, we have to visualize the distance field by means of a set of constant-distance
surfaces. A constant-distance surface is a surface for which points on it correspond to a
particular constant value of r. For the case under consideration, the constant-distance
surfaces are spherical surfaces centered at the origin and are equally spaced for equal
increments in the value of the distance, as shown in Figure 1.8(b).

The fields we have discussed thus far are static fields.A simple example of a time-
varying scalar field is provided by the temperature field associated with points in a
room, especially when it is being heated or cooled. Just as in the case of the distance

r1x, y, z2 = 4x2 + y2 + z2

2x2 + y2 + z2.

h1x, y2 = 6 - 24x2 + y2
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14 Chapter 1 Vectors and Fields

(a) (b)

O

r

x

x

x

y

y

y

z

h

6

3

6
4

2
0

0
1

2
3

4
5

6

FIGURE 1.8

(a) A conical pyramid lying above the xy-plane, and a set of constant-height
contours for the conical surface. (b) A rectangular room, and a set of
constant-distance surfaces depicting the distance field of points in the room
from one corner of the room.

field of Figure 1.8(b), we set up a three-dimensional coordinate system and to each set
of three coordinates corresponding to the location of a point in the room, we assign a
number to represent the temperature T at that point. Since the temperature at that
point, however, varies with time t, this number is a function of time. Thus, we describe
mathematically the time-varying temperature field in the room by a function T(x, y, z, t).
For any given instant of time, we can visualize a set of constant-temperature or isother-
mal surfaces corresponding to particular values of T as representing the temperature
field for that value of time. For a different instant of time, we will have a different set of
isothermal surfaces for the same values of T. Thus, we can visualize the time-varying
temperature field in the room by a set of isothermal surfaces continuously changing
their shapes as though in a motion picture.

The foregoing discussion of scalar fields may now be extended to vector fields by
recalling that a vector quantity has associated with it a direction in space in addition to
magnitude. Hence, in order to describe a vector field we attribute to each point in the
field region a vector that represents the magnitude and direction of the physical quan-
tity under consideration at that point. Since a vector at a given point can be expressed
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1.3 Scalar and Vector Fields 15

as the sum of its components along the set of unit vectors at that point, a mathematical
description of the vector field involves simply the descriptions of the three component
scalar fields. Thus for a vector field F in the Cartesian coordinate system, we have

(1.35)

Similar expressions hold in the cylindrical and spherical coordinate systems. We
should, however, note that two of the unit vectors in the cylindrical coordinate system
and all the unit vectors in the spherical coordinate system are themselves functions of
the coordinates.

To illustrate the graphical description of a vector field, let us consider the linear
velocity vector field associated with points on a circular disk rotating about its center
with a constant angular velocity rad/s. We know that the magnitude of the linear
velocity of a point on the disk is then equal to the product of the angular velocity and
the radial distance r of the point from the center of the disk. The direction of the linear
velocity is tangential to the circle drawn through that point and concentric with the
disk. Hence, we may depict the linear velocity field by drawing at several points on the
disk vectors that are tangential to the circles concentric with the disk and passing
through those points, and whose lengths are proportional to the radii of the circles, as
shown in Figure 1.9(a), where the points are carefully selected in order to reveal the
circular symmetry of the field with respect to the center of the disk. We, however, find
that this method of representation of the vector field results in a congested sketch of
vectors. Hence, we may simplify the sketch by omitting the vectors and simply placing
arrowheads along the circles, giving us a set of direction lines, also known as stream
lines and flux lines, which simply represent the direction of the field at points on them.
We note that for the field under consideration the direction lines are also contours of
constant magnitude of the velocity, and hence by increasing the density of the direction
lines as r increases, we can indicate the magnitude variation, as shown in Figure 1.9(b).

v
v

F1x, y, z, t2 = Fx1x, y, z, t2 ax + Fy1x, y, z, t2 ay + Fz1x, y, z, t2 az

(a)

v

(b)

FIGURE 1.9

(a) Linear velocity vector field associated with points on a rotating disk.
(b) Same as (a) except that the vectors are omitted, and the density of direction
lines is used to indicate the magnitude variation.
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16 Chapter 1 Vectors and Fields

1.4 SINUSOIDALLY TIME-VARYING FIELDS

In our study of electromagnetic fields we will be particularly interested in fields that
vary sinusoidally with time. Hence, we shall devote this section to a discussion of sinu-
soidally time-varying fields. Let us first consider a scalar sinusoidal function of time.
Such a function is given by an expression of the form where A is 
the peak amplitude of the sinusoidal variation, is the radian frequency, f is the
linear frequency, and is the phase. In particular, the phase of the function for

is . A plot of this function versus t, shown in Figure 1.10, illustrates how the
function changes periodically between positive and negative values. If we now have
a sinusoidally time-varying scalar field, we can visualize the field quantity varying
sinusoidally with time at each point in the field region with the amplitude and phase
governed by the spatial dependence of the field quantity. Thus, for example, the field

, where and are positive constants, is characterized by sinu-
soidal time variations with amplitude decreasing exponentially with z and the phase at
any given time decreasing linearly with z.

bA, a,Ae - az cos (vt - bz)

ft = 0
(vt + f)

v = 2pf
A cos (vt + f)

t
0

A

A cos ø

A cos (vt + ø) 

"A

v
p"

v
p 2p

v
3p
v

FIGURE 1.10

Sinusoidally time-varying scalar function A cos (vt + f).

For a sinusoidally time-varying vector field, the behavior of each component of
the field may be visualized in the manner just discussed. If we now fix our attention on
a particular point in the field region, we can visualize the sinusoidal variation with time
of a particular component at that point by a vector changing its magnitude and direc-
tion as shown, for example, for the x-component in Figure 1.11(a). Since the tip of the
vector simply moves back and forth along a line, which in this case is parallel to the 
x-axis, the component vector is said to be linearly polarized in the x-direction. Similarly,
the sinusoidal variation with time of the y-component of the field can be visualized by
a vector changing its magnitude and direction as shown in Figure 1.11(b), not necessar-
ily with the same amplitude and phase as those of the x-component. Since the tip of the
vector moves back and forth parallel to the y-axis, the y-component is said to be
linearly polarized in the y-direction. In the same manner, the z-component is linearly
polarized in the z-direction.
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1.4 Sinusoidally Time-Varying Fields 17

If two components sinusoidally time-varying vectors have arbitrary amplitudes
but are in phase or phase opposition as, for example,

(1.36a)

(1.36b)

then the sum vector is linearly polarized in a direction making an angle

with the x-direction, as shown in the series of sketches in Figure 1.12 for the in-phase
case illustrating the time history of the magnitude and direction of F over an interval of
one period.

a = tan - 1 
Fy

Fx
= ;  tan - 1 

F2

F1

F = F1 + F2

 F2 = ; F2 cos (vt + f) ay

 F1 = F1 cos (vt + f) ax

t

x

t

y

0

0

p
2v

p
v

2v
3p

v
2p

v
3p

2v
5p

2v
7p

(a)

(b)

FIGURE 1.11

(a) Time variation of a linearly polarized vector in the x-direction. (b) Time variation of
a linearly polarized vector in the y-direction.

x

y

F1

F2

F

a aa a

a a a

FIGURE 1.12

The sum vector of two linearly polarized vectors in phase is a linearly polarized vector.
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18 Chapter 1 Vectors and Fields

If two component sinusoidally time-varying vectors have equal amplitudes, differ
in direction by , and differ in phase by , as, for example,

(1.37a)

(1.37b)

then, to determine the polarization of the sum vector , we note that the
magnitude of F is given by

(1.38)

and that the angle which F makes with is given by

(1.39)

Thus, the sum vector rotates with constant magnitude and at a rate of so that
its tip describes a circle. The sum vector is then said to be circularly polarized. The
series of sketches in Figure 1.13 illustrates the time history of the magnitude and direc-
tion of F over an interval of one period.

v rad/sF0

a = tan - 1 
Fy

Fx
= tan - 1 c F0 sin (vt + f)

F0 cos (vt + f)
d = vt + f

axa

| F | = ƒ  F0 cos (vt + f) ax + F0 sin (vt + f) ay ƒ = F0

F = F1 + F2

 F2 = F0 sin (vt + f) ay

 F1 = F0 cos (vt + f) ax

p>290°

x

y

F1

F2

F
a

FIGURE 1.13

Circular polarization.

For the general case in which two component sinusoidally time-varying vectors
differ in amplitude, direction, and phase by arbitrary amounts, the sum vector is
elliptically polarized, that is, its tip describes an ellipse.

Example 1.3

Given two vectors and we wish to determine the polar-
ization of the vector 

We note that the vector , consisting of two components (x and z) that are in phase opposi-
tion, is linearly polarized with amplitude or 5, which is equal to that of Since 
varies as and varies as they differ in phase by Also,

so that and are perpendicular. Thus and are two linearly polarized vectors having
equal amplitudes but differing in direction by 90° and differing in phase by Hence,

is circularly polarized.F = F1 + F2

p>2.
F2F1F2F1

F1 # F2 = (3ax - 4az) # 5ay = 0

p>2.sin vt,F2cos vt
F1F2.232 + ( - 4)2

F1

F = F1 + F2.
F2 = 5ay sin vt,F1 = (3ax - 4az) cos vt
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1.4 Sinusoidally Time-Varying Fields 19

In the remainder of this section we shall briefly review the phasor technique
which, as the student may have already learned in sinusoidal steady-state circuit analy-
sis, is very useful in carrying out mathematical manipulations involving sinusoidally
time-varying quantities. Let us consider the simple problem of adding the two quanti-
ties and To illustrate the basis behind the phasor tech-
nique, we carry out the following steps:

(1.40)

where Re stands for real part of, and the addition of the two complex numbers 
and is performed by locating them in the complex plane and then using the
parallelogram law of addition of complex numbers, as shown in Figure 1.14. Alterna-
tively, the complex numbers may be expressed in terms of their real and imaginary
parts and then added up for conversion into exponential form in the manner

(1.41)

In practice, we do not write all of the steps shown in (1.40). First, we express all
functions in their cosine forms and then recognize the phasor corresponding to each
cosine function as the complex number having the magnitude equal to the amplitude

 = 10e - jp/3

 = 5 - j8.66 = 252 + 8.662e - j tan - 1
 8.66>5 10ej0 + 10e - j2p>3 = (10 + j0) + ( - 5 - j8.66)

10e - j2p/3
10ej0

 = 10 cos (vt - 60°)

 = Re[10ej(vt - p>3)]

 = Re[10e - jp>3ejvt]

 = Re[(10ej0 + 10e - j2p>3)ejvt]

 = Re[10ej0ejvt] + Re[10e - j2p>3ejvt]

 = Re[10ejvt] + Re[10ej(vt - 2p>3)]

 10 cos vt + 10 sin (vt - 30°) = 10 cos vt + 10 cos (vt - 120°)

10 sin (vt - 30°).10 cos vt

60°
120°

Im

Re
10e j0

10e"j2p/3 10e"jp/3

FIGURE 1.14

Addition of two complex numbers.
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20 Chapter 1 Vectors and Fields

of the cosine function and phase angle equal to the phase angle of the cosine function
for . For the above example, the complex numbers and are the pha-
sors corresponding to 10 and , respectively. Then we add the
phasors and from the sum phasor write down the required cosine function. Thus, the
steps involved are as shown in Figure 1.15.

10 sin 1vt - 30°2cos vt
10e - j2p>310ej0t = 0

10 cos vt

10 cos vt

10 sin (vt " 30°)!

!

!

#

10 cos (vt " 60°)

10 cos (vt " 120°)

10e"j2p/3

10e"jp/3

(Phasors)

(Sum phasor)

10e j0

FIGURE 1.15

Block diagram of steps involved in the
application of phasor technique to the addition
of two sinusoidally time-varying functions.

The same technique is adopted for solving differential equations by recognizing,
for example, that

and hence the phasor for is

or times the phasor for .Thus, the differentiation operation is replaced
by for converting the differential equation into an algebraic equation involving
phasors. To illustrate this, let us consider the differential equation

(1.42)

The solution for this is of the form . Recognizing that and
replacing by and all time functions by their phasors, we obtain the corre-
sponding algebraic equation as

(1.43)

or

(1.44)I
-(1 + j1) = 10ej0

10 - 3(j1000I
-) + I

- = 10ej0

j1000d>dt
v = 1000i = I0 cos (vt + u)

10 - 3 
di
dt

+ i = 10 cos 1000t

jv
A cos (vt + u)jv

Avej(u + p>2) = Avejp>2eju = jvAeju

d
dt

 [A cos (vt + u)]

d
dt

 [A cos (vt + u)] = - Av sin (vt + u) = Av cos (vt + u + p>2)
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1.5 The Electric Field 21

where the overbar above I indicates the complex nature of the quantity. Solving (1.44)
for we obtain

(1.45)

and finally

(1.46)

1.5 THE ELECTRIC FIELD

Basic to our study of the fundamentals of electromagnetics is an understanding of the
concepts of electric and magnetic fields. Hence, we shall devote this and the following
section to an introduction of the electric and magnetic fields. From our study of Newton’s
law of gravitation in elementary physics, we are familiar with the gravitational force
field associated with material bodies by virtue of their physical property known as
mass. Newton’s experiments showed that the gravitational force of attraction between
two bodies of masses and separated by a distance R, which is very large com-
pared to their sizes, is equal to where G is the constant of universal gravita-
tion. In a similar manner, a force field known as the electric field is associated with
bodies that are charged. A material body may be charged positively or negatively or
may possess no net charge. In the International System of Units that we shall use
throughout this book, the unit of charge is coulomb, abbreviated C. The charge of an
electron is Alternatively, approximately 
represent a charge of one negative coulomb.

Experiments conducted by Coulomb showed that the following hold for two
charged bodies that are very small in size compared to their separation so that they can
be considered as point charges:

1. The magnitude of the force is proportional to the product of the magnitudes of
the charges.

2. The magnitude of the force is inversely proportional to the square of the distance
between the charges.

3. The magnitude of the force depends on the medium.
4. The direction of the force is along the line joining the charges.
5. Like charges repel; unlike charges attract.

For free space, the constant of proportionality is where is known as the per-
mittivity of free space, having a value or approximately equal to

Thus, if we consider two point charges and separated R m in free
space, as shown in Figure 1.16, then the forces and experienced by and 
respectively, are given by

(1.47a)F1 =
Q1 Q2

4pP0 R2 a21

Q2,Q1F2F1

Q2 CQ1 C10- 9>36p.
8.854 * 10- 12

P01>4pP0

6.24 * 1018 electrons- 1.60219 * 10- 19 C.

m1 m2 G>R2
m2m1

i = 7.07 cos a 1000t - p
4
b

I
- = 10ej0

1 + j1
= 10ej012ejp>4 = 7.07e - jp>4

I
-,
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F1

F2

Q1

Q2

a12

a21

R

FIGURE 1.16

Forces experienced by two point charges and Q2 .Q1 

and

(1.47b)

where and are unit vectors along the line joining and , as shown in Fig-
ure 1.16. Equations (1.47a) and (1.47b) represent Coulomb’s law. Since the units of
force are newtons, we note that has the units 
These are commonly known as farads per meter, where a farad is per
newton-meter.

In the case of the gravitational field of a material body, we define the gravitational
field intensity as the force per unit mass experienced by a small test mass placed in that
field. In a similar manner, the force per unit charge experienced by a small test charge
placed in an electric field is known as the electric field intensity, denoted by the symbol
E. Alternatively, if in a region of space, a test charge q experiences a force F, then the
region is said to be characterized by an electric field of intensity E given by

(1.48)

The unit of electric field intensity is newton per coulomb, or more commonly volt per
meter, where a volt is newton-meter per coulomb. The test charge should be so small
that it does not alter the electric field in which it is placed. Ideally, E is defined in the
limit that q tends to zero, that is,

(1.49)

Equation (1.49) is the defining equation for the electric field intensity irrespective of
the source of the electric field. Just as one body by virtue of its mass is the source of a

E = Lim
q:0  

 
F
q

E = F
q

1coulomb221newton-meter22.1coulomb22 perP0

Q2Q1a12a21

F2 =
Q2 Q1

4pP0 R2 a12
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1.5 The Electric Field 23

gravitational field acting upon other bodies by virtue of their masses, a charged body is
the source of an electric field acting upon other charged bodies.We will, however, learn
in Chapter 2 that there exists another source for the electric field, namely, a time-varying
magnetic field.

Returning now to Coulomb’s law and letting one of the two charges in Figure 1.16,
say be a small test charge q, we have

(1.50)

The electric field intensity at the test charge due to the point charge is then
given by

(1.51)

Generalizing this result by making R a variable, that is, by moving the test charge
around in the medium, writing the expression for the force experienced by it, and
dividing the force by the test charge, we obtain the electric field intensity E of a point
charge Q to be

(1.52)

where R is the distance from the point charge to the point at which the field intensity is
to be computed and is the unit vector along the line joining the two points under
consideration and directed away from the point charge. The electric field intensity due
to a point charge is thus directed everywhere radially away from the point charge and
its constant-magnitude surfaces are spherical surfaces centered at the point charge, as
shown in Figure 1.17.

aR

E =
Q

4pP0 R2 aR

E2 =
F2

q
=

Q1

4pP0 R2 a12

Q1E2

F2 =
Q1 q

4pP0 R2 a12

Q2,

R

Q

aR

E

FIGURE 1.17

Direction lines and constant-magnitude
surfaces of electric field due to a point charge.

If we now have several point charges as shown in Figure 1.18, the
force experienced by a test charge situated at a point P is the vector sum of the forces
experienced by the test charge due to the individual charges. It then follows that the

Q1, Q2, Á ,
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24 Chapter 1 Vectors and Fields

electric field intensity at point P is the superposition of the electric field intensities due
to the individual charges, that is,

(1.53)

Let us now consider an example.

E =
Q1

4pP0 R1
2 aR1

+
Q2

4pP0 R2
2 aR2

+ # # # +
Qn

4pP0 Rn
2  aRn

aRn

aR3

aR2

aR1
P

R1

Q1

Q2

Q3

R2

R3

Rn

Qn

FIGURE 1.18

A collection of point charges and unit
vectors along the directions of their 
electric fields at a point P.

(0, 1, 1)(0, 0, 1)

(1, 0, 1) (1, 1, 1)
(0, 0, 0)

(0, 1, 0)

(1, 0, 0) (1, 1, 0)

Q

Q Q

Q

z

y

x

Q

QQ

Q
FIGURE 1.19

A cubical arrangement of point charges.

First, we note from (1.52) that the electric field intensity at a point due to a
point charge Q at point is given by

(1.54) =
Q

4pP0
 
(x2 - x1)ax + (y2 - y1)ay + (z2 - z1)az

[(x2 - x1)2 + (y2 - y1)2 + (z2 - z1)2]3>2
 EB =

Q

4pP0(AB)2 aAB =
Q

4pP0(AB)2 
RAB

(AB)
=

Q(RAB)

4pP0(AB)3

A(x1, y1, z1)
B(x2, y2, z2)

Example 1.4

Figure 1.19 shows eight point charges situated at the corners of a cube. We wish to find the elec-
tric field intensity at each point charge, due to the remaining seven point charges.
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1.5 The Electric Field 25

where we have used to denote the vector from A to B. Let us now consider the point (1, 1, 1).
Applying (1.54) to each of the charges at the seven other points and using (1.53), we obtain the
electric field intensity at the point (1, 1, 1) to be

Noting that is the unit vector directed from (0, 0, 0) to (1, 1, 1), we find the
electric field intensity at (1, 1, 1) to be directed diagonally away from (0, 0, 0), with a magnitude

equal to . From symmetry considerations, it then follows that the electric field intensity

at each point charge, due to the remaining seven point charges, has a magnitude , and
it is directed away from the corner opposite to that charge.

The foregoing illustration of the computation of the electric field intensity due to a
multitude of point charges may be extended to the computation of the field intensity for
a continuous charge distribution by dividing the region in which the charge exists into
elemental lengths, surfaces, or volumes depending on whether the charge is distributed
along a line, over a surface, or in a volume, and treating the charge in each elemental
length, surface, or volume as a point charge and then applying superposition. We shall
include some of the simpler cases in the problems for the interested reader.

Let us now consider the motion of a cloud of electrons, distributed uniformly
with density N, under the influence of a time-varying electric field of intensity

(1.55)
Each electron experiences a force given by

(1.56)
where e is the charge of the electron. The equation of motion of the electron is then
given by

(1.57)

where m is the mass of the electron and v is its velocity. Solving (1.57) for v , we obtain

(1.58)

where C is the constant of integration.Assuming an initial condition of for 
gives us , reducing (1.58) to

(1.59)v =
eE0

mv
 sin vt ax = -

ƒ e ƒ E0

mv
 sin vt ax

C = 0
t = 0v = 0

v =
eE0

mv
 sin vt ax + C

m
dv
dt

= eE0 cos vt ax

F = eE = eE0 cos vt ax

E = E0 cos vt ax

3.29Q

4pP0
  N>C

3.29Q

4pP0
  N>C

(ax + ay + az)>23

 =
3.29Q

4pP0
a ax + ay + az23

b
 =

Q

4pP0
a 1 + 122

+ 1

323
b (ax + ay + az)

 +  

ax + ay

(2)3>2 +
ax + ay + az

(3)3>2 d
E(1, 1, 1) =

Q

4pP0
c ax

(1)3>2 +
ay

(1)3>2 +
az

(1)3>2 +
ay + az

(2)3>2 +
az + ax

(2)3>2

RAB
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26 Chapter 1 Vectors and Fields

The motion of the electron cloud gives rise to current flow. To find the current
crossing an infinitesimal surface of area oriented such that the normal vector to the
surface makes an angle with the x direction as shown in Figure 1.20, let us for in-
stance consider an infinitesimal time interval when is negative. The number of
electrons crossing the area from its right side to its left side in this time interval is
the same as that which exists in a column of length and cross-sectional area

to the right of the area under consideration. Thus, the negative charge 
crossing the area in time to its left side is given by

(1.60)

The current flowing through the area from its left side to its right side is then
given by

(1.61)

where is the unit vector normal to the area as shown in Figure 1.20.¢S,an

 = Ne 
2 

 mv
  E0 sin vt ax # ¢S an 

 =
N|e|2 
 mv

 E0 sin vt ¢S cos a

 ¢I =
|¢Q ƒ
 ¢t

= N ƒ e ƒ ƒ vx ƒ ¢S cos a

¢S¢I

 = Ne|vx ƒ ¢S cos a ¢t

 ¢Q = (¢S cos a)( ƒ vx ƒ ¢t)Ne

¢t¢S
¢Q¢S cos a

|vx ƒ ¢t
¢S

vx¢t
a

¢S

$S
a

an

ax

FIGURE 1.20

For finding the current crossing an
infinitesimal area in a moving cloud of
electrons.

We can now talk of a current density vector J, associated with the current flow.
The current density vector has a mgnitude equal to the current per unit area and a di-
rection normal to the area when the area is oriented in order to maximize the current
crossing it. The current crossing is maximized when that is, when the area is

oriented such that . The current per unit area is then equal to .
Thus, the current density vector is given by

(1.62)

Finally, by substituting (1.62) back into (1.61), we note that the current crossing any
area is simply equal to .J# ¢S¢S = ¢S an

 = Ne v

 J = Ne 
2

 mv
  E0 sin vt ax

Ne2 
 mv

  E0 sin vtan = ax

a = 0,¢S
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1.6 The Magnetic Field 27

1.6 THE MAGNETIC FIELD

In the preceding section we presented an experimental law known as Coulomb’s law
having to do with the electric force associated with two charged bodies, and we intro-
duced the electric field intensity vector as the force per unit charge experienced by a
test charge placed in the electric field. In this section we present another experimental
law known as Ampere’s law of force, analogous to Coulomb’s law, and use it to intro-
duce the magnetic field concept.

Ampere’s law of force is concerned with magnetic forces associated with two loops
of wire carrying currents by virtue of motion of charges in the loops. Figure 1.21 shows
two loops of wire carrying currents and and each of which is divided into a large
number of elements having infinitesimal lengths. The total force experienced by a loop
is the vector sum of forces experienced by the infinitesimal current elements comprising
the loop.The force experienced by each of these current elements is the vector sum of the
forces exerted on it by the infinitesimal current elements comprising the second loop.
If the number of elements in loop 1 is m and the number of elements in loop 2 is n, then
there are pairs of elements.A pair of magnetic forces is associated with each pair
of these elements just as a pair of electric forces is associated with a pair of point charges.
Thus, if we consider an element in loop 1 and an element in loop 2, then the forces

and experienced by the elements and respectively, are given by

(1.63a)

(1.63b)

where and are unit vectors along the line joining the two current elements, R is
the distance between them, and k is a constant of proportionality that depends on the
medium. For free space, k is equal to where is known as the permeability of
free space, having a value From (1.63a) or (1.63b), we note that the units
of are newtons per ampere squared.These are commonly known as henrys per meter
where a henry is a newton-meter per ampere squared.
m0

4p * 10- 7.
m0m0>4p,

a12a21

 dF2 = I2 dl2 : a kI1 dl1 : a12

 R2 b
 dF1 = I1 dl1 : a kI2 dl2 : a21

 R2 bdl2,dl1dF2dF1

dl2dl1

m * n

I2 I1 

a12

a21

dl1

I1

I2

dl2

R

FIGURE 1.21

Two loops of wire carrying currents and I2 .I1 
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28 Chapter 1 Vectors and Fields

Equations (1.63a) and (1.63b) represent Ampere’s force law as applied to a pair
of current elements. Some of the features evident from these equations are as
follows:

1. The magnitude of the force is proportional to the product of the two currents and
to the product of the lengths of the two current elements.

2. The magnitude of the force is inversely proportional to the square of the distance
between the current elements.

3. To determine the direction of the force acting on the current element we first
find the cross product and then cross into the resulting vector. Simi-
larly, to determine the direction of the force acting on the current element we
first find the cross product and then cross into the resulting vector.
For the general case of arbitrary orientations of and these operations
yield and which are not equal and opposite. This is not a violation of
Newton’s third law since isolated current elements do not exist without sources
and sinks of charges at their ends. Newton’s third law, however, must and does
hold for complete current loops.

The forms of (1.63a) and (1.63b) suggest that each current element is acted upon
by a field which is due to the other current element. By definition, this field is the mag-
netic field and is characterized by a quantity known as the magnetic flux density vector,
denoted by the symbol B. Thus, we note from (1.63b) that the magnetic flux density at
the element due to the element is given by

(1.64)

and that this flux density acting upon results in a force on it given by

(1.65)

Similarly, we note from (1.63a) that the magnetic flux density at the element due to
the element is given by

(1.66)

and that this flux density acting upon results in a force on it given by

(1.67)

From (1.65) and (1.67), we see that the units of B are newtons per ampere-meter,
commonly known as webers/meter2 (or tesla), where a weber is a newton-meter per
ampere. The units of webers per unit area give the character of flux density to the
quantity B.

Although B has the character of a flux density, whereas E has the character of a
field intensity, they are the fundamental field vectors, because together they define the
force acting on a charge in a region of electric and magnetic fields, as we shall learn
later in this section. We will introduce the electric flux density and the magnetic field
intensity vectors in Chapter 2.

dF1 = I1 dl1 : B2

dl1

B2 =
m0

 4p
  
I2 dl2 : a21

 R2

dl2
dl1

dF2 = I2 dl2 : B1

dl2

B1 =
m0

 4p
  
I1 dl1 : a12

 R2

dl1dl2

dF21dF12

dl2,dl1
dl2dl1 : a12

dl2,
dl1dl2 : a21

dl1,
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1.6 The Magnetic Field 29

Generalizing (1.64) and (1.66), we obtain the magnetic flux density due to an in-
finitesimal current element of length and carrying current to be

(1.68)

where R is the distance from the current element to the point at which the flux density
is to be computed and is the unit vector along the line joining the current element
and the point under consideration and directed away from the current element as
shown in Figure 1.22. Equation (1.68) is known as the Biot-Savart law and is analogous
to the expression for the electric field intensity due to a point charge. The Biot-Savart
law tells us that the magnitude of B at a point P is proportional to the current I, the ele-
ment length dl, and the sine of the angle between the current element and the line
joining it to the point P, and is inversely proportional to the square of the distance
from the current element to the point P. Hence, the magnetic flux density is zero at
points along the axis of the current element. The direction of B at point P is normal to
the plane containing the current element and the line joining the current element to P,
as given by the cross product operation that is, right circular to the axis of the
wire. As a numerical example, for a current element m situated at the origin and
carrying current 2 A, the magnetic flux density at the point (0, 1, 1) has a magnitude

and is directed in the -direction. The magnetic field due to a given
current distribution can be found by dividing the current distribution into a number of
infinitesimal current elements, applying the Biot-Savart law to find the magnetic field
due to each current element, and then using superposition. We shall include some sim-
ple cases in the problems for the interested reader.

Turning our attention now to (1.65) and (1.67) and generalizing, we say that an
infinitesimal current element of length dl and current I placed in a magnetic field of
flux density B experiences a force dF given by

(1.69)

Alternatively, if a current element experiences a force in a region of space, then the
region is said to be characterized by a magnetic field. Since current is due to flow of
charges, (1.69) can be formulated in terms of the moving charge causing the flow
of current. Thus, if the time taken by the charge dq contained in the length dl of the

dF = I dl : B

- ax10 - 9!12 Wb/m2

0.01az

dl : aR,

a

aR

B =
m0

 4p
  
I dl : aR

 R2

Idl

I dl
a

aR

R
P

B
FIGURE 1.22

Magnetic flux density due to an
infinitesimal current element.
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30 Chapter 1 Vectors and Fields

current element to flow with a velocity v across the cross-sectional area of the wire is
dt, then and so that

(1.70)

It then follows that the force F experienced by a test charge q moving with a velocity
v in a magnetic field of flux density B is given by

(1.71)

We may now obtain a defining equation for B in terms of the moving test charge.
To do this, we note from (1.71) that the magnetic force is directed normally to both v
and B, as shown in Figure 1.23, and that its magnitude is equal to where is
the angle between v and B. A knowledge of the force F acting on a test charge moving
with an arbitrary velocity v provides only the value of To find B, we must
determine the maximum force that occurs for equal to 90° by trying out several
directions of v , keeping its magnitude constant.Thus, if this maximum force is and it
occurs for a velocity then

(1.72)

As in the case of defining the electric field intensity, we assume that the test charge
does not alter the magnetic field in which it is placed. Ideally, B is defined in the limit
that tends to zero, that is,

(1.73)

Equation (1.73) is the defining equation for the magnetic flux density irrespective of
the source of the magnetic field. We have learned in this section that an electric cur-
rent or a charge in motion is a source of the magnetic field. We will learn in Chapter 2
that there exists another source for the magnetic field, namely, a time-varying electric
field.

B = Lim
qv:0

 
Fm : am

 qv

qv

B =
Fm : am

 qv

vam,
Fm

dqvB
B sin d.

dqvB sin d,

F = qv : B

dF =
dq
 dt

 v  dt : B = dq v : B

dl = v  dtI = dq>dt,

F
B

B

q d

v

FIGURE 1.23

Force experienced by a test charge q moving with a
velocity v in a magnetic field B.
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Summary 31

We can now combine (1.48) and (1.71) to write the expression for the total force
acting on a test charge q moving with a velocity v in a region characterized by an elec-
tric field of intensity E and a magnetic field of flux density B as

(1.74)

Equation (1.74) is known as the Lorentz force equation. We shall now consider an
example.

Example 1.5

The forces experienced by a test charge q for three different velocities at a point in a region
characterized by electric and magnetic fields are given by

where , , and are constants. Find E and B at the point.
From Lorentz force equation, we have

(1.75a)

(1.75b)

(1.75c)

Eliminating E by subtracting (1.75a) from (1.75b) and (1.75c) from (1.75b), we obtain

(1.76a)

(1.76b)

It follows from these two equations that B is perpendicular to both and Hence it is
equal to or where C is to be determined. To do this, we substitute

in (1.76a) to obtain

or Thus, we get

Substituting this result in (1.75c), we obtain

SUMMARY

We first learned in this chapter several rules of vector algebra that are necessary for
our study of the fundamentals of electromagnetics by considering vectors expressed in
terms of their components along three mutually orthogonal directions.To carry out the
manipulations involving vectors at different points in space in a systematic manner, we

E = E0( ax + ay)

B = B0 az

C = - B0.

 -  C(ax + ay) = B0 (ax + ay)

 1ay - ax2 : 1 - Caz2 = B0 (ax + ay)

B = - Caz

- CazC1ax + ay2 : ax

ax.1ax + ay2 1ay - az2 : B = B0 ax

 1ay - ax2 : B = B01ax + ay2
 qE + qv0 az : B = q[E0 ax + E0 ay]

 qE + qv0 ay : B = q[(E0 + v0B0)ax + E0ay]

 qE + qv0 ax : B = q[E0 ax + (E0 - v0B0)ay]

B0E0v0

 F3 = q[E0ax + E0ay]     for v 3 = v0az

 F2 = q[(E0 + v0B0)ax + E0ay]     for v 2 = v0 ay

 F1 = q[E0 ax + (E0 - v0B0)ay]     for v 1 = v0 ax

F = qE + qv : B = q1E + v : B2
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32 Chapter 1 Vectors and Fields

then introduced the Cartesian coordinate system and discussed the application of the
vector algebraic rules to vectors in the Cartesian coordinate system. To summarize
these rules, we consider three vectors

in a right-handed Cartesian coordinate system, that is, with We then have

Other useful expressions are

As a prelude to the introduction of electric and magnetic fields, we discussed the
concepts of scalar and vector fields, static and time-varying, by means of some simple ex-
amples, such as the height of points on a conical surface above its base, the temperature
field of points in a room, and the velocity vector field associated with points on a disk
rotating about its center. We learned about the visualization of fields by means of
constant-magnitude contours or surfaces and in addition by means of direction lines in the
case of vector fields. Particular attention was devoted to sinusoidally time-varying fields.
Polarization of vector fields as a means of describing how the orientation of a vector at a
point changes with time was discussed. The phasor technique as a means of facilitating
mathematical operations involving sinusoidally time-varying quantities was reviewed.

 dv = dx dy dz

 dS = ; dx dy az,    ; dy dz ax,    ; dz dx ay

 dl = dx ax + dy ay + dz az

 A #  B : C = 3Ax Ay Az

Bx By Bz

Cx Cy Cz

3 A : B = 3 ax ay az

Ax Ay Az

Bx By Bz

3 A #  B = AxBx + AyBy + AzBz

 aA =
Ax4A2

x + A2
y + A2

z

 ax +
Ay4A2

x + A2
y + A2

z

 ay +
Az4A2

x + A2
y + A2

z

 az

 ƒ A ƒ = 4A2
x + A2

y + A2
z

 
B
n

=
Bx

n
 ax +

By

n
 ay +

Bz

n
 az

 mA = mAx ax + mAy ay + mAz az

 B - C = 1Bx - Cx2ax + 1By - Cy2ay + 1Bz - Cz2az

 A + B = 1Ax + Bx2ax + 1Ay + By2ay + 1Az + Bz2az

ax : ay = az.

 C = Cx ax + Cy ay + Cz az

 B = Bx ax + By ay + Bz az

 A = Ax ax + Ay ay + Az az
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Having obtained the necessary background vector algebraic tools and physical
field concepts, we then introduced the electric and magnetic fields from considerations
of experimental laws known as Coulomb’s law and Ampere’s force law, having to do
with the electric forces between two point charges, and the magnetic forces between
two current elements, respectively. From these laws, we deduced the expressions for
the electric field intensity E due to a point charge Q and the magnetic flux density B
due to a current element I dl. These expressions are

where and are the permittivity and the permeability, respectively, of free space, R
is the distance from the source to the point, say P, at which the field is to be computed,
and is the unit vector directed from the source toward the point P. We learned that
the electric field is a force field acting on charges merely by virtue of the property of
charge. The electric force is given simply by

On the other hand, the magnetic field exerts forces only on moving charges, or current
elements, as given by

Combining the electric and magnetic field concepts, we finally introduced the Lorentz
force equation for the force exerted on a charge q moving with a velocity v in a region
of electric and magnetic fields E and B, respectively, as

F = q(E + v : B)

F = dq v : B = Idl : B

F = qE

aR

m0P0

B =  
m0I dl : aR

4pR2

E =  
Q

4pP0R
2 aR

REVIEW QUESTIONS

1.1. Give some examples of scalars.
1.2. Give some examples of vectors.
1.3. State all conditions for which 
1.4. State all conditions for which 
1.5. What is the significance of 
1.6. Is it necessary for the reference vectors , , and to be an orthogonal set?
1.7. State whether , , and directed westward, northward, and downward, respectively,

is a right-handed or a left-handed set.
1.8. What is the particular advantageous characteristic associated with the unit vectors in

the Cartesian coordinate system?
1.9. How do you find a vector perpendicular to a plane?

a3a2a1

a3a2a1

A #  B : C = 0?
A : B = 0.
A #  B = 0.
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34 Chapter 1 Vectors and Fields

1.10. How do you find the perpendicular distance from a point to a plane?

1.11. What is the total distance around the circumference of a circle of radius 1 m? What is
the total vector distance around the circle?

1.12. What is the total surface area of a cube of sides 1 m? Assuming the normals to the sur-
faces to be directed outward of the cubical volume, what is the total vector surface area
of the cube?

1.13. Describe briefly your concept of a scalar field and illustrate with an example.

1.14. Describe briefly your concept of a vector field and illustrate with an example.

1.15. How do you depict pictorially the gravitational field of the earth?

1.16. A sinusoidally time-varying vector is expressed in terms of its components along the x-,
y-, and z-axes. What is the polarization of each of the components?

1.17. What are the conditions for the sum of two linearly polarized sinusoidally time-varying
vectors to be circularly polarized?

1.18. What is the polarization for the general case of the sum of two sinusoidally time-varying
linearly polarized vectors having arbitrary amplitudes, phase angles, and directions?

1.19. Considering the second hand on your watch to be a vector, state its polarization. What
is the frequency?

1.20. What is a phasor?

1.21. Is there any relationship between a phasor and a vector? Explain.

1.22. Describe the phasor technique of adding two sinusoidal functions of time.

1.23. Describe the phasor technique of solving a differential equation for the sinusoidal
steady-state solution.

1.24. State Coulomb’s law. To what law in mechanics is Coulomb’s law analogous?

1.25. What is the definition of the electric field intensity?

1.26. What are the units of the electric field intensity?

1.27. What is the permittivity of free space? What are its units?

1.28. Describe the electric field due to a point charge.

1.29. How do you find the electric field intensity due to a continuous charge distribution?

1.30. How is current density defined? What are its units?

1.31. For a current flowing on a sheet, how would you define the current density at a point on
the sheet? What are the units?

1.32. State Ampere’s force law as applied to current elements.

1.33. Why is it not necessary for Newton’s third law to hold for current elements?

1.34. What is the permeability of free space? What are its units?

1.35. Describe the magnetic field due to a current element.

1.36. How is the magnetic flux density defined in terms of force on a current element?

1.37. How is the magnetic flux density defined in terms of force on a moving charge?

1.38. What are the units of the magnetic flux density?

1.39. State Lorentz force equation.

1.40. If it is assumed that there is no electric field, the magnetic field at a point can be found
from the knowledge of forces exerted on a moving test charge for two noncollinear
velocities. Explain.
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PROBLEMS

1.1. A bug starts at a point and travels 1 m northward, m eastward, m southward, m
westward, m northward, and so on, making a 90°-turn to the right and halving the
distance each time. (a) What is the total distance traveled by the bug? (b) Find the final
position of the bug relative to its starting location. (c) Find the straight-line distance
from the starting location to the final position.

1.2. Solve the following equations for A, B, and C:

1.3. Show that and that
Verify the above for and

1.4. Given and find

1.5. Show that is equal to the area of the triangle having A and B as two of its
sides. Then find the area of the triangle formed by the points  (1, 2, 1), and

1.6. Show that is the volume of the parallelepiped having A, B, and C as three of
its contiguous edges. Then find the volume if and

Comment on your result.
1.7. Given and find A.
1.8. Find the component of the vector drawn from (5, 0, 3) to (3, 3, 2) along the direction of

the vector drawn from (6, 2, 4) to (3, 3, 6).
1.9. Find the unit vector normal to the plane . Then find the distance

from the origin to the plane.
1.10. Write the expression for the differential length vector d l at the point (1, 2, 8) on the

straight line and having the projection dx on the x-axis.
1.11. Write the expression for the differential length vector d l at the point (4, 4, 2) on the

curve and having the projection dz on the z-axis.
1.12. Write the expression for the differential surface vector dS at the point (1, 1, ) on the

plane and having the projection dx dy on the xy-plane.
1.13. Find two differential length vectors tangential to the surface at the point (2, 4, 1)

and then find a unit vector normal to the surface at that point.
1.14. A hemispherical bowl of radius 2 m lies with its base on the xy-plane and with its center

at the origin. Write the expression for the scalar field, describing the height of points on
the bowl as a function of x and y.

1.15. A number equal to the sum of its coordinates is assigned to each point in a rectangular
room having three of its contiguous edges as the coordinate axes. Draw a sketch of the
constant-magnitude surfaces for the number field generated in this manner.

1.16. Write the expression for the vector distance of a point in a rectangular room from one
corner of the room, choosing the three edges meeting at that point as the coordinate
axes. Describe the vector distance field associated with the points in the room.

1.17. For the rotating disk of Figure 1.9, write the expression for the linear velocity vector
field associated with the points on the disk; use an xy-coordinate system with the origin
at the center of the disk.

y = x2
x + 2z = 2

1
2

x = y = z2

y = 2x, z = 4y,

4x - 5y + 3z = 60

ay : A = ax - 2az,ax : A = - ay + 2az

C = 2ay + 6az.
A = 4ax, B = 2ax + ay + 3az,

A # B : C
(2, - 1, - 3).

( - 3, - 4, 5),

1
2 ƒA : B ƒ

A : (B : C) + B : (C : A) + C : (A : B).
C = 3a1 + 2a2 + a3,B = a1 - 2a2 + a3,A = - 2a1 + a2,

B = a1 + a2 - 2a3.A = 3a1 - 5a2 + 4a3

(A + B) : (A - B) = 2B : A.(A + B) # (A - B) = A2 - B2

 A - 2B + 3C = 4a1 + 5a2 + a3

 2A + B - C = a1 + 3a2

 A + B + C = 2a1 + 3a2 + 2a3

1
16

1
8

1
4

1
2
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36 Chapter 1 Vectors and Fields

1.18. Given (a) draw sketches of f versus z for
and and (b) draw sketches of f versus t

for and 10 m. From your sketches of part (a), what can you say about
the function ?

1.19. Repeat Problem 1.18 for 
1.20. Repeat Problem 1.18 for 
1.21. For each of the following vector fields, find the polarization:

(a)

(b)

(c)
1.22. Determine the polarization of the sum vector obtained by adding the two vector fields

1.23. For the vector field draw sketches similar to those of Fig-
ures 1.12 and 1.13 and describe the polarization.

1.24. Find by using the phasor technique.
1.25. Find by using the phasor technique.

1.26. Solve the differential equation by using the phasor
technique.

1.27. Two point charges each of mass m and charge q are suspended by strings of length l
from a common point. Find the value of q for which the angle made by the strings at the
common point is 

1.28. Point charges Q and are situated at (0, 0, 1) and (0, 0, ), respectively. Find the
approximate electric field intensity at (a) (0, 0, l00), and (b) (100, 0, 0).

1.29. For the point charge configuration of Example 1.4, find E at the point (2, 2, 2).
1.30. A line charge consists of charge distributed along a line just as graphite in a pencil lead.

We then talk of line charge density, or charge per unit length, having the units C/m.
Obtain a series expression for the electric field intensity at (0, 1, 0) for a line charge
situated along the z-axis between (0, 0, ) and (0, 0, 1) with uniform density C/m
by dividing the line into 100 equal segments. Consider the charge in each segment to be
a point charge located at the center of the segment, and use superposition.

1.31. Repeat Problem 1.30, but assume the line charge density to be C/m.
1.32. Charge is distributed uniformly with density C/m on a circular ring of radius 2 m

lying in the xy-plane and centered at the origin. Obtain the electric field intensity at the
point (0, 0, 1) by using the procedure described in Problem 1.30.

1.33. A surface charge consists of charge distributed on a surface just as paint on a table top.
We then talk of surface charge density, or charge per unit area, having the units .
Obtain a series expression for the electric field intensity at (0, 0, 1) for a surface charge
of uniform density situated within the square on the xy-plane having the cor-
ners (1, 1, 0), ( , 1, 0), ( , , 0), and (1, , 0) by dividing the square into 10,000
equal areas. Consider the charge in each area as a point charge located at the center of
the area, and use superposition.

1.34. Repeat Problem 1.33, but assume the surface charge density to be .10 - 3 ƒ xy2 ƒ  C/m2

- 1- 1- 1- 1
10- 3 C/m2

C/m2

10 - 3
10- 3 ƒz ƒ

10 - 3- 1

- 1- Q
90°.

5 * 10- 6
 
di
dt

+ 12i = 13 cos 106t

3 cos (vt + 60°) - 4 cos (vt + 150°)
10 cos (vt - 30°) + 10 cos (vt + 210°)

1 cos vt ax + 22 sin vt ay,

 F2 = a 1
2

 ax + 13
2

 ay - 13 azb  sin vt

 F1 = ( - 23ax + ay) cos vt

1 cos (vt + 30°) ax + 22 cos (vt - 60°) ay

1 cos (vt + 30°) ax + 1 cos (vt - 60°) ay

1 cos (vt + 30°) ax + 22 cos (vt + 30°) ay

f(z, t) = 10 cos 2p * 107t cos 0.1pz.
f(z, t) = 10 cos (2p * 107t + 0.1pz).

f(z, t)
z = 0, 2.5, 5, 7.5,

1
2 * 10 - 7 s,3

8 * 10- 7,t = 0, 18 * 10- 7, 14 * 10- 7,
f(z, t) = 10 cos (2p * 107t - 0.1pz),
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1.35. For an electron cloud of uniform density oscillating under the influence
of an electric field find (a) the current density, and
(b) the current crossing the surface 0.01 .

1.36. An object of mass m and charge q, suspended by a spring of spring constant k is acted
upon by the earth’s gravitational field and an electric field parallel to the
gravitational field. Obtain the steady-state solution for the velocity of the object.

1.37. Find and for located at the origin and located
at (0, 1, 0).

1.38. For an infinitesimal current element located at the point (1, 0, 0),
find the magnetic flux density at (a) the point (0, 1, 1) and (b) the point (2, 2, 2).

1.39. A square loop of wire of sides 0.01 m lies in the xy-plane, with its sides parallel to the 
x- and y-axes and with its center at the origin. It carries a current of 1 A in the clockwise
sense as seen along the positive z-axis. Find the approximate magnetic flux density at
(a) (0, 0, 1) and (b) (0, 1, 0).

1.40. A straight wire along the z-axis carries current I in the positive z-direction. Consider
the portion of the wire lying between (0, 0, ) and (0, 0, 1). By dividing this portion
into 100 equal segments and using superposition, obtain a series expression for B at 
(0, 1, 0).

1.41. A circular loop of wire of radius 2 m is situated in the xy-plane and with its center at the
origin. It carries a current I in the clockwise sense as seen along the positive z-axis. Find
B at (0, 0, 1) by dividing the loop into a large number of equal infinitesimal segments
and by using superposition.

1.42. Obtain the expression for the orbital frequency for an electron moving in a circular
orbit normal to a uniform magnetic field of flux density B0 Wb/m2. Compute its value
for B0 equal to 

1.43. A magnetic field exists at a point. What should be the electric
field at that point if the force experienced by a test charge moving with a velocity

is to be zero?
1.44. The forces experienced by a test charge q at a point in a region of electric and magnetic

fields are given as follows for three different velocities of the test charge:

where and are constants. (a) Find E and B at that point. (b) Find the force experi-
enced by the test charge for .v = v0(ax - ay)

E0v0

 F3 = - qE0az   for v = v0(ax + ay)

 F2 = 0  for v = v0ay

 F1 = 0  for v = v0ax

v = v0(3ax - ay + 2az)

B = B0(ax + 2ay - 4az)
5 * 10 - 5.

- 1

I dx (ax + 2ay + 2az)

I2 dl2 = I2 dy ayI1 dl1 = I1 dx axdF2dF1

E0 cos vt

(ax + ay) m2
E = 10 - 3 cos 2p * 107 t ax V/m,

N = 1012 m - 3
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CHAPTER

2
Maxwell’s Equations
in Integral Form

In Chapter 1 we learned the simple rules of vector algebra and familiarized ourselves
with the basic concepts of fields, particularly those associated with electric and mag-
netic fields. We now have the necessary background to introduce the additional tools
required for the understanding of the various quantities associated with Maxwell’s
equations and then discuss Maxwell’s equations. In particular, our goal in this chapter
is to learn Maxwell’s equations in integral form as a prerequisite to the derivation of
their differential forms in the next chapter. Maxwell’s equations in integral form gov-
ern the interdependence of certain field and source quantities associated with regions
in space, that is, contours, surfaces, and volumes. The differential forms of Maxwell’s
equations, however, relate the characteristics of the field vectors at a given point to one
another and to the source densities at that point.

Maxwell’s equations in integral form are a set of four laws resulting from several
experimental findings and a purely mathematical contribution. We shall, however, con-
sider them as postulates and learn to understand their physical significance as well as
their mathematical formulation. The source quantities involved in their formulation are
charges and currents.The field quantities have to do with the line and surface integrals of
the electric and magnetic field vectors.We shall therefore first introduce line and surface
integrals and then consider successively the four Maxwell’s equations in integral form.

2.1 THE LINE INTEGRAL

Let us consider in a region of electric field E the movement of a test charge qfrom the
point A to the point B along the path C, as shown in Figure 2.1(a). At each and every
point along the path the electric field exerts a force on the test charge and, hence, does
a certain amount of work in moving the charge to another point an infinitesimal dis-
tance away.To find the total amount of work done from A to B, we divide the path into
a number of infinitesimal segments as shown in Figure 2.1(b),
find the infinitesimal amount of work done for each segment and then add up the con-
tributions from all the segments. Since the segments are infinitesimal in length, we can
consider each of them to be straight and the electric field at all points within a segment
to be the same and equal to its value at the start of the segment.

¢l1, ¢l2, ¢l3, . . . , ¢ln,
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2.1 The Line Integral 39

If we now consider one segment, say the jth segment, and take the component of
the electric field for that segment along the length of that segment, we obtain the result

where is the angle between the direction of the electric field vector at
the start of that segment and the direction of that segment. Since the electric field in-
tensity has the meaning of force per unit charge, the electric force along the direction
of the jth segment is then equal to where qis the value of the test charge.To
obtain the work done in carrying the test charge along the length of the jth segment,
we then multiply this electric force component by the length of that segment. Thus
for the jth segment, we obtain the result for the work done by the electric field as

(2.1)

If we do this for all the infinitesimal segments and add up all the contributions, we get
the total work done by the electric field in moving the test charge from A to B as

(2.2)

In vector notation we make use of the dot product operation between two vectors to
write this quantity as

(2.3)

Example 2.1

Let us consider the electric field given by

and determine the work done by the field in carrying of charge from the point A(0, 0, 0) to
the point B(1, 1, 0) along the parabolic path shown in Figure 2.2(a).y = x2, z = 0

3 mC

E = yay

WB
A = qa

n

j = 1
Ej # ¢lj

 = qa
n

j = 1
Ej cos aj ¢lj

  + Á + qEn cos an ¢ln

 = qE1 cos a1 ¢l1 + qE2 cos a2 ¢l2 + qE3 cos a3 ¢l3

 WB
A = ¢W1 + ¢W2 + ¢W3 + . . . + ¢Wn

¢Wj = qEj cos aj ¢lj

¢lj

qEj cos aj,

EjajEj cos aj,

E

(a)
(b)

E1

!l1
!l2

!l3

!lj

!ln

a1
a2
a3

aj

an

E2
E3

Ej

En

B

A

B

A

C

FIGURE 2.1

For evaluating the total amount of work done in moving a test charge along a path C from
point A to point B in a region of electric field.
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40 Chapter 2 Maxwell’s Equations in Integral Form

For convenience, we shall divide the path into ten segments having equal widths along the
x direction, as shown in Figure 2.2(a). We shall number the segments 1, 2, 3, 10. The coordi-
nates of the starting and ending points of the jth segment are as shown in Figure 2.2(b).The elec-
tric field at the start of the jth segment is given by

The length vector corresponding to the jth segment, approximated as a straight line connecting
its starting and ending points, is

The required work is then given by

 = 3 * 10- 10 * 4335 = 1.3005 mJ

 + 1088 + 1539]

 = 3 * 10- 10[0 + 3 + 20 + 63 + 144 + 275 + 468 + 735

 = 3 * 10- 10
 a

10

j = 1
1j - 12212j - 12

 = 3 * 10- 6
 a

10

j = 1
[1j - 1220.01ay] # [0.1ax + 12j - 120.01ay]

 WB
A = 3 * 10- 6

 a
10

j = 1
Ej # ¢lj

 = 0.1ax + 12j - 120.01ay

 ¢lj = 0.1ax + [j2 - 1j - 122] 0.01ay

Ej = 1j - 122 0.01ay

. . . ,

!lj

(b)(a)

j2 0.01

10
(1, 1, 0)

1

1

0

j

A

( j "1)2 0.01

( j "1)0.1 j0.1
xx

y

y

y # x2

y #  x2

2 3

B

FIGURE 2.2

(a) Division of the path from A (0, 0, 0) to B (1, 1, 0) into ten segments. (b) The
length vector corresponding to the jth segment of part (a) approximated as a straight line.

y = x2
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2.1 The Line Integral 41

The result that we have obtained in Example 2.1, for is approximate since
we divided the path from A to B into a finite number of segments. By dividing it into
larger and larger numbers of segments, we can obtain more and more accurate results.
In fact, the problem can be conveniently formulated for a computer solution and by
varying the number of segments from a small value to a large value, the convergence of
the result can be verified. The value to which the result converges is that for which

The summation in (2.3) then becomes an integral, which represents exactly the
work done by the field and is given by

(2.4)

The integral on the right side of (2.4) is known as the line integral of E from A to B.

Example 2.2

We shall illustrate the evaluation of the line integral by computing the exact value of the work
done by the electric field in Example 2.1.

To do this, we note that at any arbitrary point (x, y, 0) on the curve the in-
finitesimal length vector tangential to the curve is given by

The value of at the point (x, y, 0) is

Thus, the required work is given by

Dividing both sides of (2.4) by q, we note that the line integral of E from A to B
has the physical meaning of work per unit charge done by the field in moving the test
charge from A to B. This quantity is known as the voltage between A and B and is
denoted by the symbol having the units of volts. Thus,

(2.5)[V ]B
A = L

B

A
 E # dl

[V ]B
A,

 = 3 * 10- 6
 c2x4

4
d

x = 0

x = 1

= 1.5 mJ

 WB
A = qL

B

A
 E # dl = 3 * 10- 6L

(1, 1, 0)

(0, 0, 0)
 2x3 dx

 = 2x3 dx

 = x2ay # 1dx ax + 2x dx ay2 E # dl = yay # 1dx ax + dy ay2E # dl

 = dx ax + 2x dx ay

 = dx ax + d(x2) ay

 dl = dx ax + dy ay

y = x2, z = 0,

WB
A = qL

B

A
 E # dl

n = q .

WB
A,
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42 Chapter 2 Maxwell’s Equations in Integral Form

When the path under consideration is a closed path, as shown in Figure 2.3, the line
integral is written with a circle associated with the integral sign in the manner 
The line integral of a vector around a closed path is known as the circulation of that vec-
tor. In particular, the line integral of E around a closed path is the work per unit charge
done by the field in moving a test charge around the closed path. It is the voltage around
the closed path and is also known as the electromotive force. We shall now consider an
example of evaluating the line integral of a vector around a closed path.

AC E # dl.

E

C

FIGURE 2.3

Closed path C in a region of electric field.

(1, 3)

x

y

D

C

BA

(3, 5)

(3, 1)(1, 1)FIGURE 2.4

For evaluating the line integral of a vector field around a closed path.

Example 2.3

Let us consider the force field

and evaluate where C is the closed path ABCDA shown in Figure 2.4.AC F # dl,

F = xay

Noting that

(2.6)

we simply evaluate each of the line integrals on the right side of (2.6) and add them up to obtain
the required quantity. Thus for the side AB,

L
B

A
 F # dl = 0

F # dl = 1xay2 # 1dx ax2 = 0

y = 1, dy = 0, dl = dx ax + 102ay = dx ax

CABCDA
F # dl = L

B

A
 F # dl + L

C

B
 F # dl + L

D

C
 F # dl + L

A

D
 F # dl
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2.2 The Surface Integral 43

For the side BC,

For the side CD,

For the side DA,

Finally,

2.2 THE SURFACE INTEGRAL

Let us consider a region of magnetic field and an infinitesimal surface at a point in that
region. Since the surface is infinitesimal, we can assume the magnetic flux density to be
uniform on the surface, although it may be nonuniform over a wider region. If the sur-
face is oriented normal to the magnetic field lines, as shown in Figure 2.5(a), then the
magnetic flux crossing the surface is simply given by the product of the surface area
and the magnetic flux density on the surface, that is, If, however, the surface is
oriented parallel to the magnetic field lines, as shown in Figure 2.5(b), there is no mag-
netic flux crossing the surface. If the surface is oriented in such a manner that the
normal to the surface makes an angle with the magnetic field lines, as shown in
Figure 2.5(c), then the amount of magnetic flux crossing the surface can be determined
by considering that the component of B normal to the surface is and the com-
ponent tangential to the surface is The component of B normal to the surface
results in a flux of crossing the surface, whereas the component tangential
to the surface does not contribute at all to the flux crossing the surface. Thus, the mag-
netic flux crossing the surface in this case is We can obtain this result1B cos a2 ¢S.

1B cos a2 ¢S
B sin a.

B cos a

a

B ¢S.

CABCDA
F # dl = 0 + 12 - 4 - 2 = 6

x = 1,  dx = 0,  dl = 102ax + dy ay

F # dl = 1ay2 # 1dy ay2 = dy

L
A

D
F # dl = L

1

3
dy = - 2

L
D

C
F # dl = L

1

3
x dx = - 4

F # dl = 1xay2 # 1dx ax + dx ay2 = x dx

y = 2 + x, dy = dx, dl = dx ax + dx ay

L
C

B
F # dl = L

5

1
3 dy = 12

F # dl = 13ay2 # 1dy ay2 = 3 dy

x = 3, dx = 0, dl = 102ax + dy ay = dy ay
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44 Chapter 2 Maxwell’s Equations in Integral Form

alternatively by noting that the projection of the surface onto the plane normal to the
magnetic field lines is 

Let us now consider a large surface Sin the magnetic field region, as shown in
Figure 2.6. The magnetic flux crossing this surface can be found by dividing the surface
into a number of infinitesimal surfaces and applying the result
obtained above for each infinitesimal surface and adding up the contributions from all
the surfaces. To obtain the contribution from the jth surface, we draw the normal vec-
tor to that surface and find the angle between the normal vector and the magnetic
flux density vector associated with that surface. Since the surface is infinitesimal, we
can assume to be the value of B at the centroid of the surface and we can also erect
the normal vector at that point.The contribution to the total magnetic flux from the jth
infinitesimal surface is then given by

(2.7)¢cj = Bj cos aj ¢Sj

Bj

Bj

aj

¢S1, ¢S2, ¢S3, . . . , ¢Sn

¢S cos a.

B B BNormal

!S
!S

!S

(b) (c)(a)

a

Bj

aj

Normal

!Sj

S

FIGURE 2.5

An infinitesimal surface in a magnetic field B oriented (a) normal to the field, (b) parallel
to the field, and (c) with its normal making an angle to the field.a

¢S

FIGURE 2.6

Division of a large surface Sin a magnetic field
region into a number of infinitesimal surfaces.
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2.2 The Surface Integral 45

where the symbol represents magnetic flux. The total magnetic flux crossing the
surface Sis then given by

(2.8)

In vector notation we make use of the dot product operation between two vectors to
write this quantity as

(2.9)

where is the unit vector normal to the surface In fact, by recalling that the in-
finitesimal surface can be considered as a vector quantity having magnitude equal to
the area of the surface and direction normal to the surface, that is,

(2.10)

we can write (2.9) as

(2.11)

Example 2.4

Let us consider the magnetic field given by

and determine the magnetic flux crossing the portion of the xy-plane lying between 
and 

For convenience, we shall divide the surface into 25 equal areas, as shown in Figure 2.7(a).
We shall designate the squares as where the first digit represents
the number of the square in the x-direction and the second digit represents the number of the
square in the y-direction. The x- and y-coordinates of the midpoint of the ijth square are

and respectively, as shown in Figure 2.7(b). The magnetic field at the
center of the ijth square is then given by

Since we have divided the surface into equal areas and since all areas are in the xy-plane,

¢Sij = 0.04 az for all i and j

Bij = 312i - 1212j - 122 0.001az

12j - 120.1,12i - 120.1

11, 12, Á , 15, 21, 22, Á , 55,

y = 1.x = 1, y = 0,
x = 0,

B = 3xy2az Wb/m2

[c]S = a
n

j = 1
Bj # ¢Sj

¢Sj = ¢Sj anj

¢Sj.anj

[c]S = a
n

j = 1
Bj # ¢Sj anj

 = a
n

j = 1
Bj cos aj ¢Sj

 + Á + Bn cos an ¢Sn

 = B1 cos a1 ¢S1 + B2 cos a2 ¢S2 + B3 cos a3 ¢S3

 [c]S = ¢c1 + ¢c2 + ¢c3 + Á + ¢cn

c
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46 Chapter 2 Maxwell’s Equations in Integral Form

The required magnetic flux is then given by

The result that we have obtained for in Example 2.4 is approximate since we
have divided the surface Sinto a finite number of areas. By dividing it into larger and
larger numbers of squares, we can obtain more and more accurate results. In fact, the
problem can be conveniently formulated for a computer solution, and by varying the
number of squares from a small value to a large value, the convergence of the result
can be verified.The value to which the result converges is that for which the number of
squares in each direction is infinity. The summation in (2.11) then becomes an integral
that represents exactly the magnetic flux crossing the surface and is given by

(2.12)

where the symbol Sassociated with the integral sign denotes that the integration is per-
formed over the surface S. The integral on the right side of (2.12) is known as the
surface integral of B over S.The surface integral is a double integral since dSis equal to

[c]S = LS
B # dS

[c]S

 = 0.495 Wb

 = 0.0001211 + 3 + 5 + 7 + 9211 + 9 + 25 + 49 + 812 = 0.00012a
5

i = 1
a

5

j = 1
12i - 1212j - 122

 = a
5

i = 1
a

5

j = 1
312i - 1212j - 1220.001az # 0.04az

 [c]S = a
5

i = 1
a

5

j = 1
Bij # ¢Sij

(b)(a)

0 y

x

z

1

(2i " 1)0.1

(2j " 1)0.1

11 12
21

1 55
(1, 1, 0)

ij

i

j

FIGURE 2.7

(a) Division of the portion of the xy-plane lying between 
and into 25 squares. (b) The area corresponding to the ijth square.y = 1

x = 0, x = 1, y = 0,
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2.2 The Surface Integral 47

the product of two differential lengths. In fact, the work in Example 2.4 indicates that
as i and j tend to infinity, the double summation becomes a double integral involving
the variables of integration x and y.

Example 2.5

We shall illustrate the evaluation of the surface integral by computing the exact value of the
magnetic flux in Example 2.4.

To do this, we note that at any arbitrary point (x, y) on the surface, the infinitesimal surface
vector is given by

The value of at the point (x, y) is

Thus, the required magnetic flux is given by

When the surface under consideration is a closed surface, the surface integral is
written with a circle associated with the integral sign in the manner The sur-
face integral of B over the closed surface Sis simply the magnetic flux emanating from
the volume bounded by the surface. We shall now consider an example of evaluating
the closed surface integral.

Example 2.6

Let us consider the vector field

and evaluate where Sis the surface of the cubical box bounded by the planes

as shown in Figure 2.8.

x = 0, x = 1
y = 0, y = 1
z = 0, z = 1

AS A # dS

A = 1x + 22ax + 11 - 3y2ay + 2zaz

AS B # dS.

 = L
1

x = 0
 L

1

y = 0
 3xy2 dx dy = 0.5 Wb

 [c]S = LS
B # dS

 = 3xy2 dx dy

 B # dS = 3xy2 az # dx dy az

B # dS

dS = dx dy az
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48 Chapter 2 Maxwell’s Equations in Integral Form

Noting that

(2.13)

we simply evaluate each of the surface integrals on the right side of (2.13) and add them up to
obtain the required quantity. In doing so, we recognize that since the quantity we want is the flux
of A out of the box, we should direct the normal vectors toward the outside of the box. Thus for
the surface abcd,

For the surface efgh,

For the surface aehd,

Laehd
A # dS = L

1

x = 0
 L

1

z = 0
1 - 12 dz dx = - 1

A # dS = - dz dx

y = 0, A = 1x + 22ax + 1ay + 2zaz, dS = - dz dx ay

Lefgh
A # dS = L

1

z = 0
 L

1

y = 0
3 dy dz = 3

A # dS = 3 dy dz

x = 1, A = 3ax + 11 - 3y2ay + 2zaz, dS = dy dz ax

Labcd
 A # dS = L

1

z = 0 

 L
1

y = 0
1- 22 dy dz = - 2

A # dS = - 2 dy dz

x = 0, A = 2ax + 11 - 3y2ay + 2zaz, dS = - dy dz ax

+ Laefb
 A # dS + Ldhgc

A # dS

 CS
A # dS = Labcd

A # dS + Lefgh
A # dS + Laehd 

A # dS + Lbfgc
A # dS

y

x

z

d
1

1

1

h

e

g

f

ba

c

FIGURE 2.8

For evaluating the surface integral of a vector field over 
a closed surface.
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2.3 Faraday’s Law 49

For the surface bfgc,

For the surface aefb,

For the surface dhgc,

Finally,

2.3 FARADAY’S LAW

In the previous sections we introduced the line and surface integrals.We are now ready
to consider Maxwell’s equations in integral form.The first equation, which we shall dis-
cuss in this section, is a consequence of an experimental finding by Michael Faraday in
1831 that time-varying magnetic fields give rise to electric fields and hence it is known
as Faraday’s law. Faraday discovered that when the magnetic flux enclosed by a loop of
wire changes with time, a current is produced in the loop, indicating that a voltage or an
electromotive force, abbreviated as emf, is induced around the loop. The variation of
the magnetic flux can result from the time variation of the magnetic flux enclosed by a
fixed loop or from a moving loop in a static magnetic field or from a combination of
the two, that is, a moving loop in a time-varying magnetic field.

Thus far we have merely stated Faraday’s finding without regard to the polarity
of the induced emf around the loop or that of the magnetic flux enclosed by the loop.
To clarify the point, let us consider a planar circular loop in the plane of the paper as
shown in Figure 2.9. Then, we can talk of emf induced in the clockwise sense or in the

CS
 A # dS = - 2 + 3 - 1 - 2 + 0 + 2 = 0

Ldhgc
A # dS = L

1

y = 0L
1

x = 0
2 dx dy = 2

A # dS = 2 dx dy

z = 1, A = 1x + 22ax + 11 - 3y2ay + 2az, dS = dx dy az

Laefb
A # dS = 0

A # dS = 0

z = 0, A = 1x + 22ax + 11 - 3y2ay + 0az, dS = - dx dy az

Lbfgc
A # dS = L

1

x = 0L
1

z = 0
1 - 22 dz dx = - 2

A # dS = - 2 dz dx

y = 1, A = 1x + 22ax - 2ay + 2zaz, dS = dz dx ay
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50 Chapter 2 Maxwell’s Equations in Integral Form

counterclockwise sense. The emf induced in the clockwise sense is the line integral of
E ( ) evaluated by traversing the loop in the clockwise direction, as shown in
Figures 2.9(a) and 2.9(b). The emf induced in the counterclockwise sense is the line
integral of E ( ) evaluated by traversing the loop in the counterclockwise direc-
tion, as shown in Figures 2.9(c) and 2.9(d). One is, of course, the negative of the other.
Similarly, we can talk of enclosed magnetic flux directed into the paper or out of the
paper. The enclosed magnetic flux into the paper is the surface integral of B ( )
evaluated over the plane surface bounded by the loop and with the normal to the sur-
face directed into the paper, as shown in Figures 2.9(a) and 2.9(c). The enclosed mag-
netic flux out of the paper is the surface integral of B ( ) evaluated over the
plane surface bounded by the loop and with the normal to the surface directed out
of the paper, as shown in Figures 2.9(b) and 2.9(d). One is, of course, the negative of
the other.

1  B # dS

1  B # dS

A  E # dl

A  E # dl

(b)(a) (c) (d)

B

C

an

B

C

an

B

C

an

B

C

an

FIGURE 2.9

Four possible pairs of directions of traversal around a planar circular loop
and normal to the surface bounded by the loop.

If we do not pay any attention to the polarities, we can write four equations relat-
ing the emf around the loop to the magnetic flux enclosed by the loop. These are

(2.14a)

(2.14b)

(2.14c)

(2.14d)

The fourth equation is, however, consistent with the first and the third equation is con-
sistent with the second.Thus, we are left with a choice between the first and the second.
Only one of them can be correct, since they provide contradictory results for the emf.
Faraday’s experiments showed that the second equation is the one that should be used.
Alternatively, if we wish to work with clockwise-induced emf and magnetic flux into
the paper (or with counterclockwise-induced emf and magnetic flux out of the paper),

 [emf]counterclockwise = d
dt

 [magnetic flux]out of the paper

 [emf]counterclockwise = d
dt

 [magnetic flux]into the paper

 [emf]clockwise = d
dt

 [magnetic flux]out of the paper

 [emf]clockwise = d
dt

 [magnetic flux]into the paper
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2.3 Faraday’s Law 51

we must include a minus sign in front of the time derivative.This is, in fact, what is done
conventionally.The convention is to use that normal to the surface which is directed to-
ward the advancing direction of a right-hand screw when it is turned in the sense in
which the loop is traversed, as shown in Figures 2.10(a) and 2.10(b). This is known as
the right-hand screw rule and is applied consistently for all electromagnetic field laws.
Hence, it is well worthwhile digesting it at this early stage.

B

S

C

dS

(a) (b)

C

C

FIGURE 2.11

For illustrating Faraday’s law.

FIGURE 2.10

Right-hand screw rule convention employed in the formulation of
electromagnetic field laws.

We can now express Faraday’s law mathematically as

(2.15)

where Sis a surface bounded by C. For the law to be unique, the surface Sneed not be a
plane surface and can be any curved surface bounded by C, as depicted in Figure 2.11.
This tells us that the magnetic flux through all possible surfaces bounded by C must be
the same.We shall make use of this later. In fact, if C is not a planar loop, we cannot have
a plane surface bounded by C. A further point of interest is that C need not represent a
loop of wire but can be an imaginary closed path. It means that the time-varying mag-
netic flux induces an electric field in the region and this results in an emf around the
closed path. If a wire is placed in the position occupied by the closed path, the emf will
produce a current in the loop simply because the charges in the wire are constrained to
move along the wire. Let us now consider some examples.

CC
 E # dl = - d

dtLS
B # dS
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52 Chapter 2 Maxwell’s Equations in Integral Form

Example 2.7

A rectangular loop of wire with three sides fixed and the fourth side movable is situated in a
plane perpendicular to a uniform magnetic field as illustrated in Figure 2.12.The mov-
able side consists of a conducting bar moving with a velocity in the -direction. It is desired to
find the emf induced in the loop.

yv0

B = B0az,

xl

z
y

v0ay

B

FIGURE 2.12

A rectangular loop of wire with a movable
side situated in a uniform magnetic field.

Letting the position of the movable side at any time t be y0 0t, we obtain the magnetic
flux enclosed by the loop and directed into the paper as

The emf induced in the loop in the clockwise sense is then given by

Thus, if the bar is moving to the right, the induced emf produces a current in the counterclock-
wise sense. Note that this polarity of the current is such that it gives rise to a magnetic field di-
rected out of the paper inside the loop. The flux of this magnetic field is in opposition to the flux
of the original magnetic field and hence tends to decrease it. This observation is in accordance
with Lenz’s law, which states that the induced emf is such that it acts to oppose the change in
the magnetic flux producing it. The minus sign on the right side of Faraday’s law ensures that
Lenz’s law is always satisfied.

It is also of interest to note that the induced emf can also be interpreted as due to the elec-
tric field induced in the moving bar by virtue of its motion perpendicular to the magnetic field.
Thus, a charge Q in the bar experiences a force To an
observer moving with the bar, this force appears as an electric force due to an electric field

Viewed from inside the loop, this electric field is in the counterclockwise direc-
tion and hence the induced emf is 0B0l in that sense, as deduced above from Faraday’s law. This
concept of induced emf is known as the motional emf concept, which is employed widely in the
study of electromechanics.

v
F>Q = v0B0ax.

F = Qv : B or Qv0ay : B0az = Qv0B0ax.

 = - B0 lv0

 = -  
d
dt

 [l1y0 + v0 t2B0]

 C E # dl = -  
d
dt

 c

 = l1y0 + v0 t2B0

 c = (area of the loop)B0

v+
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2.3 Faraday’s Law 53

Example 2.8

A time-varying magnetic field is given by

where is a constant. It is desired to find the induced emf around a rectangular loop in the 
xz-plane, as shown in Figure 2.13.

B0

B = B0 cos vt ay

x

z
y x #  0

z #  0 z #  b

x #  a
B0 cos vt ay

FIGURE 2.13

A rectangular loop in the xz-plane
situated in a time-varying magnetic field.

The magnetic flux enclosed by the loop and directed into the paper is given by

The induced emf in the clockwise sense is then given by

The time variations of the magnetic flux enclosed by the loop and the induced emf
around the loop are shown in Figure 2.14. It can be seen that when the magnetic flux enclosed
by the loop is decreasing with time, the induced emf is positive, thereby producing a clockwise
current if the loop were a wire. This polarity of the current gives rise to a magnetic field directed
into the paper inside the loop and hence acts to increase the magnetic flux enclosed by the loop.
When the magnetic flux enclosed by the loop is increasing with time, the induced emf is nega-
tive, thereby producing a counterclockwise current around the loop. This polarity of the current
gives rise to a magnetic field directed out of the paper inside the loop and hence acts to de-
crease the magnetic flux enclosed by the loop. These observations are once again consistent
with Lenz’s law.

 = -  
d
dt

 [abB0 cos vt] = abB0v sin vt

 CC
E # dl = -  

d
dtLS

B # dS

 = B0 cos vtL
b

z = 0L
a

x = 0
dx dz = abB0 cos vt

 c = LS
B # dS = L

b

z = 0L
a

x = 0
B0 cos vt ay # dx dz ay
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54 Chapter 2 Maxwell’s Equations in Integral Form

2.4 AMPERE’S CIRCUITAL LAW

In the previous section we introduced Faraday’s law, one of Maxwell’s equations, in in-
tegral form. In this section we introduce another of Maxwell’s equations in integral
form. This equation, known as Ampere’s circuital law, is a combination of an experi-
mental finding of Oersted that electric currents generate magnetic fields and a mathe-
matical contribution of Maxwell that time-varying electric fields give rise to magnetic
fields. It is this contribution of Maxwell that led to the prediction of electromagnetic
wave propagation even before the phenomenon was discovered experimentally.
In mathematical form, Ampere’s circuital law is analogous to Faraday’s law and is
given by

(2.16)

where Sis any surface bounded by C, as shown in Figure 2.15. Here again, in order to
evaluate the surface integrals on the right side of (2.16), we choose that normal to the
surface which is directed toward the advancing direction of a right-hand screw when it
is turned in the sense of C, just as in the case of Faraday’s law. Also, both integrals on
the right side of (2.16) must be evaluated on the same surface, whatever be the surface
chosen.

The quantity Jon the right side of (2.16) is the volume current density vector
having the magnitude equal to the maximum value of current per unit area (A/m2) at
the point under consideration, as discussed in Section 1.5. Thus, the quantity ,
being the surface integral of Jover S, has the meaning of current due to flow of charges
crossing the surface Sbounded by C. It also includes line currents, that is, currents flow-
ing along thin filamentary wires enclosed by C, and surface currents, that is, currents
flowing along ribbon-like wires enclosed by C. Thus, , although formulated in1S J# dS

1S J# dS

CC

B
m0

# dl = LS
 J# dS + d

dtLS
P0E # dS

0 p

c

2p 3p
vt

0 p 2p 3p
vt

abB0

abB0v

emf

FIGURE 2.14

Time variations of magnetic
flux enclosed by the loop of
Figure 2.13, and the resulting
induced emf around the loop.

c
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2.4 Ampere’s Circuital Law 55

terms of the volume current density vector J, represents the algebraic sum of all the
currents due to flow of charges across the surface S.

The quantity on the right side of (2.16) is the flux of the vector field
crossing the surface S. The vector is known as the displacement vector or the

displacement flux density vector and is denoted by the symbol D. By recalling from
(1.52) that E has the units of (charge) per [(permittivity)(distance)2], we note that the
quantity D has the units of charge per unit area, or . Hence, the quantity

, that is, the displacement flux has the units of charge, and the quantity

has the units of (charge) or current and is known as the displacement 
current. Physically, it is not a current in the sense that it does not represent the flow of
charges, but mathematically it is equivalent to a current crossing the surface S.

The quantity on the left side of (2.16) is the line integral of the vector 

field around the closed path C. We learned in Section 2.1 that the quantity
has the physical meaning of work per unit charge associated with the 

movement of a test charge around the closed path C. The quantity does not

have a similar physical meaning.This is because magnetic force on a moving charge is di-
rected perpendicular to the direction of motion of the charge as well as to the direction
of the magnetic field and hence does not do work in the movement of the charge. The
vector is known as the magnetic field intensity vector and is denoted by the symbol H.
By recalling from (1.68) that B has the units of [(permeability)(current)(length)] per

we note that the quantity H has the units of current per unit distance, or
A/m. This gives the units of current or A to In analogy with the name 
electromotive force for the quantity is known as the magnetomotive
force, abbreviated as mmf.

Replacing and in (2.16) by H and D, respectively, we rewrite Ampere’s
circuital law as

(2.17)

In words, (2.17) states that “the magnetomotive force around a closed path C is equal
to the total current, that is, the current due to actual flow of charges plus the displace-
ment current bounded by C.” When we say “the total current bounded by C,” we mean

CC
H # dl = LS

J# dS + d
dtLS

D # dS

P0EB>m0

AC
 H # dlAC E # dl,
AC H # dl.

[1distance22],B>m0

CC
 
B
m0

# dl
AC

 E # dl
B>m0

CC
 
B
m0

# dl

d
dt

d
dt1S P0E # dS

1S   P0E # dS
C/m2

P0EP0E
1S   P0E # dS

J, D

S

C
dS

FIGURE 2.15

For illustrating Ampere’s circuital law.
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56 Chapter 2 Maxwell’s Equations in Integral Form

“the total current crossing any given surface Sbounded by C.” This implies that the
total current crossing all possible surfaces bounded by C must be the same since for a
given C, must have a unique value.

Example 2.9

An infinitely long, thin, straight wire situated along the z-axis carries a current I in the z-direction.
It is desired to find around a circle of radius a lying on the xy-plane and centered at the
origin as shown in Figure 2.16.

AC H # dl

AC H # dl

z

x

y

I

(a)

C
C I

z
a

H

2pa
n

(b)

FIGURE 2.16

(a) For illustrating the uniqueness
of a wire current enclosed by a
closed path for an infinitely long,
straight wire. (b) For finding the
magnetic field due to the wire.

Let us consider the plane surface enclosed by C.The total current crossing the surface con-
sists entirely of the current I carried by the wire. In fact, since the wire is infinitely long, the total
current crossing any of the infinite number of surfaces bounded by C is equal to I. The situation
is illustrated in Figure 2.16(a) for a few of the infinite number of surfaces. Thus, noting that the
current I is bounded by C in the right-hand sense, and that it is uniquely given, we obtain

(2.18)

We can proceed further and evaluate H at points on the circular path from symmetry con-
siderations. In order for to be nonzero, H must be directed (or have a component) tan-
gential to the circular path and then, from symmetry considerations, it must have the same
magnitude at all points on the circle, since the circle is centered at the wire. We, however, know
from elementary considerations of the magnetic field due to a current element that H must be
directed entirely tangential to the circular path. Thus, let us divide the circle into a large number
of equal segments, say n, as shown in Figure 2.16(b). Since the length of each segment is 
and since H is parallel to the segment, for the segment is and

From (2.18), we then have

or

H = I
2pa

2paH = I

 = 2pa
n

H # n = 2paH

 CC
 
H # dl = 2pa

n
H(number of segments)

(2pa>n)HH # dl
2pa>n

AC  H # dl

CC H # dl = I
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2.4 Ampere’s Circuital Law 57

Thus, the magnetic field intensity due to the infinitely long wire is directed circular to the wire in
the right-hand sense and has a magnitude where a is the distance of the point from the wire.
The method we have discussed here is a standard procedure for the determination of the static
magnetic field due to current distributions possessing certain symmetries. We shall include some
cases in the problems for the interested reader.

If the wire of Example 2.9 is finitely long, say, extending from to on the
z-axis, then, the construction of Figure 2.17 illustrates that for some surfaces the wire
pierces through the surface, whereas for some other surfaces it does not. Thus, for this
case, there is no unique value of the wire current alone that is enclosed by C. Hence,
there must be a displacement current through the surfaces in addition to the wire current
so that the total current enclosed by C is uniquely given. In fact, this displacement cur-
rent is provided by the time-varying electric field due to charges accumulating at one end
and depleting at the other end of the current-carrying wire. Thus, considering, for
example, the surfaces and and setting the total currents through and to be
equal, we have

(2.19)

Now, since the wire pierces through in the right-hand sense,

(2.20)

The wire does not pierce through . Hence,

(2.21)

Substituting (2.20) and (2.21) into (2.19), we get

(2.22)

or

(2.23)
d
dtLS3

D # dS - d
dtLS1

D # dS = I

I + d
dtLS1

D # dS = 0 + d
dtLS3

D # dS

LS3

 J# dS = 0

S3

LS1

 J# dS = I

S1

LS1

J# dS + d
dtLS1

D # dS = LS3

J# dS + d
dtLS3

D # dS

S3S1S3S1

+d- d

I>2pa,

x

C

d"d

S1
S2

S3

y

I

FIGURE 2.17

For illustrating that the wire current enclosed by a
closed path is not unique for a finitely long wire.
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58 Chapter 2 Maxwell’s Equations in Integral Form

Reversing the sense of evaluation of the surface integral of D over and changing the
minus sign to a plus sign, we obtain

(2.24)

Thus, the displacement current emanating from the closed surface is equal to I.
Another example in which the wire current enclosed by C is not uniquely defined

is shown in Figure 2.18, which is that of a simple circuit consisting of a capacitor driven
by an alternating voltage source. Considering two surfaces and , where cuts
through the wire and passes between the plates of the capacitor, we have

(2.25)

and

(2.26)LS2

 J# dS = 0

LS1

 J# dS = I

S2

S1S2S1

S1 + S3

d
dtCS3 + S1

D # dS = I

S1

C

S1

S2

I
FIGURE 2.18

A capacitor circuit illustrating that the wire
current enclosed by a closed path is not unique.

If we neglect fringing and assume that the electric field in the capacitor is contained
entirely within the region between the plates, then 

(2.27)
For to be unique,

(2.28)

Substituting (2.25), (2.26), and (2.27) into (2.28), we obtain

(2.29)

Thus, the displacement current, that is, the time rate of change of the displacement flux
between the capacitor plates, is equal to the wire current.

Example 2.10

A time-varying electric field is given by

where is a constant. It is desired to find the induced mmf around a rectangular loop in the 
yz-plane, as shown in Figure 2.19.

E0

E = E0z sin vt ax

d
dtLS2

D # dS = I

LS1

J# dS + d
dtLS1

D # dS = LS2

J# dS + d
dtLS2

D # dS

AC H # dl LS1

 D # dS = 0
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2.5 Gauss’ Law for the Electric Field 59

The total current here is composed entirely of displacement current. The displacement
flux enclosed by the loop and directed into the paper is given by

The induced mmf around C is then given by

2.5 GAUSS’ LAW FOR THE ELECTRIC FIELD

In the previous two sections we learned two of the four Maxwell’s equations.These two
equations have to do with the line integrals of the electric and magnetic fields around
closed paths. The remaining two Maxwell’s equations are pertinent to the surface inte-
grals of the electric and magnetic fields over closed surfaces. These are known as
Gauss’ laws.

Gauss’ law for the electric field states that “the total displacement flux emanating
from a closed surface S is equal to the total charge contained within the volume V
bounded by that surface,” as illustrated in Figure 2.20. This statement, although famil-
iarly known as Gauss’ law, has its origin in experiments conducted by Faraday. In mathe-
matical form, Gauss’ law for the electric field is given by

(2.30)

where is the volume charge density associated with points in the volume V.r
CS

D # dS = LV
r dv

 = P0
b2d
2

E0v cos vt

 = d
dt
a P0

b2d
2

 E0 sin vtb
 CC

H # dl = d
dtLS

D # dS

 = P0
b2d
2

E0 sin vt

 = P0E0 sin vt L
b

z = 0L
d

y = 0
z dy dz

 LS
D # dS = L

b

z = 0L
d

y = 0
P0E0z sin vt ax # dy dz ax

y

x
z

z #  0

y #  0

z #  b

y #  d

E0z sin vt ax

FIGURE 2.19

A rectangular loop in a time-varying
electric field.
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60 Chapter 2 Maxwell’s Equations in Integral Form

The volume charge density at a point is defined as the charge per unit volume
at that point in the limit that the volume shrinks to zero. Thus,

(2.31)

As an illustration of the computation of the charge contained in a given volume for a
specified charge density, let us consider 

and the cubical volume V bounded by the planes 
and . Then the charge Q contained within the cubical volume is given by

 = 3
2

 C

 = cx2

2
+ x d1

x = 0

 = L
1

x = 0
(x + 1) dx

 = L
1

x = 0
cxy +

y2

2
+

y
2
d

y = 0

1        

dx

 = L
1

x = 0L
1

y = 0
a x + y + 1

2
b  dx dy

 = L
1

x = 0L
1

y = 0 

cxz + yz + z2

2
d1

z = 0
dx dy

 Q = LV
r dv = L

1

x = 0L
1

y = 0L
1

z = 0
 (x + y + z) dx dy dz

z = 1
x = 0, x = 1, y = 0, y = 1, z = 0,

r = (x + y + z) C/m3

r = Lim
¢v:0

 
¢Q
¢v

(C/m3)

D

S
dS

r

V

FIGURE 2.20

For illustrating Gauss’ law for the
electric field.
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2.5 Gauss’ Law for the Electric Field 61

Although the quantity on the right side of (2.30), that is, the charge contained
within the volume V bounded by the surface Sassociated with the quantity on the left
side of (2.30), is formulated in terms of the volume charge density, it includes surface
charges, line charges, and point charges enclosed by S. Thus it represents the algebraic
sum of all the charges contained in the volume V. Let us now consider an example.

Example 2.11

A point charge Q is situated at the origin. It is desired to find and D over the surface of
a sphere of radius a centered at the origin.

According to Gauss’ law for the electric field, the required displacement flux is given by

(2.32)

To evaluate D on the surface of the sphere, we note that in order for to be nonzero, D
must be directed normal to the spherical surface. From symmetry considerations, it must have the
same magnitude at all points on the spherical surface, since the surface is centered at the origin.
Thus, let us divide the spherical surface into a large number of infinitesimal areas, as shown in
Figure 2.21. Since D is normal to each area, for each area is simply equal to D dS. Hence,

From (2.32), we then have

or

Thus, the displacement flux density due to the point charge is directed away from the charge and
has a magnitude where a is the distance of the point from the charge. The method we
have discussed here is a standard procedure for the determination of the static electric field due
to charge distributions possessing certain symmetries. We shall include some cases in the prob-
lems for the interested reader.

Q>4pa2

D =
Q

4pa2

4pa2D = Q

 = 4pa2D

 = D (surface area of the sphere)

 CS
D # dS = DLS

 dS

D # dS

AS D # dS
CS

 D # dS = Q

AS  D # dS

Q

DD

FIGURE 2.21

For evaluating the displacement flux
density over the surface of a sphere
centered at a point charge.
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62 Chapter 2 Maxwell’s Equations in Integral Form

Gauss’ law for the electric field is not independent of Ampere’s circuital law if we
recognize that, in view of conservation of electric charge, “the total current due to flow
of charges emanating from a closed surface Sis equal to the time rate of decrease of
the charge within the volume V bounded by S,” that is,

or

(2.33)

This statement is known as the law of conservation of charge. In fact, it is this consider-
ation that led to the mathematical contribution of Maxwell to Ampere’s circuital law.
Ampere’s circuital law in its original form did not include the displacement current
term which resulted in an inconsistency with (2.33) for time-varying fields.

Returning to the discussion of the dependency of Gauss’ law on Ampere’s cir-
cuital law through (2.33), let us consider the geometry of Figure 2.22, consisting of a
closed path C and two surfaces and , both of which are bounded by C. Applying
Ampere’s circuital law to C and and to C and , we get

(2.34a)

and

(2.34b)

respectively. Combining (2.34a) and (2.34b), we obtain 

(2.35)

Now, using (2.33), we have

- d
dtLV

r dv + d
dtCS

D # dS = 0

CS1 + S2

J# dS + d
dt CS1 + S2

D # dS = 0

CC
H # dl = - LS2

J# dS2 - d
dtLS2

D # dS2

CC
H # dl = LS1

J# dS1 + d
dtLS1

D # dS1

S2S1

S2S1

CS
J# dS + d

dtLV
r dv = 0

CS
J# dS = - d

dtLV
r dv

CS1 S2

FIGURE 2.22

A closed path C, and two surfaces
and bounded by C.S2S1
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2.6 Gauss’ Law for the Magnetic Field 63

B

S

dS

FIGURE 2.23

For illustrating Gauss’ law for the
magnetic field.

or

(2.36)

where we have replaced by Sand where V is the volume enclosed by .
Thus from (2.36), we get

(2.37)

Since there is no experimental evidence that the right side of (2.37) is nonzero, it
follows that

thereby giving Gauss’ law for the electric field.

2.6 GAUSS’ LAW FOR THE MAGNETIC FIELD

Gauss’ law for the magnetic field states that “the total magnetic flux emanating from a
closed surface Sis equal to zero.” In mathematical form, this is given by

(2.38)

In physical terms, (2.38) signifies that magnetic charges do not exist and magnetic flux
lines are closed. Whatever magnetic flux enters (or leaves) a certain part of a closed
surface must leave (or enter) through the remainder of the closed surface, as illustrated
in Figure 2.23.

CS
B # dS = 0

CS
D # dS = LV

r dv

CS
D # dS - LV

r dv = constant with time

S1 + S2S1 + S2

d
dt
cCS

D # dS - LV
r dv d = 0

Equation (2.38) is not independent of Faraday’s law. This can be shown by con-
sidering the geometry of Figure 2.22. Applying Faraday’s law to C and , we have

(2.39)CC
E # dl = - d

dtLS1

B # dS1

S1
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64 Chapter 2 Maxwell’s Equations in Integral Form

where is directed out of the volume bounded by the closed surface .Apply-
ing Faraday’s law to C and , we have

(2.40)

where is directed out of the volume bounded by . Combining (2.39) and
(2.40), we obtain

(2.41)

or

(2.42)

or

(2.43)

Since there is no experimental evidence that the right side of (2.43) is nonzero, it
follows that

where we have replaced by S.

SUMMARY

We first learned in this chapter how to evaluate line and surface integrals of vector
quantities and then we introduced Maxwell’s equations in integral form. These equa-
tions, which form the basis of electromagnetic field theory, are given as follows in
words and in mathematical form and are illustrated in Figures 2.11, 2.15, 2.20, and 2.23,
respectively.

Faraday’s law. The electromotive force around a closed path C is equal to the nega-
tive of the time rate of change of the magnetic flux enclosed by that path, that is,

(2.44)

Ampere’s circuital law. The magnetomotive force around a closed path C is equal to
the sum of the current enclosed by that path due to the actual flow of charges and the
displacement current due to the time rate of change of the displacement flux enclosed
by that path, that is,

(2.45)CC
H # dl = LS

J# dS + d
dtLS

D # dS

CC
E # dl = -  

d
dtLS

B # dS

S1 + S2

CS
B # dS = 0

CS1 + S2

B # dS = constant with time

d
dtCS1 + S2

B # dS = 0

- d
dtLS1

B # dS1 = d
dtLS2

B # dS2

S1 + S2dS2

CC
E # dl = d

dtLS2

B # dS2

S2

S1 + S2dS1
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Gauss’ law for the electric field. The displacement flux emanating from a closed sur-
face Sis equal to the charge enclosed by that surface, that is,

(2.46)

Gauss’ law for the magnetic field. The magnetic flux emanating from a closed surface
Sis equal to zero, that is,

(2.47)

The vectors D and H, known as the displacement flux density and the magnetic
field intensity vectors, respectively, are related to E and B, known as the electric field
intensity and the magnetic flux density vectors, respectively, in the manner

(2.48)

(2.49)

where and are the permittivity and the permeability of free space, respectively. In
evaluating the right sides of (2.44) and (2.45), the normal vectors to the surfaces must
be chosen such that they are directed in the right-hand sense, that is, toward the side of
advance of a right-hand screw as it is turned around C, as shown in Figures 2.11 and
2.15. We have also learned that (2.47) is not independent of (2.44) and that (2.46)
follows from (2.45) with the aid of the law of conservation of charge given by

(2.50)

In words, (2.50) states that the sum of the current due to the flow of charges across  a
closed surface S and the time rate of increase of the charge within the volume V
bounded by Sis equal to zero. In (2.46), (2.47), and (2.50) the surface integrals must be
evaluated in order to find the flux outward from the volume bounded by the surface.

Finally, we observe that time-varying electric and magnetic fields are interdepen-
dent, since according to Faraday’s law (2.44), a time-varying magnetic field produces
an electric field, whereas according to Ampere’s circuital law (2.45), a time-varying
electric field gives rise to a magnetic field. In addition, Ampere’s circuital law tells us
that an electric current generates a magnetic field. These properties from the basis for
the phenomena of radiation and propagation of electromagnetic waves. To provide a
simplified, qualitative explanation of radiation from an antenna, we begin with a piece
of wire carrying a time-varying current, I(t), as shown in Figure 2.24. Then, the time-
varying current generates a time-varying magnetic field H(t), which surrounds the
wire.Time-varying electric and magnetic fields, E(t) and H(t), are then produced in suc-
cession, as shown by two views in Figure 2.24, thereby giving rise to electromagnetic
waves. Thus, just as water waves are produced when a rock is thrown in a pool of
water, electromagnetic waves are radiated when a piece of wire in space is excited by a
time-varying current.

CS
 J# dS + d

dtLV
 r dv = 0

m0P0

 H = B
m0

 D = P0E

CS
 B # dS = 0

CS
D # dS = LV

 r dv
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66 Chapter 2 Maxwell’s Equations in Integral Form

REVIEW QUESTIONS

2.1. How do you find the work done in moving a test charge by an infinitesimal distance in
an electric field?

2.2. What is the amount of work involved in moving a test charge normal to the electric field?

2.3. What is the physical interpretation of the line integral of E between two points A and B?

2.4. How do you find the approximate value of the line integral of a vector along a given path?

2.5. How do you find the exact value of the line integral?

2.6. What is the physical significance of the line integral of the earth’s gravitational field
intensity?

2.7. What is the value of the line integral of the earth’s gravitational field intensity around a
closed path?

2.8. How do you find the magnetic flux crossing an infinitesimal surface?

2.9. What is the magnetic flux crossing an infinitesimal surface oriented parallel to the mag-
netic flux density vector? 

2.10. For what orientation of the infinitesimal surface relative to the magnetic flux density
vector is the magnetic flux crossing the surface a maximum?

I(t)

E

E

H

H

FIGURE 2.24

Two views of a simplified depiction of electromagnetic wave radiation
from a piece of wire carrying a time-varying current.
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2.11. How do you find the approximate value of the surface integral over a given surface? 
2.12. How do you find the exact value of the surface integral?
2.13. Provide physical interpretations for the closed surface integrals of any two vectors of

your choice.
2.14. State Faraday’s law.
2.15. Why is it necessary to have the minus sign associated with the time rate of increase of

magnetic flux on the right side of Faraday’s law?
2.16. What is electromotive force?
2.17. What are the different ways in which an emf is induced around a loop?
2.18. To find the induced emf around a planar loop, is it necessary to consider the magnetic

flux crossing the plane surface bounded by the loop?
2.19. Discuss briefly the motional emf concept.
2.20. What is Lenz’s law?
2.21. How would you orient a loop antenna in order to obtain maximum signal from an inci-

dent electromagnetic wave which has its magnetic field linearly polarized in the
north–south direction?

2.22. State three applications of Faraday’s law.
2.23. State Ampere’s circuital law.
2.24. What are the units of the magnetic field intensity vector?
2.25. What are the units of the displacement flux density vector?
2.26. What is displacement current? Give an example involving displacement current.
2.27. Why is it necessary to have the displacement current term on the right side of Ampere’s

circuital law?
2.28. When can you say that the current in a wire enclosed by a closed path is uniquely

defined? Give two examples.
2.29. Give an example in which the current in a wire enclosed by a closed path is not uniquely

defined.
2.30. Is it meaningful to consider two different surfaces bounded by a closed path to compute

the two different currents on the right side of Ampere’s circuital law to find 
around the closed path?

2.31. Discuss briefly the application of Ampere’s circuital law to determine the magnetic
field due to current distributions.

2.32. State Gauss’ law for the electric field.
2.33. How is volume charge density defined?
2.34. State the law of conservation of charge.
2.35. How is Gauss’ law for the electric field derived from Ampere’s circuital law?
2.36. Discuss briefly the application of Gauss’ law for the electric field to determine the

electric field due to charge distributions.
2.37. State Gauss’ law for the magnetic field. How is it derived from Faraday’s law?
2.38. What is the physical interpretation of Gauss’ law for the magnetic field?
2.39. Summarize Maxwell’s equations in integral form. Discuss the interdependence of time-

varying electric and magnetic fields, with the aid of an example.
2.40. Which two of the Maxwell’s equations are independent?

AH # dl
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PROBLEMS

2.1. For the force field , find the approximate value of the line integral of F from
the origin to the point (1, 3, 0) along a straight line path by dividing the path into ten
equal segments.

2.2. For the force field , obtain a series expression for the line integral of F from the
origin to the point (1, 3, 0) along a straight line path by dividing the path into equal
segments. Express the sum of the series in closed form and compute its value for values
of equal to 5, 10, 100, and .

2.3. For the force field , find the exact value of the line integral of F from the origin
to the point (1, 3, 0) along a straight line path.

2.4. Given , find along the following paths: (a) straight line
path , , (b) straight line path from (0, 0, 0) to (1, 0, 0), and then straight line
path from (1, 0, 0) to (1, 1, 0), and (c) any path of your choice.

2.5. Show that for any closed path , and hence show that for a uniform field

2.6. Given , find where is the closed path in the -plane consist-
ing of the following: the straight line path from (0, 0, 0) to , the straight line path
from to , the straight line path from to (0, 1, 0), the circular
path from (0, 1, 0) to (1, 0, 0) having its center at (0, 0, 0), and the straight line path from
(1, 0, 0) to (0, 0, 0).

2.7. Given , find where is the closed path comprising
the straight lines from (0, 0, 0) to (1, 1, 1), from (1, 1, 1) to (1, 1, 0), and from (1, 1, 0) to
(0, 0, 0).

2.8. For the magnetic flux density vector , find the approximate value of
the magnetic flux crossing the portion of the xy-plane lying between , ,

, and , by dividing the area into 100 equal parts.

2.9. For the magnetic flux density vector , obtain a series expression
for the magnetic flux crossing the portion of the -plane lying between ,

, , and by dividing the area into equal parts. Express the sum of
the series in closed form and compute its value for values of n equal to 5, 10, 100,
and .

2.10. For the magnetic flux density vector , find the exact value of the
magnetic flux crossing the portion of the -plane lying between , , ,
and by evaluating the surface integral of B.

2.11. Given , find where Sis the hemispherical surface of
radius 2 m lying above the -plane and having its center at the origin.

2.12. Show that for any closed surface , and hence show that for a uniform field A,
.

2.13. Given , find , that is, the current flow-
ing out of the surface of the rectangular box bounded by the planes , ,

, , , and .

2.14. Given , find the time rate of decrease of the magnetic flux
crossing toward the positive -side and enclosed by the path in the -plane from (0, 0, 0)
to (1, 0, 0) along , from (1, 0, 0) to (1, 1, 0) along , and from (1, 1, 0) to (0, 0, 0)
along .y = x3

x = 1y = 0
xyz

E = (yax - xay) cos vt V/m

z = 3z = 0y = 2y = 0
x = 1x = 0S

AS J# dSA/m2J= 3xax + (y - 3)ay + (2 + z)az

AS A # dS = 0
AS dS = 0S

xy
1S A # dSA = xax + yay + zaz

y = 1
y = 0x = 1x = 0xy

Wb/m2B = x2e - yaz

q

n2y = 1y = 0x = 1
x = 0xy

Wb/m2B = x2e - yaz

y = 1y = 0
x = 1x = 0

Wb/m2B = x2e - yaz

CAC F # dlF = xyax + yzay + zxaz

(0, 12, 0)(0, 22, 0)( - 1, 1, 0)
( - 1, 1, 0)

xyCAC F # dlF = yax - xay

F, AC F # dl = 0.
AC dl = 0C

z = 0y = x
1(1, 1, 0)

(0, 0, 0)  E # dlE = yax + xay

F = x2ay

qn

n
F = x2ay

F = x2ay
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2.15. A magnetic field is given in the -plane by , where is a constant.A 

rigid rectangular loop is situated in the -plane and with its corners at the points
, , , and . If the loop is moving in that

plane with a velocity , where is a constant, find by using Faraday’s law
the induced emf around the loop in the sense defined by connecting the above specified
points in succession. Discuss your result by using the motional emf concept.

2.16. Assuming the rectangular loop of Problem 2.15 to be stationary, find the induced emf 

around the loop if .

2.17. Assuming the rectangular loop of Problem 2.15 to be moving with the velocity

, find the induced emf around the loop if .

2.18. For , find the induced emf around the closed path comprising
the straight lines successively connecting the points (0, 0, 0), (1, 0, 0.01), (1, 1, 0.02),
(0, 1, 0.03), (0, 0, 0.04), and (0, 0, 0).

2.19. Repeat Problem 2.18 for the closed path comprising the straight lines successively
connecting the points (0, 0, 0), (1, 0, 0.01), (1, 1, 0.02), (0, 1, 0.03), (0, 0, 0.04), (1, 0, 0.05),
(1, 1, 0.06), (0, 1, 0.07), (0, 0, 0.08), and (0, 0, 0), with a slight kink in the last straight line
at the point (0, 0, 0.04) to avoid touching the point.

2.20. A rigid rectangular loop of area is situated normal to the -plane and symmetrically
about the -axis. It revolves around the -axis at rad/s in the sense defined by the
curling of the fingers of the right hand when the -axis is grabbed with the thumb pointed
in the positive -direction. Find the induced emf around the loop if 
where is a constant, and show that the induced emf has two frequency components

and .
2.21. For the revolving loop of Problem 2.20, find the induced emf around the loop if

.
2.22. For the revolving loop of Problem 2.20, find the induced emf around the loop if

.
2.23. A current flows from infinity to a point charge at the origin through a thin wire along

the negative -axis and a current flows from the point charge to infinity through
another thin wire along the positive -axis. From considerations of uniqueness of

find the displacement current emanating from (a) a spherical surface of radius
1 m and having its center at the point (2, 2, 2) and (b) a spherical surface of radius 1 m
and having its center at the origin.

2.24. A current density due to flow of charges is given by . From consid-
eration of uniqueness of , find the displacement current emanating from the
cubical box bounded by the planes , , , , , and .

2.25. An infinitely long, cylindrical wire of radius , having the -axis as its axis, carries current
in the positive -direction with uniform density . Find H both inside and outside
the wire.

2.26. An infinitely long, hollow, cylindrical wire of inner radius and outer radius , having
the -axis as its axis, carries current in the positive -direction with uniform density

. Find H everywhere.
2.27. An infinitely long, straight wire situated along the -axis carries current in the positive

-direction.What are the values of along (a) the circular path of radius 1 m
and centered at the origin and (b) along a straight line path?

1(0, 1, 0)
(1, 0, 0)  H # dlz

Iz
J0 A/m2

zz
ba

J0 A/m2z
za

z = 1z = 0y = 1y = 0x = 1x = 0
AC H # dl

J= y cos vt ay A/m2

AC H # dl,
y

I2y
I1

B = B0(cos v1t ax -  sin v1t ay)

B = B0(cos v1t ax + sin v1t ay)

|v1 - v2|(v1 + v2)
B0

B = B0 cos v2t ax,z
z
v1zz

xyA

B = B0 cos vt az Wb/m2

B =
B0

x
 cos vt ay Wb/m2v = v0ax m/s

B =
B0

x
 cos vt ay Wb/m2

v0v = v0ax m/s
(x0 + a, z0)(x0 + a, z0 + b)(x0, z0 + b)(x0, z0)

xz

B0Wb/m2B =
B0

x
ayxz
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70 Chapter 2 Maxwell’s Equations in Integral Form

2.28. Given , find the charge contained in the volume of the wedge-shaped box
defined by the planes , , , , and .

2.29. Given , find the displacement flux emanating from the surface of the cu-
bical box defined by the planes , , , , , and .

2.30. Charge is distributed uniformly along the -axis with density C/m. Using Gauss’ law
for the electric field, find the electric field intensity due to the line charge.

2.31. Charge is distributed uniformly with density within a spherical volume of
radius a m and having its center at the origin. Using Gauss’ law for the electric field,
find the electric field intensity both inside and outside the charge distribution.

2.32. A point charge C is situated at the origin. What are the values of the displacement
flux crossing (a) the spherical surface , , , and and
(b) the plane surface , , , and ?

2.33. Given , find the time rate of increase of the charge contained in the cubi-
cal volume bounded by the planes , , , , , and .

2.34. Given , find the time rate of increase of the charge contained in the
volume of the wedge-shaped box that is defined by the planes  , , ,

, and .
2.35. Using the property that , find the absolute value of over that

portion of the surface bounded by , , , and , for
.

2.36. Repeat Problem 2.35 for the plane rectangular surface having the vertices at (0, 0, 0),
(0, 0, 1), (1, 1, 1), and (0, 1, 1).

B = yax - xay

z = 1z = 0x = px = 0y = sin x
1  B # dSAS B # dS = 0

z = 0y = 1
y = 0x + z = 1x = 0

J= xax A/m2
z = 1z = 0y = 1y = 0x = 1x = 0

J= xax A/m2
z 7 0y 7 0x 7 0x + y + z = 1

z 7 0y 7 0x 7 0x2 + y2 + z2 = 1
Q

r0 C/m3

rL0z
z = 1z = 0y = 1y = 0x = 1x = 0

r = xe - x2
 C/m3

z = 0y = 1y = 0x + z = 1x = 0
D = yay
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Maxwell’s Equations
in Differential Form

In Chapter 2 we introduced Maxwell’s equations in integral form. We learned that the
quantities involved in the formulation of these equations are the scalar quantities, elec-
tromotive force, magnetomotive force, magnetic flux, displacement flux, charge, and
current, which are related to the field vectors and source densities through line, surface,
and volume integrals. Thus, the integral forms of Maxwell’s equations, while containing
all the information pertinent to the interdependence of the field and source quantities
over a given region in space, do not permit us to study directly the interaction between
the field vectors and their relationships with the source densities at individual points. It
is our goal in this chapter to derive the differential forms of Maxwell’s equations that
apply directly to the field vectors and source densities at a given point.

We shall derive Maxwell’s equations in differential form by applying Maxwell’s
equations in integral form to infinitesimal closed paths, surfaces, and volumes, in the
limit that they shrink to points. We will find that the differential equations relate the
spatial variations of the field vectors at a given point to their temporal variations and
to the charge and current densities at that point. In this process we shall also learn two
important operations in vector calculus, known as curl and divergence, and two related
theorems, known as Stokes’ and divergence theorems.

3.1 FARADAY’S LAW

We recall from the previous chapter that Faraday’s law is given in integral form by

(3.1)

where S is any surface bounded by the closed path C. In the most general case, the elec-
tric and magnetic fields have all three components (x, y, and z) and are dependent on
all three coordinates (x, y, and z) in addition to time (t). For simplicity, we shall, how-
ever, first consider the case in which the electric field has an x-component only, which
is dependent only on the z-coordinate, in addition to time. Thus,

(3.2)E = Ex(z, t)ax

CC
E # dl = -  

d
dtLS

B # dS

71

CHAPTER

3
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72 Chapter 3 Maxwell’s Equations in Differential Form

To find the magnetic flux enclosed by C, let us consider the plane surface S
bounded by C. According to the right-hand screw rule, we must use the magnetic flux
crossing S toward the positive y-direction, that is, into the page, since the path C is tra-
versed in the clockwise sense. The only component of B normal to the area S is the
y-component.Also, since the area is infinitesimal in size, we can assume to be uniformBy

x

zy

!z

!x S C

(x, z) (x, z " !z)

(x " !x, z " !z)(x " !x, z)
FIGURE 3.1

Infinitesimal rectangular path lying in a plane parallel to the
xz-plane.

In other words, this simple form of time-varying electric field is everywhere directed in
the x-direction and it is uniform in planes parallel to the xy-plane.

Let us now consider a rectangular path C of infinitesimal size lying in a plane par-
allel to the xz-plane and defined by the points 
and as shown in Figure 3.1. According to Faraday’s law, the emf around
the closed path C is equal to the negative of the time rate of change of the magnetic
flux enclosed by C. The emf is given by the line integral of E around C. Thus, evaluat-
ing the line integrals of E along the four sides of the rectangular path, we obtain

(3.3a)

(3.3b)

(3.3c)

(3.3d)

Adding up (3.3a)–(3.3d), we obtain

(3.4)

In (3.3a)–(3.3d) and (3.4), and denote values of evaluated along the
sides of the path for which and respectively.z = z + ¢z,z = z

Ex[Ex]z + ¢z[Ex]z

 = 5[Ex]z + ¢z - [Ex]z6 ¢x

 CC
E # dl = [Ex]z + ¢z ¢x - [Ex]z ¢x

L
1x, z2
1x + ¢x, z2E # dl = - [Ex]z ¢x

L
(x + ¢x, z)

(x + ¢x, z + ¢z)
E # dl = 0 since Ez = 0

L
1x + ¢x, z + ¢z2
1x, z + ¢z2 E # dl = [Ex]z + ¢z ¢x

L
1x, z + ¢z2
1x, z2 E # dl = 0 since Ez = 0

1x + ¢x, z2, 1x + ¢x, z + ¢z2,1x, z2, 1x, z + ¢z2,
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3.1 Faraday’s Law 73

over the area and equal to its value at (x, z). The required magnetic flux is then
given by

(3.5)

Substituting (3.4) and (3.5) into (3.1) to apply Faraday’s law to the rectangular
path C under consideration, we get

or

(3.6)

If we now let the rectangular path shrink to the point (x, z) by letting and tend
to zero, we obtain

or

(3.7)

Equation (3.7) is Faraday’s law in differential form for the simple case of E given
by (3.2). It relates the variation of with z (space) at a point to the variation of 
with t (time) at that point. Since the above derivation can be carried out for any arbi-
trary point (x, y, z), it is valid for all points. It tells us in particular that a time-varying 
at a point results in an at that point having a differential in the z-direction. This is to
be expected since if this is not the case, around the infinitesimal rectangular
path would be zero.

Example 3.1

Given and it is known that E has an x-component only, let us find .
From (3.6), we have

We note that the uniform magnetic field gives rise to an electric field varying linearly with z.

Ex = vB0z sin vt

0Ex 
0z

 = -
0By 

0t
 = - 0

0t
 (B0 cos vt) = vB0 sin vt

ExB = B0 cos vt ay

AE # dl
Ex

By

ByEx

0Ex

0z
= -  

0By

0t

 Lim
¢x:0
¢z:0

[Ex]z + ¢z - [Ex]z

¢z
= - Lim

¢x:0
¢z:0

 

0[By]1x, z2
0t

¢z¢x

[Ex]z + ¢z - [Ex]z

¢z
= -  

0[By]1x, z2
0t

5[Ex]z + ¢z - [Ex]z6 ¢x = -  
d
dt

 5[By]1x, z2 ¢x ¢z6
LS

B # dS = [By]1x, z2 ¢x ¢z
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74 Chapter 3 Maxwell’s Equations in Differential Form

Proceeding further, we can verify this result by evaluating around the rectangular
path of Example 2.8.This rectangular path is reproduced in Figure 3.2.The required line integral
is given by

which agrees with the result of Example 2.8.

 = abB0v sin vt

 = 0 + [vB0b sin vt]a + 0 + 0

 +  L
0

 z = b
 [Ez]x = a dz + L

0

 x = a
 [Ex]z = 0 dx

 C C
 E # dl = L

b

 z = 0
 [Ez]x = 0 dz + L

a

 x = 0
 [Ex]z = b dx

A  E # dl

x

y
x = 0

x = a

z = 0
z = b

z

FIGURE 3.2

Rectangular path of Example 2.8.

We shall now proceed to generalize (3.7) for the arbitrary case of the electric
field having all three components (x, y, and z), each of them depending on all three
coordinates (x, y, and z), in addition to time (t), that is,

(3.8)

To do this, let us consider the three infinitesimal rectangular paths in planes parallel to
the three mutually orthogonal planes of the Cartesian coordinate system, as shown in
Figure 3.3. Evaluating around the closed paths abcda, adefa, and afgba, we get

(3.9a)

(3.9b) -  [Ez]1x + ¢x, y2 ¢z - [Ex]1y, z2 ¢x

 Cadefa
E # dl = [Ez]1x, y2 ¢z + [Ex]1y, z + ¢z2 ¢x

 -  [Ey]1x, z + ¢z2 ¢y - [Ez]1x, y2 ¢z

 Cabcda
E # dl = [Ey]1x, z2 ¢y + [Ez]1x, y + ¢y2 ¢z

AE # dl

E = Ex1x, y, z, t2ax + Ey1x, y, z, t2ay + Ez1x, y, z, t2az
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3.1 Faraday’s Law 75

In (3.9a)–(3.9c) the subscripts associated with the field components in the various
terms on the right sides of the equations denote the value of the coordinates that
remain constant along the sides of the closed paths corresponding to the terms. Now,
evaluating over the surfaces abcd, adef, and afgb, keeping in mind the right-
hand screw rule, we have

(3.10a)

(3.10b)

(3.10c)

Applying Faraday’s law to each of the three paths by making use of (3.9a)–(3.9c)
and (3.10a)–(3.10c) and simplifying, we obtain

(3.11a)

(3.11b) 
[Ex]1y, z + ¢z2 - [Ex]1y, z2

¢z
-

[Ez]1x + ¢x, y2 - [Ez]1x, y2
¢x

= -  

0[By]1x, y, z2
0t

 
[Ez]1x, y + ¢y2 - [Ez]1x, y2

¢y
-

[Ey]1x, z + ¢z2 - [Ey]1x, z2
¢z

= -  

0[Bx]1x, y, z2
0t

 Lafgb
B # dS = [Bz]1x, y, z2 ¢x ¢y

 Ladef
B # dS = [By]1x, y, z2 ¢z ¢x

 Labcd
B # dS = [Bx]1x, y, z2 ¢y ¢z

1B # dS

x

z

y

!z

!y

!x

d(x, y, z " !z)

a(x, y, z)

c(x, y " !y, z " !z)

g(x " !x, y " !y, z)

b(x, y " !y, z)

f(x " !x, y, z)

e(x " !x, y, z " !z)

FIGURE 3.3

Infinitesimal rectangular paths in three mutually orthogonal planes.

(3.9c) -  [Ex]1y + ¢y, z2 ¢x - [Ey]1x, z2 ¢y

 Cafgba
E # dl = [Ex]1y, z2 ¢x + [Ey]1x + ¢x, z2 ¢y
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76 Chapter 3 Maxwell’s Equations in Differential Form

(3.11c)

If we now let all three paths shrink to the point a by letting and tend to
zero, (3.11a)–(3.11c) reduce to

(3.12a)

(3.12b)

(3.12c)

Equations (3.12a)–(3.12c) are the differential equations governing the relationships be-
tween the space variations of the electric field components and the time variations of the
magnetic field components at a point. An examination of one of the three equations is
sufficient to reveal the physical meaning of these relationships. For example, (3.12a) tells
us that a time-varying at a point results in an electric field at that point having y- and
z-components such that their net right-lateral differential normal to the x-direction is
nonzero. The right-lateral differential of normal to the x-direction is its derivative in 
the or that is, or The right-lateral differen-
tial of normal to the x-direction is its derivative in the or that
is, .Thus, the net right-lateral differential of the y- and z-components of the elec-
tric field normal to the x-direction is , or . An
example in which the net right-lateral differential is zero, although the individual
derivatives are nonzero, is shown in Figure 3.4(a), whereas Figure 3.4(b) shows an ex-
ample in which the net right-lateral differential is nonzero.

(0Ez>0y - 0Ey>0z)(-0Ey>0z) + (0Ez>0y)
0Ez>0y

ay-direction,az : ax,Ez

-0Ey>0z.0Ey>0(-z)-az-direction,ay : ax,
Ey

Bx

 
0Ey

0x
-

0Ex

0y
= -  

0Bz

0t

 
0Ex

0z
-

0Ez

0x
= -  

0By

0t

 
0Ez

0y
-

0Ey

0z
= -  

0Bx

0t

¢z¢x, ¢y,

 
[Ey]1x + ¢x, z2 - [Ey]1x, z2

¢x
-

[Ex]1y + ¢y, z2 - [Ex]1y, z2
¢y

= -  

0[Bz]1x, y, z2
0t

z

y

Ey

Ey

Ey

Ey

Ez EzEzEzx

(a) (b)

FIGURE 3.4

For illustrating (a) zero, and (b) nonzero net right-lateral differential of 
and normal to the x-direction.Ez

Ey
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3.1 Faraday’s Law 77

Equations (3.12a)–(3.12c) can be combined into a single vector equation as
given by

(3.13)

This can be expressed in determinant form as

(3.14)

or as

(3.15)

The left side of (3.14) or (3.15) is known as the curl of E, denoted as (del cross E),
where (del) is the vector operator given by

(3.16)

Thus, we have

(3.17)

Equation (3.17) is Maxwell’s equation in differential form corresponding to Faraday’s
law. We shall discuss curl further in Section 3.3.

Example 3.2

Given find 
From the determinant expansion for the curl of a vector, we have

 = -2az

 = axc-  
0
0z

 1-x2 d + ayc 0
0z

 1y2 d + azc 0
0x

 1-x2 - 0
0y

 1y2 d
 ¥ : A = 4 ax ay az

0
0x

0
0y

0
0z

y -x 0

4¥ : A.A = yax - xay,

¥ : E = -  
0B
0t

¥ = ax 
0

0x
+ ay 

0
0y

+ az 
0
0z

¥
¥ : E

aax 
0

0x
+ ay 

0
0y

+ az 
0
0z
b : 1Ex ax + Ey ay + Ez az2 = -  

0B
0t

4 ax ay az

0
0x

0
0y

0
0z

Ex Ey Ez

4 = -  
0B
0t

 = -  
0Bx

0t
 ax -

0By

0t
 ay -

0Bz

0t
 az

 a 0Ez

0y
-

0Ey

0z
bax + a 0Ex

0z
-

0Ez

0x
bay + a 0Ey

0x
-

0Ex

0y
baz
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78 Chapter 3 Maxwell’s Equations in Differential Form

3.2 AMPERE’S CIRCUITAL LAW

In the previous section we derived the differential form of Faraday’s law from its inte-
gral form. In this section we shall derive the differential form of Ampere’s circuital law
from its integral form in a completely analogous manner. We recall from Section 2.4
that Ampere’s circuital law in integral form is given by

(3.18)

where S is any surface bounded by the closed path C. For simplicity, we shall first con-
sider the case in which the magnetic field has a y-component only, which is dependent
only on the z-coordinate, in addition to time. Thus,

(3.19)

In other words, this simple form of the time-varying magnetic field is everywhere directed
in the y-direction and is uniform in planes parallel to the xy-plane.

Let us now consider a rectangular path C of infinitesimal size lying in a plane par-
allel to the yz-plane and defined by the points 
and as shown in Figure 3.5. According to Ampere’s circuital law, the mmf
around the closed path C is equal to the total current enclosed by C. The mmf is given
by the line integral of H around C. Thus, evaluating the line integrals of H along the
four sides of the rectangular path, we obtain

(3.20) = -5[Hy]z + ¢z - [Hy]z6 ¢z

 = [Hy]z ¢y + 0 - [Hy]z + ¢z  ¢y + 0

 + L
(y, z + ¢z)

 (y + ¢y, z + ¢z)
 H # dl + L

(y, z)

 (y, z + ¢z)
 H # dl

 C C
 H # dl = L

(y + ¢y, z)

 (y, z)
 H # dl + L

(y + ¢y, z + ¢z)

 (y + ¢y, z)
 H # dl

1y + ¢y, z2, 1y + ¢y, z + ¢z2,1y, z2, 1y, z + ¢z2,
H = Hy(z, t)ay

CC
H # dl = LS

J# dS + d
dtLS

D # dS

x z

y

!z

!y S C

(y, z) (y, z " !z)

(y " !y, z " !z)(y " !y, z)

FIGURE 3.5

Infinitesimal rectangular path lying in a plane parallel
to the yz-plane.
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3.2 Ampere’s Circuital Law 79

To find the total current enclosed by C, we consider the plane surface S bounded by C.
According to the right-hand screw rule, we must find the current crossing S toward the
positive x-direction, that is, into the page, since the path is traversed in the clockwise
sense. This current consists of two parts:

(3.21a)

(3.21b)

where we have assumed that since the area is infinitesimal in size, and are uni-
form over the area and equal to their values at (y, z).

Substituting (3.20), (3.21a), and (3.21b) into (3.18) to apply Ampere’s circuital
law to the rectangular path C under consideration, we get

or

(3.22)

If we now let the rectangular path shrink to the point (y, z) by letting and tend
to zero, we obtain

or

(3.23)

Equation (3.23) is Ampere’s circuital law in differential form for the simple case of H
given by (3.19). It relates the variation of with z (space) at a point to the current
density and to the variation of with t (time) at that point. Since the above
derivation can be carried out for any arbitrary point (x, y, z), it is valid at all points.
It tells us in particular that a current density or a time-varying or a nonzero com-
bination of the two quantities at a point results in an at that point having a differ-
ential in the z-direction. This is to be expected since if this is not the case,
around the infinitesimal rectangular path would be zero.

A  H # dl
Hy

DxJx

DxJx

Hy

0Hy

0z
 = -Jx -

0Dx

0t

 Lim
¢y:0
¢z:0

 

[Hy]z + ¢z - [Hy]z

¢z
= - Lim

¢y:0
¢z:0

 cJx +
0Dx

0t
d

(y, z)

¢z¢y

[Hy]z + ¢z - [Hy]z

¢z
 = - cJx +

0Dx

0t
d

(y, z)

-5[Hy]z + ¢z - [Hy]z6 ¢y = cJx +
0 Dx

0 t
d

(y, z)
¢y ¢z

DxJx

d
dtLS

D # dS = d
dt

{[Dx](y, z)¢y ¢z} =
0[Dx](y, z)

0 t
 ¢y ¢z

LS
J# dS = [Jx](y, z)¢y ¢z

M03_RAO3333_1_SE_CHO3.QXD  4/9/08  1:17 PM  Page 79



80 Chapter 3 Maxwell’s Equations in Differential Form

Example 3.3

Given and it is known that Jis zero and B has a y-component only, let us find .
From (3.23), we have

We note that the electric field varying linearly with z gives rise to a magnetic field proportional
to . In Example 3.1, however, an electric field varying linearly with z was found to result from a
uniform magnetic field, according to Faraday’s law in differential form.The inconsistency of these
two results implies that neither the combination of and in Example 3.1 nor the combination
of and in this example simultaneously satisfies the two Maxwell’s equations in differential
form given by (3.7) and (3.23). The pair of and in Example 3.1 satisfies only (3.7), whereas
the pair of and in this example satisfies only (3.23). In the following chapter we shall find a
pair of solutions for and that simultaneously satisfies the two Maxwell’s equations.

Example 3.4

Let us consider the current distribution given by

as shown in Figure 3.6(a), where is a constant, and find the magnetic field everywhere.
Since the current density is independent of x and y, the field is also independent of x and y.

Also, since the current density is not a function of time, the field is static. Hence,
and we have

Integrating both sides with respect to z, we obtain

where C is the constant of integration.
The variation of with z is shown in Figure 3.6(b). Integrating with respect to z, that

is, finding the area under the curve of Figure 3.6(b) as a function of z, and taking its negative, we
obtain the result shown by the dashed curve in Figure 3.6(c) for From symmetry
considerations, the field must be equal and opposite on either side of the current region

Hence, we choose the constant of integration C to be equal to therebyJ0 a,-a 6 z 6 a.

-1z
- qJx dz.

-JxJx

Hy = -L
z

 - q
 Jx dz + C

0Hy

0z
= -Jx

10Dx>0t2 = 0,

J0

J = J0ax    for -a 6 z 6 a

ByEx

ByEx

ByEx

ByEx

ByEx

z2

 By = m0Hy = -vm0P0E0 
z2

2
 cos vt

 Hy = -vP0E0 
z2

2
 cos vt

 
0Hy

0z
= -Jx -

0Dx

0 t
= 0 - 0

0t
 (P0E0z sin vt) = -vP0E0z cos vt

ByE = E0z sin vt ax
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3.2 Ampere’s Circuital Law 81

obtaining the final result for as shown by the solid curve in Figure 3.6(c). Thus, the magnetic
field intensity due to the current distribution is given by

The magnetic flux density, B, is equal to m0 H.

H = c   J0 aay for z 6 -a
-J0 zay for -a 6 z 6 a
-J0 aay for z 7 a

Hy

z # $a z # az # 0

x

zy

Jx

J0

z
$a 0 a

J0a

z

J0ax

$J0a

$2J0a

$a a

(a) (c)

(b)

FIGURE 3.6

The determination of magnetic field due to a current distribution.

We now generalize (3.23) for the arbitrary case of a magnetic field having all
three components, each of them depending on all three coordinates, in addition to t,
that is,

(3.24)

We do this in exactly the same manner as for the case of Faraday’s law by considering
the three infinitesimal rectangular paths shown in Figure 3.3. Applying Ampere’s
circuital law to each of the three paths and simplifying, we obtain

(3.25a) 
[Hz]1x, y + ¢y2 - [Hz]1x, y2

¢y
-

[Hy]1x, z + ¢z2 - [Hy]1x, z2
¢z

= cJx +
0Dx

0t
d

(x, y, z)

H = Hx(x, y, z, t)ax + Hy(x, y, z, t)ay + Hz(x, y, z, t)az
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82 Chapter 3 Maxwell’s Equations in Differential Form

(3.25b)

(3.25c)

If we now let all three paths shrink to the point a by letting and tend to
zero, (3.25a)–(3.25c) reduce to

(3.26a)

(3.26b)

(3.26c)

Equations (3.26a)–(3.26c) are the differential equations governing the relationships
between the space variations of the magnetic field components, the components of the
current density and the time variations of the electric field components, at a point.
They can be interpreted physically in a manner analogous to the interpretation of
(3.12a)–(3.12c) in the case of Faraday’s law.

Equations (3.26a)–(3.26c) can be combined into a single vector equation in
determinant form as given by

(3.27)

or

(3.28)

Equation (3.28) is Maxwell’s equation in differential form corresponding to Ampere’s
circuital law. The quantity is known as the displacement current density. We shall
discuss curl further in the following section.

3.3 CURL AND STOKES’ THEOREM

In Sections 3.1 and 3.2 we derived the differential forms of Faraday’s and Ampere’s
circuital laws from their integral forms. These differential forms involve a new vector
quantity, namely, the curl of a vector. In this section we shall introduce the basic defin-
ition of curl and then present a physical interpretation of the curl. In order to do this,

0D>0t

¥ : H = J + 0D
0t

4 ax ay az

0
0x

0
0y

0
0z

Hx Hy Hz

4 = J + 0D
0t

0Hy

0x
-

0Hx

0y
= Jz +

0Dz

0t

0Hx

0z
-

0Hz

0x
= Jy +

0Dy

0t

0Hz

0y -
0Hy

0z
= Jx +

0Dx

0t

¢z¢x, ¢y,

 
[Hy]1x + ¢x, z2 - [Hy]1x, z2

¢x
-

[Hx]1y + ¢y, z2 - [Hx]1y, z2
¢y

= cJz +
0Dz

0t
d

(x, y, z)

 
[Hx]1y, z + ¢z2 - [Hx]1y, z2

¢z
-

[Hz]1x + ¢x, y2 - [Hz]1x, y2
¢x

= cJy +
0Dy

0t
d

(x, y, z)
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3.3 Curl and Stokes’ Theorem 83

let us, for simplicity, consider Ampere’s circuital law in differential form without the
displacement current density term, that is,

(3.29)

We wish to express at a point in the current region in terms of H at that point.
If we consider an infinitesimal surface at the point and take the dot product of both
sides of (3.29) with , we get

(3.30)

But is simply the current crossing the surface and according to Ampere’s
circuital law in integral form without the displacement current term,

(3.31)

where C is the closed path bounding Comparing (3.30) and (3.31), we have

or

(3.32)

where is the unit vector normal to and directed toward the side of advance of
a right-hand screw as it is turned around C. Dividing both sides of (3.32) by 
we obtain

(3.33)

The maximum value of and hence that of the right side of (3.33),
occurs when is oriented parallel to that is, when the surface is oriented
normal to the current density vector J. This maximum value is simply Thus,

(3.34)

Since the direction of is the direction of J, or that of the unit vector normal to
we can then write

(3.35)

Equation (3.35) is only approximate since (3.32) is exact only in the limit that tends
to zero. Thus,

(3.36)¥ : H = Lim
¢S:0

cAC H # dl

¢S
d

max
 an

¢S

¥ : H = cAC H # dl

¢S
d

max
 an

¢S,
¥ : H

ƒ ¥ : H ƒ = cAC H # dl

¢S
d

max

ƒ ¥ : H ƒ .
¢S¥ : H,an

1¥ : H2 # an,

1¥ : H2 # an = AC H # dl

¢S

¢S,
¢San

1¥ : H2 # ¢S an = CC
 H # dl

1¥ : H2 # ¢S = CC
 H # dl

¢S.

CC
 H # dl = J# ¢S

¢S,J# ¢S

(¥ : H) # ¢S = J# ¢S

¢S
¢S

¥ : H

¥ : H = J
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84 Chapter 3 Maxwell’s Equations in Differential Form

Equation (3.36) is the expression for at a point in terms of H at that point.
Although we have derived this for the H vector, it is a general result and, in fact, is
often the starting point for the introduction of curl.

Equation (3.36) tells us that in order to find the curl of a vector at a point in that
vector field, we first consider an infinitesimal surface at that point and compute the
closed line integral or circulation of the vector around the periphery of this surface by
orienting the surface such that the circulation is maximum. We then divide the circula-
tion by the area of the surface to obtain the maximum value of the circulation per unit
area. Since we need this maximum value of the circulation per unit area in the limit
that the area tends to zero, we do this by gradually shrinking the area and making sure
that each time we compute the circulation per unit area an orientation for the area that
maximizes this quantity is maintained. The limiting value to which the maximum circu-
lation per unit area approaches is the magnitude of the curl. The limiting direction to
which the normal vector to the surface approaches is the direction of the curl. The task
of computing the curl is simplified if we consider one component of the field at a time
and compute the curl corresponding to that component since then it is sufficient if we
always maintain the orientation of the surface normal to that component axis. In fact,
this is what we did in Sections 3.1 and 3.2, which led us to the determinant form of curl.

We are now ready to discuss the physical interpretation of the curl.We do this with
the aid of a simple device known as the curl meter.Although the curl meter may take sev-
eral forms, we shall consider one consisting of a circular disc that floats in water with a
paddle wheel attached to the bottom of the disc, as shown in Figure 3.7. A dot at the
periphery on top of the disc serves to indicate any rotational motion of the curl meter
about its axis, that is, the axis of the paddle wheel. Let us now consider a stream of rec-
tangular cross section carrying water in the z-direction, as shown in Figure 3.7(a). Let us
assume the velocity v of the water to be independent of height but increasing uniformly
from a value of zero at the banks to a maximum value at the center, as shown in Figure
3.7(b), and investigate the behavior of the curl meter when it is placed vertically at dif-
ferent points in the stream.We assume that the size of the curl meter is vanishingly small
so that it does not disturb the flow of water as we probe its behavior at different points.

Since exactly in midstream the blades of the paddle wheel lying on either side of
the center line are hit by the same velocities, the paddle wheel does not rotate.The curl
meter simply slides down the stream without any rotational motion, that is, with the
dot on top of the disc maintaining the same position relative to the center of the disc,
as shown in Figure 3.7(c). At a point to the left of the midstream the blades of the pad-
dle wheel are hit by a greater velocity on the right side than on the left side so that the
paddle wheel rotates in the counterclockwise sense.The curl meter rotates in the coun-
terclockwise direction about its axis as it slides down the stream, as indicated by the
changing position of the dot on top of the disc relative to the center of the disc, as
shown in Figure 3.7(d). At a point to the right of midstream, the blades of the paddle
wheel are hit by a greater velocity on the left side than on the right side so that the
paddle wheel rotates in the clockwise sense. The curl meter rotates in the clockwise di-
rection about its axis as it slides down the stream, as indicated by the changing position
of the dot on top of the disc relative to the center of the disc, as shown in Figure 3.7(e).

To relate the foregoing discussion of the behavior of the curl meter with the curl
of the velocity vector field of the water flow, we note that at a point in midstream, the

v0

¥ : H
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3.3 Curl and Stokes’ Theorem 85

circulation of the velocity vector per unit area in the plane normal to the axis of the
paddle wheel, that is, parallel to the surface of the stream, is zero and hence the com-
ponent of the curl along that axis, that is, in the x-direction, is zero. At points on either
side of midstream, however, the circulation per unit area is not zero in view of the ve-
locity differential along the y-direction. Hence, the x-component of the curl is nonzero
at these points. Furthermore, the x-component of the curl at points on the right side of
midstream is opposite in sign to that on the left side of midstream, since the velocity
differentials are opposite in sign. These properties are exactly similar to those of the
rotational motion of the curl meter.

If we now pick up the curl meter and insert it in the water with its axis parallel to
the surface of the stream, the curl meter does not rotate, because its blades are hit with
the same force on either side of its axis. This behavior of the curl meter is akin to the
property that the horizontal component of the curl of the velocity vector is zero, since
the velocity differential along the x-direction is zero.

x
z

y

(b)(a)

(c) (d) (e)

a/2 a0
y

vz

v0

a0

FIGURE 3.7

For explaining the physical interpretation of curl using the curl meter.
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86 Chapter 3 Maxwell’s Equations in Differential Form

The foregoing illustration of the physical interpretation of the curl of a vector
field can be used to visualize the behavior of electric and magnetic fields. Thus, for
example, from

we know that at a point in an electromagnetic field at which is nonzero, there
exists an electric field with nonzero circulation per unit area in the plane normal to the
vector . Similarly, from

we know that at a point in an electromagnetic field at which is nonzero,
there exists a magnetic field with nonzero circulation per unit area in the plane normal
to the vector .

We shall now derive a useful theorem in vector calculus, the Stokes’ theorem.
This relates the closed line integral of a vector field to the surface integral of the curl
of that vector field. To derive this theorem, let us consider an arbitrary surface S in a
magnetic field region and divide this surface into a number of infinitesimal surfaces

bounded by the contours respectively. Then, apply-
ing (3.32) to each one of these infinitesimal surfaces and adding up, we get

(3.37)

where are unit vectors normal to the surfaces chosen in accordance with the
right-hand screw rule. In the limit that the number of infinitesimal surfaces tends to
infinity, the left side of (3.37) approaches to the surface integral of over the sur-
face S.The right side of (3.37) is simply the closed line integral of H around the contour
C since the contributions to the line integrals from the portions of the contours interior
to C cancel, as shown in Figure 3.8. Thus, we get

(3.38)

Equation (3.38) is Stokes’ theorem. Although we have derived it by considering the H
field, it is general and is applicable for any vector field.

LS
1¥ : H2 # dS = CC

H # dl

¥ : H

¢Sjanj

a
j
1¥ : H2j # ¢Sj anj = CC1

H # dl + CC2

H # dl + Á

C1, C2, C3, Á ,¢S1, ¢S2, ¢S3, Á ,

J + 0D>0t

J + 0D>0t

¥ : H = J + 0D
0t

0B>0t

0B>0t

¥ : E = -  
0B
0t

C

FIGURE 3.8

For deriving Stokes’ theorem.
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3.3 Curl and Stokes’ Theorem 87

Example 3.5

Let us verify Stokes’ theorem by considering

and the closed path C shown in Figure 3.9.

A = yax - xay 

a

y

C

x2 + y2 = 1

O

b

c
x

FIGURE 3.9

A closed path for verifying Stokes’ theorem.

We first determine by evaluating the line integrals along the three segments of
the closed path. To do this, we first note that Then, from a to 

From b to 

From 

Thus,

Now, to evaluate by using Stokes’ theorem, we recall from Example 3.2 that

¥ : A = ¥ : (yax - xay) = -2az

AC A # dl

 = 0 + p
2

+ 0 = p
2

CC
A # dl = L

b

a
A # dl + L

c

b
A # dl + L

a

c
A # dl

L
a

c
A # dl = 0

c to a, y = 0, dy = 0, A # dl = 0

 L
c

 b 
 A # dl = L

1

 0
 

dx

 21 - x2  
= csin- 1 x d

0

1

= p
 2

  

 A # dl = 21 - x2  dx + x2 dx

 21 - x2  
= dx

 21 - x2  
 

2x dx + 2y dy = 0,    dy = - x dx
 y

= - x

 21 - x2  
 dx

c, x2 + y2 = 1, y = 21 - x2  

L
b

 a
 A # dl = 0

dx = 0, A # dl = 0
x = 0,b,A # dl = y dx - x dy.

AC A # dl
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88 Chapter 3 Maxwell’s Equations in Differential Form

For the plane surface S enclosed by C,

Thus,

thereby verifying Stokes’ theorem.

3.4 GAUSS’ LAW FOR THE ELECTRIC FIELD

Thus far we have derived Maxwell’s equations in differential form corresponding to
the two Maxwell’s equations in integral form involving the line integrals of E and H,
that is, Faraday’s law and Ampere’s circuital law, respectively. The remaining two
Maxwell’s equations in integral form, namely, Gauss’ law for the electric field and
Gauss’ law for the magnetic field, are concerned with the closed surface integrals of D
and B, respectively. We shall in this and the following sections derive the differential
forms of these two equations.

We recall from Section 2.5 that Gauss’ law for the electric field is given by

(3.39)

where V is the volume enclosed by the closed surface S. To derive the differential form
of this equation, let us consider a rectangular box of infinitesimal sides 
and defined by the six surfaces and

as shown in Figure 3.10, in a region of electric field

(3.40)D = Dx(x, y, z, t)ax + Dy(x, y, z, t)ay + Dz(x, y, z, t)az

z = z + ¢z,
y = y + ¢y, z = z,x = x, x = x + ¢x, y = y,

¢x, ¢y, and ¢z

CS
D # dS = LV

r dv

 = 2(area enclosed by C) = 2 * p
4

= p
2

 LS
(¥ : A) # dS = L

1

x = 0L
21-x2

y = 0
2 dx dy

(¥ : A) # dS = -2az # (-dx dy az) = 2 dx dy

dS = -dx dy az

x

z

y

!z

!y

!x

(x, y, z)

FIGURE 3.10

An infinitesimal rectangular box.
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3.4 Gauss’ Law for the Electric Field 89

and charge of density According to Gauss’ law for the electric field, the
displacement flux emanating from the box is equal to the charge enclosed by the box.
The displacement flux is given by the surface integral of D over the surface of the
box, which is comprised of six plane surfaces. Thus, evaluating the displacement flux
emanating out of the box over each of the six plane surfaces of the box, we have

(3.41a)

(3.41b)

(3.41c)

(3.41d)

(3.41e)

(3.41f)

Adding up (3.41a)–(3.41f), we obtain the total displacement flux emanating from the
box to be

(3.42)

Now the charge enclosed by the rectangular box is given by

(3.43)

where we have assumed to be uniform throughout the volume of the box and equal
to its value at (x, y, z), since the box is infinitesimal in volume.

Substituting (3.42) and (3.43) into (3.39) to apply Gauss’ law for the electric field
to the surface of the box under consideration, we get

or

(3.44)
[Dx]x + ¢x - [Dx]x

¢x
+

[Dy]y + ¢y - [Dy]y

¢y
+

[Dz]z +  ¢z - [Dz]z

¢z
= r

 + {[Dz]z + ¢z - [Dz]z} ¢x ¢y = r ¢x ¢y ¢z

{[Dx]x +  ¢x - [Dx]x} ¢y ¢z + {[Dy]y + ¢y - [Dy]y} ¢z ¢x

r

LV
r dv = r(x, y, z, t) # ¢x ¢y ¢z = r ¢x ¢y ¢z

 + {[Dz]z + ¢z - [Dz]z} ¢x ¢y

 + {[Dy]y + ¢y - [Dy]y} ¢z ¢x

 CS
D # dS =  {[Dx]x + ¢x - [Dx]x} ¢y ¢z

LD # dS = [Dz]z + ¢z ¢x ¢y  for the surface z = z + ¢z

LD # dS = -[Dz]z ¢x ¢y  for the surface z = z

LD # dS = [Dy]y + ¢y ¢z ¢x       for the surface y = y + ¢y

LD # dS = -[Dy]y ¢z ¢x  for the surface y = y

LD # dS = [Dx]x + ¢x ¢y ¢z  for the surface x = x + ¢x

LD # dS = -[Dx]x ¢y ¢z  for the surface x = x

r(x, y, z, t).
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90 Chapter 3 Maxwell’s Equations in Differential Form

If we now let the box shrink to the point (x, y, z) by letting tend to zero,
we obtain

or

(3.45)

Equation (3.45) tells us that the net longitudinal differential of the components of D,
that is, the algebraic sum of the derivatives of the components of D along their respec-
tive directions is equal to the charge density at that point. Conversely, a charge density
at a point results in an electric field, having components of D such that their net longi-
tudinal differential is nonzero. An example in which the net longitudinal differential
is zero although some of the individual derivatives are nonzero is shown in Fig-
ure 3.11(a). Figure 3.11(b) shows an example in which the net longitudinal differential
is nonzero. Equation (3.45) can be written in vector notation as

(3.46)

The left side of (3.46) is known as the divergence of D, denoted as (del dot D).
Thus, we have

(3.47)

Equation (3.47) is Maxwell’s equation in differential form corresponding to Gauss’ law
for the electric field. We shall discuss divergence further in Section 3.6.

¥ # D = r

¥ # D

aax 
0

0x
+ ay 

0
0y

+ az 
0
0z
b # 1Dx ax + Dy ay + Dz az2 = r

0Dx

0x
+

0Dy

0y
+

0Dz

0z
= r

 + Lim
¢z:0

 

[Dz]z + ¢z - [Dz]z

¢z
= Lim

¢x : 0
¢y : 0
¢z : 0

r

 Lim
¢x:0

 
[Dx]x + ¢x - [Dx]x

¢x
+ Lim

¢y:0
 

[Dy]y + ¢y - [Dy]y

¢y

¢x, ¢y, and ¢z

x

Dy

Dy

Dz

Dz

DxDx

z

y

(a)

Dy

Dy

Dz

Dz

DxDx

(b)

FIGURE 3.11

For illustrating (a) zero, and (b) nonzero net longitudinal differential of the
components of D.
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3.4 Gauss’ Law for the Electric Field 91

Example 3.6

Given find .
From the expansion for the divergence of a vector, we have

Example 3.7

Let us consider the charge distribution given by

as shown in Figure 3.12(a), where is a constant, and find the electric field everywhere.
Since the charge density is independent of y and z, the field is also independent of y and z,

thereby giving us and reducing Gauss’ law for the electric field to

0Dx

0x
= r

0Dy>0y = 0Dz>0z = 0

r0

r = e -r0 for -a 6 x 6 0
  r0 for 0 6 x 6 a

 = 3 + 1 - 1 = 3

 = 0
0x

 (3x) + 0
0y

 (y - 3) + 0
0z

 (2 - z)

¥ # A = aax 
0

0x
+ ay 

0
0y

+ az 
0

0z
b # [3xax + (y - 3)ay + (2 - z)az]

¥ # AA = 3xax + (y - 3)ay + (2 - z)az,

r
r0

$r0

x
$a

0 a

(b)

$r0a

x
$a

0
a

(c)

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

$r0 r0

x # $a x # 0

(a)

x # a
x

FIGURE 3.12

The determination of electric field due to a charge distribution.
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92 Chapter 3 Maxwell’s Equations in Differential Form

Integrating both sides with respect to x, we obtain

where C is the constant of integration.
The variation of with x is shown in Figure 3.12(b). Integrating with respect to x, that is,

finding the area under the curve of Figure 3.12(b) as a function of x, we obtain the result shown
in Figure 3.12(c) for . The constant of integration C is zero since the symmetry of equal
and opposite fields on the two sides of the charge distribution, considered as a superposition of a
series of thin slabs of charge, is already satisfied by the plot of Figure 3.12(c). Thus, the displace-
ment flux density due to the charge distribution is given by

The electric field intensity, E, is equal to .

3.5 GAUSS’ LAW FOR THE MAGNETIC FIELD

In the previous section we derived the differential form of Gauss’ law for the electric
field from its integral form. In this section we shall derive the differential form of
Gauss’ law for the magnetic field from its integral form.We recall from Section 2.6 that
Gauss’ law for the magnetic field in integral form is given by 

(3.48)

where S is any closed surface. This equation states that the magnetic flux emanating
from a closed surface is zero. Thus, considering an infinitesimal rectangular box as
shown in Figure 3.10 in a region of magnetic field

(3.49)

and evaluating the magnetic flux emanating out of the box in a manner similar to that
of the evaluation of the displacement flux in the previous section, and substituting in
(3.48), we obtain

(3.50)

Dividing (3.50) on both sides by and letting and tend to zero,
thereby shrinking the box to the point (x, y, z), we obtain

Lim
¢x:0

[Bx]x+¢x - [Bx]x

¢x
+ Lim

¢y:0

[By]y+¢y - [By]y

¢y
+ Lim

¢z:0

[Bz]z+¢z - [Bz]z

¢z
= 0

¢z¢x, ¢y,¢x ¢y ¢z

 + {[Bz]z+¢z - [Bz]z} ¢x ¢y = 0
 {[Bx]x + ¢x - [Bx]x}¢y ¢z + {[By]y + ¢y - [By]y} ¢z ¢x

B = Bx(x, y, z, t)ax + By(x, y, z, t)ay + Bz(x, y, z, t)az

CS
B # dS = 0

D>P0

D = d 0 for x 6 -a
-r0(x + a)ax for -a 6 x 6 0
r0(x - a)ax for 0 6 x 6 a
0 for x 7 a

1x
- q  r dx

rr

Dx = L
x

- q
r dx + C
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3.6 Divergence and the Divergence Theorem 93

or

(3.51)

Equation (3.51) tells us that the net longitudinal differential of the components of B is
zero. In vector form it is given by

(3.52)

Equation (3.52) is Maxwell’s equation in differential form corresponding to Gauss’ law
for the magnetic field. We shall discuss divergence further in the following section.

Example 3.8

Determine if the vector can represent a magnetic field B.
From (3.52), we note that a given vector can be realized as a magnetic field B if its diver-

gence is zero. For 

Hence, the given vector can represent a magnetic field B.

3.6 DIVERGENCE AND THE DIVERGENCE THEOREM

In Sections 3.4 and 3.5 we derived the differential forms of Gauss’ laws for the electric
and magnetic fields from their integral forms. These differential forms involve a new
quantity, namely, the divergence of a vector. The divergence of a vector is a scalar as
compared to the vector nature of the curl of a vector. In this section we shall introduce
the basic definition of divergence and then present a physical interpretation for the
divergence. In order to do this, let us consider Gauss’ law for the electric field in differ-
ential form, that is,

(3.53)

We wish to express at a point in the charge region in terms of D at that point. If
we consider an infinitesimal volume at the point and multiply both sides of (3.53)
by we get

(3.54)

But is simply the charge contained in the volume and according to Gauss’ law
for the electric field in integral form,

(3.55)CS
D # dS = r ¢v

¢v,r ¢v

1¥ # D2 ¢v = r ¢v

¢v,
¢v

¥ # D

¥ # D = r

¥ # A = 0
0x

(y) + 0
0y

(-x) + 0
0z

(0) = 0

A = yax - xay,

A = yax - xay

§ # B = 0

0Bx

0x
+

0By

0y
+

0Bz

0z
= 0
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94 Chapter 3 Maxwell’s Equations in Differential Form

where S is the closed surface bounding Comparing (3.54) and (3.55), we have

(3.56)

Dividing both sides of (3.56) by we obtain

(3.57)

Equation (3.57) is only approximate since (3.56) is exact only in the limit that tends
to zero. Thus,

(3.58)

Equation (3.58) is the expression for at a point in terms of D at that point.Although
we have derived this for the D vector, it is a general result and, in fact, is often the starting
point for the introduction of divergence.

Equation (3.58) tells us that in order to find the divergence of a vector at a point
in that vector field, we first consider an infinitesimal volume at that point and compute
the surface integral of the vector over the surface bounding that volume, that is, the
outward flux of the vector field emanating from that volume. We then divide the flux
by the volume to obtain the flux per unit volume. Since we need this flux per unit
volume in the limit that the volume tends to zero, we do this by gradually shrinking the
volume.The limiting value to which the flux per unit volume approaches is the value of
the divergence of the vector field at the point to which the volume is shrunk.

We are now ready to discuss the physical interpretation of the divergence.To sim-
plify this task, we shall consider the differential form of the law of conservation of
charge given in integral form by (2.39), or

(3.59)

where S is the surface bounding the volume V. Applying (3.59) to an infinitesimal vol-
ume we have

or

(3.60)

Now taking the limit on both sides of (3.60) as tends to zero, we obtain

(3.61)Lim
¢v:0

AJ# dS
¢v

= Lim
¢v:0

-
0r
0t

¢v

AS J# dS

¢v
= -

0r
0t

CS
J# dS = - d

dt
(r ¢v) = -

0r
0t

¢v

¢v,

CS
J# dS = - d

dtLV
r dv

¥ # D

¥ # D = Lim
¢v:0

 
AS D # dS

¢v

¢v

¥ # D = AS D # dS

¢v

¢v,

1¥ # D2 ¢v = CS
D # dS

¢v.
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or

(3.62)

or

(3.63)

Equation (3.63), which is the differential form of the law of conservation of charge, is
familiarly known as the continuity equation. It tells us that the divergence of the cur-
rent density vector at a point is equal to the time rate of decrease of the charge density
at that point.

Let us now investigate three different cases: (a) positive value, (b) negative value,
and (c) zero value of the time rate of decrease of the charge density at a point, that is,
the divergence of the current density vector at that point. We shall do this with the aid
of a simple device that we shall call the divergence meter. The divergence meter can be
imagined to be a tiny, elastic balloon enclosing the point and that expands when hit by
charges streaming outward from the point and contracts when acted upon by charges
streaming inward toward the point. For case (a), that is, when the time rate of decrease
of the charge density at the point is positive, there is a net amount of charge streaming
out of the point in a given time, resulting in a net current flow outward from the point
that will make the imaginary balloon expand. For case (b), that is, when the time rate of
decrease of the charge density at the point is negative or the time rate of increase of
the charge density is positive, there is a net amount of charge streaming toward the
point in a given time, resulting in a net current flow toward the point and the imaginary
balloon will contract. For case (c), that is, when the time rate of decrease of the charge
density at the point is zero, the balloon will remain unaffected since the charge is
streaming out of the point at exactly the same rate as it is streaming into the point.
These three cases are illustrated in Figures 3.13(a), (b), and (c), respectively.

¥ # J +  
0r
0t

= 0

¥ # J = -  
0r
0t

(b)(a) (c)

FIGURE 3.13

For explaining the physical interpretation of divergence using the
divergence meter.

Generalizing the foregoing discussion to the physical interpretation of the diver-
gence of any vector field at a point, we can imagine the vector field to be a velocity
field of streaming charges acting upon the divergence meter and obtain in most cases a
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96 Chapter 3 Maxwell’s Equations in Differential Form

qualitative picture of the divergence of the vector field. If the divergence meter ex-
pands, the divergence is positive and a source of the flux of the vector field exists at
that point. If the divergence meter contracts, the divergence is negative and a sink of
the flux of the vector field exists at that point. If the divergence meter remains unaf-
fected, the divergence is zero, and neither a source nor a sink of the flux of the vector
field exists at that point. Alternatively, there can exist at the point pairs of sources and
sinks of equal strengths.

We shall now derive a useful theorem in vector calculus, the divergence theorem.
This relates the closed surface integral of the vector field to the volume integral of the
divergence of that vector field. To derive this theorem, let us consider an arbitrary vol-
ume V in an electric field region and divide this volume into a number of infinitesimal
volumes bounded by the surfaces respectively. Then,
applying (3.56) to each one of these infinitesimal volumes and adding up, we get

(3.64)

In the limit that the number of the infinitesimal volumes tends to infinity, the left side
of (3.64) approaches to the volume integral of over the volume V. The right side of
(3.64) is simply the closed surface integral of D over S, since the contribution to the
surface integrals from the portions of the surfaces interior to S cancel, as shown in
Figure 3.14. Thus, we get

(3.65)

Equation (3.65) is the divergence theorem.Although we have derived it by considering
the D field, it is general and is applicable for any vector field.

LV
1¥ # D2 dv = CS

D # dS

¥ # D

a
j
1¥ # D2j ¢vj = CS1

D # dS + CS2

D # dS + Á

S1, S2, S3, Á ,¢v1, ¢v2, ¢v3, Á ,

S

FIGURE 3.14

For deriving the divergence theorem.
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Example 3.9

Let us verify the divergence theorem by considering

and the closed surface of the box bounded by the planes and

We first determine by evaluating the surface integrals over the six surfaces of the
rectangular box. Thus for the surface 

For the surface 

For the surface 

For the surface 

For the surface 

For the surface 

LA # dS = L
2

y = 0L
1

x = 0
-dx dy = -2

A # dS = -dx dy

A = 3xax + (y - 3)ay - az, dS = dx dy az

z = 3,

LA # dS = L
2

y = 0L
1

x = 0
-2 dx dy = -4

A # dS = -2 dx dy

A = 3xax + (y - 3)ay + 2az, dS = -dx dy az

z = 0,

LA # dS = L
1

x = 0L
3

z = 0
-dz dx = -3

A # dS = -dz dx

A = 3xax - ay + (2 - z)az, dS = dz dx ay

y = 2,

LA # dS = L
1

x =  0L
3

z =  0
 3 dz dx = 9

A # dS = 3 dz dx

A = 3xax - 3ay + (2 - z)az, dS = -dz dx ay

y = 0,

LA # dS = L
3

z =  0L
2

y =  0
 3 dy dz = 18

A # dS = 3 dy dz

A = 3ax + (y - 3)ay + (2 - z)az, dS = dy dz ax

x = 1,

 LA # dS = 0

 A # dS = 0

A = (y - 3)ay + (2 - z)az, dS = -dy dz ax

x = 0,
AS A # dS

z = 3.
z = 0,y = 2,y = 0,x = 1,x = 0,

A = 3xax + (y - 3)ay + (2 - z)az
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98 Chapter 3 Maxwell’s Equations in Differential Form

Thus,

Now, to evaluate by using the divergence theorem, we recall from Example 3.6
that

For the volume enclosed by the rectangular box,

thereby verifying the divergence theorem.

SUMMARY

We have in this chapter derived the differential forms of Maxwell’s equations from
their integral forms, which we introduced in the previous chapter. For the general case
of electric and magnetic fields having all three components (x, y, z), each of them
dependent on all coordinates (x, y, z), and time (t), Maxwell’s equations in differential
form are given as follows in words and in mathematical form.

Faraday’s law. The curl of the electric field intensity is equal to the negative of the
time derivative of the magnetic flux density, that is,

(3.66)

Ampere’s circuital law. The curl of the magnetic field intensity is equal to the sum of
the current density due to flow of charges and the displacement current density, which
is the time derivative of the displacement flux density, that is,

(3.67)

Gauss’ law for the electric field. The divergence of the displacement flux density is
equal to the charge density, that is,

(3.68)

Gauss’ law for the magnetic field. The divergence of the magnetic flux density is
equal to zero, that is,

(3.69)¥ # B = 0

¥ # D = r

¥ : H = J + 0D
0t

¥ : E = - 0B
0t

L(¥ # A) dv = L
3

z = 0L
2

y = 0L
1

x = 0
 3 dx dy dz = 18

¥ # A = ¥ # [3xax + (y - 3)ay + (2 - z)az] = 3

AS A # dS

CS
A # dS = 0 + 18 + 9 - 3 - 4 - 2 = 18
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Auxiliary to (3.66)–(3.69), the continuity equation is given by

(3.70)

This equation, which is the differential form of the law of conservation of charge, states
that the sum of the divergence of the current density due to flow of charges and the time
derivative of the charge density is equal to zero. Also, we recall that

(3.71)

(3.72)

which relate D and H to E and B, respectively, for free space.
We have learned that the basic definitions of curl and divergence, which have en-

abled us to discuss their physical interpretations with the aid of the curl and divergence
meters, are

Thus, the curl of a vector field at a point is a vector whose magnitude is the circulation
of that vector field per unit area with the area oriented so as to maximize this quantity
and in the limit that the area shrinks to the point. The direction of the vector is normal
to the area in the aforementioned limit and in the right-hand sense. The divergence of
a vector field at a point is a scalar quantity equal to the net outward flux of that vector
field per unit volume in the limit that the volume shrinks to the point. In Cartesian
coordinates the expansions for curl and divergence are

Thus, Maxwell’s equations in differential form relate the spatial variations of the field
vectors at a point to their temporal variations and to the charge and current densities
at that point.

 ¥ # A =
0Ax

0x
+

0Ay

0y
+

0Az

0z

 = a 0Az

0y
-

0Ay

0z
bax + a 0Ax

0z
-

0Az

0x
bay + a 0Ay

0x
-

0Ax

0y
baz

 ¥ : A = 4 ax ay az

0
0x

0
0y

0
0z

Ax Ay Az

4

 ¥ # A = Lim
¢v:0

 
AS A # dS

¢v

 ¥ : A = Lim
¢S:0

cAC A # dl

¢S
d
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 an

 H = B
m0

 D = P0 E

¥ # J +  
0r
0t

= 0
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100 Chapter 3 Maxwell’s Equations in Differential Form

We have also learned two theorems associated with curl and divergence. These
are the Stokes’ theorem and the divergence theorem given, respectively, by

and

Stokes’ theorem enables us to replace the line integral of a vector around a closed path
by the surface integral of the curl of that vector over any surface bounded by that
closed path, and vice versa. The divergence theorem enables us to replace the surface
integral of a vector over a closed surface by the volume integral of the divergence of
that vector over the volume bounded by the closed surface, and vice versa.

In Chapter 2 we learned that all Maxwell’s equations in integral form are not
independent. Since Maxwell’s equations in differential form are derived from their
integral forms, it follows that the same is true for these equations. In fact, by noting that
(see Problem 3.32),

(3.73)

and applying it to (3.66), we obtain

(3.74)

Similarly, applying (3.73) to (3.67), we obtain

Using (3.70), we then have

(3.75)¥ # D - r = constant with time

 
0
0t

 (¥ # D - r) = 0

-
0r
0t

+ 0
0t

 (¥ # D) = 0

¥ # J + 0
0t

(¥ # D) = 0

¥ # aJ + 0D
0t
b = ¥ # ¥ : H = 0

¥ # B = constant with time

0
0t

 (¥ # B) = 0

¥ # a- 0B
0t
b = ¥ # ¥ : E = 0

¥ # ¥ : A K 0

 CS
A # dS = LV

1¥ # A2 dv

 CC
A # dl = LS

1¥ : A2 # dS
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Since for any given point in space, the constants on the right sides of (3.74) and (3.75)
can be made equal to zero at some instant of time, it follows that they are zero forever,
giving us (3.69) and (3.68), respectively. Thus (3.69) follows from (3.66), whereas (3.68)
follows from (3.67) with the aid of (3.70).

Finally, for the simple, special case in which

the two Maxwell’s curl equations reduce to

(3.76)

(3.77)

In fact, we derived these equations first and then the general equations (3.66) and (3.67).
We will be using (3.76) and (3.77) in the following chapters to study the phenomenon of
electromagnetic wave propagation resulting from the interdependence between the
space-variations and time-variations of the electric and magnetic fields.

In fact, Maxwell’s equations in differential form lend themselves well for a quali-
tative discussion of the interdependence of time-varying electric and magnetic fields
giving rise to the phenomenon of electromagnetic wave propagation. Recognizing that
the operations of curl and divergence involve partial derivatives with respect to space
coordinates, we observe that time-varying electric and magnetic fields coexist in space,
with the spatial variation of the electric field governed by the temporal variation of the
magnetic field in accordance with (3.66), and the spatial variation of the magnetic field
governed by the temporal variation of the electric field in addition to the current den-
sity in accordance with (3.67). Thus, if in (3.67) we begin with a time-varying current
source represented by J, or a time-varying electric field represented by , or a
combination of the two, then one can visualize that a magnetic field is generated in
accordance with (3.67), which in turn generates an electric field in accordance with
(3.66), which in turn contributes to the generation of the magnetic field in accordance
with (3.67), and so on, as depicted in Figure 3.15. Note that Jand are coupled, since
they must satisfy (3.70). Also, the magnetic field automatically satisfies (3.69), since
(3.69) is not independent of (3.66).

r

0D>0t

 
0Hy

0z
= -Jx -

0Dx

0t

 
0Ex

0z
= -  

0By

0t

 H = Hy(z, t)ay

 E = Ex(z, t)ax

J
Eq. (3.67)"

H, B

D, Er

"

Eq. (3.66)

Eq. (3.68)

Eq. (3.70)

FIGURE 3.15

Generation of interdependent
electric and magnetic fields,
beginning with sources Jand .r
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102 Chapter 3 Maxwell’s Equations in Differential Form

The process depicted is exactly the phenomenon of electromagnetic waves prop-
agating with a velocity (and other characteristics) determined by the parameters of
the medium. In free space, the waves propagate unattenuated with the velocity

, familiarly represented by the symbol c, as we shall learn in Chapter 4. If
either the term in (3.66) or the term in (1.28) is not present, then wave
propagation would not occur. As already stated, it was through the addition of the
term in (3.67) that Maxwell predicted electromagnetic wave propagation
before it was confirmed experimentally.

0D>0t

0D>0t0B>0t
1>1m0 e0

REVIEW QUESTIONS

3.1. State Faraday’s law in differential form for the simple case of How is it
derived from Faraday’s law in integral form?

3.2. Discuss the physical interpretation of Faraday’s law in differential form for the simple
case of .

3.3. State Faraday’s law in differential form for the general case of an arbitrary electric field.
How is it derived from its integral form?

3.4. What is meant by the net right-lateral differential of the x- and y-components of a vec-
tor normal to the z-direction?

3.5. Give an example in which the net right-lateral differential of and normal to the 
x-direction is zero, although the individual derivatives are nonzero.

3.6. If at a point in space varies with time but and do not, what can we say about the
components of E at that point?

3.7. What is the determinant expansion for the curl of a vector?
3.8. What is the significance of the curl of a vector being equal to zero?
3.9. State Ampere’s circuital law in differential form for the simple case of 

How is it derived from Ampere’s circuital law in integral form?
3.10. Discuss the physical interpretation of Ampere’s circuital law in differential form for the

simple case of 
3.11. State Ampere’s circuital law in differential form for the general case of an arbitrary

magnetic field. How is it derived from its integral form?
3.12. What is the significance of a nonzero net right-lateral differential of and normal

to the z-direction at a point in space?
3.13. If a pair of E and B at a point satisfies Faraday’s law in differential form, does it neces-

sarily follow that it also satisfies Ampere’s circuital law in differential form, and vice
versa?

3.14. State and briefly discuss the basic definition of the curl of a vector.
3.15. What is a curl meter? How does it help visualize the behavior of the curl of a vector field?
3.16. Provide two examples of physical phenomena in which the curl of a vector field is

nonzero.
3.17. State Stokes’ theorem and discuss its application.
3.18. State Gauss’ law for the electric field in differential form. How is it derived from its

integral form?

HyHx

H = Hy1z, t2ay.

H = Hy1z, t2ay.

BzBxBy

EzEy

E = Ex1z, t2ax

E = Ex1z, t2ax.
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PROBLEMS

3.1. Given and it is known that E has only an x-component, find E by
using Faraday’s law in differential form. Then verify your result by applying Faraday’s
law in integral form to the rectangular closed path, in the xz-plane, defined by

and .
3.2. Assuming and considering a rectangular closed path in the yz-plane, carry

out the derivation of Faraday’s law in differential form similar to that in the text.
3.3. Find the curls of the following vector fields:

(a) ; (b) .
3.4. For , (a) find the net right-lateral differential of and normal to

the z-direction at the point (2, 1, 0), and (b) find the locus of the points at which the net
right-lateral differential of and normal to the z-direction is zero.

3.5. Given V/m, find B by using Faraday’s law in differen-
tial form.

3.6. Show that the curl of , that is, , where f is any scalar function

of x, y, and z, is zero. Then find the scalar function for which .
3.7. Given and it is known that Jis zero and B has only a y-component,

find B by using Ampere’s circuital law in differential form. Then find E from B by using
Faraday’s law in differential form. Comment on your result.

E = E0z
2 sin vt ax

¥f = yax + xay

¥faax
0

0x
+ ay

0
0y

+ az
0

0z
bf

E = 10 cos (6p * 108 t - 2pz) ax

AyAx

AyAxA = xy2ax + x2ay

ye- xax - e- xayzxax + xyay + yzaz

E = Ey(z, t)ay

z = bx = 0, x = a, z = 0,

B = B0 z cos vt ay

3.19. What is meant by the net longitudinal differential of the components of a vector
field?

3.20. Give an example in which the net longitudinal differential of the components of a vec-
tor is zero, although the individual derivatives are nonzero.

3.21. What is the expansion for the divergence of a vector?
3.22. State Gauss’ law for the magnetic field in differential form. How is it derived from its

integral form?
3.23. How can you determine if a given vector can represent a magnetic field?
3.24. State and briefly discuss the basic definition of the divergence of a vector.
3.25. What is a divergence meter? How does it help visualize the behavior of the divergence

of a vector field?
3.26. Provide two examples of physical phenomena in which the divergence of a vector field

is nonzero.
3.27. State the continuity equation and discuss its physical interpretation.
3.28. Distinguish between the physical interpretations of the divergence and the curl of a vec-

tor field by means of examples.
3.29. State the divergence theorem and discuss its application.
3.30. What is the divergence of the curl of a vector?
3.31. Summarize Maxwell’s equations in differential form.
3.32. Are all Maxwell’s equations in differential form independent? If not, which of them are

independent?
3.33. Provide a qualitative explanation of the phenomenon of electromagnetic wave propa-

gation based on Maxwell’s equations in differential form.
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104 Chapter 3 Maxwell’s Equations in Differential Form

3.8. Assuming and considering a rectangular closed path in the xz-plane,
carry out the derivation of Ampere’s circuital law in differential form similar to that in
the text.

3.9. Given Wb/m2 and it is known that , find  
E by using Ampere’s circuital law in differential form. Then find B from E by using
Faraday’s law in differential form. Comment on your result.

3.10. Assuming , determine which of the following pairs of and simultaneously
satisfy the two Maxwell’s equations in differential form given by (3.7) and (3.23):

(a)

(b)

(c)

3.11. A current distribution is given by

where is a constant. Using Ampere’s circuital law in differential form and symmetry
considerations, find the magnetic field everywhere.

3.12. A current distribution is given by

where is a constant. Using Ampere’s circuital law in differential form and symmetry
considerations, find the magnetic field everywhere.

3.13. Assume that the velocity of water in the stream of Figure 3.7(a) decreases linearly from
a maximum at the top surface to zero at the bottom surface, with the velocity at the top
surface given by Figure 3.7(b). Discuss the curl of the velocity vector field with the aid
of the curl meter.

3.14. For the vector field , discuss the behavior of the curl meter and
verify your reasoning by evaluating the curl of r.

3.15. Discuss the curl of the vector field with the aid of the curl meter.
3.16. Verify Stokes’ theorem for the vector field and the closed path

comprising the straight lines from (1, 0, 0) to (0, 1, 0), from (0, 1, 0) to (0, 0, 1), and from
(0, 0, 1) to (1, 0, 0).

3.17. Verify Stokes’ theorem for the vector field and any closed path of
your choice.

3.18. For the vector , use Stokes’ theorem to show that is
zero for any closed path . Then evaluate from the origin to the point (1, 1, 2)
along the curve 

3.19. Find the divergences of the following vector fields:
(a) ; (b) .

3.20. For (a) find the net longitudinal differential of the compo-
nents of A at the point (1, 1, 1), and (b) find the locus of the points at which the net lon-
gitudinal differential of the components of A is zero.

A = xyax + yzay + zxaz,
2xyax - y2ay3xy2ax + 3x2yay + z3az

x = 12 sin t, y = 12 sin t, z = (8>p)t.
1A # dlC

AC A # dlA = yzax + zxay + xyaz

A = e- yax - xe- yay

A = yax + zay + xaz

yax - xay

r = xax + yay + zaz

J0

J = J0a1 -
| z |
a
bax  for -a 6 z 6 a

J0

J = e -J0 ax

J0 ax
 
  for -a 6 z 6 0
  for 0 6 z 6 a

Ex = z2 sin vt Hy = -
vP0

3
 z3 cos vt

Ex = (t - z1m0P0 ) Hy = A P0

m0
 (t - z1m0P0 )

Ex = 10 cos 2pz cos 6p * 10 
8 t Hy = 1

12p
 sin 2pz sin 6p * 10 

8 t

HyExJ = 0

J = 0B = 10- 7

3
 cos (6p * 10 

8 t - 2pz) ay

H = Hx(z, t) ax
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3.21. For each of the following vectors, find the curl and the divergence and discuss your
results: (a) ; (b) ; (c) ; (d) .

3.22. A charge distribution is given by

where is a constant. Using Gauss’ law for the electric field in differential form and
symmetry considerations, find the electric field everywhere.

3.23. A charge distribution is given by

where is a constant. Using Gauss’ law for the electric field in differential form and
symmetry considerations, find the electric field everywhere.

3.24. Given , find the charge density at (a) the point (2, 1, 0) and (b) the
point (3, 2, 0).

3.25. Determine which of the following vectors can represent a magnetic flux density vector B:
(a) ; (b) ; (c) .

3.26. Given , find the time rate of decrease of the charge density at (a) the point 
(0, 0, 0) and (b) the point (1, 0, 0).

3.27. For the vector field , discuss the behavior of the divergence meter,
and verify your reasoning by evaluating the divergence of r.

3.28. Discuss the divergence of the vector field with the aid of the divergence
meter.

3.29. Verify the divergence theorem for the vector field and the
closed surface bounding the volume within the hemisphere of radius unity above the
xy-plane and centered at the origin.

3.30. Verify the divergence theorem for the vector field and the
closed surface of the volume bounded by the planes 
and .

3.31. For the vector , use the divergence theorem to show that 
is zero for any closed surface S. Then evaluate over the surface

.
3.32. Show that for any A in two ways: (a) by evaluating in Cartesian

coordinates, and (b) by using Stokes’ and divergence theorems.
¥ # ¥ : A¥ # ¥ : A = 0

x + y + z = 1, x 7 0, y 7 0, z 7 0
1A # dS

AS A # dSA = y2ay - 2yzaz

z = 1
x = 0, x = 1, y = 0, y = 1, z = 0,
A = xyax + yzay + zxaz

A = xax + yay + zaz

yax - xay

r = xax + yay + zaz

J = e- x2
ax

z3 cos vt ayxax + yayyax - xay

D = x2yax - y3ay

r0

r = r0 
x
a

  for -a 6 x 6 a

r0

r = r0a1 -
| x |
a
b   for -a 6 x 6 a

yax + xayxaxyaxxyax
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CHAPTER

4
Wave Propagation
in Free Space

In Chapters 2 and 3, we learned Maxwell’s equations in integral form and in differential
form. We now have the knowledge of the fundamental laws of electromagnetics that
enable us to embark upon the study of their applications. Many of these applications
are based on electromagnetic wave phenomena, and hence it is necessary to gain an
understanding of the basic principles of wave propagation, which is our goal in this
chapter. In particular, we shall consider wave propagation in free space. We shall then
in the next chapter consider the interaction of the wave fields with materials to extend
the application of Maxwell’s equations to material media and discuss wave propagation
in material media.

We shall employ an approach in this chapter that will enable us not only to learn
how the coupling between space-variations and time-variations of the electric and
magnetic fields, as indicated by Maxwell’s equations, results in wave motion, but also to
illustrate the basic principle of radiation of waves from an antenna, which will be treated
in detail in Chapter 9. In this process, we will also learn several techniques of analysis
pertinent to field problems. We shall augment our discussion of radiation and propagation
of waves by considering such examples as the principle of an antenna array and polar-
ization. Finally, we shall discuss power flow and energy storage associated with the
wave motion and introduce the Poynting vector.

4.1 THE INFINITE PLANE CURRENT SHEET

In Chapter 3, we learned that the space-variations of the electric and magnetic field
components are related to the time-variations of the magnetic and electric field com-
ponents, respectively, through Maxwell’s equations. This interdependence gives rise to
the phenomenon of electromagnetic wave propagation. In the general case, electro-
magnetic wave propagation involves electric and magnetic fields having more than one
component, each dependent on all three coordinates, in addition to time. However, a
simple and very useful type of wave that serves as a building block in the study of elec-
tromagnetic waves consists of electric and magnetic fields that are perpendicular to
each other and to the direction of propagation and are uniform in planes perpendicular
to the direction of propagation. These waves are known as uniform plane waves. By
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orienting the coordinate axes such that the electric field is in the -direction, the
magnetic field is in the -direction, and the direction of propagation is in the -direction,
as shown in Figure 4.1, we have

(4.1)
(4.2)

Uniform plane waves do not exist in practice because they cannot be produced
by finite-sized antennas.At large distances from physical antennas and ground, however,
the waves can be approximated as uniform plane waves. Furthermore, the principles
of guiding of electromagnetic waves along transmission lines and waveguides and
the principles of many other wave phenomena can be studied basically in terms of
uniform plane waves. Hence, it is very important that we understand the principles
of uniform plane wave propagation.

 H = Hy(z, t)ay

 E = Ex(z, t)ax

zy
x

4.1 The Infinite Plane Current Sheet 107

E

z

y

x

H

Direction of
Propagation

FIGURE 4.1

Directions of electric and magnetic fields and direction
of propagation for a simple case of uniform plane wave.

In order to illustrate the phenomenon of interaction of electric and magnetic
fields giving rise to uniform plane electromagnetic wave propagation, and the principle
of radiation of electromagnetic waves from an antenna, we shall consider a simple,
idealized, hypothetical source. This source consists of an infinite sheet lying in the

-plane, as shown in Figure 4.2. On this infinite plane sheet a uniformly distributed
current varying sinusoidally with time flows in the negative -direction. Since the cur-
rent is distributed on a surface, we talk of surface current density in order to express
the current distribution mathematically. The surface current density, denoted by the
symbol , is a vector quantity having the magnitude equal to the current per unit width
(A/m) crossing an infinitesimally long line, on the surface, oriented so as to maximize
the current. The direction of is then normal to the line and toward the side of the
current flow. In the present case, the surface current density is given by

(4.3)

where is a constant and is the radian frequency of the sinusoidal time-variation of
the current density.

Because of the uniformity of the surface current density on the infinite sheet, if
we consider any line of width w parallel to the -axis, as shown in Figure 4.2, they

vJS0

JS = -JS0 cos vt ax for z = 0 

JS

JS

x
xy
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108 Chapter 4 Wave Propagation in Free Space

current crossing that line is simply given by times the current density, that is,
. If the current density is nonuniform, we have to perform an integration

along the width of the line in order to find the current crossing the line. In view of the
sinusoidal time-variation of the current density, the current crossing the width w
actually alternates between negative - and positive -directions, that is, downward
and upward. The time history of the current flow for one period of the sinusoidal
variation is illustrated in Figure 4.3, with the lengths of the lines indicating the mag-
nitudes of the current.

xx

wJS0 cos vt
w

0 p 2p

wJS0 wJS0

vt vt

FIGURE 4.3

Time history of current flow across a line of width w parallel to the y-axis for
the current sheet of Figure 4.2.

4.2 MAGNETIC FIELD ADJACENT TO THE CURRENT SHEET

In the previous section, we introduced the infinite current sheet lying in the -plane
and upon which a surface current flows with density given by

(4.4)

Our goal is to find the electromagnetic field due to this time-varying current distribu-
tion. In order to do this, we have to solve Faraday’s and Ampere’s circuital laws simul-
taneously. Since we have here only an -component of the current density independentx

JS = -JS0 cos vt ax

xy

w

z

y

x

JS

FIGURE 4.2

Infinite plane sheet in the -plane carrying surface
current of uniform density.

xy
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4.2 Magnetic Field Adjacent to the Current Sheet 109

of x and y, the equations of interest are

(4.5)

(4.6)

The quantity on the right side of (4.6) represents volume current density, whereas we
now have a surface current density. Furthermore, in the free space on either side of the
current sheet the current density is zero and the differential equations reduce to

(4.7)

(4.8)

To obtain the solutions for and on either side of the current sheet, we therefore
have to solve these two differential equations simultaneously.

To obtain a start on the solution, however, we need to consider the surface cur-
rent distribution and find the magnetic field immediately adjacent to the current sheet.
This is done by making use of Ampere’s circuital law in integral form given by

(4.9)

and applying it to a rectangular closed path abcda, as shown in Figure 4.4, with the
sides and lying immediately adjacent to the current sheet, that is, touching the
current sheet, and on either side of it. This choice of the rectangular path is not arbi-
trary but is intentionally chosen to achieve the task of finding the required magnetic
field. First, we note from (4.6) that an -directed current density gives rise to ax

cdab

CC
 H # dl = LS

 J# dS + d
dt

 LS
 D # dS

HyEx

 
0Hy

0z
= -

0Dx

0t

 
0Ex

0z
= -

0By

0t

Jx

 
0Hy

0z
= - aJx +

0Dx

0t
b

 
0Ex

0z
= -

0By

0t

z

y

d

bc

a

x

JS

FIGURE 4.4

Rectangular path enclosing a portion of the current
on the infinite plane current sheet.

M04_RAO3333_1_SE_CHO4.QXD  4/9/08  1:18 PM  Page 109



110 Chapter 4 Wave Propagation in Free Space

magnetic field in the -direction. At the source of the current, this magnetic field must
also have a differential in the third direction, namely, the -direction. In fact, from sym-
metry considerations, we can say that on and must be equal in magnitude and
opposite in direction.

If we now consider the line integral of H around the rectangular path abcda, we
have

(4.10)

The second and the fourth integrals on the right side of (4.10) are, however, equal to
zero, since H is normal to the sides bc and da and furthermore and are infinitesi-
mally small. The first and third integrals on the right side of (4.10) are given by

Thus,

(4.11)

since .
We have just evaluated the left side of (4.9) for the particular problem under

consideration here. To complete the task of finding the magnetic field adjacent to the
current sheet, we now evaluate the right side of (4.9), which consists of two terms. The
second term is, however, zero, since the area enclosed by the rectangular path is zero in
view of the infinitesimally small thickness of the current sheet. The first term is not
zero, since there is a current flowing on the sheet. Thus, the first term is simply equal to
the current enclosed by the path abcda in the right-hand sense, that is, the current
crossing the width ab toward the negative -direction. This is equal to the surface cur-
rent density multiplied by the width , that is, . Thus, substituting for the
quantities on either side of (4.9), we have

or

(4.12)

It then follows that

(4.13)[Hy]cd = -
JS0

2
 cos vt

[Hy]ab =
JS0

2
 cos vt

2[Hy]ab(ab) = JS0 cos vt (ab)

JS0 cos vt (ab)ab
x

[Hy]cd = -[Hy]ab

Cabcda

 H # dl = [Hy]ab(ab) - [Hy]cd(cd) = 2[Hy]ab(ab)

 L
d

c

H # dl = -[Hy]cd(cd)

 L
b

a

H # dl = [Hy]ab(ab)

dabc

Labcda

 H # dl = L
b

a

H # dl + L
c

b
H # dl + L

d

c
H # dl + L

a

d
H # dl

cdabHy

z
y
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4.3 Successive Solution of Maxwell’s Equations 111

Thus, immediately adjacent to the current sheet the magnetic field intensity has a

magnitude and is directed in the positive -direction on the side and
in the negative -direction on the side . This is illustrated in Figure 4.5. It is cau-
tioned that this result is true only for points right next to the current sheet, since if we
consider points at some distance from the current sheet, the second term on the right
side of (4.9) will no longer be zero.

z 6 0y

z 7 0y
JS0

2
 cos vt

z

z ! 0 z " 0

y

HH

x

JS

FIGURE 4.5

Magnetic field adjacent to and on either side of the
infinite plane current sheet.

*This section may be omitted without loss of continuity.

The technique we have used here for finding the magnetic field adjacent to the
time-varying current sheet by using Ampere’s circuital law in integral form is a stan-
dard procedure for finding the static electric and magnetic fields due to static charge
and current distributions, possessing certain symmetries, by using Gauss’ law for the
electric field and Ampere’s circuital law in integral forms, respectively, as we have al-
ready demonstrated in Chapter 2. Since for the static field case the terms involving
time derivatives are zero, Ampere’s circuital law simplifies to

Hence, if the current distribution were not varying with time, then in order to compute
the magnetic field we can choose a rectangular path of any width bc and it would still
enclose the same current, namely, the current on the sheet. Thus, the magnetic field
would be independent of the distance away from the sheet on either side of it. There
are several problems in static fields that can be solved in this manner. We shall not dis-
cuss these here; instead, we shall include a few cases in the problems for the interested
reader and shall continue with the derivation of the electromagnetic field due to our
time-varying current sheet in the following section.

4.3 SUCCESSIVE SOLUTION OF MAXWELL’S EQUATIONS*

In the preceding section, we found the magnetic field adjacent to the infinite plane
sheet of current introduced in Section 4.1. Now, to find the solutions for the fields
everywhere on either side of the current sheet, let us first consider the region .z 7 0

CC

 H # dl = LS

 J# dS
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112 Chapter 4 Wave Propagation in Free Space

In this region, the fields simultaneously satisfy the two differential equations (4.7) and
(4.8) and with the constraint that the magnetic field at is given by (4.12). To find
the solutions for these differential equations, we have a choice of starting with the
solution for given by (4.12) and solving them successively and repeatedly in a step-
by-step manner until the solutions satisfy both differential equations or of combining
the two differential equations into one and then solving the single equation subject to
the constraint at . Although it is somewhat longer and tedious, we shall use the
first approach in this section in order to obtain a feeling for the mechanism of inter-
action between the electric and magnetic fields. We shall consider the second and more
conventional approach in the following section.

To simplify the task of the repetitive solution of the two differential equations
(4.7) and (4.8), we shall employ the phasor technique. Thus, by letting

(4.14)

(4.15)

where Re stands for real part of and and are the phasors corresponding to
the time functions and , respectively, and replacing the time functions in
(4.7) and (4.8) by the corresponding phasor functions and by , we obtain the dif-
ferential equations for the phasor functions as

(4.16)

(4.17)

We also note that since (4.12) can be written as

the solution for the phasor at is given by

(4.18)

We start with (4.18) and solve (4.16) and (4.17) successively and repeatedly, and after
obtaining the final solutions for and , we put them in (4.14) and (4.15), respec-
tively, to obtain the solutions for the real fields.

Thus, starting with (4.18) and substituting it in (4.16), we get

Integrating both sides of this equation with respect to z, we have

E
–

x = -jvm0
JS0z

2
+ C

–

0E
–

x

0z
= -jvm0

JS0

2

H
–

yE
–

x

[H–y]z = 0 =
JS0

2

z = 0H
–

y

[Hy]ab = ReaJS0

2
ejvtb

 
0H–y

0z
= -jvD

–
x = -jvP0E

–
x

 
0E

–
x

0z
= -jvB

–
y = -jvm0H

–
y

jv0>0t
Hy(z, t)Ex(z, t)

H
–

y(z)E
–

x(z)

 Hy(z, t) = Re [H–y(z)ejvt]

 Ex(z, t) = Re [E–x(z)ejvt]

z = 0

Hy

z = 0
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4.3 Successive Solution of Maxwell’s Equations 113

where is the constant of integration. This constant of integration must, however, be
equal to since the first term on the right side tends to zero as Thus,

(4.19)

Now, substituting (4.19) into (4.17), we obtain

(4.20)

We have thus obtained a second-order solution for , which, however, does not
satisfy (4.16) together with the solution for given by (4.19). Hence, we must continue
the step-by-step solution by substituting (4.20) into (4.16) and finding a higher-order
solution for , and so on. Thus, by substituting (4.20) into (4.16), we get

(4.21)

From (4.17), we then have

(4.22) +  
JS0

2
a1 -

v2m0P0z
2

2
+
v4m2

0P2
0z

4

24
b

 = -jvP0[E
–

x]z = 0az -
v2m0P0z

3

6
b

 -  
v2m0P0JS0

2
a z2

2
-
v2m0P0z

4

24
b + [H–y]z = 0

 H–y = -jvP0[E
–

x]z = 0az -
v2m0P0z

3

6
b

 
0H–y

0z
= -jvP0[E

–
x]z = 0a1 -

v2m0P0z
2

2
b -

v2m0P0JS0

2
az -

v2m0P0z
3

6
b

 = [E–x]z = 0a1 -
v2m0P0z

2

2
b -

jvm0JS0

2
az -

v2m0P0z
3

6
b

 E–x = -v2m0P0
z2

2
[E–x]z = 0 - jvm0

JS0

2
az -

v2m0P0z
3

6
b + [E–x]z = 0

 = -v2m0P0z[E–x]z = 0 - jvm0
JS0

2
a1 -

v2m0P0z
2

2
b

 
0E–x

0z
= -jvm0e -jvP0z[E–x]z = 0 +

JS0

2
a1 -

v2m0P0z
2

2
b fE

–
x

E
–

x

H
–

y

 = -jvP0z[E–x]z = 0 +
JS0

2
a1 -

v2m0P0z
2

2
b = -jvP0z[E–x]z = 0 - v2m0P0

JS0z
2

4
+

JS0

2

 H–y = -jvP0z[E–x]z = 0 - v2m0P0
JS0z

2

4
+ [H–y]z = 0

 = -jvP0[E
–

x]z = 0 - v2m0P0
JS0z

2

 
0H–y

0z
= -jvP0e -jvm0

JS0z
2

+ [E–x]z = 0 f
E
–

x = -jvm0
JS0z

2
+ [E–x]z = 0

z : 0.[E–x]z = 0,
C
–
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114 Chapter 4 Wave Propagation in Free Space

Continuing in this manner, we will get infinite series expressions for and as
follows:

(4.23)

(4.24)

where we have introduced the notations

(4.25)

(4.26)

It is left to the student to verify that the two expressions (4.23) and (4.24) simultane-
ously satisfy the two differential equations (4.16) and (4.17). Now, noting that

and substituting into (4.23) and (4.24), we have

(4.27)

(4.28)

We now obtain the expressions for the real fields by putting (4.27) and (4.28) into
(4.14) and (4.15), respectively. Thus,

(4.29) = cos bz (C cos vt + D sin vt) +
h0JS0

2
 sin bz sin vt

 = cos bz Re 5[E–x]z = 0 e
jvt6 +

h0JS0

2
 sin bz Re [ej(vt -p>2)]

 Ex(z, t) = Ree [E–x]z = 0 cos bz ejvt - j
h0JS0

2
 sin bz ejvt f

 H–y = -j
1
h0

 [E–x]z = 0 sin bz +
JS0

2
 cos bz

 E–x = [E–x]z = 0 cos bz - j
h0JS0

2
 sin bz

sin bz = bz -
(bz)3

3!
+

(bz)5

5!
+ Á

cos bz = 1 -
(bz)2

2!
+

(bz)4

4!
- Á

 h0 = Am0

P0

 b = v1m0P0

 +  
JS0

2
c1 -

(bz)2

2!
+

(bz)4

4!
- Á d

 H–y = -j
1
h0

[E–x]z = 0cbz -
(bz)3

3!
+

(bz)5

5!
- Á d

 -  j
h0JS0

2
cbz -

(bz)3

3!
+

(bz)5

5!
- Á d

 E–x = [E–x]z = 0c1 -
(bz)2

2!
+

(bz)4

4!
- Á d

H
–

yE
–

x
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4.4 Solution by Wave Equation 115

(4.30)

where we have replaced the quantity by , in
which C and D are arbitrary constants to be determined. Making use of trigonometric
identities and proceeding further, we write (4.29) and (4.30) as

(4.31)

(4.32)

Equation (4.32) is the solution for that together with the solution for given
by (4.31) satisfies the two differential equations (4.7) and (4.8) and that reduces to
(4.12) for . Likewise, we can obtain the solutions for and for the region

by starting with given by (4.13) and proceeding in a similar manner. We
shall, however, proceed with the evaluation of the constants C and D in (4.31) and
(4.32). In order to do this, we first have to understand the meanings of the functions

and . We shall do this in Section 4.5.

4.4 SOLUTION BY WAVE EQUATION

In Section 4.3, we found the solutions to the two simultaneous differential equations
(4.7) and (4.8) by solving them successively and repeatedly in a step-by-step manner.
In this section, we shall consider an alternative and more conventional method by com-
bining the two equations into a single equation and then solving it. We recall that the
two simultaneous differential equations to be satisfied in the free space on either side
of the current sheet are

(4.33)

(4.34)
0Hy

0z
= -  

0Dx

0t
= -P0  

0Ex

0t

0Ex

0z
= -  

0By

0t
= -m0  

0Hy

0t

sin (vt < bz)cos (vt < bz)

[Hy]z = 0 -z 6  0
ExHyz = 0

ExHy

 +  
D

2h0
 sin (vt - bz) - D

2h0
 sin (vt + bz)

 Hy(z, t) =
2C + hJS0 

4h0
 cos (vt - bz) -

2C - h0JS0 
4h0

 cos (vt + bz)

 +  
D
2

 sin (vt - bz) + D
2

 sin (vt + bz)

 Ex(z, t) =
2C + h0JS0 

4
 cos (vt - bz) +

2C - h0JS0 
4

 cos (vt + bz)

(C cos vt + D sin vt)Re 5[E–x]z = 0e
jvt6

 = 1 
h0

 sin bz (C sin vt - D cos vt) +
JS0

2
 cos bz cos vt

 = 1 
h0

 sin bz Re5[E–x]z = 0 ej(vt -p>2)6 +
JS0

2
 cos bz Re [ejvt]

 Hy(z, t) = Ree -j
1 
h0

 [E–x]z = 0 sin bz ejvt +
JS0

2
 cos bz ejvt f
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116 Chapter 4 Wave Propagation in Free Space

Differentiating (4.33) with respect to z and then substituting for from (4.34), we
obtain

or

(4.35)

We have thus eliminated from (4.33) and (4.34) and obtained a single second-order
partial differential equation involving only.

Equation (4.35) is known as the wave equation. A technique of solving this equa-
tion is the separation of variables technique. Since it is a differential equation involving
two variables, z and t, the technique consists of assuming that the required solution is
the product of two functions, one of which is a function of z only and the second is a
function of t only. Denoting these functions to be Z and T, respectively, we have

(4.36)

Substituting (4.36) into (4.35) and dividing throughout by , we obtain

(4.37)

In (4.37), the left side is a function of z only and the right side is a function of t only. In
order for this to be satisfied, they both must be equal to a constant. Hence, setting them
equal to a constant, say , we have

(4.38a)

(4.38b)

We have thus obtained two ordinary differential equations involving separately the two
variables z and t ; hence, the technique is known as the separation of variables technique.

The constant in (4.38a) and (4.38b) is not arbitrary, since for the case of the
sinusoidally time-varying current source the fields must also be sinusoidally time-
varying with the same frequency, although not necessarily in phase with the source.
Thus, the solution for T(t) must be of the form

(4.39)

where A and B are arbitrary constants to be determined. Substitution of (4.39) into
(4.38b) gives us . The solution for (4.38a) is then given by

(4.40) = A¿ cos bz + B¿ sin bz
 Z(z) = A¿ cos v1m0P0z + B¿ sin v1m0P0z

a2 = -v2

T(t) = A cos vt + B sin vt

a2

  
d2T

dt2 = a2T

  
d2Z

dz2 = a2m0P0Z

a2

1
m0P0Z

 
d2Z

dz2 = 1
T

 
d2T

dt2

m0P0Z(z)T(t)

Ex(z, t) = Z(z)T(t)

Ex

Hy

02Ex

0z2 = m0P0  
02Ex

0t2

02Ex

0z2 = -m0 
0
0z
a 0Hy

0t
b = -m0

0
0t
a 0Hy

0z
b = -m 0 

0
0t
a -P0

0Ex

0t
b

0Hy>0z
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4.4 Solution by Wave Equation 117

where and are arbitrary constants to be determined and we have defined

(4.41)

The solution for is then given by

(4.42)

The corresponding solution for can be obtained by substituting (4.42) into one of
the two equations (4.33) and (4.34). Thus, using (4.34), we get

Defining

(4.43)

we have

(4.44)

Equation (4.44) is the general solution for valid on both sides of the current
sheet. In order to deduce the arbitrary constants, we first recall that the magnetic field
adjacent to the current sheet is given by

(4.45)

Thus, for ,

or

C¿ = 0 and D¿ =
h0JS0

2

1
h0

 [-C¿ sin vt + D¿cos vt] =
JS0

2  cos vt

z 7 0

Hy = d JS0

2
 cos vt for z = 0+

-
JS0

2
 cos vt for z = 0-

Hy

 - C¿ cos bz sin vt + D¿ cos bz cos vt] 

 Hy = 1
h0

 [C sin bz sin vt - D sin bz cos vt 

h0 =
b

vP0
=
v1m0P0

vP0
= Am0

P0

 - C¿ cos bz sin vt + D¿cos bz cos vt ]

 Hy =
vP0

b
 [C sin bz sin vt - D sin bz cos vt 

 - v C¿ sin bz sin vt + vD¿sin bz cos vt ]

 
0Hy

0z
= -P0[-v C cos bz sin vt + vD cos bz cos vt 

Hy

 +  C¿ sin bz cos vt + D¿ sin bz sin vt
 = C cos bz cos vt + D cos bz sin vt

 Ex = (A¿ cos bz + B¿ sin bz)(A cos vt + B sin vt)

Ex

b = v1m0P0

B¿A¿
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118 Chapter 4 Wave Propagation in Free Space

giving us

(4.46)

(4.47)

Making use of trigonometric identities and proceeding further, we write (4.47) and
(4.46) as

(4.48)

(4.49)

Equation (4.49) is the solution for that together with the solution for given
by (4.48) satisfies the two differential equations (4.7) and (4.8) and that reduces to
(4.12) for . Similarly, we can obtain the solutions for and for the region

by using the value of to evaluate and in (4.44). We shall, however,
proceed with the evaluation of the constants C and D in (4.48) and (4.49). In order to
do this, we first have to understand the meanings of the functions and

. We shall do this in the following section.

4.5 UNIFORM PLANE WAVES

In the previous two sections, we derived the solutions for and , due to the infinite
plane sheet of sinusoidally time-varying uniform current density, for the region .
These solutions consist of the functions and , which are de-
pendent on both time and distance. Let us first consider the function . To
understand the behavior of this function, we note that for a fixed value of time it varies
in a cosinusoidal manner with the distance z. Let us therefore consider three values of
time, and , and examine the sketches of this function versus
z for these three times. By noting that

 for t = p

2v
,  cos (vt - bz) = cos ap

2
- bzb = sin bz

 for t = p

4v
,  cos (vt - bz) = cos ap

4
- bzb for t = 0,    cos (vt - bz) = cos (-bz) = cos bz

t = p>2vt = 0, t = p>4v,

cos (vt - bz)
sin (vt < bz)cos (vt < bz)

z 7 0
HyEx

sin (vt < bz)
cos (vt < bz)

D¿C¿[Hy]z = 0 -z 6 0
ExHyz = 0

ExHy

 +  
D

2h0
 sin (vt - bz) - D

2h0
 sin (vt + bz)

 Hy (z, t) =
2C + h0JS0

4h0
 cos (vt - bz) -

2C - h0JS0

4h0
 cos (vt + bz)

 +  
D
2

 sin (vt - bz) + D
2

 sin (vt + bz)

 Ex (z, t) =
2C + h0JS0

4
 cos (vt - bz) +

2C - h0JS0

4
 cos (vt + bz)

 Ex =
h0JS0

2
 sin bz sin vt + cos bz (C cos vt + D sin vt )

 Hy =
JS0

2
  cos bz cos vt + 1

h0
 sin bz (C sin vt - D cos vt )
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4.5 Uniform Plane Waves 119

we draw the sketches of the three functions as shown in Figure 4.6.

cos (vt # bz) 

b
pp

2b
3p
2b

5p
2b

2p
b

p

4vt $
p

2vt $t $ 0
1

0 z

FIGURE 4.6

Sketches of the function versus z for three values of .tcos (vt - bz)

It is evident from Figure 4.6 that the sketch of the function for is a
replica of the function for except that it is shifted by a distance of toward
the positive z-direction. Similarly, the sketch of the function for is a replica
of the function for except that it is shifted by a distance of toward the
positive z-direction. Thus as time progresses, the function shifts bodily to the right,
that is, toward increasing values of z. In fact, we can even find the velocity with which
the function is traveling by dividing the distance moved by the time elapsed. This
gives

which is the velocity of light in free space, denoted c. Thus, the function 
represents a traveling wave moving with a velocity toward the direction of
increasing z. The wave is also known as the positive going wave, or wave.

Similarly, by considering three values of time, , , and ,
for the function , we obtain the sketches shown in Figure 4.7. An
examination of these sketches reveals that represents a traveling wave
moving with a velocity toward the direction of decreasing values of z. The
wave is also known as the negative going wave, or wave. Since the sine functions
are cosine functions shifted in phase by , it follows that and

represent traveling waves moving in the positive and negative
z-directions, respectively.
sin (vt + bz)

sin (vt - bz)p>2 (-)
v>b cos (vt + bz)

cos (vt + bz)
t = p>2vt = p>4vt = 0

(+)
v>b cos (vt - bz)

 = 3 * 108
 m/s

 = 11m0P0
= 124p * 10- 7 * 10- 9>36p

 velocity =
p>b - p>2b
p>2v - 0

= v
b

= v

v1m0P0

p>2bt = 0
t = p>2vp>4bt = 0

t = p>4v
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120 Chapter 4 Wave Propagation in Free Space

Returning to the solutions for and given by (4.31) and (4.32) or (4.48) and
(4.49), we now know that these solutions consist of superpositions of traveling waves
propagating away from and toward the current sheet. In the region , however, we
have to rule out traveling waves propagating toward the current sheet, because such a
situation requires a source of waves to the right of the sheet or an object that reflects
the wave back toward the sheet. Thus, we have

which give us finally

(4.50)

Having found the solutions for the fields in the region , we can now consider
the solutions for the fields in the region . From our discussion of the functions

, we know that these solutions must be of the form , since
this function represents a traveling wave progressing in the negative z-direction, that is,
away from the sheet in the region . Recalling that the magnetic field adjacent to
the current sheet and to the left of it is given by

we get

(4.51a)Hy = -
JS0

2
 cos (vt + bz) for z 6 0

[Hy]z = 0 - = -  
JS0

2
 cos vt

z 6 0

cos (vt + bz)cos (vt < bz)
z 6 0

z 7 0

Ex =
h0JS0

2
 cos (vt - bz)

Hy =
JS0

2  cos (vt - bz)
s for z 7 0

2C - h0JS0 = 0 or C =
h0JS0

2

D = 0

z 7 0

HyEx

cos (vt % bz) 

b
pp

2b
3p
2b

5p
2b

2p
b

p

4vt $
p

2vt $
t $ 0

1

0 z

FIGURE 4.7

Sketches of the function cos versus z for three values of t.(vt + bz)
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4.5 Uniform Plane Waves 121

The corresponding can be obtained by simply substituting the result just obtained
for into one of the two differential equations (4.7) and (4.8). Thus using (4.7),
we obtain

(4.51b)

Combining (4.50) and (4.51), we find that the solution for the electromagnetic field due
to the infinite plane current sheet in the xy-plane characterized by

is given by

(4.52a)

(4.52b)

These results are illustrated in Figure 4.8, which shows sketches of the current density
on the sheet and the distance-variation of the electric and magnetic fields on either
side of the current sheet for a few values of t. It can be seen from these sketches that
the phenomenon is one of electromagnetic waves radiating away from the current
sheet to either side of it, in step with the time-variation of the current density on the
sheet.

The solutions that we have just obtained for the fields due to the time-varying
infinite plane current sheet are said to correspond to uniform plane electromagnetic
waves propagating away from the current sheet to either side of it. The terminology
arises from the fact that the fields are uniform (i.e., they do not vary with position) over
the . Thus, the phase of the fields, that is, the quantity , as
well as the amplitudes of the fields, is uniform over the . The mag-
nitude of the rate of change of phase with distance z for any fixed time is . The quan-
tity is therefore known as the phase constant. Since the velocity of propagation of the
wave, that is, , is the velocity with which a given constant phase progresses along
the z-direction, that is, along the direction of propagation, it is known as the phase
velocity and is denoted by the symbol . Thus,

(4.53)vp = v
b

vp

v>bb
b

planes z = constant
(vt ; bz)planes z = constant

 H = ;
JS0

2
 cos (vt < bz) ay for z ! 0

 E =
h0JS0

2
 cos (vt < bz) ax for z ! 0

JS = -JS0 cos vt ax

 =
h0JS0

2
 cos (vt + bz) for z 6 0

 Ex =
m0JS0

2
 
v

b
 cos (vt + bz)

 
0Ex

0z
= -

0By

0t
= -
m0JS0

2
 v sin (vt + bz)

Hy

Ex
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z

y

x

JS

z

y

x

x

JS

z

y

H

E E

H
E

H

H

H

H

E E

E

JS  $ # JS0 cos vt ax t $ 0, JS  $ # JS0ax

JS  $ # ax
JS0t $       ,p

4v 2

JS  $ 0t $       ,p
2v

FIGURE 4.8

Time history of uniform plane electromagnetic wave radiating away from an infinite plane current sheet
in free space.
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4.5 Uniform Plane Waves 123

The distance in which the phase changes by radians for a fixed time is . This
quantity is known as the wavelength and is denoted by the symbol . Thus,

(4.54)

Substituting (4.53) into (4.54), we obtain

or

(4.55)

Equation (4.55) is a simple relationship between the wavelength , which is a parameter
governing the variation of the field with distance for a fixed time, and the frequency f,
which is a parameter governing the variation of the field with time for a fixed value of z.
Since for free space , we have

(4.56)

Other properties of uniform plane waves evident from (4.52) are that the electric
and magnetic fields have components lying in the planes of constant phase and per-
pendicular to each other and to the direction of propagation. In fact, the cross product
of E and H results in a vector that is directed along the direction of propagation, as can
be seen by noting that

(4.57)

Finally, we note that the ratio of to is given by

(4.58)

The quantity , which is equal to , is known as the intrinsic impedance of free
space. Its value is given by

(4.59) = 120p Æ = 377 Æ

 h0 = B14p * 10- 72 H/m110- 9>36p2 F/m
= 21144p2 * 1022 H/F

1m0>P0h0

Ex

Hy
= e h0 for z 7 0, that is, for the 1+2 wave

-h0 for z 6 0, that is, for the 1-2 wave

HyEx

 = ; 
h0J

2
S0

4
 cos2(vt < bz) az    for z ! 0

 E : H = Exax : Hyay

 l in meters * f in MHz = 300
 l in meters * f in Hz = 3 * 108

vp = 3 * 108 m/s

l

lf = vp

l = 2p
v>vp

=
vp

f

l = 2p
b

l
2p>b2p
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124 Chapter 4 Wave Propagation in Free Space

Example 4.1

The electric field of a uniform plane wave is given by . Let
us identify the various parameters associated with the uniform plane wave.

We recognize that

Also, . From (4.58), and since the given field represents
a ( ) wave,

Example 4.2

An antenna array consists of two or more antenna elements spaced appropriately and excited
with currents having the appropriate amplitudes and phases in order to obtain a desired radia-
tion characteristic. To illustrate the principle of an antenna array, let us consider two infinite
plane parallel current sheets, spaced apart and carrying currents of equal amplitudes but out
of phase by , as given by the densities

and find the electric field due to the array of the two current sheets.
We apply the result given by (4.52) to each current sheet separately and then use superpo-

sition to find the required total electric field due to the array of the two current sheets. Thus, for
the current sheet in the plane, we have

E1 = µ h0JS0

2
 cos 1vt - bz2 ax for z 7  0

h0JS0

2
 cos 1vt + bz2 ax for z 6  0

z = 0

JS2 = -JS0 sin vt ax    z = l
4

JS1 = -JS0 cos vt ax    z = 0

p>2 l>4

H =
Ex

h0
ay = 10

377
 cos 13p * 108

 t - pz2 ay A/m

+
lf = vp = 2 * 1.5 * 108 = 3 * 108 m/s

 vp = v
b

= 3p * 108

p
= 3 * 108 m/s

 l = 2p
b

= 2 m

 b = p rad/m

 f = v

2p
= 1.5 * 108 Hz = 150 MHz

 v = 3p * 108 rad/s

E = 10 cos 13p * 108t - pz2 ax V/m
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4.5 Uniform Plane Waves 125

For the current sheet in the plane, we have

Now, using superposition, we find the total electric field due to the two current sheets to be

Thus, the total field is zero in the region , and hence there is no radiation toward that
side of the array. In the region the total field is twice that of the field due to a single sheet.
The phenomenon is illustrated in Figure 4.9, which shows sketches of the individual fields and

and the total field for a few values of t. The result that we have obtained here
for the total field due to the array of two current sheets, spaced apart and fed with currents of
equal amplitudes but out of phase by , is said to correspond to an endfire radiation pattern.

In Section 1.4, we introduced polarization of sinusoidally time-varying fields, which
is of relevance here in wave propagation. To extend the discussion, in the case of circular
and elliptical polarizations, since the circle or the ellipse can be traversed in one of two
opposite senses relative to the direction of the wave propagation, we talk of right-handed
or clockwise polarization and left-handed or counterclockwise polarization. The conven-
tion is that if in a given constant phase plane, the tip of the field vector of a circularly
polarized wave rotates with time in the clockwise sense as seen looking along the direc-
tion of propagation of the wave, the wave is said to be right circularly polarized. If the tip
of the field vector rotates in the counterclockwise sense, the wave is said to be left circu-
larly polarized. Similar considerations hold for elliptically polarized waves, which arise
due to the superposition of two linearly polarized waves in the general case.

For example, for a uniform plane wave propagating in the z-direction and having
the electric field,

(4.60)E = 10 sin 13p * 108t - pz2 ax + 10 cos 13p * 108t - pz2 ay V/m

+

p>2 l>4Ex = Ex1 + Ex2Ex2

Ex1

z 7 l>4 z 6 0

 = e h0JS0 cos 1vt - bz2 ax for z 7 l
4

h0JS0 sin vt sin bz ax for 0 6 z 6 l
4

0 for z 6 0

 E = E1 + E2

 = µ h0JS0

2
 cos 1vt - bz2 ax   for z 7 l

4

-
h0JS0

2
 cos 1vt + bz2 ax   for z 6 l

4

 = µ h0JS0

2
 sin avt - bz + p

2
b  ax   for z 7 l

4
h0JS0

2
 sin avt + bz - p

2
b  ax   for z 6 l

4

 E2 = µ h0JS0

2
 sin cvt - b az - l

4
b d ax for z 7 l

4
h0JS0

2
 sin cvt + b az - l

4
b d ax for z 6 l

4

z = l>4
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z

z $ 0

t $ 0Ex1

Ex2
Ex

z $ l
4

p
4v

z

z $ 0

Ex1

Ex2

Ex

z $ l
4

z

t $ 

p
2v

t $ 

Ex1

Ex2

Ex

FIGURE 4.9

Time history of individual fields and the total field due to an array of two infinite plane
parallel current sheets.

the two components of E are equal in amplitude, perpendicular, and out of phase by
90°. Therefore, the wave is circularly polarized. To determine if the polarization is
right-handed or left-handed, we look at the electric field vectors in the plane for
two values of time, and . These are shown in
Figure 4.10. As time progresses, the tip of the vector rotates in the counterclockwise
sense, as seen looking in the z-direction. Hence, the wave is left circularly polarized.+

t = 1
6 * 10- 8 s 13p * 108t = p>22t = 0

z = 0
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4.5 Uniform Plane Waves 127

Thus far, we have considered a source of single frequency. We found that wave
propagation in free space is characterized by a phase velocity equal to c

and intrinsic impedance , independent of frequency.
Let us now consider a nonsinusoidal excitation for the current sheet. Then, since the
propagation characteristics are the same for each frequency component of the nonsinu-
soidal excitation, the resulting fields at any given value of z will have the same shape as
that of the source with time, that is, they propagate without change in shape with time.
Thus, for an infinite plane current sheet of surface current density given by

(4.61)

the solution for the electromagnetic field is given by

(4.62a)

(4.62b)

The time variation of the electric field component in a given constant plane is
the same as the current density variation delayed by the time and multiplied by

. The time variation of the magnetic field component in a given constant plane
is the same as the current density variation delayed by and multiplied by ,
depending on . Using these properties, one can construct plots of the field com-
ponents versus time for fixed values of z and versus z for fixed values of t.

Example 4.3

Let us consider the function in (4.61) to be that given in Figure 4.11. We wish to find and
sketch (a) versus t for , (b) versus t for , (c) versus z for ,
and (d) versus z for .t = 2.5 msHy

t = 1 msExz = -450 mHyz = 300 mEx

JS1t2
z ! 0

;1
2ƒz ƒ>vp

z =h0>2 ƒz ƒ>vp

z =Ex

H1z, t2 = ;1
2

JSa t < z
vp
bay for z ! 0

E1z, t2 =
h0

2
JSa t < z

vp
bax  for z ! 0

JS1t2 = -JS1t2ax for z = 0

h0 1=  377 Æ21= 3 * 108 m/s2 vp

y
z

x

[E]t $ 0

[E]t $     & 10–8 s
1
6

FIGURE 4.10

For the determination of the sense of circular polarization
for the field of equation (4.60).

10 2

0.1

t, ms

JS , A/m

A

B

C D E

FIGURE 4.11

Plot of versus t for Example 4.3.JS
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1
0

(a)

2 3 4 5

#18.85

t, ms

18.85

A

B

C D E

[Ex]z $ 300 m, V/m

1
0

(b)

2 3 4 5

#0.05

t, ms

0.05

A

B

C D E

[Hy]z $ #450 m, A/m

#900 #600 #300

(d)

0 300 600 900

#0.05

0.05

[Hy]t $ 2.5 ms, A/m

A
A

B

B

C D E

CDE

#900 #600 #300

(c)

0 300 600 900
z, m

z, m

18.85

[Ex]t $ 1 ms, V/m

AA
BB

C

FIGURE 4.12

Plots of field components versus t for fixed values of z and versus z for fixed values of t for
Example 4.3.
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4.6 Poynting Vector and Energy Storage 129

(a) Since , the time delay corresponding to 300 m is . Thus, the plot
of versus t for is the same as that of multiplied by , or 188.5, and
delayed by , as shown in Figure 4.12(a).

(b) The time delay corresponding to 450 m is . Thus, the plot of versus t for
is the same as that of multiplied by and delayed by , as

shown in Figure 4.12(b).
(c) To sketch versus z for a fixed value of t, say, , we use the argument that a given value

of existing at the source at an earlier value of time, say, , travels away from the source
by the distance equal to times . Thus, at , the values of correspond-
ing to points A and B in Figure 4.11 move to the locations and ,
respectively, and the value of corresponding to point C exists right at the source. Hence,
the plot of versus z for is as shown in Figure 4.12(c). Note that points beyond
C in Figure 4.11 correspond to , and therefore they do not appear in the plot of
Figure 4.12(c).

(d) Using arguments as in part (c), we see that at , the values of corresponding to
points A, B, C, D, and E in Figure 4.11 move to the locations ,

, and , respectively, as shown in Figure 4.12(d). Note that the plot is an odd
function of z, since the factor by which is multiplied to obtain is , depending on

.

4.6 POYNTING VECTOR AND ENERGY STORAGE

In the preceding section, we found the solution for the electromagnetic field due to
an infinite plane current sheet situated in the plane. For a surface current
flowing in the negative x-direction, we found the electric field on the sheet to be
directed in the positive x-direction. Since the current is flowing against the force
due to the electric field, a certain amount of work must be done by the source of the
current in order to maintain the current flow on the sheet. Let us consider a rectan-
gular area of length and width on the current sheet, as shown in Figure 4.13.
Since the current density is , the charge crossing the width in time is

. The force exerted on this charge by the electric field is
given by

(4.63)

The amount of work required to be done against the electric field in displacing this
charge by the distance is

(4.64)

Thus, the power supplied by the source of the current in maintaining the surface current
over the area is

(4.65)
dw
dt

= JS0 Ex cos vt ¢x ¢y

¢x ¢y

dw = Fx ¢x = JS0 Ex cos vt dt ¢x ¢y

¢x

F = dq E = JS0 ¢y cos vt dt Exax

dq = JS0 ¢y cos vt dt
dt¢yJS0 cos vt

¢y¢x

z = 0

z " 0
;1

2HyJS0

;150 m;300 m
;450 mz = ;750 m, ;600 m,

Hyt = 2.5 ms

t 7 1 ms
t = 1 msEx 

Ex

z = ;150 mz = ;300 m
Ext = 1 msvp1t1 - t22 t2Ex

t1Ex

1.5 ms-1>2JS1t2z = -450 m
Hy1.5 ms

1 ms
h0>2JS(t)z = 300 mEx

1 msvp = c = 3 * 108 m/s
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130 Chapter 4 Wave Propagation in Free Space

Recalling that on the sheet is , we obtain

(4.66)

We would expect the power given by (4.66) to be carried by the electromagnetic
wave, half of it to either side of the current sheet. To investigate this, we note that the
quantity has the units of

which represents power density. Let us then consider the rectangular box enclosing the
area on the current sheet and with its sides almost touching the current sheet on
either side of it, as shown in Figure 4.13. Recalling that is given by (4.57) and
evaluating the surface integral of over the surface of the rectangular box, we
obtain the power flow out of the box as

(4.67) = h0 
J2

S0

2
 cos2 vt ¢x ¢y

 +  a -h0 
J2

S0

4
 cos2 vt azb # (- ¢x ¢y az2

 CE : H # dS = h0 
J2

S0

4
 cos2 vt az # ¢x ¢y az

E : H
E : H

¢x ¢y

 = newton-meters
second

* 11meter22 = watts1meter22
 
newtons
coulomb

*
amperes

meter
= newtons

coulomb
* coulomb

second-meter
* meter

meter

E : H

dw
dt

= h0 
J2

S0

2
 cos2 vt ¢x ¢y

h0
JS0

2
 cos vtEx

y

x

'x

'y

z

FIGURE 4.13

For the determination of power flow density
associated with the electromagnetic field.
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4.6 Poynting Vector and Energy Storage 131

This result is exactly equal to the power supplied by the current source as given by
(4.66).

We now interpret the quantity as the power flow density vector associated
with the electromagnetic field. It is known as the Poynting vector, after J. H. Poynting,
and is denoted by the symbol P. Although we have here introduced the Poynting vec-
tor by considering the specific case of the electromagnetic field due to the infinite
plane current sheet, the interpretation that is equal to the power flow
out of the closed surface S is applicable in the general case.

Example 4.4

Far from a physical antenna, that is, at a distance of several wavelengths from the antenna, the
radiated electromagnetic waves are approximately uniform plane waves with their constant
phase surfaces lying normal to the radial directions away from the antenna, as shown for two
directions in Figure 4.14. We wish to show from the Poynting vector and physical considerations
that the electric and magnetic fields due to the antenna vary inversely proportional to the radial
distance away from the antenna.

AS E : H # dS

E : H

Constant Phase
Surfaces

Antenna
ra

ra

rb

rb

FIGURE 4.14

Radiation of electromagnetic waves far from a physical antenna.

From considerations of electric and magnetic fields of a uniform plane wave, the Poynting
vector is directed everywhere in the radial direction indicating power flow radially away from
the antenna and is proportional to the square of the magnitude of the electric field intensity. Let
us now consider two spherical surfaces of radii and and centered at the antenna and insert a
cone through these two surfaces such that the vertex is at the antenna, as shown in Figure 4.14.
Then the power crossing the portion of the spherical surface of radius inside the cone must be
the same as the power crossing the portion of the spherical surface of radius inside the cone.
Since these surface areas are proportional to the square of the radius and since the surface inte-
gral of the Poynting vector gives the power, the Poynting vector must be inversely proportional
to the square of the radius. This in turn means that the electric field intensity and hence the mag-
netic field intensity must be inversely proportional to the radius.

ra
rb

rbra
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132 Chapter 4 Wave Propagation in Free Space

Thus, from these simple considerations we have established that far from a radiating
antenna the electromagnetic field is inversely proportional to the radial distance away from the
antenna. This reduction of the field intensity inversely proportional to the distance is known as
the free space reduction. For example, let us consider communication from earth to the moon. The
distance from the earth to the moon is approximately , or . Hence, the
free space reduction factor for the field intensity is or, in terms of decibels, the reduction
is , or 171.6 db.

Returning to the electromagnetic field due to the infinite plane current sheet, let
us consider the region . The magnitude of the Poynting vector in this region is
given by

(4.68)

The variation of with z for is shown in Figure 4.15. If we now consider a rec-
tangluar box lying between and planes and having dimensions 
and in the x- and y-directions, respectively, we would in general obtain a nonzero
result for the power flowing out of the box, since is not everywhere zero. Thus,
there is some energy stored in the volume of the box. We then ask ourselves the ques-
tion, “Where does this energy reside?” A convenient way of interpretation is to at-
tribute the energy storage to the electric and magnetic fields.

0Pz>0z
¢y

¢xz = z + ¢zz = z
t = 0Pz

Pz = ExHy = h0 
J2

S0

4
 cos2 1vt - bz2

z 7 0

20 log10 38 * 107
10- 7>38

38 * 107 m38 * 104 km

z

0

[Pz]t $ 0

p
b

2p
b

z z % 'z

4
S0h0 J2

FIGURE 4.15

For the discussion of energy storage in electric
and magnetic fields.

To discuss the energy storage in the electric and magnetic fields further, we
evaluate the power flow out of the rectangular box. Thus,

(4.69) =
0Pz

0z
 ¢v

 =
[Pz]z + ¢z - [Pz]z

¢z
 ¢x ¢y ¢z

 CS
 P # dS = [Pz]z + ¢z ¢x ¢y - [Pz]z ¢x ¢y
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where is the volume of the box. Letting equal and using (4.7) and (4.8), we
obtain

(4.70)

Equation (4.70), which is known as Poynting’s theorem, tells us that the power flow out
of the box is equal to the sum of the time rates of decrease of the quantities 
and . These quantities are obviously the energies stored in the electric and
magnetic fields, respectively, in the volume of the box. It then follows that the energy
densities associated with the electric and magnetic fields are and , respec-
tively. It is left to the student to verify that the quantities and do indeed
have the units . Once again, although we have obtained these results by consider-
ing the particular case of the uniform plane wave, they hold in general.

Summarizing our discussion in this section, we have introduced the Poynting vec-
tor as the power flow density associated with the electromagnetic field
characterized by the electric and magnetic fields, E and H, respectively. The surface in-
tegral of P over a closed surface always gives the correct result for the power flow out
of that surface. There is energy storage associated with the electric and magnetic fields
with the energy densities given by

(4.71)

and

(4.72)

respectively.

SUMMARY

In this chapter, we studied the principles of uniform plane wave propagation in free
space. Uniform plane waves are a building block in the study of electromagnetic wave
propagation. They are the simplest type of solutions resulting from the coupling of
the electric and magnetic fields in Maxwell’s curl equations. We learned that uniform
plane waves have their electric and magnetic fields perpendicular to each other and to

wm = 1
2

 m0H
2

we = 1
2

 P0E
2

P = E : H

J/m3

1
2m0H

21
2P0E

2

1
2m0H

2
y

1
2P0E

2
x

1
2m0H

2
y ¢v

1
2P0E

2
x ¢v

 = - 0
0t

 a1
2

 m0H
2
y ¢vb - 0

0t
 a1

2
 P0E

2
x ¢vb

 = -m0Hy

0Hy

0t
 ¢v - P0Ex

0Ex

0t
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134 Chapter 4 Wave Propagation in Free Space

the direction of propagation. The fields are uniform in the planes perpendicular to the
direction of propagation.

We obtained the uniform plane wave solution to Maxwell’s equations by consider-
ing an infinite plane current sheet in the xy-plane with uniform surface current den-
sity given by

(4.73)

and deriving the electromagnetic field due to the current sheet to be given by

(4.74a)

(4.74b)

In (4.74a) and (4.74b), cos represents wave motion in the positive z-direction,
whereas cos represents wave motion in the negative z-direction. Thus,
(4.74a) and (4.74b) correspond to waves propagating away from the current sheet to
either side of it. Since the fields are independent of x and y, they represent uniform
plane waves.

The quantity is the phase constant, that is, the magnitude of the
rate of change of phase with distance along the direction of propagation, for a fixed
time. The phase velocity that is, the velocity with which a particular constant phase
progresses along the direction of propagation, is given by

(4.75)

The wavelength , that is, the distance along the direction of propagation in which the
phase changes by radians, for a fixed time, is given by

(4.76)

The wavelength is related to the frequency f in a simple manner as given by

(4.77)

which follows from (4.75) and (4.76). The quantity is the intrinsic impe-
dance of free space. It is the ratio of the magnitude of E to the magnitude of H and has
a value of .

In the process of deriving the electromagnetic field due to the infinite plane cur-
rent sheet, we used two approaches and learned several useful techniques. These are
discussed in the following:

1. The determination of the magnetic field adjacent to the current sheet by employing
Ampere’s circuital law in integral form: This is a common procedure used in the computa-
tion of static fields due to charge and current distributions possessing certain symmetries.
In Chapter 5 we shall derive the boundary conditions, that is, the relationships between the
fields on either side of an interface between two different media, by applying Maxwell’s
equations in integral form to closed paths and surfaces straddling the boundary as we have
done here in the case of the current sheet.

120p Æ

h0 1= 2m0>P02vp = lf

l = 2p
b

2p
l

vp = v
b

vp,

b  1=  v1m0P02
1vt + bz2 1vt - bz2 H = ; 

JS 0

2
 cos 1vt < bz2 ay  for z ! 0

 E =
h0JS0

2
 cos 1vt < bz2 ax  for z ! 0

JS = -JS 0 cos vt ax A/m
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Review Questions 135

2. The successive, step-by-step solution of the two Maxwell’s curl equations, to obtain the
final solution consistent with the two equations, starting with the solution obtained for the
field adjacent to the current sheet: This technique provided us a feel for the phenomenon
of radiation of electromagnetic waves resulting from the time-varying current distribution
and the interaction between the electric and magnetic fields. We shall use this kind of
approach and the knowledge gained on wave propagation to obtain in Chapter 9 the
complete electromagnetic field due to an elemental antenna, which forms the basis for the
study of physical antennas.

3. The solution of wave equation by the separation of variables technique: This is the stan-
dard technique employed in the solution of partial differential equations involving multiple
variables.

4. The application of phasor technique for the solution of the differential equations: The
phasor technique is a convenient tool for analyzing sinusoidal steady-state problems as we
learned in Chapter 1.

We discussed (a) polarization of sinusoidally time-varying fields, as it pertains to uni-
form plane wave propagation, and (b) nonsinusoidal excitation giving rise to nonsinu-
soidal waves propagating in free space without change in shape, in view of phase
velocity independent of frequency.

We also learned that there is power flow and energy storage associated with the
wave propagation that accounts for the work done in maintaining the current flow on
the sheet. The power flow density is given by the Poynting vector

and the energy densities associated with the electric and magnetic fields are given,
respectively, by

The surface integral of the Poynting vector over a given closed surface gives the total
power flow out of the volume bounded by that surface.

Finally, we have augmented our study of uniform plane wave propagation in free
space by illustrating (a) the principle of an antenna array, and (b) the inverse distance
dependence of the fields far from a physical antenna.

 wm = 1
2

 m0H
2

 we = 1
2

 P0E
2

P = E : H

REVIEW QUESTIONS

4.1. What is a uniform plane wave?
4.2. Why is the study of uniform plane waves important?
4.3. How is the surface current density vector defined? Distinguish it from the volume cur-

rent density vector.
4.4. How do you find the current crossing a given line on a sheet of surface current?
4.5. Why is it that Ampere’s circuital law in integral form is used to find the magnetic field

adjacent to the current sheet of Figure 4.2?
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136 Chapter 4 Wave Propagation in Free Space

4.6. Why is the path chosen to evaluate the magnetic field in Figure 4.4 rectangular?
4.7. Outline the application of Ampere’s circuital law in integral form to find the magnetic

field adjacent to the current sheet of Figure 4.2.
4.8. Why is the displacement current enclosed by the rectangular path abcda in Figure 4.4

equal to zero?
4.9. How would you use Ampere’s circuital law in differential form to find the magnetic

field adjacent to the current sheet?
4.10. If the current density on the infinite plane current sheet of Figure 4.2 were directed in

the positive y-direction, what would be the directions of the magnetic field adjacent to
the current sheet and on either side of it?

4.11. Why are the results given by (4.12) and (4.13) for the magnetic field not valid for points
at some distance from the current sheet?

4.12. Under what conditions would a result obtained for the magnetic field adjacent to the infi-
nite plane current sheet of Figure 4.2 be valid at points distant from the current sheet? 

4.13. Briefly outline the procedure involved in the successive solution of Maxwell’s equations.
4.14. How does the technique of successive solution of Maxwell’s equations reveal the inter-

action between the electric and magnetic fields giving rise to wave propagation?
4.15. State the wave equation for the case of How is it derived?
4.16. Briefly outline the separation of variables technique of solving the wave equation.
4.17. Discuss how the function represents a traveling wave propagating in the

positive z-direction.
4.18. Discuss how the function represents a traveling wave propagating in the

negative z-direction.
4.19. Discuss how the solution for the electromagnetic field given by (4.52) corresponds to

that of a uniform plane wave.
4.20. Why is the quantity in known as the phase constant?
4.21. What is phase velocity? How is it related to the radian frequency and the phase con-

stant of the wave?
4.22. Define wavelength. How is it related to the phase constant?
4.23. What is the relationship between frequency, wavelength, and phase velocity? What is

the wavelength in free space for a frequency of 15 MHz?
4.24. What is the direction of propagation for a uniform plane wave having its electric field in

the negative y-direction and its magnetic field in the positive z-direction?
4.25. What is the direction of the magnetic field for a uniform plane wave having its electric

field in the positive z-direction and propagating in the positive x-direction?
4.26. What is intrinsic impedance? What is its value for free space?
4.27. Discuss the principle of an antenna array.
4.28. What should be the spacing and the relative phase angle of the current densities for an

array of two infinite, plane, parallel current sheets of uniform densities, equal in magni-
tude, to confine their radiation to the region between the two sheets?

4.29. Discuss polarization of sinusoidally time-varying fields, as it is relevant to propagation
of uniform plane waves.

4.30. Discuss the propagation of uniform plane waves arising from an infinite plane current
sheet of nonsinusoidally time-varying surface current density.

4.31. Why is a certain amount of work involved in maintaining current flow on the sheet of
Figure 4.2? How is this work accounted for?

cos 1vt - bz2b

cos 1vt +  bz2cos 1vt - bz2
E = Ex1z, t2ax.
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4.32. What is a Poynting vector? What is its physical significance?
4.33. What is the physical interpretation of the surface integral of the Poynting vector over a

closed surface?
4.34. Discuss how the fields far from a physical antenna vary inversely proportional to the

distance from the antenna.
4.35. Discuss the interpretation of energy storage in the electric and magnetic fields of a uni-

form plane wave.
4.36. What are the energy densities associated with the electric and magnetic fields?

PROBLEMS

4.1. An infinite plane sheet lying in the plane carries a current of uniform density
A/m. Find the currents crossing the following straight lines: (a) from (0, 0, 0)

to (0, 2, 0); (b) from (0, 0, 0) to (2, 0, 0); (c) from (0, 0, 0) to (2, 2, 0).
4.2. An infinite plane sheet lying in the plane carries a current of nonuniform density

A/m. Find the currents crossing the following straight lines: (a) from
(0, 0, 0) to (0, 1, 0); (b) from (0, 0, 0) to (0, , 0); (c) from (0, 0, 0) to (1, 1, 0).

4.3. An infinite plane sheet lying in the plane carries a current of uniform density

Find the currents crossing the following straight lines: (a) from (0, 0, 0) to (0, 2, 0);
(b) from (0, 0, 0) to (2, 0, 0); (c) from (0, 0, 0) to (2, 2, 0).

4.4. An infinite plane sheet lying in the plane carries a current of uniform density

Find the magnetic field intensities adjacent to the sheet and on either side of it. What is
the polarization of the field?

4.5. An infinite plane sheet lying in the plane carries a current of nonuniform density
. Find the magnetic field intensities adjacent to the current

sheet and on either side of it at (a) the point (0, 1, 0) and (b) the point (2, 2, 0).
4.6. Current flows with uniform density in the region . Using Ampere’s

circuital law in integral form and symmetry considerations, find H everywhere.
4.7. Current flows with nonuniform density in the region 

where is a constant. Using Ampere’s circuital law in integral form and symmetry con-
siderations, find H everywhere.

4.8. For an infinite plane sheet of charge lying in the -plane with uniform surface charge
density , find the electric field intensity on both sides of the sheet by using
Gauss’ law for the electric field in integral form and symmetry considerations.

4.9. Charge is distributed with uniform density in the region Using
Gauss’ law for the electric field in integral form and symmetry considerations, find E
everywhere.

4.10. Charge is distributed with nonuniform density in the region
where is a constant. Using Gauss’ law for the electric field in integral form

and symmetry considerations, find E everywhere.
4.11. Verify that expressions (4.23) and (4.24) simultaneously satisfy the differential equations

(4.16) and (4.17).

r0|x | 6 a,
r = r011 - |x |>a2 C/m3

|x | 6 a.r = r0 C/m3

rS0 C/m2
xy

J0

|z | 6 a,J= J0(1 - |z |>a2ax A/m2

|z | 6 aJ= J0ax A/m2

JS = -0.2e-|y| cos vt ax A/m
z = 0

JS = (-0.2 cos vt ax + 0.2 sin vt ay2 A/m

z = 0

JS = 1-0.1 cos vt ax + 0.1 sin vt ay2 A/m

z = 0
q

JS = -0.1e-|y| ax

z = 0

JS = -0.1 ax

z = 0
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138 Chapter 4 Wave Propagation in Free Space

4.12. For the infinite plane current sheet in the plane carrying surface current of density
where is a constant, find the magnetic field adjacent to the cur-

rent sheet. Then use the method of successive solution of Maxwell’s equations to show
that for ,

where C is a constant.
4.13. For the infinite plane current sheet in the plane carrying surface current of density

where is a constant, find the magnetic field adjacent to the cur-
rent sheet. Then use the method of successive solution of Maxwell’s equations to show
that for 

where C is a constant.
4.14. Verify that expressions (4.48) and (4.49) simultaneously satisfy the differential

equations (4.7) and (4.8), and that (4.49) reduces to (4.12) for .
4.15. Show that and are solutions of the wave equation. With

the aid of sketches, discuss the nature of these functions.
4.16. For arbitrary time-variation of the fields, show that the solutions for the differential

equations (4.33) and (4.34) are

where A and B are arbitrary constants. Discuss the nature of the functions 
.

4.17. In Problems 4.12 and 4.13, evaluate the constant C and obtain the solutions for and
in the region Then write the solutions for and in the region 

4.18. The electric field intensity of a uniform plane wave is given by

Find (a) the frequency, (b) the wavelength, (c) the phase velocity, (d) the direction of
propagation of the wave, and (e) the associated magnetic field intensity vector H.

4.19. An infinite plane sheet lying in the plane carries a surface current of density

Find the expressions for the electric and magnetic fields on either side of the sheet.

JS = 1-0.2 cos 6p * 108t ax - 0.1 cos 12p * 108t ax2 A/m

z = 0

E = 37.7 cos 16p * 108t + 2pz2 ay V/m.

z 6 0.HyExz 7 0.Hy

Ex

and g1t +  z1m0P02 f1t - z1m0P02
 Hy = 1

h0
 [Af1t - z1m0P02 - Bg1t +  z1m0P02] Ex = Af1t - z1m0P02 + Bg1t +  z1m0P02
1t + z1m0P0221t - z1m0P022 z = 0+

 Hy = a2C + h0JS0

4h0
b1t - z1m0P022 - a2C - h0JS0

4h0
b1t + z1m0P022

 Ex = a2C + h0JS0

4
b1t - z1m0P022 + a2C - h0JS0

4
b1t + z1m0P022

z 7 0,

JS0JS = -JS0 t2 ax A/m,
z = 0

 Hy = a2C + h0JS0

4h0
b1t - z1m0P02 - a2C - h0JS0

4h0
b1t + z1m0P02

 Ex = a2C + h0JS0

4
b1t - z1m0P02 + a2C - h0JS0

4
b1t + z1m0P02

z 7 0

JS0JS = -JS0t ax A/m,
z = 0
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4.20. An array is formed by two infinite plane parallel current sheets with the current densi-
ties given by

where is a constant. Find the electric field intensity in all three regions: (a) 
(b) (c) .

4.21. Determine the spacing, relative amplitudes, and phase angles of current densities for an
array of two infinite plane parallel current sheets required to obtain a radiation charac-
teristic such that the field radiated to one side of the array is twice that of the field radi-
ated to the other side of the array.

4.22. For two infinite plane parallel current sheets with the current densities given by

where is a constant, find the electric field in all three regions: (a) 
(b) (c) . Discuss the polarization of the field in all three regions.

4.23. For each of the following fields, determine if the polarization is right- or left-circular.
(a)
(b)

4.24. For each of the following fields, determine if the polarization is right- or left-elliptical.
(a)
(b)

4.25. Express the following uniform plane wave electric field as a superposition of right- and
left-circularly polarized fields:

4.26. Repeat Problem 4.25 for the following electric field:

4.27. Write the expression for the electric field intensity of a sinusoidally time-varying uni-
form plane wave propagating in free space and having the following characteristics:
(a) ; (b) direction of propagation is the -direction; and (c) polarization
is right circular with the electric field in the plane at having an -component
equal to and a -component equal to 

4.28. An infinite plane sheet lying in the plane carries a surface current of density
where is the periodic function shown in Figure 4.16. Find and

sketch (a) versus for (b) versus for and (c) versus for
t = 1 ms.

zExz = 150 m,tExz = 0+ ,tHy

JS1t2JS = -JS1t2ax,
z = 0

0.75E0.yE0

xt = 0z = 0
+zf = 100 MHz

E0ay cos 1vt - bz + p>62 E0ax cos 1vt - bz + p>32 -E0ax cos 1vt + bz2E0 cos 1vt - bx2 az - E0 sin 1vt - bx + p>42 ay

E0 cos 1vt + by2 ax - 2E0 sin 1vt + by2 az

E0 cos 1vt + bx2 ay + E0 sin 1vt + bx2 az

E0  cos 1vt - by2 az + E0 sin 1vt - by2 ax

z 7 l>20 6 z 6 l>2;
z 6 0;JS0

 JS2 = -JS0 cos vt ay  z = l
2

 JS1 = -JS0 cos vt ax  z = 0

z 7 l>20 6 z 6 l>2;
z 6 0;JS0

 JS2 = -JS0 cos vt ax  z = l
2

 JS1 = -JS0 cos vt ax  z = 0

FIGURE 4.16

For Problem 4.28.

t, ms

0.2

3210#1#2

JS , A/m
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140 Chapter 4 Wave Propagation in Free Space

4.29. The time-variation of the electric field intensity in the plane of a uniform
plane wave propagating away from an infinite plane current sheet lying in the 
plane is given by the periodic function shown in Figure 4.17. Find and sketch (a) 
versus for (b) versus for and (c) versus for t = 1

3 ms.zHyt = 0,zExz = 200 m,t
Ex

z = 0
z = 600 mEx

4.30. The time-variation of the electric field intensity in the plane of a uniform
plane wave propagating away from an infinite plane current sheet lying in the plane
is given by the aperiodic function shown in Figure 4.18. Find and sketch (a) versus for

(b) versus for and (c) versus for t = 2 ms.zHyt = 1 ms,zExz = 600 m,
tEx

z = 0
z = 300 mEx

FIGURE 4.17

For Problem 4.29.

FIGURE 4.18

For Problem 4.30.

Ex, V/m

75.4

#37.7

t, ms
#2 #1 0 1 25

3#
2
3#

1
3

4
3

7
3

4.31. Show that the time-average value of the magnitude of the Poynting vector given by
(4.68) is one-half its peak value. For an antenna radiating a time-average power of
150 kW, find the peak value of the electric field intensity at a distance of 100 km from
the antenna. Assume the antenna to be radiating equally in all directions.

4.32. The electric field of a uniform plane wave propagating in the positive -direction is
given by

where is a constant. (a) Find the corresponding magnetic field H. (b) Find the Poynting
vector.

4.33. Show that the quantities and have the units J/ .
4.34. Show that the energy is stored equally in the electric and magnetic fields of a traveling

wave.

m31
2 
m0H

21
2 
P0E

2

E0

E = E0 cos 1vt -  bz2 ax + E0 sin 1vt -  bz2 ay

z

Ex, V/m

t, ms

37.7

0 1 2 3
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Wave Propagation
in Material Media

In Chapter 4, we introduced wave propagation in free space by considering the infinite
plane current sheet of uniform, sinusoidally time-varying current density. We learned
that the solution for the electromagnetic field due to the infinite plane current sheet
represents uniform plane electromagnetic waves propagating away from the sheet to
either side of it. With the knowledge of the principles of uniform plane wave propaga-
tion in free space, we are now ready to consider wave propagation in material media,
which is our goal in this chapter. Materials contain charged particles that respond to
applied electric and magnetic fields and give rise to currents, which modify the proper-
ties of wave propagation from those associated with free space.

We shall learn that there are three basic phenomena resulting from the interac-
tion of the charged particles with the electric and magnetic fields. These are conduc-
tion, polarization, and magnetization. Although a given material may exhibit all three
properties, it is classified as a conductor, a dielectric, or a magnetic material, depending
on whether conduction, polarization, or magnetization is the predominant phenomenon.
Thus, we shall introduce these three kinds of materials one at a time and develop a set
of relations known as the constitutive relations that enable us to avoid the necessity of
explicitly taking into account the interaction of the charged particles with the fields.We
shall then use these constitutive relations together with Maxwell’s equations to first
discuss uniform plane wave propagation in a general material medium and then con-
sider several special cases. Finally, we shall derive the boundary conditions and use
them to study reflection and transmission of uniform plane waves at plane boundaries.

5.1 CONDUCTORS AND DIELECTRICS

We recall that the classical model of an atom postulates a tightly bound, positively
charged nucleus surrounded by a diffuse cloud of electrons spinning and orbiting
around the nucleus. In the absence of an applied electromagnetic field, the force of
attraction between the positively charged nucleus and the negatively charged electrons
is balanced by the outward centrifugal force to maintain stable electronic orbits.
The electrons can be divided into bound electrons and free or conduction electrons.

141

CHAPTER

5
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142 Chapter 5 Wave Propagation in Material Media

The bound electrons can be displaced but not removed from the influence of the nu-
cleus. The conduction electrons are constantly under thermal agitation, being released
from the parent atom at one point and recaptured by another atom at a different point.

In the absence of an applied field, the motion of the conduction electrons is
completely random; the average thermal velocity on a macroscopic scale, that is, over
volumes large compared with atomic dimensions, is zero so that there is no net current
and the electron cloud maintains a fixed position. With the application of an electro-
magnetic field, an additional velocity is superimposed on the random velocities,
predominantly due to the electric force. This causes drift of the average position of the
electrons in a direction opposite to that of the applied electric field. Due to the fric-
tional mechanism provided by collisions of the electrons with the atomic lattice, the
electrons, instead of accelerating under the influence of the electric field, drift with an
average drift velocity proportional in magnitude to the applied electric field. This
phenomenon is known as conduction, and the resulting current due to the electron
drift is known as the conduction current.

In certain materials a large number of electrons may take part in the conduction
process, but in certain other materials only a very few or negligible number of electrons
may participate in conduction. The former class of materials is known as conductors,
and the latter class is known as dielectrics or insulators. If the number of free electrons
participating in conduction is per cubic meter of the material, then the conduction
current density is given by

(5.1)

where e is the charge of an electron, and vd is the drift velocity of the electrons.
The drift velocity varies from one conductor to another, depending on the average
time between successive collisions of the electrons with the atomic lattice. It is related
to the applied electric field in the manner

(5.2)

where is known as the mobility of the electron. Substituting (5.2) into (5.1), we
obtain

(5.3)

Semiconductors are characterized by drift of holes, that is, vacancies created by
detachment of electrons from covalent bonds, in addition to the drift of electrons. If 
and are the number of electrons and holes, respectively, per cubic meter of the ma-
terial, and if and are the electron and hole mobilities, respectively, then the con-
duction current density in the semiconductor is given by

(5.4)

Defining a quantity , known as the conductivity of the material, as given by

(5.5)s = emeNe ƒ e ƒ for conductors
meNe ƒ e ƒ + mhNh ƒ e ƒ for semiconductors

s

Jc = (meNe ƒ e ƒ + mhNh ƒ e ƒ)E

mhme

Nh 
Ne

Jc = -meNeeE = meNe ƒ e ƒE

me

vd = -meE

Jc = Neevd

Ne
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5.1 Conductors and Dielectrics 143

we obtain the simple and important relationship

(5.6)

for the conduction current density in a material. Equation (5.6) is known as Ohm’s law
applicable at a point from which follows the familiar form of Ohm’s law used in circuit
theory. The units of are siemens/meter where a siemen (S) is an ampere per volt.
Values of for a few materials are listed in Table 5.1. In considering electromagnetic
wave propagation in conducting media, the conduction current density given by (5.6)
must be employed for the current density term on the right side of Ampere’s circuital
law. Thus, Maxwell’s curl equation for H for a conducting medium is given by

(5.7)¥ : H = Jc + 0D
0t

= sE + 0D
0t

 

s
s

Jc = sE

TABLE 5.1 Conductivities of Some Materials

Conductivity 
Material S/m

Silver
Copper
Gold
Aluminum
Tungsten
Brass
Solder
Lead
Constantin
Mercury 1.0 *  106

2.0 *  106
4.8 *  106
7.0 *  106
1.5 *  107
1.8 *  107
3.5 *  107
4.1 *  107
5.8 *  107
6.1 *  107

Conductivity 
Material S/m

Sea water 4
Intrinsic germanium 2.2
Intrinsic silicon
Fresh water
Distilled water
Dry earth
Bakelite
Glass
Mica
Fused quartz 0.4 *  10-17

10-11 - 10-15
10-10 - 10-14
10-9
10-5

2 *  10-4
10-3
1.6 *  10-3

While conductors are characterized by abundance of conduction or free electrons
that give rise to conduction current under the influence of an applied electric field, in
dielectric materials the bound electrons are predominant. Under the application of an
external electric field, the bound electrons of an atom are displaced such that the
centroid of the electron cloud is separated from the centroid of the nucleus. The atom
is then said to be polarized, thereby creating an electric dipole, as shown in
Figure 5.1(a). This kind of polarization is called electronic polarization. The schematic
representation of an electric dipole is shown in Figure 5.1(b).The strength of the dipole
is defined by the electric dipole moment p given by

(5.8)

where d is the vector displacement between the centroids of the positive and negative
charges, each of magnitude Q.

p = Qd
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144 Chapter 5 Wave Propagation in Material Media

(a) (b)

E d

Q

!QFIGURE 5.1

(a) An electric dipole. (b) Schematic
representation of an electric dipole.

Q

QE

!Q

!QE

E

FIGURE 5.2

Torque acting on an electric dipole in
an external electric field.

In certain dielectric materials, polarization may exist in the molecular structure
of the material even under the application of no external electric field.The polarization
of individual atoms and molecules, however, is randomly oriented, and hence the net
polarization on a macroscopic scale is zero. The application of an external field results
in torques acting on the microscopic dipoles, as shown in Figure 5.2, to convert the ini-
tially random polarization into a partially coherent one along the field, on a macro-
scopic scale. This kind of polarization is known as orientational polarization. A third
kind of polarization, known as ionic polarization, results from the separation of posi-
tive and negative ions in molecules formed by the transfer of electrons from one atom
to another in the molecule. Certain materials exhibit permanent polarization, that is,
polarization even in the absence of an applied electric field. Electrets, when allowed to
solidify in the applied electric field, become permanently polarized, and ferroelectric
materials exhibit spontaneous, permanent polarization.

On a macroscopic scale, we define a vector P, called the polarization vector, as
the electric dipole moment per unit volume.Thus, if N denotes the number of molecules
per unit volume of the material, then there are molecules in a volume and

(5.9)

where p is the average dipole moment per molecule. The units of P are coulomb-
meter/meter3 or coulombs per square meter. It is found that for many dielectric materials

P = 1
 ¢v

 a
N ¢v

 j = 1
 pj = Np

¢vN¢v
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5.1 Conductors and Dielectrics 145

the polarization vector is related to the electric field E in the dielectric in the simple
manner given by

(5.10)

where , a dimensionless parameter, is known as the electric susceptibility. The quantity
is a measure of the ability of the material to become polarized and differs from one

dielectric to another.
To discuss the influence of polarization in the dielectric upon electromagnetic

wave propagation in the dielectric medium, let us consider the case of the infinite plane
current sheet of Figure 4.8, radiating uniform plane waves, except that now the space
on either side of the current sheet is a dielectric medium instead of being free space.
The electric field in the medium induces polarization. The polarization in turn acts
together with other factors to govern the behavior of the electromagnetic field. For the
case under consideration, the electric field is entirely in the x-direction and uniform in
x and y. Thus, the induced electric dipoles are all oriented in the x-direction, on a
macroscopic scale, with the dipole moment per unit volume given by

(5.11)

where Ex is understood to be a function of z and t.
If we now consider an infinitesimal surface of area parallel to the yz-plane,

we can write associated with that infinitesimal area to be equal to cos where 
is a constant. The time history of the induced dipoles associated with that area can be
sketched for one complete period of the current source, as shown in Figure 5.3. In view
of the cosinusoidal variation of the electric field with time, the dipole moment of the
individual dipoles varies in a cosinusoidal manner with maximum strength in the posi-
tive x-direction at , decreasing sinusoidally to zero strength at and then
reversing to the negative x-direction, increasing to maximum strength in that direction
at , and so on.

The arrangement can be considered as two plane sheets of equal and opposite
time-varying charges displaced by the amount in the x-direction, as shown in 
Figure 5.4. To find the magnitude of either charge, we note that the dipole moment per
unit volume is

(5.12)

Since the total volume occupied by the dipoles is , the total dipole moment
associated with the dipoles is . The dipole moment associated
with two equal and opposite sheet charges is equal to the magnitude of either sheet
charge multiplied by the displacement between the two sheets. Hence, we obtain the
magnitude of either sheet charge to be .Thus, we have a situation
in which a sheet charge is above the surface and a sheet
charge is below the surface. This is equivalent to a
current flowing across the surface, since the charges are varying with time.

Q2 = -Q1 = -P0xeE0 cos vt ¢y ¢z
Q1 = P0xeE0 cos vt ¢y ¢z

ƒ P0xeE0 cos vt ¢y ¢z ƒ

P0xeE0 cos vt (d ¢y ¢z)
¢zd ¢y

Px = P0xeE0 cos vt

d

t = p /v

t = p /2vt = 0

E0vtE0Ex

¢z¢y

P = Pxax = P0xeExax

xe

xe

P = P0 xeE
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E

vt " 0

E

vt " p

vt " 2p

E

vt " p4

E

vt " 3p4

E

vt " 7p4vt " 3p2

vt " 5p4

vt " p2

#z

#y

E

x
z

y

E

FIGURE 5.3

Time history of induced electric dipoles in a dielectric material under the influence 
of a sinusoidally time-varying electric field.

d

#z

#y

Q2 " !Q1

Q1 " P0xeE0 cos vt #y#z

FIGURE 5.4

Two plane sheets of equal and opposite
time-varying charges equivalent to the
phenomenon depicted in Figure 5.3.
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5.1 Conductors and Dielectrics 147

We call this current the polarization current, since it results from the time varia-
tion of the electric dipole moments induced in the dielectric due to polarization. The
polarization current crossing the surface in the positive x-direction, that is, from below
to above, is

(5.13)

where the subscript p denotes polarization. By dividing by and letting the
area tend to zero, we obtain the polarization current density associated with the points
on the surface as

(5.14)

or

(5.15)

Although we have deduced this result by considering the special case of the infinite
plane current sheet, it is valid in general.

In considering electromagnetic wave propagation in a dielectric medium, the
polarization current density given by (5.15) must be included with the current density
term on the right side of Ampere’s circuital law. Thus, considering Ampere’s circuital
law in differential form for the general case given by (3.28), we have

(5.16)

Substituting (5.15) into (5.16), we get

(5.17)

In order to make (5.17) consistent with the corresponding equation for free space
given by (3.28), we now revise the definition of the displacement vector D to read as

(5.18)

Substituting for P by using (5.10), we obtain

(5.19)

where we define

(5.20)Pr = 1 + xe 

 = PE
 = P0PrE
 = P0(1 + xe)E

 D = P0E + P0xeE

D = P0E + P

 = J+ 0
0t

 (P0E + P)

 ¥ : H = J+ 0P
 0t

+ 0
0t

 (P0E)

¥ : H = J+ Jp + 0
0t

 (P0E)

Jp = 0P
0t

 = 0
0t

 (P0xeE0 cos vt) =
0Px

0t

 Jpx = Lim
¢y:0
¢z:0

Ipx

¢y ¢z
= -P0xeE0v sin vt

¢y ¢zIpx

Ipx =
dQ1

dt
= -P0xeE0v sin vt ¢y ¢z
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148 Chapter 5 Wave Propagation in Material Media

and

(5.21)

The quantity is known as the relative permittivity or dielectric constant of the di-
electric, and is the permittivity of the dielectric. The new definition for D permits the
use of the same Maxwell’s equations as for free space with replaced by and with-
out the need for explicitly considering the polarization current density.The permittivity

takes into account the effects of polarization, and there is no need to consider them
when we use for ! The relative permittivity is an experimentally measurable para-
meter and its values for several dielectric materials are listed in Table 5.2.

P0P
P

PP0

P
Pr

P = P0Pr

TABLE 5.2 Relative Permittivities of Some Materials

Material
Relative 

Permittivity

Air 1.0006
Paper 2.0–3.0
Teflon 2.1
Polystyrene 2.56
Plexiglass 2.6–3.5
Nylon 3.5
Fused quartz 3.8
Bakelite 4.9

Material
Relative 

Permittivity

Dry earth 5
Mica 6
Neoprene 6.7
Wet earth 10
Ethyl alcohol 24.3
Glycerol 42.5
Distilled water 81
Titanium dioxide 100

Equation (5.19) governs the relationship between D and E for dielectric materials.
Dielectrics for which is independent of the magnitude as well as the direction of E as
indicated by (5.19) are known as linear isotropic dielectrics. For certain dielectric mate-
rials, each component of the polarization vector can be dependent on all components
of the electric field intensity. For such materials, known as anisotropic dielectric materi-
als, D is not in general parallel to E, and the relationship between these two quantities
is expressed in the form of a matrix equation, as given by

(5.22)

The square matrix in (5.22) is known as the permittivity tensor of the anisotropic dielectric.

Example 5.1

An anisotropic dielectric material is characterized by the permittivity tensor

Let us find D for several cases of E.

[P] = C 7P0 2P0 0
2P0 4P0 0
0 0 3P0

S
C Dx

Dy

Dz

S = C Pxx Pxy Pxz

Pyx Pyy Pyz

Pzx Pzy Pzz

S C Ex

Ey

Ez

S
P
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5.2 Magnetic Materials 149

Substituting the given permittivity matrix in (5.22), we obtain

For , ; D is parallel to E.
For , ; D is not parallel to E.
For , ; D is not parallel to E.
For , ; D is not paral-

lel to E.
For , ; D is paral-

lel to E and the dielectric behaves effectively in the same manner as an isotropic dielectric having the
permittivity ; that is, the effective permittivity of the anisotropic dielectric for this case is .

Thus, we find that in general D is not parallel to E but for certain polarizations of E, D is
parallel to E. These polarizations are known as the characteristic polarizations.

5.2 MAGNETIC MATERIALS

The important characteristic of magnetic materials is magnetization. Magnetization is
the phenomenon by means of which the orbital and spin motions of electrons are in-
fluenced by an external magnetic field. An electronic orbit is equivalent to a current
loop, which is the magnetic analog of an electric dipole. The schematic representation
of a magnetic dipole as seen from along its axis and from a point in its plane are shown
in Figures 5.5(a) and 5.5(b), respectively. The strength of the dipole is defined by the
magnetic dipole moment m given by

(5.23)

where A is the area enclosed by the current loop and is the unit vector normal to the
plane of the loop and directed in the right-hand sense.

an

m = IAan

8P08P0

D = 16P0E0 cos vt ax + 8P0E0 cos vt ay = 8P0EE = E0 cos vt (2ax + ay)

D = 11P0E0 cos vt ax + 10P0E0 cos vt ayE = E0 cos vt (ax + 2ay)
D = 2P0E0 cos vt ax + 4P0E0 cos vt ayE = E0 cos vt ay

D = 7P0E0 cos vt ax + 2P0E0 cos vt ayE = E0 cos vt ax

D = 3P0E0 cos vt azE = E0 cos vt az

Dz = 3P0Ez 

Dy = 2P0Ex + 4P0Ey

Dx = 7P0Ex + 2P0Ey

(a)

an I

(b)

Iin Iout

FIGURE 5.5

Schematic representation of a magnetic dipole
as seen from (a) along its axis and (b) a point in
its plane.

In many materials, the net magnetic moment of each atom is zero, that is, on the
average, the magnetic dipole moments corresponding to the various electronic orbital
and spin motions add up to zero. An external magnetic field has the effect of inducing
a net dipole moment by changing the angular velocities of the electronic orbits, thereby
magnetizing the material.This kind of magnetization, known as diamagnetism, is in fact
prevalent in all materials. In certain materials known as paramagnetic materials, the
individual atoms possess net nonzero magnetic moments even in the absence of an
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150 Chapter 5 Wave Propagation in Material Media

external magnetic field. These permanent magnetic moments of the individual atoms
are, however, randomly oriented so that the net magnetization on a macroscopic scale
is zero. An applied magnetic field has the effect of exerting torques on the individual
permanent dipoles, as shown in Figure 5.6, to convert, on a macroscopic scale, the ini-
tially random alignment into a partially coherent one along the magnetic field, that is,
with the normal to the current loop directed along the magnetic field.This kind of mag-
netization is known as paramagnetism. Certain materials known as ferromagnetic,
antiferromagnetic, and ferrimagnetic materials exhibit permanent magnetization, that
is, magnetization even in the absence of an applied magnetic field.

I

I

I dl ! B

B

I dl ! B

FIGURE 5.6

Torque acting on a magnetic dipole
in an external magnetic field.

On a macroscopic scale, we define a vector M, called the magnetization vector, as
the magnetic dipole moment per unit volume. Thus, if N denotes the number of molecules
per unit volume of the material, then there are molecules in a volume and

(5.24)

where m is the average dipole moment per molecule. The units of M are ampere-meter2/
meter3 or amperes per meter. It is found that for many magnetic materials, the magnetiza-
tion vector is related to the magnetic field B in the material in the simple manner given by

(5.25)

where , a dimensionless parameter, is known as the magnetic susceptibility. The
quantity is a measure of the ability of the material to become magnetized and dif-
fers from one magnetic material to another.

To discuss the influence of magnetization in the material on electromagnetic
wave propagation in the magnetic material medium, let us consider the case of the in-
finite plane current sheet of Figure 4.8, radiating uniform plane waves, except that now
the space on either side of the current sheet possesses magnetic material properties in
addition to dielectric properties. The magnetic field in the medium induces magnetiza-
tion. The magnetization in turn acts together with other factors to govern the behavior
of the electromagnetic field. For the case under consideration, the magnetic field is
entirely in the y-direction and uniform in x and y. Thus, the induced dipoles are all
oriented with their axes in the y-direction,on a macroscopic scale,with the dipole moment
per unit volume given by

(5.26)

where is understood to be a function of z and t.By

M = Myay =
xm

1 + xm
 
By

m0
 ay

xm

xm

M =
xm

1 + xm
 
B
m0

M = 1
 ¢v

 a
N ¢v

 j = 1
mj = Nm

¢vN¢v
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5.2 Magnetic Materials 151

Let us now consider an infinitesimal surface of area parallel to the 
yz-plane and the magnetic dipoles associated with the two areas to the left and
to the right of the center of this area,as shown in Figure 5.7(a).Since By is a function of z,
we can assume the dipoles in the left area to have a different moment than the dipoles
in the right area for any given time. If the dimension of an individual dipole is in the
x-direction, then the total dipole moment associated with the dipoles in the left area is

and the total dipole moment associated with the dipoles in the right
area is .[My]z + ¢z/2 d ¢y ¢z
[My]z - ¢z/2 d ¢y ¢z

d

¢y ¢z
¢y ¢z

B B

dd

x

z

y

x

z

y

#z
2

z ! 

#z
2z ! #z

2
z $ z

#z
2

z $ z

d

#y

d

#y

#z #z

(a)

(b)

FIGURE 5.7

(a) Induced magnetic dipoles in a magnetic material. (b) Equivalent surface current loops.
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152 Chapter 5 Wave Propagation in Material Media

The arrangement of dipoles can be considered to be equivalent to two rectangu-
lar surface current loops, as shown in Figure 5.7(b), with the left side current loop
having a dipole moment and the right side current loop having a
dipole moment . Since the magnetic dipole moment of a rectangular
surface current loop is simply equal to the product of the surface current and the 
cross-sectional area of the loop, the surface current associated with the left loop is

and the surface current associated with the right loop is .
Thus, we have a situation in which a current equal to is crossing the area

in the positive x-direction, and a current equal to is crossing the
same area in the negative x-direction. This is equivalent to a net current flowing across
the surface.

We call this current the magnetization current since it results from the space varia-
tion of the magnetic dipole moments induced in the magnetic material due to magneti-
zation. The net magnetization current crossing the surface in the positive x-direction is

(5.27)

where the subscript m denotes magnetization. By dividing and letting
the area tend to zero, we obtain the magnetization current density associated with the
points on the surface as

(5.28)

or

or

(5.29)

Although we have deduced this result by considering the special case of the infinite
plane current sheet, it is valid in general.

In considering electromagnetic wave propagation in a magnetic material medium,
the magnetization current density given by (5.29) must be included with the current
density term on the right side of Ampere’s circuital law. Thus, considering Ampere’s
circuital law in differential form for the general case given by (3.28), we have

(5.30)

Substituting (5.29) into (5.30), we get

¥ : B
m0

= J+ ¥ : M + 0D
0t

¥ : B
m0

= J+ Jm + 0D
0t

Jm = ¥ : M

Jmxax = 4 ax ay az

0
0x

0
0y

0
0z

0 My 0

4
 = -

0My

0z

 Jmx = Lim
¢y:0
¢z:0

Imx

¢y ¢z
= Lim

¢z:0

[My]z - ¢z/2 - [My]z + ¢z/2 

 ¢z

Imx by ¢y ¢z

Imx = [My]z - ¢z/2 ¢y - [My]z + ¢z/2 ¢y

[My]z + ¢z/2 ¢y¢y ¢z
[My]z - ¢z/2 ¢y

[My]z + ¢z/2 ¢y[My]z - ¢z/2 ¢y

[My]z + ¢z/2 d ¢y ¢z
[My]z - ¢z/2 d ¢y ¢z
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5.2 Magnetic Materials 153

or

(5.31)

In order to make (5.31) consistent with the corresponding equation for free space
given by (3.28), we now revise the definition of the magnetic field intensity vector H to
read as

(5.32)

Substituting for M by using (5.25), we obtain

(5.33)

where we define

(5.34)

and

(5.35)

The quantity is known as the relative permeability of the magnetic material,
and is the permeability of the magnetic material. The new definition for H permits
the use of the same Maxwell’s equations as for free space with replaced by and
without the need for explicitly considering the magnetization current density. The per-
meability takes into account the effects of magnetization, and there is no need to
consider them when we use for ! For anisotropic magnetic materials, H is not in
general parallel to B and the relationship between the two quantities is expressed
in the form of a matrix equation, as given by

(5.36)

just as in the case of the relationship between D and E for anisotropic dielectric
materials.

For many materials for which the relationship between H and B is linear, the
relative permeability does not differ appreciably from unity, unlike the case of linear

C Bx

By

Bz

S = C mxx mxy mxz

myx myy myz

mzx mzy mzz

S C Hx

Hy

Hz

S
m0m

m

mm0

m
mr

 m = m0mr

 mr = 1 + xm

 = B
m

 = B
m0mr

 = B
m0(1 + xm)

 H = B
m0

-
xm

1 + xm
 
B
m0

H = B
m0

- M

¥ : a B
m0

- Mb = J+ 0D
0t
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154 Chapter 5 Wave Propagation in Material Media

dielectric materials, for which the relative permittivity can be very large, as shown in
Table 5.2. In fact, for diamagnetic materials, the magnetic susceptibility is a small
negative number of the order , whereas for paramagnetic materials,

is a small positive number of the order . Ferromagnetic materials, how-
ever, possess large values of relative permeability on the order of several hundreds,
thousands, or more.The relationship between B and H for these materials is nonlinear,
resulting in a nonunique value of for a given material. In fact, these materials are
characterized by hysteresis, that is, the relationship between B and H dependent on the
past history of the material.

A typical curve of B versus H, known as the B–H curve or the hysteresis curve for a
ferromagnetic material, is shown in Figure 5.8. If we start with an unmagnetized sample of
the material in which both B and H are initially zero, corresponding to point a in Figure 5.8,
and then magnetize the material, the manner in which magnetization is built up initially
to saturation is given by the portion ab of the curve. If the magnetization is now de-
creased gradually and then reversed in polarity, the curve does not retrace ab back-
ward but instead follows along bcd until saturation is reached in the opposite direction
at point e. A decrease in the magnetization back to zero followed by a reversal back to
the original polarity brings the point back to b along the curve through the points f and g,
thereby completing the loop. A continuous repetition of the process thereafter would
simply make the point trace the hysteresis loop bcdefgb repeatedly.

mr

10- 3 to 10- 7xm

-10- 4 to -10- 8
xm

b

c

a H

B

f

g

e

d

FIGURE 5.8

Hysteresis curve for a ferromagnetic material.

5.3 WAVE EQUATION AND SOLUTION

In the previous two sections, we introduced conductors, dielectrics, and magnetic mate-
rials.We found that conductors are characterized by conduction current, dielectrics are
characterized by polarization current, and magnetic materials are characterized by
magnetization current. The conduction current density is related to the electric field
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5.3 Wave Equation and Solution 155

intensity through the conductivity of the conductor. To take into account the effects
of polarization, we modified the relationship between D and E by introducing the per-
mittivity of the dielectric. Similarly, to take into account the effects of magnetization,
we modified the relationship between H and B by introducing the permeability 
of the magnetic material. The three pertinent relations, known as the constitutive
relations, are

(5.37a)

(5.37b)

(5.37c)

A given material may possess all three properties, although usually one of them is
predominant. Hence, in this section we shall consider a material medium characterized
by . The Maxwell’s curl equations for such a medium are

(5.38)

(5.39)

To discuss electromagnetic wave propagation in the material medium, let us consider
the infinite plane current sheet of Figure 4.8, except that now the medium on either
side of the sheet is a material instead of free space, as shown in Figure 5.9.

¥ : H = J+ 0D
0t

= Jc + 0D
0t

= sE + P0E
0t

¥ : E = - 0B
0t

= -m0H
0t

s, P, and m

 H = B
m

 D = PE

 Jc = sE

m
P

s

z

y

x

JS

s, P, m s, P, m

FIGURE 5.9

Infinite plane current sheet imbedded
in a material medium.

The electric and magnetic fields for the simple case of the infinite plane current
sheet in the plane and carrying uniformly distributed current in the negative 
x-direction, as given by

(5.40)JS = -JS0 cos vt ax

z = 0
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156 Chapter 5 Wave Propagation in Material Media

are of the form

(5.41a)

(5.41b)

The corresponding simplified forms of the Maxwell’s curl equations are

(5.42)

(5.43)

We shall make use of the phasor technique to solve these equations. Thus, letting

(5.44a)
(5.44b)

and replacing in (5.42) and (5.43) by their phasors and respectively,
and by , we obtain the corresponding differential equations for the phasors 

and as

(5.45)

(5.46)

Differentiating (5.45) with respect to z and using (5.46), we obtain

(5.47)

Defining

(5.48)

and substituting in (5.47), we have

(5.49)

Equation (5.49) is the wave equation for in the material medium and its solu-
tion is given by

(5.50)

where are arbitrary constants. Noting that is a complex number and hence
can be written as

(5.51)g– = a + jb

g––
A and –

B

–
Ex(z) = –

Ae-g–z + –
Be

–gz

–
Ex

02 –
Ex

0z2 = g– 2 –
Ex

g– = 2jvm(s + jvP)

02 –
Ex

0z2 = -jvm
0 –
Hy

0z
= jvm(s + jvP) –

Ex

0 –
Hy

0z
= -s –

Ex - jvP –
Ex = -(s + jvP) –

Ex

0E
–

x

0z
= -jv mH

–
y

H
–

yE
–

x

jv0>0t
H
–

y,E
–

xEx and Hy

Hy(z, t) = Re [H–y(z)ejvt]
Ex(z, t) = Re [E–x(z)ejvt]

0Hy

0z
= -sEx - P

0Ex

0t

0Ex

0z
= -m

0Hy

0t

H = Hy(z, t)ay

E = Ex(z, t)ax
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and also writing in exponential form as , respectively, we have

or

(5.52)

We now recognize the two terms on the right side of (5.52) as representing uniform
plane waves propagating in the positive z- and negative z-directions, respectively, with
phase constant , in view of the factors cos and cos ,
respectively. They are, however, multiplied by the factors and , respectively.
Hence, the peak amplitude of the field differs from one constant phase surface to an-
other. Since there cannot be a positive going wave in the region , that is, to the left
of the current sheet, and since there cannot be a negative going wave in the region ,
that is, to the right of the current sheet, the solution for the electric field is given by

(5.53)

To discuss how the peak amplitude of varies with z on either side of the cur-
rent sheet, we note that since , , and are all positive, the phase angle of

lies between 90° and 180°, and hence the phase angle of lies between
45° and 90°, making and positive quantities. This means that decreases with
increasing value of z, that is, in the positive z-direction, and decreases with decreasing
value of z, that is, in the negative z-direction. Thus, the exponential factors and 
associated with the solutions for in (5.53) have the effect of reducing the amplitude of
the field, that is, attenuating it, as it propagates away from the sheet to either side of it.
For this reason, the quantity is known as the attenuation constant. The attenuation per
unit length is equal to . In terms of decibels, this is equal to The
units of are nepers per meter, abbreviated Np/m. The quantity is known as
the propagation constant, since its real and imaginary parts, and , together determine
the propagation characteristics, that is, attenuation and phase shift of the wave.

Returning now to the expression for given by (5.48), we can obtain the expres-
sions for and by squaring it on both sides and equating the real and imaginary parts
on both sides. Thus,

or

(5.54a)
(5.54b)

Now, squaring (5.54a) and (5.54b) and adding and then taking the square root, we obtain

(5.55)a2 + b2 = v2mPC1 + a s
vP b2

 2ab = vms
 a2 - b2 = -v2mP

g– 2 = (a + jb)2 = jvm(s + jvP)

ba
g–

ba
ga

20 log10 e
a, or 8.686a db.ea

a

Ex

eaze-az
eaz

e-azba
g–jvm(s + jvP)

mPs
Ex

Ex(z, t) = eAe-az cos (vt - bz + u) for z 7 0
Beaz cos (vt + bz + f) for z 6 0

z 7 0
z 6 0

eaze-az
(vt + bz + f)(vt - bz + u)b

 = Ae-az cos (vt - bz + u) + Beaz cos (vt + bz + f)
 = Re [Aejue-aze- jbzejvt + Bejfeazejbzejvt]

 Ex(z, t) = Re [ –
Ex(z)ejvt]

–
Ex(z) = Aejue-aze- jbz + Bejfeazejbz

Aeju and BejfA
– and B–
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158 Chapter 5 Wave Propagation in Material Media

From (5.54a) and (5.55), we then have

Since and are both positive, we finally get

(5.56)

(5.57)

We note from (5.56) and (5.57) that and are both dependent on through the fac-
tor .This factor, known as the loss tangent, is the ratio of the magnitude of the con-
duction current density to the magnitude of the displacement current density

in the material medium. In practice, the loss tangent is, however, not simply in-
versely proportional to , since both and are generally functions of frequency.

The phase velocity of the wave along the direction of propagation is given by

(5.58)

We note that the phase velocity is dependent on the frequency of the wave.Thus, waves
of different frequencies travel with different phase velocities, that is, they undergo dif-
ferent rates of change of phase with z at any fixed time. This characteristic of the ma-
terial medium gives rise to a phenomenon known as dispersion. The topic of dispersion
is discussed in Section 8.3. The wavelength in the medium is given by

(5.59)

Having found the solution for the electric field of the wave and discussed its
general properties, we now turn to the solution for the corresponding magnetic field by
substituting for in (5.45). Thus,

(5.60) = 1
h
1 –
Ae-gz - –

Begz2
 = As + jvP

jvm
1 –
Ae-gz - –

Begz2
 –Hy = - 1

jvm
 
0 –
Ex

0z
=
g

jvm
1 –
Ae-gz - –

Begz2
–
Ex

l = 2p
b

= 12
f1mP

B B1 + a s
vP b2

+ 1 R - 1>2

vp = v
b

= 221mP
B C1 + a s

vP b2

+ 1 R - 1>2
Psv

jvP –
Ex

s
–
Ex

s>vP
sba

 b =
v1mP22

B C1 + a s
vP b2

+ 1 R 1>2
 a =

v1mP22
B C1 + a s

vP b2

- 1 R 1>2ba

 b2 = 1
2
Bv2mP + v2mPC1 + a s

vP b2 R a2 = 1
 2
B -v2mP + v2mPC1 + a s

vP b2 R
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5.3 Wave Equation and Solution 159

where

(5.61)

is the intrinsic impedance of the medium. Writing

(5.62)

we obtain the solution for as

(5.63)

Remembering that the first and second terms on the right side of (5.63) correspond to
and waves, respectively, and hence represent the solutions for the magnetic

field in the regions and , respectively, and recalling that the solution for 
adjacent to the current sheet is given by

(5.64)

we obtain

(5.65a)

(5.65b)

Thus, the electromagnetic field due to the infinite plane current sheet in the 
xy-plane having

and with a material medium characterized by , , and on either side of it is given by

(5.66a)

(5.66b)

We note from (5.66a) and (5.66b) that wave propagation in the material medium is
characterized by phase difference between E and H in addition to attenuation. These
properties are illustrated in Figure 5.10, which shows sketches of the current density on
the sheet and the distance-variation of the electric and magnetic fields on either side of
the current sheet for a few values of t.

H(z, t) = ; 
JS0

2
e<az cos (vt < bz) ay  for z ! 0

E(z, t) =
ƒ  h ƒJS0

2
e<az cos (vt < bz + t) ax for z ! 0

mPs
JS = -JS0 cos vt ax

 B =
ƒ  h ƒJS0

2
, f = t

 A =
ƒ  h ƒJS0

2
, u = t

Hy = d JS0

2
 cos vt for z = 0+

-
JS0

2
 cos vt for z = 0-

Hyz 6 0z 7 0
(-)(+)

 = A

ƒ  h ƒ
e-az cos (vt - bz + u - t) - B

ƒ  h ƒ
eaz cos (vt + bz + f - t)

 = Re c 1
 ƒ  h ƒejtAejue-aze- jbzejvt - 1

ƒ  h ƒejtBejfeazejbzejvt d Hy(z, t) = Re [ –
Hy(z)ejvt]

Hy(z, t)

h = ƒh ƒ ejt

h = A jvm
s + jvP
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z

y

x

JS

H
E E

H

JS " ! JS0 cos vt ax t " 0, JS " ! JS0 ax

z

y

x

JS

H
E

H

E

JS = – ax
JS0t =       ,p

4v 2

x

z

y

H

H

E E

JS = 0t =       ,p
2v

FIGURE 5.10

Time history of uniform plane electromagnetic wave radiating away from an infinite plane
current sheet imbedded in a material medium.
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5.4 Uniform Plane Waves in Dielectrics and Conductors 161

Since the fields are attenuated as they progress in their respective directions of prop-
agation, the medium is characterized by power dissipation. In fact,by evaluating the power
flow out of a rectangular box lying between z and and having dimensions and

in the x- and y-directions, respectively, as was done in Section 4.6, we obtain

(5.67)

The quantity is obviously the power dissipated in the volume due to atten-
uation, and the quantities and are the energies stored in the electric
and magnetic fields, respectively, in the volume . It then follows that the power dissi-
pation density, the stored energy density associated with the electric field, and the
stored energy density associated with the magnetic field are given by

(5.68)

(5.69)

and

(5.70)

respectively. Equation (5.67) is the generalization, to the material medium, of the
Poynting’s theorem given by (4.70) for free space.

5.4 UNIFORM PLANE WAVES IN DIELECTRICS AND CONDUCTORS

In the previous section, we discussed electromagnetic wave propagation for the general
case of a material medium characterized by conductivity , permittivity , and perme-
ability . We found general expressions for the attenuation constant , the phase con-
stant , the phase velocity , the wavelength , and the intrinsic impedance . These
are given by (5.56), (5.57), (5.58), (5.59), and (5.61), respectively. For , the medium
is a perfect dielectric, having the propagation characteristics

(5.71a)
(5.71b)

(5.71c) vp = 11mP

 b = v1mP
 a = 0

s = 0
h–lvpb

am
Ps

wm = 1
2
mH2

y

 we = 1
 2

 PE2
x

 Pd = sE2
x

¢v

1
2 mH2

y ¢v1
2 PE2

x ¢v
¢vsE2

x ¢v

 = -sE2
x ¢v - 0

 0t
a 1

2
PE2

x  ¢vb - 0
0t

 a 1
2

 mH2
y ¢vb

 = cEx a -sEx - P
0Ex

0t
b + Hy a -m

0Hy

0t
b d ¢v

 = a Ex

0Hy

0z
+ Hy

0Ex

0z
b¢v

 CS
P # dS =

0Pz

0z
 ¢x ¢y ¢z = 0

0z
(ExHy) ¢v

¢y
¢xz + ¢z
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162 Chapter 5 Wave Propagation in Material Media

(5.71d)

(5.71e)

Thus, the waves propagate without attenuation as in free space but with and 
replaced by and , respectively. For nonzero , there are two special cases: (a) im-
perfect dielectrics or poor conductors and (b) good conductors.The first case is charac-
terized by conduction current small in magnitude compared to the displacement
current; the second case is characterized by just the opposite.

Thus, considering the case of imperfect dielectrics, we have ,
or . We can then obtain approximate expressions for , , , , and as
follows:

(5.72a)

(5.72b)

(5.72c)

(5.72d) L 1
f1mP

a 1 - s2

8v2P2 b  

 l = 12
f1mP

B C1 + a s
vP b2

+ 1 R - 1>2 

 L 11mP
a 1 - s2

8v2P2 b  

 L 121mP
c2 + s2

2v2P2 d-1>2 

 vp = 121mP
B C1 + a s

vP b2

+ 1 R - 1>2 

 L v2mP a 1 + s2

8v2P2 b
 L
v1mP12

c2 + s2

2v2P2 d1>2
 b =

v1mP12
B C1 + a s

vP b2

+ 1 R 1>2 

 L s
2AmP a 1 - s2

8v2P2 b
 L
v1mP12

 
s12vP
c1 - s2

4v2P2 d1>2
 =
v1mP12

c1 + s2

2v2P2 - s4

8v4P4 + Á - 1 d1>2
 a =

v1mP12
B C1 + a s

vP b2

- 1 R 1>2
h–lvpbas>vP V 1

ƒs –
Ex ƒ V ƒjvP –

Ex ƒ

smP
m0P0

 h– = AmP l = 1
f1mP
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5.4 Uniform Plane Waves in Dielectrics and Conductors 163

(5.72e)

In (5.72a)–(5.72e), we have retained all terms up to and including the second power in
and have neglected all higher-order terms. For a value of equal to 0.1, the quan-

tities , , and are different from those for the corresponding perfect dielectric case by a
factor of only , or , whereas the intrinsic impedance has a real part differing from
the intrinsic impedance of the perfect dielectric medium by a factor of and an imagi-
nary part that is of the intrinsic impedance of the perfect dielectric medium. Thus, the
only significant feature different from the perfect dielectric case is the attenuation.

Example 5.2

Let us consider that a material can be classified as a dielectric for and compute the
values of the several propagation parameters for three materials: mica, dry earth, and sea water.

Denoting the frequency for which as , we have , assuming that 
and are independent of frequency. Values of , , and and approximate values of the several
propagation parameters for are listed in Table 5.3, in which c is the velocity of light in
free space and and are the phase constant and wavelength in free space for the frequency
of operation. It can be seen from Table 5.3 that mica behaves as a dielectric for almost any fre-
quency, but sea water can be classified as a dielectric only for frequencies above approximately
10 GHz. We also note that because of the low value of , mica is a good dielectric, but the high
value of for sea water makes it a poor dielectric.a

a

l0b0

f 7 10fq

fqPsP
sfq = s>2pPfqs>vP = 1

s>vP 6 0.1

1
 20

3
 800

1
 8000.01>8lvpb

s>vPs>vP

 L AmP c a 1 - 3
8

 
s2

v2P2 b + j 
s

2vP d  
 = AmP c1 + j 

s

2vP - 3
8

 
s2

v2P2 - Á d  
 h– = A jvm

s + jvP = A jvm
jvP a 1 - j 

s

vP b -1>2 

TABLE 5.3 Values of Several Propagation Parameters for Three Materials for the Dielectric Range 
of Frequencies

Turning now to the case of good conductors, we have , or
.We can then obtain approximate expressions for , , , , and , as follows:

(5.73a) = 1pfms

 L
v1mP12 A svP = Avms2

 a =
v1mP12

BC1 + a s
vP b 2

- 1R1>2 hlvpbas>vP W 1
ƒs –

Ex ƒ W ƒjvP –
Ex ƒ

Material S/m
s

Pr Hz
fq

Np/m
a

b>b0 vp>c l>l0 Æ
h–

Mica 6 2.45 0.408 0.408 153.9
Dry earth 5 2.24 0.447 0.447 168.6
Sea water 4 80 84.3 8.94 0.112 0.112 42.150.9 * 109

84 * 10-53.6 * 10410-5
77 * 10-113 * 10-210-11
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164 Chapter 5 Wave Propagation in Material Media

(5.73b)

(5.73c)

(5.73d)

(5.73e)

We note that , , , and are proportional to , provided that and are constants.
To discuss the propagation characteristics of a wave inside a good conductor, let us

consider the case of copper. The constants for copper are , ,
and . Hence, the frequency at which is equal to for copper is equal to

or .Thus, at frequencies of even several gigahertz, copper
behaves like an excellent conductor. To obtain an idea of the attenuation of the wave in-
side the conductor, we note that the attenuation undergone in a distance of one wave-
length is equal to or . In terms of decibels, this is equal to 20 log10 .
In fact, the field is attenuated by a factor , or 0.368 in a distance equal to . This dis-
tance is known as the skin depth and is denoted by the symbol . From (5.73a), we obtain

(5.74)

The skin depth for copper is equal to

Thus, in copper the fields are attenuated by a factor in a distance of 0.066 mm even
at the low frequency of 1 MHz, thereby resulting in the concentration of the fields near

e-1

12pf * 4p * 10-7 * 5.8 * 107
= 0.0661f

 m.

d = 1
 1pfms 

d
1>ae-1

e2p = 54.58 dbe-2pe-al

1.04 * 1018 Hz5.8 * 107>2pP0,
vPam = m0

P = P0s = 5.80 * 107 S/m

ms1fh–vpba

 = (1 + j)Apfm
s

 

 h– = A jvm
s + jvP L A jvm

s
 

 L A 4p
fms

 l = 12
f1mP

B C1 + a s
vP b2

+ 1 R -1>2
 

 = A4pf
ms

 L 121mPAvP
s

= A 2v
ms

 vp = 121mP
B C1 + a s

vP b2

+ 1 R -1>2 = 1pfms 

 L
v1mP12 A svP

 b =
v1mP12

B C1 + a s
vP b2

+ 1 R 1>2
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5.4 Uniform Plane Waves in Dielectrics and Conductors 165

to the skin of the conductor. This phenomenon is known as the skin effect. It also ex-
plains shielding by conductors. This topic is discussed in Section 10.3.

To discuss further the characteristics of wave propagation in a good conductor,
we note that the ratio of the wavelength in the conducting medium to the wavelength
in a dielectric medium having the same and as those of the conductor is given by

(5.75)

Since For example, for sea water,
and , so that the ratio of the two wavelengths for is equal

to 0.00745.Thus for , the wavelength in sea water is of the wavelength in
a dielectric having the same and as those of sea water and a still smaller fraction of
the wavelength in free space. Furthermore, the lower the frequency, the smaller is this
fraction. Since it is the electrical length, that is, the length in terms of the wavelength,
instead of the physical length that determines the radiation efficiency of an antenna,
this means that antennas of much shorter length can be used in sea water than in free
space. Together with the property that , this illustrates that low frequencies
are more suitable than high frequencies for communication under water, and with
underwater objects.

Equation (5.73e) tells us that the intrinsic impedance of a good conductor has a
phase angle of 45º. Hence, the electric and magnetic fields in the medium are out of
phase by 45º. The magnitude of the intrinsic impedance is given by

(5.76)

As a numerical example, for copper, this quantity is equal to

Thus, the intrinsic impedance of copper has as low a magnitude as 0.369 even at a
frequency of Hz. In fact, by recognizing that

(5.77)

we note that the magnitude of the intrinsic impedance of a good conductor medium is
a small fraction of the intrinsic impedance of a dielectric medium having the same 
and . It follows that for the same electric field, the magnetic field inside a good con-
ductor is much larger than the magnetic field inside a dielectric having the same and

as those of the conductor.
Finally, for , the medium is a perfect conductor, an idealization of the good

conductor. From (5.74), we note that the skin depth is then equal to zero and that there
is no penetration of the fields. Thus, no time-varying fields can exist inside a perfect
conductor.

s = q
m

P
m

P

ƒ  h ƒ = A2pfm
s

= AvP
s

 Am P 

1012
Æ

C2pf * 4p * 10-7

5.8 * 107 = 3.69 * 10-7 1f Æ

ƒ  h ƒ = ` (1 + j)Apfm
s
` = A2pfm

s

a r 1f

mP
1

134f = 25 kHz
f = 25 kHzm = m0P = 80P0,

s = 4 S/m,s>vP W 1, lconductor V ldielectric.

lconductor

ldielectric
L

14p >fms
1>f1mP

= A4pfP
 s

= A2vP
 s

 

mP
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166 Chapter 5 Wave Propagation in Material Media

5.5 BOUNDARY CONDITIONS

In our study of electromagnetics we will be considering problems involving more than
one medium. To solve a problem involving a boundary surface between different
media, we need to know the conditions satisfied by the field components at the boundary.
These are known as the boundary conditions. They are a set of relationships relating
the field components at a point adjacent to and on one side of the boundary, to the
field components at a corresponding point adjacent to and on the other side of the
boundary. These relationships arise from the fact that Maxwell’s equations in integral
form involve closed paths and surfaces and they must be satisfied for all possible closed
paths and surfaces, whether they lie entirely in one medium or encompass a portion of
the boundary between two different media. In the latter case, Maxwell’s equations in
integral form must be satisfied collectively by the fields on either side of the boundary,
thereby resulting in the boundary conditions.

We shall derive the boundary conditions by considering the Maxwell’s equations
in integral form

(5.78a)

(5.78b)

(5.78c)

(5.78d)

and applying them one at a time to a closed path or a closed surface encompassing
the boundary, and in the limit that the area enclosed by the closed path or the volume
bounded by the closed surface goes to zero. Thus, let us consider two semi-infinite
media separated by a plane boundary, as shown in Figure 5.11. Let us denote the
quantities pertinent to medium 1 by subscript 1 and the quantities pertinent to medium
2 by subscript 2. Let be the unit normal vector to the surface and directed into
medium 1, as shown in Figure 5.11, and let all normal components of fields at the
boundary in both media denoted by an additional subscript n be directed along .an

an

 CS
B # dS = 0

 CS
D # dS = LV

r dv

 CC
H # dl = LS

J# dS + d
dtLS

D # dS

 CC
E # dl = - d

dtLS
B # dS

a

d c

b

an
as

Medium 1

Medium 2

FIGURE 5.11

For deriving the boundary conditions
resulting from Faraday’s law and
Ampere’s circuital law.
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5.5 Boundary Conditions 167

Let the surface charge density and the surface current density on the
boundary be and , respectively. Note that, in general, the fields at the boundary in
both media and the surface charge and current densities are functions of position on
the boundary.

First, we consider a rectangular closed path abcda of infinitesimal area in the
plane normal to the boundary and with its sides ab and cd parallel to and on either side
of the boundary, as shown in Figure 5.11.Applying Faraday’s law (5.78a) to this path in
the limit that ad and by making the area abcd tend to zero, but with ab and cd
remaining on either side of the boundary, we have

(5.79)

In this limit, the contributions from ad and bc to the integral on the left side of (5.79)
approach zero. Since ab and cd are infinitesimal, the sum of the contributions from ab and
cd becomes , where and are the components of and 
along ab and cd, respectively.The right side of (5.79) is equal to zero, since the magnetic
flux crossing the area abcd approaches zero as the area abcd tends to zero. Thus, (5.79)
gives

or, since ab and cd are equal and ,

(5.80)

Let us now define to be the unit vector normal to the area abcd and in the direction
of advance of a right-hand screw as it is turned in the sense of the closed path abcda.
Noting then that is the unit vector along ab, we can write (5.80) as

Rearranging the order of the scalar triple product, we obtain

(5.81)

Since we can choose the rectangle abcd to be in any plane normal to the boundary,
(5.81) must be true for all orientations of . It then follows that

(5.82a)

or, in scalar form,

(5.82b)

where and are the components of and , respectively, tangential to the
boundary. In words, (5.82a) and (5.82b) state that at any point on the boundary,
the components of and tangential to the boundary are equal.E2E1

E2E1Et2Et1

Et1 - Et2 = 0

an : (E1 - E2) = 0

as

as # an : (E1 - E2) = 0

as : an # (E1 - E2) = 0

as : an

as

Eab - Edc = 0

Edc = -Ecd

Eab(ab) + Ecd(cd) = 0

E2E1EcdEab[Eab(ab) + Ecd(cd)]

Lim
ad:0
bc:0Cabcda

E # dl = - Lim
ad:0
bc:0

 
d
dt 3

area
abcd

B # dS

bc : 0

JSrS

(A/m)(C/m2)
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168 Chapter 5 Wave Propagation in Material Media

Similarly, applying Ampere’s circuital law (5.78a) to the closed path in the limit
that ad and , we have

(5.83)

Using the same argument as for the left side of (5.79), we obtain the quantity on the
left side of (5.83) to be equal to , where and are the com-
ponents of and along ab and cd, respectively. The second integral on the right
side of (5.83) is zero, since the displacement flux crossing the area abcd approaches
zero as the area abcd tends to zero. The first integral on the right side of (5.83) would
also be equal to zero but for a contribution from the surface current on the boundary,
because letting the area abcd tend to zero with ab and cd on either side of the boundary
reduces only the volume current, if any, enclosed by it to zero, keeping the surface cur-
rent still enclosed by it. This contribution is the surface current flowing normal to the
line that abcd approaches as it tends to zero, that is, . Thus, (5.83) gives

or, since ab and cd are equal and ,

(5.84)

In terms of and , we have

or

(5.85)

Since (5.85) must be true for all orientations of , that is, for a rectangle abcd in any
plane normal to the boundary, it follows that

(5.86a)

or, in scalar form,

(5.86b)

where and are the components of and , respectively, tangential to the
boundary. In words, (5.86a) and (5.86b) state that at any point on the boundary, the
components of and tangential to the boundary are discontinuous by the amount
equal to the surface current density at that point. It should be noted that the information
concerning the direction of relative to that of , which is contained in
(5.86a), is not present in (5.86b). Thus, in general, (5.86b) is not sufficient, and it is nec-
essary to use (5.86a).

(H1 - H2)JS

H2H1

H2H1Ht2Ht1

Ht1 - Ht2 = JS

an : (H1 - H2) = JS

as

as # an : (H1 - H2) = as # JS

as : an # (H1 - H2) = JS # as

H2H1

Hab - Hdc = JS # as

Hdc = -Hcd

Hab(ab) + Hcd(cd) = (JS # as)(ab)

[JS # as](ab)

H2H1

HcdHab[Hab(ab) + Hcd(cd)]

Lim
ad:0
bc:0 Cabcda

H # dl = Lim
ad:0
bc:0 3area

 abcd

J# dS + Lim
ad:0
bc:0

 
d
dt 3

area
 abcd

D # dS

bc : 0
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5.5 Boundary Conditions 169

Now, we consider a rectangular box abcdefgh of infinitesimal volume enclosing
an infinitesimal area of the boundary and parallel to it, as shown in Figure 5.12.Applying
Gauss’ law for the electric field (5.78d) to this box in the limit that the side surfaces
(abbreviated ss) tend to zero by making the volume of the box tend to zero but with
the sides abcd and efgh remaining on either side of the boundary, we have

(5.87)

In this limit, the contributions from the side surfaces to the integral on the left side of
(5.87) approach zero. The sum of the contributions from the top and bottom surfaces
becomes , since abcd and efgh are infinitesimal. The quantity
on the right side of (5.87) would be zero but for the surface charge on the boundary,
since letting the volume of the box tend to zero with the sides abcd and efgh on either
side of it reduces only the volume charge, if any, enclosed by it to zero, keeping the sur-
face charge still enclosed by it.This surface charge is equal to .Thus, (5.87) gives

or, since abcd and efgh are equal,

(5.88a)

In terms of and , (5.88a) is given by

(5.88b)

In words, (5.88a) and (5.88b) state that at any point on the boundary, the components of
and normal to the boundary are discontinuous by the amount of the surface

charge density at that point.
D2D1

an # (D1 - D2) = rS

D2D1

Dn1 - Dn2 = rS

Dn1(abcd) - Dn2(efgh) = rS(abcd)

rS(abcd)

[Dn1(abcd) - Dn2(efgh)]

Lim
ss:0 C

surface
of the box

D # dS = Lim
ss:0 3

volume
of the box

r dv

a

d c

g
b

an

Medium 1

Medium 2

h

e f FIGURE 5.12

For deriving the boundary conditions
resulting from the two Gauss’ laws.

Similarly, applying Gauss’ law for the magnetic field (5.78d) to the box abcdefgh
in the limit that the side surfaces tend to zero, we have

(5.89)Lim
ss:0 C

surface
of the box

B # dS = 0
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170 Chapter 5 Wave Propagation in Material Media

Using the same argument as for the left side of (5.87), we obtain the quantity on the
left side of (5.89) to be equal to . Thus, (5.89) gives

or, since abcd and efgh are equal,

(5.90a)

In terms of and , (5.90a) is given by

(5.90b)

In words, (5.90a) and (5.90b) state that at any point on the boundary, the components of
and normal to the boundary are equal.

Summarizing the boundary conditions, we have

(5.91a)
(5.91b)
(5.91c)
(5.91d)

or, in scalar form,

(5.92a)
(5.92b)
(5.92c)
(5.92d)

as illustrated in Figure 5.13. Although we have derived these boundary conditions by
considering a plane interface between the two media, it should be obvious that we can
consider any arbitrary-shaped boundary and obtain the same results by letting the
sides ab and cd of the rectangle and the top and bottom surfaces of the box tend to
zero, in addition to the limits that the sides ad and bc of the rectangle and the side sur-
faces of the box tend to zero.

 Bn1 - Bn2 = 0
 Dn1 - Dn2 = rS

 Ht1 - Ht2 = JS

 Et1 - Et2 = 0

 an # (B1 - B2) = 0
 an # (D1 - D2) = rS

 an : (H1 - H2) = JS

 an : (E1 - E2) = 0

B2B1

an # (B1 - B2) = 0

B2B1

Bn1 - Bn2 = 0

Bn1(abcd) - Bn2(efgh) = 0

[Bn1(abcd) - Bn2(efgh)]

an
Medium 1

Medium 2

$
Et1

Et2

Ht1

Dn1

Bn1

Bn2Dn2

Ht2

rSJS

FIGURE 5.13

For illustrating the boundary conditions at an interface between two different media.
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5.5 Boundary Conditions 171

The boundary conditions given by (5.91a)–(5.91d) are general.When they are ap-
plied to particular cases, the special properties of the pertinent media come into play.
Two such cases are important to be considered. They are as follows.

Interface between Two Perfect Dielectric Media

Since for a perfect dielectric, . Thus, there cannot be any conduc-
tion current in a perfect dielectric, which in turn rules out any accumulation of free
charge on the surface of a perfect dielectric. Hence, in applying the boundary condi-
tions (5.91a)–(5.91d) to an interface between two perfect dielectric media, we set 
and JS equal to zero, thereby obtaining

(5.93a)
(5.93b)
(5.93c)
(5.93d)

These boundary conditions tell us that the tangential components of E and H and the
normal components of D and B are continuous at the boundary.

Surface of a Perfect Conductor

No time-varying fields can exist in a perfect conductor. In view of this, the boundary
conditions on a perfect conductor surface are obtained by setting the fields with sub-
script 2 in (5.91a)–(5.91d) equal to zero. Thus, we obtain

(5.94a)
(5.94b)
(5.94c)
(5.94d)

where we have also omitted subscripts 1, so that E, H, D, and B are the fields on the per-
fect conductor surface.The boundary conditions (5.94a) and (5.94d) tell us that on a per-
fect conductor surface, the tangential component of the electric field intensity and the
normal component of the magnetic field intensity are zero. Hence, the electric field must
be completely normal, and the magnetic field must be completely tangential to the sur-
face.The remaining two boundary conditions (5.94c) and (5.94b) tell us that the (normal)
displacement flux density is equal to the surface charge density and the (tangential) mag-
netic field intensity is equal in magnitude to the surface current density.

Example 5.3

In Figure 5.14, the region is a perfect conductor, the region is a perfect dielec-
tric of and , and the region is free space.The electric and magnetic fields in
the region are given at a particular instant of time by

 H = H1 cos px sin 2p z ay

 E = E1 cos px sin 2p z ax + E2 sin px cos 2p z az

0 6 x 6 d
x 7 dm = m0P = 2P0

0 6 x 6 dx 6 0

 an # B = 0
 an # D = rS

 an : H = JS

 an : E = 0

 an # (B1 - B2) = 0
 an # (D1 - D2) = 0

 an : (H1 - H2) = 0
 an : (E1 - E2) = 0

rS

s = 0, Jc = sE = 0
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172 Chapter 5 Wave Propagation in Material Media

zy

x " d

x " 0

x

Free Space
P0, m0

Perfect Dielectric
2P0, m0

Perfect Conductor

FIGURE 5.14

For illustrating the application of boundary conditions.

We wish to find (a) and JS on the surface and (b) E and H for , that is, immedi-
ately adjacent to the plane and on the free-space side, at that instant of time.

(a) Denoting the perfect dielectric medium to be medium 1 and the perfect con-
ductor medium to be medium 2, we have , and all fields with subscript 2
are equal to zero. Then, from (5.91c) and (5.91b), we obtain

Note that the remaining two boundary conditions (5.91a) and (5.91b) are already satisfied
by the given fields, since and do not exist and for , .Also note that what
we have done here is equivalent to using (5.94a)–(5.94d), since the boundary is the surface
of a perfect conductor.

(b) Denoting the perfect dielectric medium to be medium 1 and the free-space
medium to be medium 2 and setting , we obtain from (5.91a) and (5.91c)

Thus,

Setting and using (5.91b) and (5.91d), we obtain

 [Bx]x = d + = [Bx]x = d - = 0

 [Hz]x = d + = [Hz]x = d - = 0

 [Hy]x = d + = [Hy]x = d - = H1 cos pd sin 2p z

JS = 0

[E]x = d + = 2E1 cos pd sin 2p z ax + E2 sin pd cos 2p z az

 = 2E1 cos pd sin 2p z

 [Ex]x = d + = 1
P0

[Dx]x = d +

 = 2P0E1 cos pd sin 2p z

 [Dx]x = d + = [Dx]x = d - = 2P0[Ex]x = d -

 [Ez]x = d + = [Ez]x = d - = E2 sin pd cos 2p z

 [Ey]x = d + = [Ey]x = d - = 0

rS = 0(x 7 d)
(0 6 x 6 d)

Ez = 0x = 0BxEy

 = H1 sin 2p z az

 [JS]x = 0 = an : [H1]x = 0 = ax : H1 sin 2p z ay

 = 2P0E1 sin 2p z
 [rS]x = 0 = an # [D1]x = 0 = ax # 2P0E1 sin 2p z ax

an = ax(x 6 0)
(0 6 x 6 d)

x = d
x = d+x = 0rS
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5.6 Reflection and Transmission of Uniform Plane Waves 173

Thus,

Note that what we have done here is equivalent to using (5.93a)–(5.93d), since the bound-
ary is the interface between two perfect dielectrics.

5.6 REFLECTION AND TRANSMISSION OF UNIFORM PLANE WAVES

Thus far, we have considered uniform plane wave propagation in unbounded media.
Practical situations are characterized by propagation involving several different media.
When a wave is incident on a boundary between two different media, a reflected wave
is produced. In addition, if the second medium is not a perfect conductor, a transmitted
wave is set up. Together, these waves satisfy the boundary conditions at the interface
between the two media. In this section, we shall consider these phenomena for waves
incident normally on plane boundaries.

To do this, let us consider the situation shown in Figure 5.15 in which steady-
state conditions are established by uniform plane waves of radian frequency pro-
pagating normal to the plane interface between two media characterized by
two different sets of values of and where We shall assume that a 
wave is incident from medium onto the interface, thereby setting up a re-
flected wave in that medium, and a transmitted wave in medium 
For convenience, we shall work with the phasor or complex field components. Thus,
considering the electric fields to be in the x-direction and the magnetic fields to be in
the y-direction, we can write the solution for the complex field components in
medium 1 to be

(5.95a)

(5.95b) = 1
h1
A –
E1

+e-g1 z - –
E1

-eg1 z B –H1y(z) = –
H1

+e-g1 z + –
H1

-eg1 z

 –E1x(z) = –
E1

+e-g1z + –
E1

-eg1z

2 (z 7 0).(+)(-)
1 (z 6 0)

(+)s Zq .m,s, P,
z = 0

v

[H]x = d + = H1 cos pd sin 2p z ay

z

x

y

Medium 1

($)
($)

(!)

z %  0 z &  0
z " 0

s1, P1, m1

Medium 2

s2, P2, m2

FIGURE 5.15

Normal incidence of uniform plane
waves on a plane interface between
two different media.
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174 Chapter 5 Wave Propagation in Material Media

where and are the incident and reflected wave electric and magnetic
field components, respectively, at in medium 1 and

(5.96a)

(5.96b)

Recall that the real field corresponding to a complex field component is obtained by
multiplying the complex field component by and taking the real part of the product.
The complex field components in medium 2 are given by

(5.97a)

(5.97b)

where and are the transmitted wave electric- and magnetic-field components at
in medium 2 and

(5.98a)

(5.98b)

To satisfy the boundary conditions at we note that (1) the components of
both electric and magnetic fields are entirely tangential to the interface and (2) in view
of the finite conductivities of the media, no surface current exists on the interface (cur-
rents flow in the volumes of the media). Hence, from the phasor forms of the boundary
conditions (5.92a) and (5.92b), we have

(5.99a)

(5.99b)

Applying these to the solution pairs given by (5.95a, b) and (5.97a, b), we have

(5.100a)

(5.100b)

We now define the reflection coefficient at the boundary, denoted by the symbol to
be the ratio of the reflected wave electric field at the boundary to the incident wave
electric field at the boundary. From (5.100a) and (5.100b), we obtain

(5.101)≠ =
–
E1

-

–
E1

+ =
h2 - h1

h2 + h1

≠,

 
1
h1
A –
E1

+ - –
E1

- B = 1
h2

–
E2

+

 –E1
+ + –

E1
- = –

E2
+

 [ –
H1y]z = 0 = [ –

H2y]z = 0

 [ –
E1x]z = 0 = [ –

E2x]z = 0

z = 0,

 h2 = A jvm2

s2 + jvP2

 g2 = 1jvm2(s2 + jvP2)

z = 0+

–
H2

+–
E2

+

 =
–
E2

+

h2
e-q
g2 z

 –H2y(z) = –
H2

+e-q
g2 z

 –E2x(z) = –
E2

+e-q
g2 z

ejvt

 h1 = A jvm1

s1 + jvP1

 g1 = 1jvm1(s1 + jvP1)

z = 0-

–
H1

-–
E1

+, –
E1

-, –
H1

+,
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5.6 Reflection and Transmission of Uniform Plane Waves 175

Note that the ratio of the reflected wave magnetic field at the boundary to the incident
wave magnetic field at the boundary is given by

(5.102)

The ratio of the transmitted wave electric field at the boundary to the incident wave
electric field at the boundary, known as the transmission coefficient and denoted by the
symbol is given by

(5.103)

where we have used (5.100a). The ratio of the transmitted wave magnetic field at the
boundary to the incident wave magnetic field at the boundary is given by

(5.104)

The reflection and transmission coefficients given by (5.101) and (5.103), respec-
tively, enable us to find the reflected and transmitted wave fields for a given incident
wave field. We observe the following properties of and 

1. For and The incident wave is entirely transmitted. The sit-
uation then corresponds to a matched condition. A trivial case occurs when the
two media have identical values of the material parameters.

2. For that is, when both media are perfect dielectrics, and are
real. Hence, and are real. In particular, if the two media have the same per-
meability but different permittivities and then

(5.105)

(5.106)

3. For and Thus, if medium 2 is a perfect conduc-
tor, the incident wave is entirely reflected, as it should be, since there cannot be
any time-varying fields inside a perfect conductor.The superposition of the reflected
and incident waves would then give rise to the so-called complete standing waves in
medium 1. Complete standing waves as well as partial standing waves are dis-
cussed in Chapter 7.

t: 0.s2 : q , h2 : 0, ≠ : -1,

 t = 2
1 + 1P2>P1

 =
1 - 1P2>P1

1 + 1P2>P1

 ≠ =
1m>P2 - 1m>P11m>P2 + 1m>P1

P2,P1m
t≠

h2h1s1 = s2 = 0,

t = 1.h2 = h1, ≠ = 0

t:≠

–
H2

+

–
H1

+ =
–

H1
+ + –

H1
-

–
H1

+ = 1 - ≠

t =
–
E2

+

–
E1

+ =
–
E1

+ + –
E1

-

–
E1

+ = 1 + ≠

t,

–
H1

-

–
H1

+ =
- –

E1
->h–1

–
E1

+>h–1
= -

–
E1

-

–
E1

+ = -≠
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176 Chapter 5 Wave Propagation in Material Media

Example 5.4

Region is free space, whereas region is a material medium characterized by
and For a uniform plane wave having the electric field

incident on the interface from region 1, we wish to obtain the expressions for the reflected
and transmitted wave electric and magnetic fields.

Substituting and in
(5.98a) and (5.98b), we obtain

Then, noting that ,

Thus, the reflected and transmitted wave electric and magnetic fields are given by

Note that at the boundary conditions of and are satisfied,
since

and

E0

377
- 1.678 * 10-3E0 cos 0.8976p = 4.277 * 10- 3E0 cos 1-0.0396p 2

E0 + 0.6325E0 cos 0.8976p = 0.4472E0 cos 0.1476p

Hi + Hr = HtEi + Er = Etz = 0,

   # cos 13p * 105t - 9.425 * 10-3z - 0.0396p 2 ay A/m

 = 4.277 * 10-3E0 e-
 

6.283 * 10-3z

   # cos 13p * 105t - 9.425 * 10-3z + 0.1476p - 0.1872p 2 ay A/m

 Ht =
0.4472E0

104.559
e-

 

6.283 * 10-3z

   # cos 13p * 105t - 9.425 * 10-3z + 0.1476p 2 ax V/m

 Et = 0.4472E0 e-
 

6.283 * 10-3z

 = -1.678 * 10-3E0 cos 13p * 105t + 10-3p z + 0.8976p 2 ay A/m

 Hr = -
0.6325E0

377
 cos 13p * 105t + 10-3p z + 0.8976p 2 ay A/m

 Er = 0.6325E0 cos 13p * 105t + 10-3p z + 0.8976p 2 ax V/m

 = 0.4472l26.565° = 0.4472l0.1476p

 t = 1 + ≠ = 1 + 0.6325l161.565°

 = 0.6325l161.565° = 0.6325l0.8976p

 ≠ =
h2 - h0

h2 + h0
=

104.559l33.69° - 377

104.559l33.69° + 377

h1 = h0

 h2 = 104.559l33.69° = 104.559l0.1872p

 g2 = 16.283 + j9.4252 * 10-3

2p = 1.5 * 105 Hz,f = 13p * 105 2>s = 10-4 S/m, P = 5P0, m = m0,

z = 0

Ei = E0 cos 13p * 105t - 10-3p z2 ax V/m

m = m0.s = 10-4 S/m, P = 5P0,
2 1z 7 021 1z 6 02
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Summary 177

SUMMARY

In this chapter, we studied the principles of uniform plane wave propagation in a ma-
terial medium. Material media can be classified as (a) conductors, (b) dielectrics, and
(c) magnetic materials, depending on the nature of the response of the charged parti-
cles in the materials to applied fields. Conductors are characterized by conduction
which is the phenomenon of steady drift of free electrons under the influence of an ap-
plied electric field. Dielectrics are characterized by polarization which is the phenome-
non of the creation and net alignment of electric dipoles, formed by the displacement
of the centroids of the electron clouds from the centroids of the nucleii of the atoms,
along the direction of an applied electric field. Magnetic materials are characterized by
magnetization which is the phenomenon of net alignment of the axes of the magnetic
dipoles, formed by the electron orbital and spin motion around the nucleii of the
atoms, along the direction of an applied magnetic field.

Under the influence of applied electromagnetic wave fields, all three phenomena
described above give rise to currents in the material which in turn influence the wave
propagation.These currents are known as the conduction, polarization, and magnetiza-
tion currents, respectively, for conductors, dielectrics, and magnetic materials. They
must be taken into account in the first term on the right side of Ampere’s circuital law,
that is, in the case of the integral form and Jin the case of the differential
form. The conduction current density is given by

(5.107)

where is the conductivity of the material. The conduction current is taken into ac-
count explicitly by replacing Jby . The polarization and magnetization currents are
taken into account implicitly by revising the definitions of the displacement flux density
vector and the magnetic field intensity vector to read as

(5.108)

(5.109)

where P and M are the polarization and magnetization vectors, respectively. For linear
isotropic materials, (5.108) and (5.109) simplify to

(5.110)

(5.111)

where

are the permittivity and the permeability, respectively, of the material.The quantities 
and are the relative permittivity and the relative permeability, respectively, of themr

Pr

m = m0mr

P = P0Pr

 H = B
m

 D = PE

 H = B
m0

- M

 D = P0 E + P

Jc

s

Jc = sE

1S J# dS
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178 Chapter 5 Wave Propagation in Material Media

material. The parameters and vary from one material to another and are in
general dependent on the frequency of the wave. Equations (5.107), (5.110), and
(5.111) are known as the constitutive relations. For anisotropic materials, these rela-
tions are expressed in the form of matrix equations with the material parameters rep-
resented by tensors.

Together with Maxwell’s equations, the constitutive relations govern the behav-
ior of the electromagnetic field in a material medium. Thus, Maxwell’s curl equations
for a material medium are given by

We made use of these equations for the simple case of and
to obtain the uniform plane wave solution by considering the infinite plane current
sheet in the xy-plane with uniform surface current density

and with a material medium on either side of it and finding the electromagnetic field
due to the current sheet to be given by

(5.112a)

(5.112b)

In (5.112a–b), are the attenuation and phase constants given, respectively, by
the real and imaginary parts of the propagation constant, Thus,

The quantities and are the magnitude and phase angle, respectively, of the intrinsic
impedance, of the medium. Thus,

The uniform plane wave solution given by (5.112a–b) tells us that the wave pro-
pagation in the material medium is characterized by attenuation, as indicated by ,
and phase difference between E and H by the amount . We learned that the attenua-
tion of the wave results from power dissipation due to conduction current flow in the
medium. The power dissipation density is given by

pd = sEx
2

t
e<az

h– = ƒ  h– ƒ  ejt = A jvm
s + jvP

h–,
tƒ  h– ƒ

g– = a + jb = 2jvm(s + jvP)

g.
a and b

H = ; 
JS0

2
e<az cos (vt < bz) ay  for z ! 0

E =
ƒ  h–  ƒJS0

2
e<az cos (vt < bz + t) ax for z ! 0

JS = -JS0 cos vt ax

H = Hy(z, t)ayE = Ex(z, t)ax

 ¥ : H = Jc + 0D
0t

= sE + P0E
0t

 ¥ : E = - 0B
0t

= -m0H
0t

mP,s,
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Summary 179

The stored energy densities associated with the electric and magnetic fields in the
medium are given by

Having discussed uniform plane wave propagation for the general case of a medi-
um characterized by and we then considered several special cases. These are
discussed in the following:

Perfect dielectrics. For these materials, Wave propagation occurs without at-
tenuation as in free space but with the propagation parameters governed by and in-
stead of and respectively.

Imperfect dielectrics. A material is classified as an imperfect dielectric for 
that is, conduction current density is small in magnitude compared to the displacement
current density.The only significant feature of wave propagation in an imperfect dielectric
as compared to that in a perfect dielectric is the attenuation undergone by the wave.

Good conductors. A material is classified as a good conductor for that is,
conduction current density is large in magnitude compared to the displacement cur-
rent density. Wave propagation in a good conductor medium is characterized by atten-
uation and phase constants both equal to Thus, for large values of f and/or 
the fields do not penetrate very deeply into the conductor. This phenomenon is known
as the skin effect. From considerations of the frequency dependence of the attenuation
and wavelength for a fixed we learned that low frequencies are more suitable for
communication with underwater objects. We also learned that the intrinsic impedance
of a good conductor medium is very low in magnitude compared to that of a dielectric
medium having the same and 

Perfect conductors. These are idealizations of good conductors in the limit 
For the skin depth, that is, the distance in which the fields inside a conductor
are attenuated by a factor is zero and hence there can be no penetration of fields
into a perfect conductor.

As a prelude to the consideration of problems involving more than one medium, we
derived the boundary conditions resulting from the application of Maxwell’s equations in
integral form to closed paths and closed surfaces encompassing the boundary between
two media, and in the limits that the areas enclosed by the closed paths and the volumes
bounded by the closed surfaces go to zero.These boundary conditions are given by

 an # (B1 - B2) = 0
 an # (D1 - D2) = rS

 an : (H1 - H2) = JS

 an : (E1 - E2) = 0

e- 1,
s = q,

s: q.

m.P

s,

s,1pfms.

s W vP,

s V vP,

m0,P0

mP
s = 0.

m,s, P,

 wm = 1
2
mH2

 we = 1
2

PE2
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180 Chapter 5 Wave Propagation in Material Media

where the subscripts 1 and 2 refer to media 1 and 2, respectively, and is unit vector
normal to the boundary at the point under consideration and directed into medium 1. In
words, the boundary conditions state that at a point on the boundary, the tangential
components of E and the normal components of B are continuous, whereas the tangen-
tial components of H are discontinuous by the amount equal to at that point, and the
normal components of D are discontinuous by the amount equal to at that point.

Two important special cases of boundary conditions are as follows: (a) At the
boundary between two perfect dielectrics, the tangential components of E and H and
the normal components of D and B are continuous. (b) On the surface of a perfect con-
ductor, the tangential component of E and the normal component of B are zero,
whereas the normal component of D is equal to the surface charge density, and the tan-
gential component of H is equal in magnitude to the surface current density.

Finally, we considered uniform plane waves incident normally onto a plane
boundary between two media, and we learned how to compute the reflected and trans-
mitted wave fields for a given incident wave field.

rS

JS

an

REVIEW QUESTIONS

5.1. Distinguish between bound electrons and free electrons in an atom.
5.2. Briefly describe the phenomenon of conduction.
5.3. State Ohms’ law applicable at a point. How is it taken into account in Maxwell’s equations?
5.4. Briefly describe the phenomenon of polarization in a dielectric material.
5.5. What is an electric dipole? How is its strength defined?
5.6. What are the different kinds of polarization in a dielectric?
5.7. What is the polarization vector? How is it related to the electric field intensity?
5.8. Discuss how polarization current arises in a dielectric material.
5.9. State the relationship between polarization current density and electric field intensity.

How is it taken into account in Maxwell’s equations?
5.10. What is the revised definition of D?
5.11. State the relationship between D and E in a dielectric material. How does it simplify the

solution of field problems involving dielectrics?
5.12. What is an anisotropic dielectric material?
5.13. When can an effective permittivity be defined for an anisotropic dielectric material?
5.14. Briefly describe the phenomenon of magnetization.
5.15. What is a magnetic dipole? How is its strength defined?
5.16. What are the different kinds of magnetic materials?
5.17. What is the magnetization vector? How is it related to the magnetic flux density?
5.18. Discuss how magnetization current arises in a magnetic material.
5.19. State the relationship between magnetization current density and magnetic flux density.

How is it taken into account in Maxwell’s equations?
5.20. What is the revised definition of H?
5.21. State the relationship between H and B for a magnetic material. How does it simplify

the solution of field problems involving magnetic materials?
5.22. What is an anisotropic magnetic material?
5.23. Discuss the relationship between B and H for a ferromagnetic material.
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Problems 181

5.24. Summarize the constitutive relations for a material medium.
5.25. What is the propagation constant for a material medium? Discuss the significance of its

real and imaginary parts.
5.26. Discuss the consequence of the frequency dependence of the phase velocity of a wave

in a material medium.
5.27. What is loss tangent? Discuss its significance.
5.28. What is the intrinsic impedance of a material medium? What is the consequence of its

complex nature?
5.29. How do you account for the attenuation undergone by the wave in a material medium?
5.30. What is the power dissipation density in a medium characterized by nonzero conductivity?
5.31. What are the stored energy densities associated with electric and magnetic fields in a

material medium?
5.32. What is the condition for a medium to be a perfect dielectric? How do the characteris-

tics of wave propagation in a perfect dielectric medium differ from those of wave pro-
pagation in free space?

5.33. What is the criterion for a material to be an imperfect dielectric? What is the significant
feature of wave propagation in an imperfect dielectric as compared to that in a perfect
dielectric?

5.34. Give two examples of materials that behave as good dielectrics for frequencies down to
almost zero.

5.35. What is the criterion for a material to be a good conductor?
5.36. Give two examples of materials that behave as good conductors for frequencies of up to

several gigahertz.
5.37. What is skin effect? Discuss skin depth, giving some numerical values.
5.38. Why are low-frequency waves more suitable than high-frequency waves for communi-

cation with underwater objects?
5.39. Discuss the consequence of the low intrinsic impedance of a good conductor as com-

pared to that of a dielectric medium having the same and 
5.40. Why can there be no fields inside a perfect conductor?
5.41. What is a boundary condition? How do boundary conditions arise and how are they

derived?
5.42. Summarize the boundary conditions for the general case of a boundary between two

arbitrary media, indicating correspondingly the Maxwell’s equations in integral form
from which they are derived.

5.43. Discuss the boundary conditions at the interface between two perfect dielectric media.
5.44. Discuss the boundary conditions on the surface of a perfect conductor.
5.45. Discuss the determination of the reflected and transitted wave fields from the fields of

a wave incident normally onto a plane boundary between two material media.
5.46. What is the consequence of a wave incident on a perfect conductor?

m.P

PROBLEMS

5.1. Find the electric field intensity required to produce a current of 0.1 A crossing an area
of 1 cm2 normal to the field for the following materials: (a) copper, (b) aluminum, and
(c) sea water.Then find the voltage drop along a length of 1 cm parallel to the field, and
find the ratio of the voltage drop to the current (resistance) for each material.
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182 Chapter 5 Wave Propagation in Material Media

5.2. The free electron density in silver is . (a) Find the mobility of the elec-
tron for silver. (b) Find the drift velocity of the electrons for an applied electric field of
intensity 

5.3. Use the continuity equation, Ohm’s law, and Gauss’ law for the electric field to show
that the time variation of the charge density at a point inside a conductor is governed by
the differential equation

Then show that the charge density inside the conductor decays exponentially with a
time constant . Compute the value of the time constant for copper.

5.4. Show that the torque acting on an electric dipole of moment p due to an applied electric
field E is .

5.5. For an applied electric field , find the polarization current
crossing an area of 1 cm2 normal to the field for the following materials: (a) polystyrene,
(b) mica, and (c) distilled water.

5.6. For the anisotropic dielectric material having the permittivity tensor given in Example 5.1,
find D for . Comment on your result.

5.7. An anisotropic dielectric material is characterized by the permittivity tensor

(a) Find D for (b) Find D for . (c) Find E, which pro-
duces 

5.8. An anisotropic dielectric material is characterized by the permittivity tensor

For cos , find the value(s) of for which D is parallel to E.
Find the effective permittivity for each case.

5.9. Find the magnetic dipole moment of an electron in circular orbit of radius a normal to a
uniform magnetic field of flux density B0. Compute its value for and

5.10. Show that the torque acting on a magnetic dipole of moment m due to an applied mag-
netic field B is For simplicity, consider a rectangular loop in the xy-plane and

5.11. For an applied magnetic field , find the magnetization current
crossing an area normal to the x-direction for a magnetic material having

5.12. An anisotropic magnetic material is characterized by the permeability tensor

Find the effective permeability for H = H0(3ax - 2ay) cos vt.

[m] = m0J7 6 0
6 12 0
0 0 3 K

xm = 10- 3.1 cm2
Wb/m2B = 10- 6 cos 2p z ay

B = Bxax + Byay + Bzaz.
m : B.

B0 = 5 * 10- 5 Wb/m2.
a = 10- 3 m

Ey>ExvtE = (Exax + Eyay)

[P] = J Pxx Pxy 0
Pyx Pyy 0
0 0 Pzz

K
D = 4P0E0ax.

E = E0(ax + ay + az)E = E0ax.

[P] = P0J4 2 2
2 4 2
2 2 4

 K
E = E0(cos vt ax + sin vt ay)

E = 0.1 cos 2p * 109t ax V/m
p : E

P0>s
0r
0t

+ sP0
 r = 0

0.1 V/m.

5.80 * 1028 m-3
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5.13. Obtain the wave equation for similar to that for given by (5.49).
5.14. Obtain the expression for the attenuation per wavelength undergone by a uniform

plane wave in a material medium characterized by , and . Using the logarithmic
scale for , plot the attenuation per wavelength in decibels versus .

5.15. For dry earth, and . Compute and for

5.16. Obtain the expressions for the real and imaginary parts of the intrinsic impedance of a
material medium given by (5.61).

5.17. An infinite plane sheet lying in the xy-plane carries current of uniform density

The medium on either side of the sheet is characterized by , and
. Find E and H on either side of the current sheet.

5.18. Repeat Problem 5.17 for

5.19. For an array of two infinite plane parallel current sheets of uniform densities situated in
a medium characterized by , and , find the spacing and
the relative amplitudes and phase angles of the current densities to obtain an endfire
radiation characteristic for 

5.20. Show that energy is not stored equally in the electric and magnetic fields in a material
medium for 

5.21. The electric field of a uniform plane wave propagating in a perfect dielectric medium
having is given by

Find (a) the frequency, (b) the wavelength, (c) the phase velocity, (d) the permittivity of
the medium, and (e) the associated magnetic field vector H.

5.22. The electric and magnetic fields of a uniform plane wave propagating in a perfect
dielectric medium are given by

Find the permittivity and the permeability of the medium.
5.23. Repeat Problem 4.29 for a perfect dielectric medium of and on either

side of the current sheet.
5.24. Compute for each of the following materials: (a) fused quartz, (b) Bakelite, and

(c) distilled water. Then compute for the imperfect dielectric range of frequencies the
values of and for each material.

5.25. For uniform plane wave propagation in fresh water ( ,
find , and for two frequencies: (a) 100 MHz, and (b) 10 kHz.

5.26. Show that for a given material, the ratio of the attenuation constant for the good con-
ductor range of frequencies to the attenuation constant for the imperfect dielectric

ha, b, vp, l
m = m0)P = 80P0,s = 10- 3 S/m,

ha, b, vp, l,

fq

m = m0P = 9P0

 H = 1
 6p

 cos (6p * 107t - 0.8p z) ay A/m

 E = 10 cos (6p * 107t - 0.8p z) axV/m

E = 10 cos (6p * 107t - 0.4p z) ax V/m

m = m0

s Z0.

f = 106 Hz.

m = m0s = 10- 3 S/m, P = 18P0

JS = -0.1(cos 2p * 106t ax + cos 4p * 106t ax) A/m

m = m0

P = 18P0s = 10- 3 S/m,

JS = -0.1 cos 2p * 106t ax A/m

f = 100 kHz.
ha, b, vp, l,m = m0s = 10- 5 S/m, P = 5P0,

s>vPs>vP
ms, P

–
Ex

–
Hy
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184 Chapter 5 Wave Propagation in Material Media

range of frequencies is equal to where is in the good conductor range of
frequencies.

5.27. In Figure 5.16, the points 1 and 2 lie adjacent to each other and on either side of the in-
terface between perfect dielectric media 1 and 2.The fields at point 1 are denoted by sub-
script 1 and the fields at point 2 are denoted by subscript 2. Assume that medium 1 is
characterized by and and that medium 2 is characterized by 
and If and , find and .H2E2H1 = H0(2ax - 3ay)E1 = E0(3ax + 2ay - 6az)m = m0.

P = 9P0m = 2m0P = 12P0

v22vP>s

z

x

y

Medium 1

x " 0
Medium 2

1
2

FIGURE 5.16

For Problems 5.27 and 5.28.

5.28. In Figure 5.16, assume that medium 1 is characterized by and and that
medium 2 is characterized by and . If and

, find and .
5.29. A boundary separates free space from a perfect dielectric medium. At a point on the

boundary, the electric field intensity on the free space side is 
whereas on the dielectric side, it is , where is a constant. Find the
permittivity of the dielectric medium.

5.30. The plane defines the surface of a perfect conductor. Find the possi-
ble direction(s) of the electric field intensity at a point on the conductor surface.

5.31. Given , determine if a perfect conductor can be placed in the surface
without disturbing the field.

5.32. A perfect conductor occupies the region . Find the surface current density
at a point on the conductor at which 

5.33. The displacement flux density at a point on the surface of a perfect conductor is given
by . Find the magnitude of the surface charge density at
that point.

5.34. It is known that at a point on the surface of a perfect conductor 
, and is positive. Find and at that

point.
5.35. Two infinite plane conducting sheets occupy the planes and . An electric

field given by

where is a constant, exists in the region between the plates, which is free space.
(a) Show that satisfies the boundary condition on the sheets. (b) Obtain associated
with the given . (c) Find the surface current densities on the two sheets.

5.36. Region is free space, whereas region is a material medium character-
ized by , , and . For a uniform plane wave having the elec-
tric field

incident on the interface from region 1, obtain the expression for the reflected
and transmitted wave electric and magnetic fields.

z = 0

Ei = E0 cos (3p * 106t - 0.01p z) ax V/m

m = m0P = 12P0s = 10- 3 S/m
2(z 7 0)1(z 6 0)

E
HE

E0

E = E0 sin 10px cos 3p * 109t az

x = 0.1 mx = 0

JSrSrSH = H0(2ax - 2ay + az),D0(ax + 2ay + 2az)
D =

D = D0(ax + 13ay + 213az)

H = H0az.
x + 2y … 2

xy = 2
E = yax + xay

x + 2y + 3z = 5

E0E2 = 3E0(ax + az)
E1 = E0(4ax + 2ay + 5az),

B2D2B1 = B0(ax + 2ay + 3az)
D1 = D0 (ax - 2ay + az)m = 9m0P = 16P0

m = 3m0P = 4P0
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5.37. The regions and are nonmagnetic perfect dielectrics of permit-
tivities and , respectively. For a uniform plane wave incident from the region 
normally onto the boundary , find for each of the following to hold at :
(a) the electric field of the reflected wave is times the electric field of the incident
wave; (b) the electric field of the transmitted wave is 0.4 times the electric field of the
incident wave; and (c) the electric field of the transmitted wave is six times the electric
field of the reflected wave.

5.38. A uniform plane wave propagating in the -direction and having the electric field
, where in the plane is as shown in Figure 5.17, is incident nor-

mally from free space onto a nonmagnetic , perfect dielectric 
of permittivity . Find and sketch the following: (a) versus for and
(b) versus for .t = 1 mszHy

t = 1 mszEx4P0

(z 7 0)(m = m0)(z 6 0)
z = 0Exi(t)Ei = Exi(t)ax

+z

-1>3 z = 0P2>P1z = 0
z 6 0P2P1

(m = m0)z 7 0z 6 0

z

x

y

Medium 1

($)

(!)

z " 0

m0, P0

Medium 2

($)

(!)

m0, 9P0

Medium 3

($)

m0, 4P0

z "      m1
3

FIGURE 5.18

For Problem 5.40.

t, !s0

[Exi]z " 0, V/m

E0

1 2

FIGURE 5.17

For Problem 5.38.

5.39. The region is a perfect dielectric, whereas the region is a perfect conductor.
For a uniform plane wave having the electric and magnetic fields

where and , obtain the expressions for the reflected wave electric
and magnetic fields and hence the expressions for the total elec-
tric and magnetic fields in the dielectric, and the current density on the surface of the
perfect conductor.

5.40. In Figure 5.18, medium 3 extends to infinity so that no reflected wave exists in that
medium. For a uniform plane wave having the electric field

incident from medium 1 onto the interface , obtain the expressions for the phasor
electric- and magnetic-field components in all three media.

z = 0

Ei = E0 cos (3 * 108p t - p z) ax V/m

(-)

(incident + reflected)
h = 1m>Pb = v1mP

 Hi =
E0

h
 cos (vt - bz) ay

 Ei = E0 cos (vt - bz) ax

z 7 0z 6 0
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6
Statics, Quasistatics, 
and Transmission Lines

In the preceding chapters, we learned that the phenomenon of wave propagation is
based upon the interaction between the time-varying or dynamic electric and mag-
netic fields. In this chapter, we shall use the thread of statics-quasistatics-waves to bring
out the frequency behavior of physical structures. Static fields are studied by setting
the time derivatives in Maxwell’s equations equal to zero. We will introduce the
lumped circuit elements familiar in circuit theory, through the different classifications
of static fields. For a nonzero frequency, the fields are dynamic. The exact solutions are
solutions to the complete Maxwell’s equations for time-varying fields. However, a class
of fields, known as quasistatic fields, can be studied as low-frequency extensions of sta-
tic fields. They are approximations to the exact solutions. We will learn that for quasi-
static fields, the circuit equivalent for the input behavior of a physical structure is
essentially same as the lumped circuit equivalent for the corresponding static case. As
the frequency is increased beyond the quasistatic approximation, the lumped circuit
equivalent is no longer valid and the distributed circuit equivalent comes into play,
leading to the transmission line.

We begin the chapter with electric potential, a scalar that is related to the static
electric field intensity through a vector operation known as the gradient. We shall
introduce the gradient and the electric potential and then consider two important dif-
ferential equations involving the potential, known as Poisson’s equation and Laplace’s
equation. Beginning with static field involving the solution of the Laplace’s equation,
we shall then embark on the study based on the thread of statics-quasistatics-waves.

6.1 GRADIENT AND ELECTRIC POTENTIAL

For static fields, , and Maxwell’s curl equations given for time-varying fields by

(6.1)

(6.2) ¥ : H = J+ 0D
 0t

 ¥ : E = - 0B
 0t

0/0t = 0

CHAPTER

M06_RAO3333_1_SE_CHO6.QXD  4/9/08  2:36 PM  Page 186



6.1 Gradient and Electric Potential 187

reduce to

(6.3)

(6.4)

respectively. Equation (6.3) states that the curl of the static electric field is equal to
zero. If the curl of a vector is zero, then that vector can be expressed as the gradient of
a scalar, since the curl of the gradient of a scalar is identically equal to zero. The gradi-
ent of a scalar, say denoted (del ) is given in Cartesian coordinates by

(6.5)

The curl of is then given by

(6.6)

To discuss the physical interpretation of the gradient, we note that

(6.7)

Let us consider a surface on which is equal to a constant, say , and a point P on
that surface, as shown in Figure 6.1(a). If we now consider another point on the
same surface and an infinitesimal distance away from between these two points
is zero since is constant on the surface. Thus, for the vector drawn from P to

and hence is perpendicular to . Since this is true for all
points on the constant surface, it follows that must be normal
to all possible infinitesimal displacement vectors drawn at P and hencedl1, dl2, dl3, . . .

[¥£]P£Q1, Q2, Q3, . . .
dl1[¥£]PQ1, [¥£]P # dl1 = 0

dl1£
P, d£

Q1

£0£

 = d£

 = 0£
0x

 dx + 0£
0y

 dy + 0£
0z

 dz

 ¥£ # dl = a 0£
0x

 ax + 0£
0y

 ay + 0£
0z

 azb # (dx ax + dy ay + dz az)

 = 0

 = 5 ax ay az

0
0x

0
0y

0
0z

0£
0x

0£
0y

0£
0z

5
 ¥ : ¥£ = ∞ ax ay az

0
0x

0
0y

0
0z

(¥£)x (¥£)y (¥£)z

∞
¥£

 = 0£
0x

 ax + 0£
0y

 ay + 0£
0z

 az

¥£ = a ax 
0

0x
+ ay 

0
0y

+ az 
0
0z
b £

£¥££,

¥ : H = J

¥ : E = 0
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d l3

d l1
d l2 d l

Q2

Q

Q1

Q3

P

P

an

an

! " !0

! " !0

! " !0 # d!

a

(a) (b)

FIGURE 6.1

For discussing the physical interpretation of the gradient of a scalar function.

is normal to the surface. Denoting to be the unit normal vector to the surface at P,
we then have

(6.8)

Let us now consider two surfaces on which is constant, having values and
, as shown in Figure 6.l(b). Let P and Q be points on the 

surfaces, respectively, and dl be the vector drawn from P to Q. Then
from (6.7) and (6.8),

(6.9)

where is the angle between at P and dl. Thus,

(6.10)

Since dl cos is the distance between the two surfaces along and hence is the short-
est distance between them, it follows that is the maximum rate of increase of 
at the point P. Thus, the gradient of a scalar function at a point is a vector having
magnitude equal to the maximum rate of increase of at that point and is directed
along the direction of the maximum rate of increase, which is normal to the constant 
surface passing through that point. This concept of the gradient of a scalar function is
often utilized to find a unit vector normal to a given surface. We shall illustrate this by
means of an example.

£
£
£

£ƒ ¥£ ƒP
ana

ƒ ¥£ ƒP = d£
dl cos a

 

an a

 = ƒ ¥£ ƒP dl cos a

 = ƒ ¥£ ƒP an # dl

 d£ = [¥£]P # dl

£ = £0 + d£
£ = £0 and£0 + d£

£0£

[¥£]P = ƒ ¥£ ƒP an 

an
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6.1 Gradient and Electric Potential 189

Example 6.1

Let us find the unit vector normal to the surface at the point (2, 4, 1) by using the concept
of the gradient of a scalar.

Writing the equation for the surface as

we note that the scalar function that is constant on the surface is given by

The gradient of the scalar function is then given by

The value of the gradient at the point (2, 4, 1) is . Thus, the required unit
vector is

Returning to Maxwell’s curl equation for the static electric field given by (6.3),
we can now express E as the gradient of a scalar function, say, . The question then
arises as to what this scalar function is. To obtain the answer, let us consider a region of
static electric field. Then we can draw a set of surfaces orthogonal everywhere to the
field lines, as shown in Figure 6.2. These surfaces correspond to the constant £

£

an = ; 
4ax - ay

ƒ4ax - ay ƒ
 = ; a 4217

 ax - 1217
 ayb

2(2)ax - ay = 4ax - ay

 = 2xax - ay

 =
0(x2 - y)

0x
 ax +

0(x2 - y)
0y

 ay +
0(x2 - y)

0z
 az

 ¥£ = ¥(x2 - y)

£(x, y, z) = x2 - y

x2 - y = 0

y = x2

V " VA
V " VB

Equipotential
Surfaces

A
B

E

FIGURE 6.2

A set of equipotential surfaces in a region of static electric field.
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190 Chapter 6 Statics, Quasistatics, and Transmission Lines

surfaces. Since on any such surface , no work is involved in the movement of
a test charge from one point to another on the surface. Such surfaces are known as the
equipotential surfaces. Since they are orthogonal to the field lines, they may physically
be occupied by conductors without affecting the field distribution.

Movement of a test charge from a point, say A, on one equipotential surface to
a point, say B, on another equipotential surface involves an amount of work per unit
charge equal to to be done by the field. This quantity is known as the
electric potential difference between the points A and B and is denoted by the sym-
bol . It has the units of volts. There is a potential drop from A to B if work is
done by the field and a potential rise if work is done against the field by an external
agent. The situation is similar to that in the earth’s gravitational field for which
there is a potential drop associated with the movement of a mass from a point of
higher elevation to a point of lower elevation and a potential rise for just the
opposite case.

It is convenient to define an electric potential associated with each point. The
potential at point A, denoted , is simply the potential difference between point A
and a reference point, say O. It is the amount of work per unit charge done by the field
in connection with the movement of a test charge from A to O, or the amount of work
per unit charge done against the field by an external agent in moving the test charge
from O to A. Thus,

(6.11)

and

(6.12)

If we now consider points A and B to be separated by infinitesimal length from
A to , then the incremental potential drop from A to B is , or the incremental
potential rise along the length is given by

(6.13)

Writing

(6.14)

in accordance with (6.7), we then have

(6.15)

Since (6.15) is true at any point A in the static electric field, it follows that

(6.16)E = - §V

[¥V ]A # dl = -  EA # dl

dV = [¥V ]A # dl

dV = -EA # dl

dldV
EA # dlB

dl

 = VA - VB

 = L
O

A
 E # dl - L

O

B
E # dl

 [V ]B
A = L

B

A
 E # dl = L

O

A
E # dl + L

B

O
E # dl

VA = L
O

A
 E # dl = -L

A

O
E # dl

VA

[V ]B
A

1B
A  E # dl

E # dl = 0
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6.1 Gradient and Electric Potential 191

Thus, we have obtained the result that the static electric field is the negative of the gra-
dient of the electric potential.

Before proceeding further, we note that the potential difference we have defined
here has the same meaning as the voltage between two points, defined in Section 2.1.
We, however, recall that the voltage between two points A and B in a time-varying field
is in general dependent on the path followed from A to B to evaluate , since,
according to Faraday’s law,

(6.17)

is not in general equal to zero. On the other hand, the potential difference (or voltage)
between two points A and B in a static electric field is independent of the path fol-
lowed from A to B to evaluate , since, for static fields, , and (6.17)
reduces to

(6.18)

Thus, the potential difference between two points in a static electric field has a unique
value. Fields for which the line integral around a closed path is zero are known as
conservative fields. The static electric field is a conservative field. The earth’s gravita-
tional field is another example of a conservative field, since the work done in moving a
mass around a closed path is equal to zero.

Returning now to the discussion of electric potential, let us consider the electric
field of a point charge and investigate the electric potential due to the point charge. To
do this, we recall from Section 1.5 that the electric field intensity due to a point charge
Q is directed radially away from the point charge and its magnitude is ,
where R is the radial distance from the point charge. Since the equipotential surfaces
are everywhere orthogonal to the field lines, it then follows that they are spherical sur-
faces centered at the point charge, as shown by the cross-sectional view in Figure 6.3. If
we now consider two equipotential surfaces of radii R and , the potential drop
from the surface of radius R to the surface of radius is , or, the
incremental potential rise dV is given by

(6.19)

where C is a constant. Thus,

(6.20)V (R) =
Q

4pP0R
+ C

 = da Q
4pP0R

+ Cb
 dV = -

Q

4pP0R
2 dR

1Q>4pP0R
22 dRR + dR

R + dR

Q>4pP0R
2

C C
E # dl = 0

0>0t = 01B
A  E # dl

C C E # dl = - d
dtLS

 B # dS

1B
A  E # dl
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192 Chapter 6 Statics, Quasistatics, and Transmission Lines

We can conveniently set C equal to zero by noting that it is equal to and by
choosing for the reference point. Thus, we obtain the electric potential due to
a point charge Q to be

(6.21)

We note that the potential drops off inversely with the radial distance away from the
point charge. Equation (6.21) is often the starting point for the computation of the
potential field due to static charge distributions and the subsequent determination of
the electric field by using (6.16).

6.2 POISSON’S AND LAPLACE’S EQUATIONS

In the previous section, we learned that for the static electric field, is equal to
zero, and hence

Substituting this result into Maxwell’s divergence equation for D, and assuming to be
uniform, we obtain

or

The quantity is known as the Laplacian of V, denoted (del squared V).
Thus, we have

(6.22)¥ 
2

 V = -
r

P

¥ 
2 V¥ # ¥ V

¥ # ¥ V = -
r

P

 = P¥ # (- ¥ V ) = r
 ¥ # D = ¥ # PE = P¥ # E

P

E = - ¥ V

¥ : E

V =
Q

 4pP0R
 

R = q
V (q)

Equipotentials

E

FIGURE 6.3

Cross-sectional view of equipotential surfaces and
electric field lines for a point charge.
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6.2 Poisson’s and Laplace’s Equations 193

This equation is known as the Poisson’s equation. It governs the relationship between
the volume charge density in a region and the potential in that region. In Cartesian
coordinates,

(6.23)

and Poisson’s equation becomes

(6.24)

For the one-dimensional case in which V varies with x only, and are
both equal to zero, and (6.24) reduces to

(6.25)

We shall illustrate the application of (6.25) by means of an example.

Example 6.2

Let us consider the space charge layer in a p-n junction semiconductor with zero bias, as shown
in Figure 6.4(a), in which the region is doped p-type and the region is doped n-type.
To review briefly the formation of the space charge layer, we note that since the density of the
holes on the p side is larger than that on the n side, there is a tendency for the holes to diffuse to
the n side and recombine with the electrons. Similarly, there is a tendency for the electrons on
the n side to diffuse to the p side and recombine with the holes. The diffusion of holes leaves
behind negatively charged acceptor atoms, and the diffusion of electrons leaves behind positively
charged donor atoms. Since these acceptor and donor atoms are immobile, a space charge layer,
also known as the depletion layer, is formed in the region of the junction, with negative charges
on the p side and positive charges on the n side. This space charge gives rise to an electric field
directed from the n side of the junction to the p side so that it opposes diffusion of the mobile
carriers across the junction, thereby resulting in an equilibrium. For simplicity, let us consider an
abrupt junction, that is, a junction in which the impurity concentration is constant on either side
of the junction. Let and be the acceptor and donor ion concentrations, respectively, and 
and be the widths in the p and n regions, respectively, of the depletion layer. The space charge
density is then given by
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194 Chapter 6 Statics, Quasistatics, and Transmission Lines

as shown in Figure 6.4(b), where is the magnitude of the electronic charge. Since the semicon-
ductor is electrically neutral, the total acceptor charge must be equal to the total donor charge;
that is,

(6.27)ƒ e ƒNAdp = ƒ e ƒNDdn

ƒ e ƒ
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FIGURE 6.4

For illustrating the application of Poisson’s equation for the determination of the
potential distribution for a p-n junction semiconductor.
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6.2 Poisson’s and Laplace’s Equations 195

We wish to find the potential distribution in the depletion layer and the depletion layer width
in terms of the potential difference across the depletion layer and the acceptor and donor ion
concentrations.

Substituting (6.26) into (6.25), we obtain the equation governing the potential distribution
to be

(6.28)

To solve (6.28) for V, we integrate it once and obtain

where and are constants of integration. To evaluate and we note that since
is simply equal to Since the electric field lines begin on

the positive charges and end on the negative charges, and in view of (6.27), the field and, hence,
must vanish at and giving us

(6.29)

The field intensity, that is, may now be sketched as a function of x, as shown in 
Figure 6.4(c).

Proceeding further, we integrate (6.29) and obtain

where and are constants of integration. To evaluate and we first set the potential at
arbitrarily equal to zero to obtain equal to zero. Then we make use of the condition

that the potential be continuous at since the discontinuity in at is finite, to
obtain

or
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196 Chapter 6 Statics, Quasistatics, and Transmission Lines

Substituting this value for and setting equal to zero in the expression for V, we get the
required solution

(6.30)

The variation of potential with x as given by (6.30) is shown in Figure 6.4(d).
We can proceed further and find the width of the depletion layer by setting
equal to the contact potential, that is, the potential difference across the depletion

layer resulting from the electric field in the layer. Thus,

where we have made use of (6.27). Finally, we obtain the result that

which tells us that the depletion layer width is smaller, the heavier the doping is. This property is
used in tunnel diodes to achieve layer widths on the order of by heavy doping as com-
pared to widths on the order of in ordinary p-n junctions.

We have just illustrated an example of the application of Poisson’s equation
involving the solution for the potential distribution for a given charge distribution.
Poisson’s equation is even more useful for the solution of problems in which the charge
distribution is the quantity to be determined, given the functional dependence of the
charge density on the potential. We shall, however, not pursue this topic any further.

If the charge density in a region is zero, then Poisson’s equation reduces to

(6.31)

This equation is known as Laplace’s equation. It governs the behavior of the potential
in a charge-free region. In Cartesian coordinates, it is given by

(6.32)

The problems for which Laplace’s equation is applicable consist of finding
the potential distribution in the region between two conductors given the charge
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6.3 Static Fields and Circuit Elements 197

distribution on the surfaces of the conductors or the potentials of the conductors or a
combination of the two. The procedure involves the solving of Laplace’s equation sub-
ject to the boundary conditions on the surfaces of the conductors. We shall do this in
the following section.

6.3 STATIC FIELDS AND CIRCUIT ELEMENTS

In the previous two sections, we considered static fields with reference to electric field
alone. In this section, we shall expand the treatment to all types of static fields, for the
purpose of introducing circuit elements. Thus, for static fields, . Maxwell’s
equations in integral form and the law of conservation of charge become

(6.33a)

(6.33b)

(6.33c)

(6.33d)

(6.33e)

whereas Maxwell’s equations in differential form and the continuity equation 
reduce to

(6.34a)
(6.34b)
(6.34c)
(6.34d)
(6.34e)

Immediately, one can see that, unless Jincludes a component due to conduction
current, the equations involving the electric field are completely independent of those
involving the magnetic field. Thus, the fields can be subdivided into static electric fields,
or electrostatic fields, governed by (6.33a) and (6.33c), or (6.34a) and (6.34c), and static
magnetic fields, or magnetostatic fields, governed by (6.33b) and (6.33d), or (6.34b) and
(6.34d). The source of a static electric field is , whereas the source of a static magnet-
ic field is J. One can also see from (6.33e) or (6.34e) that no relationship exists between
Jand . If Jincludes a component due to conduction current, then, since , a
coupling between the electric and magnetic fields exists for that part of the total field
associated with . However, the coupling is only one way, since the right side of (6.33a)
or (6.34a) is still zero. The field is then referred to as electromagnetostatic field. It can

Jc
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198 Chapter 6 Statics, Quasistatics, and Transmission Lines

also be seen, then, that for consistency, the right sides of (6.33c) and (6.34c) must be
zero, since the right sides of (6.33e) and (6.34e) are zero. We shall now consider each of
the three types of static fields separately and discuss some fundamental aspects.

Electrostatic Fields and Capacitance

The equations of interest are (6.33a) and (6.33c), or (6.34a) and (6.34c). The first of
each pair of these equations simply tells us that the electrostatic field is a conservative
field, and the second of each pair of these equations enables us, in principle, to deter-
mine the electrostatic field for a given charge distribution. Alternatively, the Poisson’s
equation, equation (6.22), can be used to find the electric scalar potential, V, from
which the electrostatic field can be determined by using (6.16).

In a charge-free region, the Poisson’s equation reduces to the Laplace’s equation,
(6.31). The field is then due to charges outside the region, such as surface charge on
conductors bounding the region. The situation is then one of solving a boundary value
problem, as we shall illustrate by means of an example.

Example 6.3

Figure 6.5(a) is that of a parallel-plate arrangement in which two parallel, perfectly conducting
plates of dimensions w along the y-direction and l along the z-direction lie in
the and planes. The region between the plates is a perfect dielectric of
material parameters and . The thickness of the plates is shown exaggerated for convenience
in illustration. A potential difference of is maintained between the plates by connecting a di-
rect voltage source at the end . If fringing of the field due to the finite dimensions of the
structure normal to the x-direction is neglected, or, if it is assumed that the structure is part of
one which is infinite in extent normal to the x-direction, then the problem can be treated as one-
dimensional with x as the variable, and (6.31) reduces to

(6.35)

We wish to carry out the electrostatic field analysis for this arrangement.
The solution for the potential in the charge-free region between the plates is given by

(6.36)

which satisfies (6.35), as well as the boundary conditions of at and at .
The electric field intensity between the plates is then given by

(6.37)

as depicted in the cross-sectional view in Figure 6.5(b), and resulting in displacement flux density

(6.38)D =
PV0

d
 ax
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d
 ax
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d
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mP
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6.3 Static Fields and Circuit Elements 199

Then, using the boundary condition for the normal component of D given by (5.94c), we obtain
the magnitude of the charge on either plate to be

(6.39)

We can now find the familiar circuit parameter, the capacitance, C, of the parallel-plate
arrangement, which is defined as the ratio of the magnitude of the charge on either plate to the
potential difference . Thus,

(6.40)

Note that the units of C are the units of times meter, that is, farads. The phenomenon associated
with the arrangement is that energy is stored in the capacitor in the form of electric field energy
between the plates, as given by

(6.41)

the familiar expression for energy stored in a capacitor.
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Electrostatic field analysis for a parallel-plate arrangement.
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200 Chapter 6 Statics, Quasistatics, and Transmission Lines

Magnetostatic Fields and Inductance

The equations of interest are (6.33b) and (6.33d),or (6.34b) and (6.34d). The second of each
pair of these equations simply tells us that the magnetostatic field is solenoidal, which as we
know holds for any magnetic field,and the first of each pair of these equations enables us, in
principle, to determine the magnetostatic field for a given current distribution.

In a current-free region, . The field is then due to currents outside the
region, such as surface currents on conductors bounding the region. The situation is
then one of solving a boundary value problem as in the case of (6.31). However, since
the boundary condition (5.94b) relates the magnetic field directly to the surface current
density, it is straightforward and more convenient to determine the magnetic field
directly by using (6.34b) and (6.34d). We shall illustrate by means of an example.

Example 6.4

Figure 6.6(a) is that of the parallel-plate arrangement of Figure 6.5(a) with the plates connected
by another conductor at the end and driven by a source of direct current at the end

. If fringing of the field due to the finite dimensions of the structure normal to the 
x-direction is neglected, or, if it is assumed that the structure is part of one which is infinite in
extent normal to the x-direction, then the problem can be treated as one-dimensional with x as
the variable and we can write the current density on the plates to be

(6.42)

We wish to carry out the magnetostatic field analysis for this arrangement.
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Magnetostatic field analysis for a parallel-plate arrangement.
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6.3 Static Fields and Circuit Elements 201

In the current-free region between the plates, (6.34b) reduces to

(6.43)

and (6.34d) reduces to

(6.44)

so that each component of the field, if it exists, has to be uniform. This automatically forces 
and to be zero, since nonzero value of these components do not satisfy the boundary condi-
tions (5.94b) and (5.94d) on the plates, keeping in mind that the field is entirely in the region
between the conductors. Thus, as depicted in the cross-sectional view in Figure 6.6(b),

(6.45)

which satisfies the boundary condition (5.94b) on all three plates, and results in magnetic flux
density

(6.46)

The magnetic flux, , linking the current is then given by

(6.47)

We can now find the familiar circuit parameter, the inductance, L, of the parallel-plate
arrangement, which is defined as the ratio of the magnetic flux linking the current to the current.
Thus,

(6.48)

Note that the units of L are the units of times meter, that is, henrys. The phenomenon associated
with the arrangement is that energy is stored in the inductor in the form of magnetic field energy
between the plates, as given by

(6.49)

the familiar expression for energy stored in an inductor.
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Electromagnetostatic Fields and Conductance

The equations of interest are

(6.50a)

(6.50b)

(6.50c)

(6.50d)

or, in differential form,

(6.51a)
(6.51b)
(6.51c)
(6.51d)

From (6.51a) and (6.51c), we note that Laplace’s equation for the electrostatic poten-
tial, (6.31), is satisfied, so that, for a given problem, the electric field can be found in the
same manner as in the case of the example of Figure 6.6. The magnetic field is then
found by using (6.51b), and making sure that (6.51d) is also satisfied.We shall illustrate
by means of an example.

Example 6.5

Figure 6.7(a) is that of the parallel-plate arrangement of Figure 6.5(a) but with an imperfect
dielectric material of parameters between the plates. We wish to carry out the elec-
tromagnetostatic field analysis of the arrangement.

The electric field between the plates is the same as that given by (6.37), that is,

(6.52)

resulting in a conduction current of density

(6.53)

from the top plate to the bottom plate, as depicted in the cross-sectional view of Figure 6.7(b).
Since at the boundaries between the plates and the slab, continuity of current is satis-
fied by the flow of surface current on the plates. At the input , this surface current, which
is the current drawn from the source, must be equal to the total current flowing from the top to
the bottom plate. It is given by
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Electromagnetostatic field analysis for a parallel-plate arrangement.

We can now find the familiar circuit parameter, the conductance, G, of the parallel-plate
arrangement,which is defined as the ratio of the current drawn from the source to the source voltage

. Thus,

(6.55)

Note that the units of G are the units of times meter, that is, siemens (S). The reciprocal quantity,
R, the resistance of the parallel-plate arrangement, is given by

(6.56)

The unit of R is ohms. The phenomenon associated with the arrangement is that power is dissi-
pated in the material between the plates, as given by

(6.57)

the familiar expression for power dissipated in a resistor.
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Proceeding further, we find the magnetic field between the plates by using (6.51b), and
noting that the geometry of the situation requires a y-component of H, dependent on z, to satisfy
the equation. Thus,

(6.58a)

(6.58b)

(6.58c)

where the constant of integration is set to zero, since the boundary condition at requires
to be zero for equal to zero. Note that the magnetic field is directed in the positive -direction

(since is negative) and increases linearly from to , as depicted in Figure 6.7(b). It
also satisfies the boundary condition at by being consistent with the current drawn from
the source to be .

Because of the existence of the magnetic field, the arrangement is characterized by an in-
ductance, which can be found either by using the flux linkage concept or by the energy method.
To use the flux linkage concept, we recognize that a differential amount of magnetic flux

between equal to and equal to , where , links only
that part of the current that flows from the top plate to the bottom plate between and

, thereby giving a value of for the fraction, , of the total current linked. Thus, the
inductance, familiarly known as the internal inductance, denoted , since it is due to magnetic
field internal to the current distribution, as compared to that in (6.48) for which the magnetic field
is external to the current distribution, is given by

(6.59)

or, times the inductance of the structure if and the plates are joined at , as in
Figure 6.6(b).

Alternatively, if the energy method is used by computing the energy stored in the magnetic
field and setting it equal to , then we have

(6.60)

same as in (6.59).
Finally, recognizing that there is energy storage associated with the electric field between

the plates, we note that the arrangement has also associated with it a capacitance , equal to
. Thus, all three properties of conductance, capacitance, and inductance are associated

with the structure. Since for the situation reduces to that of Figure 6.5, we can represent
the arrangement of Figure 6.7 to be equivalent to the circuit shown in Figure 6.8. Note that the
capacitor is charged to the voltage and the current through it is zero (open circuit condition).V 0
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V0

d
swl

R "

1
3
mdl
wLi "

Pwl
d

C "

FIGURE 6.8

Circuit equivalent for the arrangement
of Figure 6.7.

The voltage across the inductor is zero (short circuit condition) and the current through it is
. Thus, the current drawn from the voltage source is and the voltage source views a

single resistor , as far as the current drawn from it is concerned.

6.4 LOW-FREQUENCY BEHAVIOR VIA QUASISTATICS

In the preceding section, we introduced circuit elements via static fields. A class of
dynamic fields for which certain features can be analyzed as though the fields were sta-
tic are known as quasistatic fields. In terms of behavior in the frequency domain, they
are low-frequency extensions of static fields present in a physical structure, when the
frequency of the source driving the structure is zero, or low-frequency approximations
of time-varying fields in the structure that are complete solutions to Maxwell’s equa-
tions. In this section, we consider the approach of low-frequency extensions of static
fields. Thus, for a given structure, we begin with a time-varying field having the same
spatial characteristics as that of the static field solution for the structure, and obtain
field solutions containing terms up to and including the first power (which is the lowest
power) in for their amplitudes. Depending on whether the predominant static field is
electric or magnetic, quasistatic fields are called electroquasistatic fields or magneto-
quasistatic fields. We shall now consider these separately.

Electroquasistatic Fields

For electroquasistatic fields, we begin with the electric field having the spatial depen-
dence of the static field solution for the given arrangement. We shall illustrate by
means of an example.

Example 6.6

Figure 6.9 shows the cross-sectional view of the arrangement of Figure 6.5(a) excited by a sinu-
soidally time-varying voltage source instead of a direct voltage source. We wish
to carry out the electroquasistatic field analysis for the arrangement.

From (6.37), we write

(6.61)E0 =
V0

d
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Electroquasistatic field analysis for the parallel-plate structure of Figure 6.5.

where the subscript 0 denotes that the amplitude of the field is of the zeroth power in . This
results in a magnetic field in accordance with Maxwell’s equation for the curl of H, given by
(3.28). Thus, noting that in view of the perfect dielectric medium, we have for the geometry
of the arrangement,

(6.62)

where we have also satisfied the boundary condition at by choosing the constant of inte-
gration such that is zero, and the subscript 1 denotes that the amplitude of the field is of
the first power in . Note that the amplitude of varies linearly with , from zero at to a
maximum at .

We stop the solution here, because continuing the process by substituting (6.62) into
Maxwell’s curl equation for E, (3.17), to obtain the resulting electric field will yield a term hav-
ing amplitude proportional to the second power in . This simply means that the fields given
as a pair by (6.61) and (6.62) do not satisfy (3.17), and hence are not complete solutions to
Maxwell’s equations. They are the quasistatic fields. The complete solutions are obtained by
solving Maxwell’s equations simultaneously and subject to the boundary conditions for the given
problem.

Proceeding further, we obtain the current drawn from the voltage source to be

(6.63a)

or,

(6.63b)

where is the capacitance of the arrangement obtained from static field considera-
tions. Thus, the input admittance of the structure is , such that its low frequency input
behavior is essentially that of a single capacitor of value same as that found from static field
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Magnetoquasistatic field analysis for the parallel-plate structure of Figure 6.6.

analysis of the structure. Indeed, from considerations of power flow, using Poynting’s theorem,
we obtain the power flowing into the structure to be

(6.64)

which is consistent with the electric energy stored in the structure for the static case, as given
by (6.41).

Magnetoquasistatic Fields

For magnetoquasistatic fields, we begin with the magnetic field having the spatial de-
pendence of the static field solution for the given arrangement. We shall illustrate by
means of an example.

Example 6.7

Figure 6.10 shows the cross-sectional view of the arrangement of Figure 6.6(a), excited by a sinu-
soidally time-varying current source instead of a direct current source. We wish
to carry out the magnetoquasistatic field analysis for the arrangement.

From (6.45) we write

(6.65)

where the subscript 0 again denotes that the amplitude of the field is of the zeroth power in .
This results in an electric field in accordance with Maxwell’s curl equation for E, given by (3.17).
Thus, we have for the geometry of the arrangement,

(6.66) E1 =
vmI0z
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where we have also satisfied the boundary condition at by choosing the constant of inte-
gration such that is equal to zero, and again the subscript 1 denotes that the amplitude of
the field is of the first power in . Note that the amplitude of varies linearly with , from zero
at to a maximum at .

As in the case of electroquasistatic fields, we stop the process here, because continuing it
by substituting (6.66) into Maxwell’s curl equation for H, (3.28), to obtain the resulting magnet-
ic field will yield a term having amplitude proportional to the second power in . This simply
means that the fields given as a pair by (6.65) and (6.66) do not satisfy (3.28), and hence are not
complete solutions to Maxwell’s equations. They are the quasistatic fields. The complete solu-
tions are obtained by solving Maxwell’s equations simultaneously and subject to the boundary
conditions for the given problem.

Proceeding further, we obtain the voltage across the current source to be

(6.67a)

or

(6.67b)

where is the inductance of the arrangement obtained from static field considera-
tions. Thus, the input impedance of the structure is , such that its low frequency input be-
havior is essentially that of a single inductor of value same as that found from static field analysis
of the structure. Indeed, from considerations of power flow, using Poynting’s theorem, we obtain
the power flowing into the structure to be

(6.68)

which is consistent with the magnetic energy stored in the structure for the static case, as given
by (6.49).

Quasistatic Fields in a Conductor

If the dielectric slab in an arrangement is conductive,then both electric and magnetic fields
exist in the static case, because of the conduction current, as discussed under electromag-
netostatic fields in Section 6.3.Furthermore,the electric field of amplitude proportional to
the first power in contributes to the creation of magnetic field of amplitude proportion-
al to the first power in , in addition to that from electric field of amplitude proportional to
the zeroth power in .We shall illustrate by means of an example.v
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6.4 Low-Frequency Behavior via Quasistatics 209

Example 6.8

Let us consider that the dielectric slab in the arrangement of Figure 6.9 is conductive, as shown
in Figure 6.11(a), and carry out the quasistatic field analysis for the arrangement.

Using the results from the static field analysis from the arrangement of Figure 6.7, we have
for the arrangement of Figure 6.11(a),

(6.69)

(6.70)

(6.71)

as depicted in the figure. Also, the variations with of the amplitudes of and are shown
in Figure 6.11(b).
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FIGURE 6.11

(a) Zero-order fields for the parallel-plate structure of Figure 6.7. (b) Variations of amplitudes
of the zero-order fields along the structure. (c) Variations of amplitdes of the first-order fields
along the structure.
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210 Chapter 6 Statics, Quasistatics, and Transmission Lines

The magnetic field given by (6.69) gives rise to an electric field having amplitude pro-
portional to the first power in , in accordance with Maxwell’s curl equation for E, (3.17). Thus,

(6.72)

where we have also made sure that the boundary condition at is satisfied. This boundary
condition requires that be equal to at . Since this is satisfied by alone, it fol-
lows that must be zero at .

The electric field given by (6.69) and that given by (6.72) together give rise to a magnetic
field having terms with amplitudes proportional to the first power in , in accordance with
Maxwell’s curl equation for H, (3.28). Thus,

(6.73)

where we have also made sure that the boundary condition at is satisfied. This boundary
condition requires that be equal to zero at , which means that all of its terms must be
zero at . Note that the first term on the right side of (6.73) is the contribution from the con-
duction current in the material resulting from , and the second term is the contribution from
the displacement current resulting from . Denoting these to be and , respectively,
we show the variations with of the amplitudes of all the field components having amplitudes
proportional to the first power in in Figure 6.11(c).

Now, adding up the contributions to each field, we obtain the total electric and magnetic
fields up to and including the terms with amplitudes proportional to the first power in to be

(6.74a)

(6.74b)

or

(6.75a)

(6.75b)

Finally, the current drawn from the voltage source is given by
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6.5 The Distributed Circuit Concept and the Parallel-Plate Transmission Line 211

The input admittance of the structure is given by

(6.77)

where we have used the approximation Proceeding
further, we have

(6.78)

where is the capacitance of the structure if the material is a perfect dielectric,
is the resistance of the structure, and is the internal inductance of the

structure, all computed from static field analysis of the structure.
The equivalent circuit corresponding to (6.78) consists of capacitance in parallel with

the series combination of resistance and internal inductance , the same as in Figure 6.8.
Thus, the low-frequency input behavior of the structure is essentially the same as that of the
equivalent circuit of Figure 6.8, with the understanding that its input admittance must also be
approximated to first-order terms. Note that for the input admittance of the structure is
purely capacitive. For nonzero , a critical value of equal to exists for which the input
admittance is purely conductive. For values of smaller than the critical value, the input admit-
tance is complex and capacitive, and for values of larger than the critical value, the input
admittance is complex and inductive.

6.5 THE DISTRIBUTED CIRCUIT CONCEPT AND THE PARALLEL-PLATE
TRANSMISSION LINE

In the preceding section, we have seen that, from the circuit point of view, the parallel-
plate structure of Figure 6.5 behaves like a capacitor for the static case and the capaci-
tive character is essentially retained for its input behavior for sinusoidally time-varying
excitation at frequencies low enough to be within the range of validity of the quasistatic
approximation. Likewise, we have seen that, from a circuit point of view, the parallel-plate
structure of Figure 6.6 behaves like an inductor for the static case and the inductive
character is essentially retained for its input behavior for sinusoidally time-varying
excitation at frequencies low enough to be within the range of validity of the quasistatic
approximation. For both structures, at an arbitrarily high enough frequency, the input
behavior can be obtained only by obtaining complete (wave) solutions to Maxwell’s
equations, subject to the appropriate boundary conditions.

Two questions to ask at this point are (1) whether there is a circuit equivalent for
the structure itself, independent of the termination, that is representative of the phe-
nomenon taking place along the structure and valid at any arbitrary frequency, to the
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212 Chapter 6 Statics, Quasistatics, and Transmission Lines

extent that the material parameters themselves are independent of frequency, and 
(2) what the limit on frequency is beyond which the quasistatic approximation is not
valid. The answer to the first question is, yes, under a certain condition, giving rise to
the concept of the distributed circuit, which we shall develop in this section by consid-
ering the parallel-plate structure, to be then known as the parallel-plate transmission
line. The condition is that the waves propagating along the structure be the so-called
transverse electromagnetic or TEM waves, meaning that the directions of the electric
and magnetic fields are entirely traverse to the direction of propagation of the waves.
The answer to the second question is that for the quasistatic approximation to hold, the
length of the physical structure along the direction of propagation of the waves must
be very small compared to the wavelength corresponding to the frequency of the
source, in the dielectric region between the plates. While this can be obtained by ex-
tending the solution for the quasistatic case beyond the terms of the first power in by
successive solution of Maxwell’s equations (as in Section 4.3) and finding the condition
under which the term of the first power in is predominant, it is more straightforward
to obtain the exact solution by resorting to simultaneous solution of Maxwell’s equa-
tions and finding the condition for which it approximates to the quasistatic solution.
We shall do this in Section 7.1 by considering the structure of Figure 6.10 as a short-
circuited transmission line and finding its input impedance.

Now, to develop and discuss the concept of the distributed circuit, we consider
the parallel-plate arrangement of Figure 6.7(a) excited by a sinusoidally time-varying
source of arbitrary frequency, as shown in Figure 6.12(a). Then, for an exact solution,
the equations to be solved are

(6.79a)

(6.79b)

For the geometry of the arrangement, neglecting fringing of the fields at the edges or
assuming that the structure is part of a much larger-sized configuration,
and so that (6.79a) and (6.79b) simplify to

(6.80a)

(6.80b)

The situation is one of uniform plane electromagnetic waves propagating in the 
z-direction as though the conductors are not present, being guided by them, since all
the boundary conditions are satisfied. We then have the simple case of a parallel-plate
transmission line. Now, since and are zero in a given constant-z plane, that is,
a plane transverse to the direction of propagation of the wave, as shown in Fig-
ure 6.12(b), we can uniquely define a voltage between the plates in terms of the electric
field intensity in that plane, and a current crossing that plane in one direction on the
top plate and in the opposite direction on the bottom plate in terms of the magnetic
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FIGURE 6.12

(a) Parallel-plate transmission line. (b) A transverse plane of the parallel-plate
transmission line.

field intensity in that plane. These are given by

(6.81a)

(6.81b)

Proceeding further, we can find the power flow down the line by evaluating the
surface integral of the Poynting vector over a given transverse plane. Thus,

(6.82)

which is the familiar relationship employed in circuit theory.
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214 Chapter 6 Statics, Quasistatics, and Transmission Lines

From (6.81a) and (6.81b), we have

(6.83a)

(6.83b)

Substituting for and in (6.80a) and (6.80b) from (6.83a) and (6.83b), respectively,
we now obtain two differential equations for voltage and current along the line as

(6.84a)

(6.84b)

or

(6.85a)

(6.85b)

We now recognize the quantities in parentheses in (6.85a) and (6.85b) to be the
circuit parameters L, G, and C, divided by the length l of the structure in the z-direction.
Thus, these are the inductance per unit length, capacitance per unit length, and conduc-
tance per unit length, of the line, denoted to be , , and , respectively, and we can
write the equations in terms of these parameters as

(6.86a)

(6.86b)

where

(6.87a)

(6.87b)

(6.87c)

We note that , , and are purely dependent on the dimensions of the line and
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6.5 The Distributed Circuit Concept and the Parallel-Plate Transmission Line 215

Equations (6.86a) and (6.86b) are known as the transmission line equations. They char-
acterize the wave propagation along the line in terms of the circuit quantities instead of
in terms of the field quantities. It should, however, not be forgotten that the actual phe-
nomenon is one of electromagnetic waves guided by the conductors of the line.

It is customary to represent a transmission line by means of its circuit equivalent,
derived from the transmission-line equations (6.86a) and (6.86b). To do this, let us con-
sider a section of infinitesimal length along the line between z and From
(6.86a), we then have

or, for 

(6.89a)

This equation can be represented by the circuit equivalent shown in Figure 6.13(a),
since it satisfies Kirchhoff’s voltage law written around the loop abcda. Similarly, from
(6.86b), we have

or, for 

(6.89b)

This equation can be represented by the circuit equivalent shown in Figure 6.13(b), since
it satisfies Kirchhoff’s current law written for node c. Combining the two equations, we
then obtain the equivalent circuit shown in Figure 6.13(c) for a section of the line. It¢z
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Development of circuit equivalent for an infinitesimal length of a
transmission line.
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216 Chapter 6 Statics, Quasistatics, and Transmission Lines

then follows that the circuit representation for a portion of length l of the line consists of
an infinite number of such sections in cascade, as shown in Figure 6.14. Such a circuit is
known as a distributed circuit as opposed to the lumped circuits that are familiar in circuit
theory. The distributed circuit notion arises from the fact that the inductance, capaci-
tance, and conductance are distributed uniformly and overlappingly along the line.

(

" 'z" 'z " 'z

!  'z !  'z !  'z
# 'z # 'z # 'z

FIGURE 6.14

Distributed circuit representation of a transmission line.

A more physical interpretation of the distributed circuit concept follows from
energy considerations.We know that the uniform plane wave propagation between the
conductors of the line is characterized by energy storage in the electric and magnetic
fields and power dissipation due to the conduction current flow. If we consider a sec-
tion of the line, the energy stored in the electric field in this section is given by

(6.90a)

The energy stored in the magnetic field in that section is given by

(6.90b)

The power dissipated due to conduction current flow in that section is given by

(6.90c)

Thus, , , and are elements associated with energy storage in the magnetic field,
energy storage in the electric field, and power dissipation due to the conduction current
flow in the dielectric, respectively, for a given infinitesimal section of the line. Since
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6.6 Transmission Line with an Arbitrary Cross Section 217

these phenomena occur continuously and since they overlap, the inductance, capaci-
tance, and conductance must be distributed uniformly and overlappingly along the
line. In actual practice, the conductors of the transmission line are imperfect, resulting
in slight penetration of the fields into the conductors, in accordance with the skin effect
phenomenon. This gives rise to power dissipation and magnetic field energy storage in
the conductors, which are taken into account by including a resistance and additional
inductance in the series branch of the transmission-line equivalent circuit.

6.6 TRANSMISSION LINE WITH AN ARBITRARY CROSS SECTION

In the previous section, we considered the parallel-plate transmission line made up of
perfectly conducting sheets lying in the planes and so that the boundary
conditions of zero tangential component of the electric field and zero normal component
of the magnetic field are satisfied by the uniform plane wave characterized by the fields

thereby leading to the situation in which the uniform plane wave is guided by the con-
ductors of the transmission line. In the general case, however, the conductors of the
transmission line have arbitrary cross sections and the fields consist of both x- and
y-components and are dependent on x- and y-coordinates in addition to the z-coordinate.
Thus, the fields between the conductors are given by

These fields are no longer uniform in x and y but are directed entirely transverse to the
direction of propagation, that is, the z-axis, which is the axis of the transmission line.
Hence, they are known as transverse electromagnetic waves, or TEM waves. The uni-
form plane waves are simply a special case of the transverse electromagnetic waves.

To extend the computation of the transmission line parameters , , and to the
general case, let us consider a transmission line made up of parallel, perfect conductors
of arbitrary cross sections, as shown by the cross-sectional view in Figure 6.15(a). Let us
assume that the inner conductor is positive with respect to the outer conductor and
that the current flows along the positive z-direction (into the page) on the inner con-
ductor and along the negative z-direction (out of the page) on the outer conductor. We
can then draw a field map, that is, a graphical sketch of the direction lines of the fields
between the conductors, from the following considerations: (a) The electric field lines
must originate on the inner conductor and be normal to it and must terminate on the
outer conductor and be normal to it, since the tangential component of the electric
field on a perfect conductor surface must be zero. (b) The magnetic field lines must be
everywhere perpendicular to the electric field lines; although this can be shown by a
rigorous mathematical proof, it is intuitively obvious, since, first, the magnetic field
lines must be tangential near the conductor surfaces and, second, at any arbitrary point
the fields correspond to those of a locally uniform plane wave. Thus, suppose that we

gcl
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 E = Ex(x, y, z, t)ax + Ey(x, y, z, t)ay

 H = Hy(z, t)ay

 E = Ex(z, t)ax

x = dx = 0
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218 Chapter 6 Statics, Quasistatics, and Transmission Lines

start with the inner conductor and draw several lines normal to it at several points on
the surface, as shown in Figure 6.15(b). We can then draw a curved line displaced from
the conductor surface and such that it is perpendicular everywhere to the electric field
lines of Figure 6.15(b), as shown in Figure 6.15(c). This contour represents a magnetic
field line and forms the basis for further extension of the electric field lines, as shown in
Figure 6.15(d). A second magnetic field line can then be drawn so that it is everywhere
perpendicular to the extended electric field lines, as shown in Figure 6.15(e). This

Conductors E lines

H line

(a) (b)

(c) (d)

(e) (f)

FIGURE 6.15

Construction of a transmission line field map consisting of
curvilinear rectangles.
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6.6 Transmission Line with an Arbitrary Cross Section 219

procedure is continued until the entire cross section between the conductors is filled
with two sets of orthogonal contours, as shown in Figure 6.15(f), thereby resulting in a
field map made up of curvilinear rectangles.

By drawing the field lines with very small spacings, we can make the rectangles so
small that each of them can be considered to be the cross section of a parallel-plate
line. In fact, by choosing the spacings appropriately, we can even make them a set of
squares. If we now replace the magnetic field lines by perfect conductors, since it does
not violate any boundary condition, it can be seen that the arrangement can be viewed
as the parallel combination, in the angular direction, of m number of series combina-
tions of n number of parallel-plate lines in the radial direction, where m is the number
of squares in the angular direction, that is, along a magnetic field line, and n is the num-
ber of squares in the radial direction, that is, along an electric field line. We can then
find simple expressions for , , and of the line in the following manner.

Let us for simplicity consider the field map of Figure 6.16, consisting of eight seg-
ments 1, 2, . . . , 8 in the angular direction and two segments a and b in the radial direc-
tion. The arrangement is then a parallel combination, in the angular direction, of eight
series combinations of two lines in the radial direction, each having a curvilinear rec-
tangular cross section. Let , , . . . , be the currents associated with the segments 
1, 2, . . . , 8, respectively, and let and be the magnetic fluxes per unit length in the
z-direction associated with the segments a and b, respectively. Then the inductance per

cbca

I8I2I1
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z
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y

E, Jc
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FIGURE 6.16

For deriving the expressions for the transmission-line parameters from the
field map.
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220 Chapter 6 Statics, Quasistatics, and Transmission Lines

unit length of the transmission line is given by

(6.91a)

Let , , . . . , be the charges per unit length in the z-direction associated with the
segments 1, 2, . . . , 8, respectively, and let and be the voltages associated with the
segments a and b, respectively. Then the capacitance per unit length of the transmis-
sion line is given by

(6.91b)

Let , . . . , be the conduction currents per unit length in the z-direction associ-
ated with the segments 1, 2, . . . , 8, respectively. Then the conductance per unit length
of the transmission line is given by

(6.91c)

Generalizing the expressions (6.91a), (6.91b), and (6.91c) to m segments in the
angular direction and n segments in the radial direction, we obtain
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6.6 Transmission Line with an Arbitrary Cross Section 221

(6.92c)

where , , and are the inductance, capacitance, and conductance per unit length
corresponding to the rectangle ij. If the map consists of curvilinear squares, then , ,
and are equal to , and , respectively, according to (6.87a), (6.87b), and (6.87c),
respectively, since the width w of the plates is equal to the spacing d of the plates for
each square. Thus, we obtain simple expressions for , , and as given by

(6.93a)

(6.93b)

(6.93c)

The computation of , , and then consists of sketching a field map consisting of
curvilinear squares, counting the number of squares in each direction, and substituting
these values in (6.93a), (6.93b), and (6.93c). Note that once again

(6.94a)

(6.94b)

We shall now consider an example of the application of the curvilinear squares technique.

Example 6.9

The coaxial cable is a transmission line made up of parallel, coaxial, cylindrical conductors. Let
the radius of the inner conductor be a and that of the outer conductor be b. We wish to find
expressions for , , and of the coaxial cable by using the curvilinear squares technique.

Figure 6.17 shows the cross-sectional view of the coaxial cable and the field map. In view of
the symmetry associated with the conductor configuration, the construction of the field map is
simplified in this case. The electric field lines are radial lines from one conductor to the other, and
the magnetic field lines are circles concentric with the conductors, as shown in the figure. Let the
number of curvilinear squares in the angular direction be m. Then to find the number of curvilin-
ear squares in the radial direction, we note that the angle subtended at the center of the conduc-
tors by adjacent pairs of electric field lines is equal to . Hence, at any arbitrary radius r
between the two conductors, the side of the curvilinear square is equal to . The number of

squares in an infinitesimal distance dr in the radial direction is then equal to or .

The total number of squares in the radial direction from the inner to the outer conductor is given by

The required expressions for , , and are then given by
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222 Chapter 6 Statics, Quasistatics, and Transmission Lines

(6.95b)

(6.95c)

These expressions are exact. We have been able to obtain exact expressions in this case because
of the geometry involved. When the geometry is not so simple, we can only obtain approximate
values for , , and .

We have just discussed an example of the determination of the transmission-line
parameters , , and for a coaxial cable. There are other configurations having dif-
ferent cross sections for which one can obtain the parameters either by the curvilinear
squares technique or by other analytical or experimental techniques. The parameters
for some cases for which exact expressions are available are listed in Table 6.1, along
with those for the parallel-plate line and coaxial cable.

gcl
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TABLE 6.1 Conductance, Capacitance, and Inductance per Unit Length for Some Structures Consisting 
of Infinitely Long Conductors Having the Cross Sections Shown in Figure 6.18

Conductance 
per unit length,g

Capacitance 
per unit length,cDescription

Inductance 
per unit length,l

Parallel-plane
conductors,
Figure 6.18(a)

Coaxial cylindrical
conductors,
Figure 6.18(b)

Parallel cylindrical
wires, Figure 6.18(c)
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FIGURE 6.17

Field map consisting of curvilinear squares for a
coaxial cable.
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Summary 223

SUMMARY

In this chapter, we first introduced the electric potential from the fact that for the static
case,

(6.96)

and, since the curl of the gradient of a scalar function is identically zero, E can be ex-
pressed as the gradient of a scalar function. The gradient of a scalar function is given
in Cartesian coordinates by

The magnitude of at a given point is the maximum rate of increase of at that
point, and its direction is the direction in which the maximum rate of increase occurs,
that is, normal to the constant surface passing through that point.

From considerations of work associated with the movement of a test charge in
the static electric field, we found that for the case of the static electric field, the scalar
function is , so that

(6.97)

where V is the electric potential. The electric potential at a point A is the amount of
work per unit charge done by the field in the movement of a test charge from the point A
to a reference point O. It is the potential difference between A and O. Thus,
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FIGURE 6.18

Cross sections of some common configurations of parallel, infinitely long conductors.
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224 Chapter 6 Statics, Quasistatics, and Transmission Lines

The potential difference between two points has the same physical meaning as the
voltage between the two points. The voltage in a time-varying field is, however, not a
unique quantity, since it depends on the path employed for evaluating it, whereas the
potential difference in a static field, being independent of the path, has a unique value.

We considered the potential field of a point charge and found that for the point
charge

where R is the radial distance away from the point charge. The equipotential surfaces
for the point charge are thus spherical surfaces centered at the point charge.

Substituting (6.97) into Maxwell’s divergence equation for D, we derived the
Poisson’s equation

(6.98)

which states that the Laplacian of the electric potential at a point is equal to ! times
the volume charge density at that point. In Cartesian coordinates,

For the one-dimensional case in which the charge density is a function of x only, (6.98)
reduces to

We illustrated the solution of this equation by considering the example of a p–n junc-
tion diode.

If , Poisson’s equation reduces to Laplace’s equation

(6.99)

This equation is applicable for a charge-free dielectric region as well as for a conduct-
ing medium.

To introduce circuit elements, we next began with Maxwell’s equations in differ-
ential form and the continuity equation for static fields, given by

(6.100a)
(6.100b)
(6.100c)
(6.100d)
(6.100e)

and considered three cases of static fields: (a) electrostatic fields, (b) magnetostatic
fields, and (c) electromagnetostatic fields. From these three cases, we introduced the
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circuit elements, capacitance (C), inductance (L) and conductance (G), respectively, by
considering a parallel-plate arrangement.

We then turned to the quasistatic extension of the static field solution as a means
of obtaining the low-frequency behavior of a physical structure. The quasistatic field
approach involves starting with a time-varying field having the same spatial character-
istics as the static field in the physical structure and then obtaining field solutions con-
taining terms up to and including the first power in frequency by using Maxwell’s curl
equations for time-varying fields. We applied this approach for the same three cases as
for the static fields, and found that the input behavior of the structure remains essen-
tially the same as for the corresponding static case.

The quasistatic approximation holds for frequencies for which the wavelength
corresponding to the frequency of the source is large compared to the length of the
structure along the direction of propagation of the waves, which is to be derived in
Section 7.1. Beyond the range of validity of the quasistatic approximation, the input
behavior can be obtained only by obtaining complete solutions to Maxwell’s equations,
subject to the boundary conditions, which led us to the concept of the distributed cir-
cuit and the parallel-plate structure becoming a parallel-plate transmission line. We
derived the transmission-line equations,

(6.101a)

(6.101b)

These equations are applicable to all transmission lines, characterized by transverse
electromagnetic wave propagation. They govern the wave propagation along the line
in terms of circuit quantities instead of in terms of field quantities.

The parameters , , and in (6.101a) and (6.101b) are the inductance, capaci-
tance, and conductance per unit length of line, which differ from one line to another.
For the parellel-plate line having width w of the plates and spacing d between the
plates, they are given by 

where are the material parameters of the medium between the plates and
fringing of the fields is neglected. We learned how to compute l,c, and g for a line of
arbitrary cross section by constructing a field map of the transverse electromagnetic
wave fields, consisting of curvilinear squares in the cross-sectional plane of the line.
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226 Chapter 6 Statics, Quasistatics, and Transmission Lines

If m is the number of squares tangential to the conductors and n is the number of
squares normal to the conductors, then

By applying this technique to the coaxial cable, we found that for a cable of inner
radius a and outer radius b,

 g = 2ps
ln (b>a)

 c = 2pP
ln (b>a)

 l =
m

2p
 ln  

b
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 g = s 
m
n

 c = P 
m
n

 l = m 
n
m

REVIEW QUESTIONS

6.1. State Maxwell’s curl equations for static fields.
6.2. What is the expansion for the gradient of a scalar in Cartesian coordinates? When can a

vector be expressed as the gradient of a scalar?
6.3. Discuss the physical interpretation for the gradient of a scalar function.
6.4. Discuss the application of the gradient concept for the determination of unit vector

normal to a surface.
6.5. How would you find the rate of increase of a scalar function along a specified direction

by using the gradient concept?
6.6. Define electric potential. What is its relationship to the static electric field intensity?
6.7. Distinguish between voltage, as applied to time-varying fields, and potential difference.
6.8. What is a conservative field? Give two examples of conservative fields.
6.9. Describe the equipotential surfaces for a point charge.

6.10. Discuss the determination of the electric field intensity due to a charge distribution by
using the potential concept.

6.11. What is the Laplacian of a scalar? What is its expansion in Cartesian coordinates?
6.12. State Poisson’s equation.
6.13. Outline the solution of Poisson’s equation for the potential in a region of known charge

density varying in one dimension.
6.14. State Laplace’s equation. In what regions is it valid?
6.15. State Maxwell’s equations for static fields in (a) integral form, and (b) differential form.
6.16. Discuss the classification of static fields with reference to subsets of Maxwell’s

equations.
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6.17. Outline the steps involved in the electrostatic field analysis of a parallel plate structure
and the determination of its capacitance.

6.18. Outline the steps involved in the magnetostatic field analysis of a parallel plate struc-
ture and the determination of its inductance.

6.19. Outline the steps involved in the electromagnetostatic field analysis of a parallel plate
structure and the determination of its circuit equivalent.

6.20. Explain the term internal inductance.
6.21. What is meant by the quasistatic extension of the static field in a physical structure?
6.22. Outline the steps involved in the electroquasistatic field analysis of a parallel plate

structure and the determination of its input behavior. Compare the input behavior with
the electrostatic case.

6.23. Outline the steps involved in the magnetoquasistatic field analysis of a parallel plate
structure and the determination of its input behavior. Compare the input behavior with
the magnetostatic case.

6.24. Outline the steps involved in the quasistatic field analysis of a parallel plate structure
with a conducting slab between the plates and the determination of its input behavior.
Compare the input behavior with the electromagnetostatic case.

6.25. Discuss the phenomenon taking place along a parallel-plate structure at any arbitrary
frequency and the need for the concept of the distributed circuit.

6.26. What is the limit on the frequency beyond which the quasistatic approximation for the
input behavior of a physical structure is not valid?

6.27. How is the voltage between the two conductors in a given cross-sectional plane of a
parallel-plate transmission line related to the electric field in that plane?

6.28. How is the current flowing on the plates across a given cross-sectional plane of a
parallel-plate transmission line related to the magnetic field in that plane?

6.29. What are transmission-line equations? How are they obtained from Maxwell’s equations?
6.30. What are the expressions for , the inductance per unit length, , the capacitance per

unit length, and , the conductance per unit length, for a parallel-plate transmission line?
6.31. Are the three quantities , , and independent? If not, how are they dependent on

each other?
6.32. Draw the transmission-line equivalent circuit. How is it derived from the transmission-

line equations?
6.33. Discuss the concept of the distributed circuit and compare it to a lumped circuit.
6.34. Discuss the physical phenomena associated with each of the elements in the transmission-

line equivalent circuit.
6.35. What is a transverse electromagnetic wave?
6.36. What is a field map? Describe the procedure for drawing the field map for a transmis-

sion line of arbitrary cross section.
6.37. Draw a rough sketch of the field map for a line made up of two identical parallel cylin-

drical conductors with their axes separated by four times their radii.
6.38. Describe the procedure for computing the transmission line parameters , , and 

from the field map.
6.39. How does a field map consisting of curvilinear squares simplify the computation of the

line parameters?
6.40. Discuss the determination of , , and for a coaxial cable by using the curvilinear

squares technique.
gcl

gcl

gcl

g
cl

Review Questions 227
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PROBLEMS

6.1. Find the gradients of the following scalar functions: (a) (b) xyz.
6.2. Determine which of the following vectors can be expressed as the gradient of a scalar

function: (a) (b) (c) .
6.3. Find the unit vector normal to the plane surface 
6.4. Find the unit vector normal to the surface at the point (3, 2, 1).
6.5. Find the rate of increase of the scalar function at the point (1, 2, 1) in the direction

of the vector 
6.6. For the static electric field given by , find the potential difference

between points A(1, 1, 1) and B(2, 2, 2).
6.7. For a point charge Q situated at the point (1, 2, 0), find the potential difference between

the point A(3, 4, 1) and the point B(5, 5, 0).
6.8. For the arrangement of a linear electric dipole consisting of point charges Q and at

the points (0, 0, ) and (0, 0, ), respectively, obtain the expression for the electric
potential and hence for the electric field intensity at distances from the dipole large
compared to d.

6.9. For a line charge of uniform density situated along the z-axis between (0, 0, )
and (0, 0, l), obtain the series expression for the electric potential at the point (0, y, 0) 
by dividing the line charge into 100 equal segments and considering the charge in each
segment to be a point charge located at the center of the segment. Then find the series
expression for the electric field intensity at the point (0, 1, 0).

6.10. Repeat Problem 6.9, assuming the line charge density to be 
6.11. The potential distribution in a simplified model of a vacuum diode consisting of

cathode in the plane and anode in the plane and held at a potential 
relative to the cathode is given by

(a) Find the space charge density distribution in the region .
(b) Find the surface charge densities on the cathode and the anode.

6.12. Show that for the p–n junction diode of Figure 6.4(a), the boundary condition of the
continuity of the normal component of displacement flux density at is automati-
cally satisfied by equation (6.29).

6.13. Assume that the impurity concentration for the p–n junction diode of Figure 6.4(a) is a
linear function of distance across the junction. The space charge density distribution is
then given by

where d is the width of the space charge region and k is the proportionality constant.
Find the solution for the potential in the space charge region.

6.14. A space-charge density distribution is given by

r = er0 sin x for -p 6 x 6 p
 0 otherwise

 

r = kx  for -d>2 6 x 6 d>2

x = 0
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 d
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where is a constant. Find the sketch the potential V versus x for all x. Assume

6.15. The region between the two plates of Figure 6.5 is filled with two perfect dielectric
media having permittivities (a) Find the solu-
tions for the potentials in the two regions and (b) Find the
potential at the interface (c) Find the capacitance of the arrangement.

6.16. For a dielectric medium of nonuniform permittivity, show that the Poisson’s equation is
given by

Assume that the region between the two plates of Figure 6.5 is filled with a perfect
dielectric of nonuniform permittivity

Find the solution for the potential between the plates and obtain the expression for the
capacitance per unit area of the plates.

6.17. The region between the plates of Figure 6.6 is divided into half in the y-direction.
Assume that one half is filled with a material of permeability and the other half with
a material of permeability . Find the inductance of the arrangement.

6.18. The region between the two plates of Figure 6.7 is filled with two imperfect dielectric
media having conductivities for and for . (a) Find the solu-
tions for the potentials in the two regions and . (b) Find the
potential at the interface 

6.19. For the structure of Figure 6.9, continue the analysis beyond the quasistatic extension
and obtain the input admittance correct to the third power in . Determine the equiva-
lent circuit.

6.20. For the structure of Figure 6.10, continue the analysis beyond the quasistatic extension
to obtain the input impedance correct to the third power in . Determine the equiva-
lent circuit.

6.21. For the structure of Figure 6.10, assume that the medium between the plates is an im-
perfect dielectric of conductivity . (a) Show that the input impedance correct to the
first power in is the same as if were zero. (b) Obtain the input impedance correct to
the second power in and determine the equivalent circuit.

6.22. Find the condition(s) under which the quasistatic input behavior of the structure of
Figure 6.11 is essentially equivalent to (a) a capacitor in parallel with a resistor and 
(b) a resistor in series with an inductor.

6.23. A parallel-plate transmission line is made up of perfect conductors of width 
and lying in the planes and The medium between the conductors is a
perfect dielectric of For a uniform plane wave having the electric field

propagating between the conductors, find (a) the voltage between the conductors,
(b) the current along the conductors, and (c) the power flow along the line.
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230 Chapter 6 Statics, Quasistatics, and Transmission Lines

6.24. A parallel-plate transmission line made up of perfect conductors has equal to
If the medium between the plates is characterized by 

and find and of the line.
6.25. If the conductors of a transmission line are imperfect, then the transmission-line equi-

valent circuit contains a resistance and additional inductance in the series branch.
Assuming that the thickness of the (imperfect) conductors of a parallel-plate line is
several skin depths at the frequency of interest, show from considerations of skin effect
phenomenon in a good conductor medium that the resistance and inductance per unit
length along the conductors are respectively, where is the con-
ductivity of the (imperfect) conductors, is the width, and is the skin depth. The fac-
tor 2 arises because of two conductors.

6.26. Show that two alternative representations of the circuit equivalent of the transmission-
line equations (6.86a) and (6.86b) are as shown in Figures 6.19(a) and (b).

dw
sc 2>scdw and 2/vscdw,

gcm = m0, P = 6P0,
s = 10- 11 S/m,10- 7 H/m.
l

# 'z

" 'z
1
2" 'z

1
2

'z
2z $

'z
2z #

(a)

# 'z
1
2

!  'z

!  'z

1
2

" 'z

'z
2z $

'z
2z #

(b)

FIGURE 6.19

For Problem 6.26.

6.27. Show that for a transverse electromagnetic wave, the voltage between the conductors
and the current along the conductors in a given transverse plane are uniquely defined in
terms of the electric and magnetic fields, respectively, in that plane.

6.28. By constructing a field map consisting of curvilinear squares for a coaxial cable having
obtain the approximate values of the line parameters , , and in terms of
of the dielectric. Compare the approximate values with the exact values

given by expressions derived in Example 6.9.
6.29. For for the parallel-wire line [see Figure 6.18(c)], construct a field map consist-

ing of curvilinear squares and obtain approximate values for the line parameters , ,
and . Compare approximate values with the exact values given by the expressions in
Table 6.1.

6.30. The shielded strip line, employed in microwave integrated circuits, consists of a center
conductor photoetched on the inner faces of two substrates sandwiched between two
conductors, as shown by the cross-sectional view in Figure 6.20. For the dimensions
shown in the figure, construct a field map consisting of curvilinear squares and compute

and , considering the substrate to be a perfect dielectric having 
Assume for simplicity that the field is confined to the substrate region.

P = 9P0 and m = m0.cl

g
cl

d>a = 2

m, P, and s
gclb>a = 3.5,
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Problems 231

6.31. The cross section of an eccentric coaxial cable [see Figure 6.18(d)] consists of an outer
circle of radius cm and an inner circle of radius with their centers sep-
arated by By constructing a field map consisting of curvilinear squares,
obtain the approximate values of the line parameters , , and in terms of 
of the dielectric.

6.32. Consider a transmission line having the cross section shown in Figure 6.21. The inner
conductor is a circle of radius a and the outer conductor is a square of sides 2a. Find the
approximate values of , , and , by using the method of curvilinear squares.gcl

m, P, and sgcl
d = 2 cm.

b = 2 cm,a = 5

2a

a

m, P, s

FIGURE 6.21

For Problem 6.32.

Substrate, P " 9P0

0.02 in.

0.1 in.

0.04 in.

FIGURE 6.20

For Problem 6.30.
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CHAPTER

7
Transmission-Line
Analysis

In the previous chapter, we introduced the transmission line and the transmission-line
equations. The transmission-line equations enable us to discuss the wave propagation
phenomena along an arrangement of two parallel conductors having uniform cross
section in terms of circuit quantities instead of in terms of field quantities. This chapter
is devoted to the analysis of lossless transmission-line systems first in frequency
domain, that is, for sinusoidal steady state, and then in time domain, that is, for arbi-
trary variation with time.

In the frequency domain, we shall study the standing wave phenomenon by con-
sidering the short-circuited line. From the frequency dependence of the input imped-
ance of the short-circuited line, we shall learn that the condition for the quasistatic
approximation for the input behavior of physical structures is that the physical length
of the structure must be a small fraction of the wavelength. We shall study reflection
and transmission at the junction between two lines in cascade and introduce the
Smith® Chart, a useful graphical aid in the solution of transmission-line problems.

In the time domain, we shall begin with a line terminated by a resistive load and
learn the bounce diagram technique of studying the transient bouncing of waves back
and forth on the line for a constant voltage source as well as for a pulse voltage source.
We shall apply the bounce diagram technique for an initially charged line. Finally, we
shall introduce the load-line technique of analysis of a line terminated by a nonlinear
element and apply it for the analysis of interconnections between logic gates.

A. FREQUENCY DOMAIN

In Chapter 6, we introduced transmission lines, and learned that the voltage and cur-
rent on a line are governed by the transmission-line equations

(7.1a)
0V
 0z

= -l0I
 0t

 

Smith® Chart is a registered trademark of Analog Instrument Co., P.O. Box 950, New Providence,
NJ 07974, USA.
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A. Frequency Domain 233

(7.1b)

For the sinusoidally time-varying case, the corresponding differential equations for the
phasor voltage and phasor current are given by

(7.2a)

(7.2b)

Combining (7.2a) and (7.2b) by eliminating , we obtain the wave equation for as

(7.3)

where

(7.4)

is the propagation constant associated with the wave propagation on the line. The solu-
tion for is given by

(7.5)

where and are arbitrary constants to be determined from the boundary condi-
tions. The corresponding solution for is then given by

(7.6)

where

(7.7)

is known as the characteristic impedance of the transmission line.
The solutions for the line voltage and line current given by (7.5) and (7.6), respec-

tively, represent the superposition of and waves, that is, waves propagating
in the positive z- and negative z-directions, respectively. They are completely analogous
to the solutions for the electric and magnetic fields in the medium between the
conductors of the line. In fact, the propagation constant given by (7.4) is the same as the

(-)(+)

Z
– 

0 = A jvl
g + jvc

 = 1
Z
– 

0
 (A–e- g-z - B–eg

-z)

 = Ag + jvc
jvl

 (A–e- g-z - B–eg
-z)

 I -(z) = - 1
jvl

 
0V –

0z
= -  

1
jvl

 (-g–A–e- g-z + g–B–eg
-z)

I
-B–A–

V
–(z) = A–e- g-z + B–eg

-z

V –

g – = 2jvl(g + jvc) 

 = g –2V –

 
02 V –

0z2 = -jvl
0I

-

0z
= jvl(g + jvc)V –

V – I -

0I
-

0z
= -gV – - jvcV – = -(g + jvc)V –

0V –

0z
= -jvl I

-

I
-

V –

0I
 0z

 = -gV - c0V
 0t

M07_RAO3333_1_SE_CHO7.QXD  4/9/08  2:37 PM  Page 233



234 Chapter 7 Transmission-Line Analysis

propagation constant , as it should be. The characteristic impedance of
the line is analogous to (but not equal to) the intrinsic impedance of the material medi-
um between the conductors of the line.

For a lossless line, that is, for a line consisting of a perfect dielectric medium
between the conductors, , and

(7.8)

Thus, the attenuation constant is equal to zero, which is to be expected, and the phase
constant is equal to We can then write the solutions for and as

(7.9a)

(7.9b)

where

(7.10)

is purely real and independent of frequency. Note also that

(7.11)

as it should be, and independent of frequency.
Thus, provided that l and c are independent of frequency, which is the case if 

and are independent of frequency and the transmission line is uniform, that is, its di-
mensions remain constant transverse to the direction of propagation of the waves, the
lossless line is characterized by no dispersion, a phenomenon discussed in Section 8.3.
We shall be concerned with such lines only in this book.

7.1 SHORT-CIRCUITED LINE AND FREQUENCY BEHAVIOR

Let us now consider a lossless line short-circuited at the far end as shown in
Figure 7.1(a), in which the double-ruled lines represent the conductors of the transmis-
sion line. Note that the line is characterized by and , which is equivalent to specify-
ing , , and . In actuality, the arrangement may consist, for example, of a perfectly
conducting rectangular sheet joining the two conductors of a parallel-plate line as in
Figure 7.1(b) or a perfectly conducting ring-shaped sheet joining the two conductors of
a coaxial cable as in Figure 7.1(c). We shall assume that the line is driven by a voltage
generator of frequency at the left end so that waves are set up on the line.
The short circuit at requires that the tangential electric field on the surface of the
conductor comprising the short circuit be zero. Since the voltage between the conduc-
tors of the line is proportional to this electric field, which is transverse to them, it fol-
lows that the voltage across the short circuit has to be zero. Thus, we have

(7.12)V –(0) = 0

z = 0
z = - lv

vcl
bZ0

z = 0,

P
m

vp = v
b

= 12lc = 12mP

Z0 = Alc
I
-(z) = 1

Z0
 (A–e-jbz - B–ejbz)

V –(z) = A–e-jbz + B–ejbz

I - V – v1lc.b
a

g – = a + jb = 2jvl # jvc = jv2lcg = 0

1jvm(s + jvP)
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7.1 Short-Circuited Line and Frequency Behavior 235

Applying the boundary condition given by (7.12) to the general solution for 
given by (7.9a), we have

or

(7.13)

Thus, we find that the short circuit gives rise to a ( ) or reflected wave whose voltage
is exactly the negative of the or incident wave voltage, at the short circuit. Substi-
tuting this result in (7.9a) and (7.9b), we get the particular solutions for the complex
voltage and current on the short-circuited line to be

(7.14a)

(7.14b)

The real voltage and current are then given by

(7.15a)

(7.15b) = 2A
Z0

 cos bz cos (vt + u)

 I(z, t) = Re[I-(z)ejvt] = Re c 2
Z0

Aejucos bz ejvt d = 2A sin bz sin (vt + u)

 V(z, t) = Re[V –(z)ejvt] = Re(2e-jp>2 Aeju sin bz ejvt)

 I-(z) = 1
Z0

(A–e-jbz + A
–

ejbz) =
2A

–

Z0
 cos bz

 V –(z) = A
–

e-jbz - A–ejbz = -2jA– sin bz

(+)
-

B
– = -A–

V –(0) = A–e-jb(0) + B
–

ejb(0) = 0 

V –

z ! 0z ! "l

#

I(z)

z

V(z)

(a)

(b)

(c)

FIGURE 7.1

Transmission line short-circuited at the far end.
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236 Chapter 7 Transmission-Line Analysis

where we have replaced by and by . The instantaneous power flow
down the line is given by

(7.15c)

These results for the voltage, current, and power flow on the short-circuited line
given by (7.15a), (7.15b), and (7.15c), respectively, are illustrated in Figure 7.2, which
shows the variation of each of these quantities with distance from the short circuit for
several values of time. The numbers 1, 2, 3, . . . , 9 beside the curves in Figure 7.2
represent the order of the curves corresponding to values of equal to 0,

. . . , . It can be seen that the phenomenon is one in which the voltage, current,
and power flow oscillate sinusoidally with time with different amplitudes at different
locations on the line, unlike in the case of traveling waves, in which a given point on the
waveform progresses in distance with time. These waves are therefore known as stand-
ing waves. In particular, they represent complete standing waves, in view of the zero am-
plitudes of the voltage, current, and power flow at certain locations on the line, as shown
by Figure 7.2.

The line voltage amplitude is zero for values of z given by sin or
, , . . . , or , , . . . , that is, at multiples of

from the short circuit. The line current amplitude is zero for values of z given by
cos or , , . . . , or ,

, . . . , that is, at odd multiples of from the short circuit. The power
flow amplitude is zero for values of z given by sin or , ,
. . . , or , , . . . , that is, at multiples of from the short circuit.
Proceeding further, we find that the time-average power flow down the line, that is,
power flow averaged over one period of the source voltage, is

Thus, the time average power flow down the line is zero at all points on the line. This is
characteristic of complete standing waves.

From (7.14a) and (7.14b) or (7.15a) and (7.15b), or from Figures 7.2(a) and
7.2(b), we find that the amplitudes of the sinusoidal time-variations of the line voltage
and line current as functions of distance along the line are

(7.16a)

(7.16b)ƒI-(z) ƒ = 2A
 Z0

ƒcos bz ƒ = 2A
Z0
` cos 

2p
 l

 z `
ƒV –(z) ƒ = 2A ƒsin bz ƒ = 2A ` sin 

2p
l

 z `

 = v

2p
 
A2

Z0
 sin 2bzL

2p/v

t = 0
sin 2(vt + u) dt = 0

 8P9 = 1
TL

T

t = 0
P(z, t) dt = v

2pL
2p/v

t = 0
P(z, t) dt

l>4m = 1, 2, 3z = -ml>4 m = 1, 2, 3bz = -mp>22bz = 0
l>4m = 0, 1, 2, 3

z = -(2m + 1)l>4m = 0, 1, 2, 3bz = -(2m + 1)p>2bz = 0
l>2 m = 1, 2, 3z = -ml>2m = 1, 2, 3bz = -mp

bz = 0

2pp>2,
p>4,(vt + u)

 = A2

Z0
 sin 2bz sin 2(vt + u)

 = 4A2

Z0
 sin bz cos bz sin (vt + u) cos (vt + u)

 P(z, t) = V(z, t)I(z, t)

e-jp>2-jAejuA–
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7.1 Short-Circuited Line and Frequency Behavior 237
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FIGURE 7.2

Time variations of voltage, current, and power flow associated with standing waves on a
short-circuited transmission line.
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238 Chapter 7 Transmission-Line Analysis

Returning now to the solutions for and given by (7.14a) and (7.14b), re-
spectively, we can find the input impedance of the short-circuited line of length l by
taking the ratio of the complex line voltage to the complex line current at the input

. Thus,

(7.17)

We note from (7.17) that the input impedance of the short-circuited line is purely reactive.
As the frequency is varied from a low value upward, the input reactance changes from in-
ductive to capacitive and back to inductive,and so on,as illustrated in Figure 7.4. The input
reactance iszeroforvaluesof frequencyequal tomultiplesof . Thesearethefrequen-
cies for which l is equal to multiples of so that the line voltage is zero at the input and
hence the input sees a short circuit. The input reactance is infinity for values of frequency
equal to odd multiples of . These are the frequencies for which l is equal to odd multi-
plesof sothatthelinecurrentiszeroattheinputandhencetheinputseesanopencircuit.l>4 vp>4l

l>2 vp>2l

 = jZ0 tan 
2pf
 vp 

 l 

 = jZ0  tan bl = jZ0 tan 
2p
 l

 l 

 Z– in =
V –(- l)
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FIGURE 7.3

Standing wave patterns for voltage and current on a short-circuited
line.

Sketches of these quantities versus z are shown in Figure 7.3. These are known as the
standing wave patterns. They are the patterns of line voltage and line current one
would obtain by connecting an a.c. voltmeter between the conductors of the line and
an a.c. ammeter in series with one of the conductors of the line and observing their
readings at various points along the line. Alternatively, one can sample the electric and
magnetic fields by means of probes.
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7.1 Short-Circuited Line and Frequency Behavior 239

Example 7.1

From the foregoing discussion of the input reactance of the short-circuited line, we note that as
the frequency of the generator is varied continuously upward, the current drawn from it under-
goes alternatively maxima and minima corresponding to zero input reactance and infinite input
reactance conditions, respectively. This behavior can be utilized for determining the location of a
short circuit in the line.

Since the difference between a pair of consecutive frequencies for which the input reac-
tance values are zero and infinity is , as can be seen from Figure 7.4, it follows that the differ-
ence between successive frequencies for which the currents drawn from the generator are maxima
and minima is .As a numerical example, if for an air dielectric line it is found that as the fre-
quency is varied from 50 MHz upward, the current reaches a minimum for 50.01 MHz and then a
maximum for 50.04 MHz, then the distance l of the short circuit from the generator is given by

Since , it follows that

Example 7.2

We found that the input impedance of a short-circuited line of length l is given by

Let us investigate the low-frequency behavior of this input impedance.
First, we note that for any arbitrary value of ,

tan bl = bl + 1
3

(bl)3 + 2
15

(bl)5 + Á

bl

Z
–

in = jZ0 tan bl

l = 3 * 108 
 4 * 3 * 104 = 2500 m = 2.5 km

vp = 3 * 108 m/s

vp

4l
= (50.04 - 50.01) * 106 = 0.03 * 106 = 3 * 104
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0
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t
R

ea
ct
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f4l
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3vp

2l
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4l

5vp
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FIGURE 7.4

Variation of the input reactance
of a short-circuited transmission
line with frequency.
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240 Chapter 7 Transmission-Line Analysis

For , that is, or or ,

Thus, for frequencies , the short-circuited line as seen from its input behaves essen-
tially like a single inductor of value , the total inductance of the line, as shown in Figure 7.5(a).ll

f V vp>2pl

Z
–

in L jZ0bl = jAlc v2lcl = jvll

tan bl L bl

f V
vp

2pl
 l V

l

2p
 

2p
l

 l V 1bl V 1

(b)(a)

!l

!l

"l1_
3

FIGURE 7.5

Equivalent circuits for the input behavior of a short-circuited
transmission line.

Proceeding further, we observe that if the frequency is slightly beyond the range for which
the above approximation is valid, then

Thus, for frequencies somewhat above those for which the approximation is valid,
the short-circuited line as seen from its input behaves like an inductor of value in parallel

with a capacitance of value , as shown in Figure 7.5(b).
1
3
cl

ll
f V vp >2pl

 = 1
jvll

 + j
1
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3
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7.2 Transmission-Line Discontinuity 241

These findings illustrate that a physical structure that can be considered as an in-
ductor at low frequencies no longer behaves like an inductor, if the fre-
quency is increased beyond that range. In fact, it has a stray capacitance associated with it.
As the frequency is still increased, the equivalent circuit becomes further complicated.
With reference to the question posed in Section 6.5 as to the limit on the frequency be-
yond which the quasistatic approximation for the input behavior of a physical structure
is not valid, it can now be seen that the condition dictates the range of validity
for the quasistatic approximation. In terms of the frequency f of the source, this condi-
tion means that or in terms of the period it means that

Thus, quasistatic fields are low-frequency approximations of time-
varying fields that are complete solutions to Maxwell’s equations, which represent
wave propagation phenomena and can be approximated to the quasistatic character
only when the times of interest are much greater than the propagation time, cor-
responding to the length of the structure. In terms of space variations of the fields at a
fixed time, the wavelength must be such that thus, the physical
length of the structure must be a small fraction of the wavelength. In terms of the line
voltage and current amplitudes, what this means is that over the length of the structure,
these amplitudes are fractional portions of the first one-quarter sinusoidal variations
at the end in Figure 7.3, with the boundary conditions at the two ends of the struc-
ture always satisfied. Thus, because of the sin dependence of V on z, the line voltage
amplitude varies linearly with z, whereas because of the cos dependence of I on z,
the line current amplitude is essentially a constant. These are exactly the nature of the
variations of the zero-order electric field and the first-order magnetic field, as discussed
under magnetoquasistatic fields in Example 6.7.

7.2 TRANSMISSION-LINE DISCONTINUITY

Let us now consider the case of two transmission lines, l and 2, having different charac-
teristic impedances and , respectively, and phase constants and respec-
tively, connected in cascade and driven by a generator at the left end of line 1, as shown
in Figure 7.6(a). Physically, the arrangement may, for example, consist of two parallel-
plate lines or two coaxial cables of different dielectrics in cascade, as shown in
Figures 7.6(b) and 7.6(c), respectively. In view of the discontinuity at the junction z = 0

b2,b1Z02Z01

bz
bz

z = 0

l V l>2p;l(=   2p>b),

l>vp,

T W 2p(l>vp).
T = 1>f,f V vp>2pl,

bl V 1

f V vp >2pl

(#)
(#)

(")

zz ! 0

(a)

(b) (c)

Z02, b2

Line 2
Z01, b1

Line 1

m1, P1 m2, P2

$

FIGURE 7.6

Two transmission lines
connected in cascade.
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242 Chapter 7 Transmission-Line Analysis

between the two lines, the incident wave on the junction sets up a reflected 
wave in line 1 and a transmitted wave in line 2. We shall assume that line 2 is infi-
nitely long so that there is no wave in that line.

We can now write the solutions for the complex voltage and complex current in
line 1 as

(7.18a)

(7.18b)

where are the and wave voltages and currents at 
in line 1, that is, just to the left of the junction. The solutions for the complex voltage
and complex current in line 2 are

(7.19a)

(7.19b)

where and are the wave voltage and current at in line 2, that is, just
to the right of the junction.

At the junction, the boundary conditions require that the components of E and H
tangential to the dielectric interface be continuous, as shown, for example, for the
parallel-plate arrangement in Figure 7.7(a). These are, in fact, the only components
present, since the transmission line fields are entirely transverse to the direction of
propagation. Now, since the line voltage and current are related to these electric and
magnetic fields, respectively, it then follows that the line voltage and line current be
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FIGURE 7.7

Application of boundary conditions at the junction between two
transmission lines.
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7.2 Transmission-Line Discontinuity 243

continuous at the junction, as shown in Figure 7.7(b). Thus, we obtain the boundary
conditions at the junction in terms of line voltage and line current as

(7.20a)

(7.20b)

Applying these boundary conditions to the solutions given by (7.18a) and (7.18b),
we obtain

(7.21a)

(7.21b)

Eliminating from (7.21a) and (7.21b), we get

or

(7.22)

We now define the voltage reflection coefficient at the junction, as the ratio of
the reflected wave voltage at the junction to the incident wave voltage at the
junction. Thus,

(7.23)

The current reflection coefficient at the junction, , which is the ratio of the reflected
wave current ( ) at the junction to the incident wave current ( ) at the junction is
then given by

(7.24)

We also define the voltage transmission coefficient at the junction, , as the ratio of
the transmitted wave voltage ( ) at the junction to the incident wave voltage ( ) at
the junction.Thus,

(7.25)

The current transmission coefficient at the junction, which is the ratio of the trans-
mitted wave current at the junction to the incident wave current at the junc-
tion, is given by

(7.26)tI =
I
-+
2

I
-+
1

=
I
-+
1 + I

--
1

I
-+
1

= 1 +
I
--
1

I
-+
1

= 1 - ≠V

(I
-+
1 )(I

-+
2 )

tI,

tV =
V
– +

2

V
– +

1
=

V
– +

1 + V
– -

1

V
– +

1
= 1 +

V
– -

1

V
– +

1
= 1 + ≠V

V
– +

1V
– +

2

tV

≠I =
I
--

1

I
-+
1

=
-V

– -
1>Z01

V
– +

1>Z01
= -

V
– -

1

V
– +

1
= -≠V

I
-
1
+I

-
1
-

≠I

≠V =
V
– -

1

V
– +

1
=

Z02 - Z01

Z02 + Z01 

(V
– +

1)(V
– -

1)
≠V,

V
– -

1 = V
– +

1
Z02 - Z01

Z02 + Z01

V
– +

1 a 1
Z02

- 1
Z01
b + V

– -
1 a 1

Z02
+ 1

Z01
b = 0

V
– +

2

1
Z01

(V
– +

1 - V
– -

1) = 1
Z02

V
– +

2

V
– +

1 + V
– -

1 = V
– +

2

[I-1]z = 0 - = [I-2]z = 0 +

[V–1]z = 0 - = [V–2]z = 0 +
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244 Chapter 7 Transmission-Line Analysis

We note that for Thus, the incident
wave is entirely transmitted, as we may expect since there is no discontinuity at the
junction.

Example 7.3

Let us consider the junction of two lines having characteristic impedances and
, as shown in Figure 7.8, and compute the various quantities.Z02 = 75 Æ

Z01 = 50 Æ

Z02 = Z01, ≠V = 0, ≠I = 0, tV = 1, and tI = 1.

Line 1
Z01 ! 50 ohms

Line 2
Z02 ! 75 ohmsFIGURE 7.8

For the computation of several quantities pertinent
to reflection and transmission at the junction
between two transmission lines.

From (7.23)–(7.26), we have

The fact that the transmitted wave voltage is greater than the incident wave voltage should not
be of concern, since it is the power balance that must be satisfied at the junction. We can verify
this by noting that if the incident power on the junction is then

Recognizing that the minus sign for signifies power flow in the negative z-direction, we find
that power balance is indeed satisfied at the junction.

Returning now to the solutions for the voltage and current in line 1 given by
(7.18a) and (7.18b), respectively, we obtain, by replacing by 

(7.27a) = V
– +

1e-jb1z(1 + ≠Vej2b1z)

 V–1(z) = V
– +

1e-jb1z + ≠VV
– +

1ejb1z

≠V V– +
1 ,V

– -
1

Pr 

transmitted power, Pt = tVtIPi = 24
 25

Pi 

reflected power, Pr = ≠V≠IPi = - 1
 25

Pi 

Pi,

 tI = 1 - ≠V = 1 - 1
5

= 4
5

 ;  I
-+
2 = 4

5
 I
-+
1

 tV = 1 + ≠V = 1 + 1
5

= 6
5

 ;  V
– +

2 = 6
5

 V
– +

1

 ≠I = -≠V = - 1
5

 ;  I
--
1 = - 1

5
 I
-+
1

 ≠V = 75 - 50
75 + 50

= 25
125

= 1
5

 ;  V
– -

1 = 1
5

 V
– +

1
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7.2 Transmission-Line Discontinuity 245

(7.27b)

The amplitudes of the sinusoidal time-variations of the line voltage and line current as
functions of distance along the line are then given by

(7.28a)

(7.28b)

From (7.28a) and (7.28b), we note the following:

1. The line voltage amplitude undergoes alternate maxima and minima equal to
and respectively. The line voltage amplitude at

is a maximum on minimum depending on whether is positive or nega-
tive. The distance between a voltage maximum and the adjacent voltage mini-
mum is 

2. The line current amplitude undergoes alternate maxima and minima equal to
respectively. The line current ampli-

tude at is a minimum or maximum depending on whether is positive or
negative. The distance between a current maximum and the adjacent current
minimum is 

Knowing these properties of the line voltage and current amplitudes, we now sketch
the voltage and current standing wave patterns, as shown in Figure 7.9, assuming

Since these standing wave patterns do not contain perfect nulls, as in the case
of the short-circuited line of Section 7.1, these are said to correspond to partial stand-
ing waves.

We now define a quantity known as the standing wave ratio (SWR) as the ratio of
the maximum voltage, to the minimum voltage, of the standing wave pat-
tern. Thus, we find that

(7.29)SWR =
Vmax

Vmin
 =

ƒV– +
1 ƒ(1 + ƒ≠V ƒ)

ƒV– +
1 ƒ(1 - ƒ≠V ƒ)

=
1 + ƒ≠V ƒ
1 - ƒ≠V ƒ

 

Vmin,Vmax,

≠V 7 0.

p>2b1 or l1>4.

≠Vz = 0
(V

– +
1>Z01)(1 + ƒ≠V ƒ) and (V

– +
1>Z01)(1 - ƒ≠V ƒ),

p>2b1 or l1>4.

≠Vz = 0
ƒV– +

1 ƒ(1 - ƒ≠V ƒ),ƒV– +
1 ƒ(1 + ƒ≠V ƒ)

 =
ƒV– +

1 ƒ
Z01

 21 + ≠2
V - 2≠V cos 2b1z

 =
ƒV– +

1 ƒ
Z01

 ƒ1 - ≠V cos 2b1z - j≠V sin 2b1z ƒ

 ƒI-1(z) ƒ =
ƒV– +

1 ƒ
Z01

 ƒe-jb1z ƒ ƒ1 - ≠Vej2b1z ƒ

 = ƒV– +
1 ƒ 21 + ≠2

V + 2≠V cos 2b1z

 = ƒV– +
1 ƒ ƒ1 + ≠V cos 2b1z + j≠V sin 2b1z ƒ

 ƒV–1(z) ƒ = ƒV– +
1 ƒ ƒe-jb1z ƒ ƒ1 + ≠Vej2b1z ƒ

 =
V
– +

1

Z01
e-jb1z(1 - ≠Vej2b1z)

 I-1(z) = 1
Z01

(V
– +

1e-jb1z - ≠VV
– +

1ejb1z)
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246 Chapter 7 Transmission-Line Analysis

The SWR is an important parameter in transmission-line matching. It is an indicator
of the degree of the existence of standing waves on the line. We shall, however, not
pursue the topic here any further. Finally, we note that for the case of Example 7.3, the
SWR in line 1 is or 1.5. The SWR in line 2 is, of course, equal to 1 since
there is no reflected wave in that line.

7.3 THE SMITH CHART

In the previous section, we studied reflection and transmission at the junction of two
transmission lines, shown in Figure 7.10. In this section, we shall introduce the Smith
Chart, which is a useful graphical aid in the solution of transmission-line and many
other problems.

First we define the line impedance at a given value of z on the line as the
ratio of the complex line voltage to the complex line current at that value of z, that is,

(7.30)Z
–(z) =

V
–(z)
I
-(z)

 

Z
–(z)

11 + 1
52>11 - 1

52,

(1 # %v  ) V 1
#

(1 "  %v  ) V 1
#

7l1

4"
5l1

4"
3l1

4"
l1

4"
0

Voltage

 V#
1

 

Z01
(1 #  %v  )

 V#
1

 

Z01
(1 " %v  )

3l1

2"
l1

2"
"l1"2l1 0

Current

FIGURE 7.9

Standing wave patterns for voltage and current on a transmission line
terminated by another transmission line.

z
z ! 0

Z01, b1

Line 1
Z02, b2

Line 2
$

FIGURE 7.10

A transmission line terminated
by another infinitely long
transmission line.
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7.3 The Smith Chart 247

From the solutions for the line voltage and line current on line 2 given by (7.19a) and
(7.19b), respectively, the line impedance in line 2 is given by

Thus, the line impedance at all points on line 2 is simply equal to the characteristic im-
pedance of that line. This is because the line is infinitely long and hence there is only a 

wave on the line. From the solutions for the line voltage and line current in line 1
given by (7.18a) and (7.18b), respectively, the line impedance for that line is given by

(7.31)

where

(7.32)

(7.33)

The quantity is the voltage reflection coefficient at the junction and 
is the voltage reflection coefficient at any value of z.

To compute the line impedance at a particular value of z, we first compute 
from a knowledge of which is the terminating impedance to line 1. We then com-
pute which is a complex number having the same magnitude as
that of but a phase angle equal to plus the phase angle of . The com-
puted value of is then substituted in (7.31) to find All of this complex
algebra is eliminated through the use of the Smith Chart.

The Smith Chart is a mapping of the values of normalized line impedance onto
the reflection coefficient plane. The normalized line impedance is the ratio
of the line impedance to the characteristic impedance of the line. From (7.31), and
omitting the subscript 1 for the sake of generality, we have

(7.34)

Conversely,

(7.35)

Writing and substituting into (10.35), we find that

ƒ≠–V ƒ = ` r + jx - 1
r + jx + 1

` =
2(r - 1)2 + x22(r + 1)2 + x2

… 1 for r Ú 0

Z
–

n = r + jx

≠–V(z) =
Z
–

n(z) - 1
Z
–

n(z) + 1

Z
–

n(z) =
Z
–(z)
 Z0 

 =
1 + ≠–V(z)
1 - ≠V(z)

 

Z
–

n(z)(≠–V)

Z
–

1(z).≠–V(z)
≠–V(0)2b1z≠–V(0)

≠–V(z) = ≠–V(0)ej2b1z,
Z02 ,

≠–V(0)

≠–V(z)z = 0,≠–V(0)

≠–V(0) =
V
– -

1

V
– +

1
=

Z02 - Z01

Z02 + Z01

≠–V(z) =
V
– -

1ejb1z

V
– +

1e-jb1z
 = ≠–V(0)ej2b1z

 = Z01
1 + ≠–V(z)
 1 - ≠–V(z)

 

 Z–1(z) =
V
–

1(z)
I
-
1(z)

= Z01 
V
– +

1e-jb1z + V
– -

1ejb1z

V
– +

1e-jb1z - V
– +

1ejb1z

(+)

Z
–

2(z) =
V
–

2(z)
I
-
2(z)

= Z02 

M07_RAO3333_1_SE_CHO7.QXD  4/9/08  2:37 PM  Page 247



248 Chapter 7 Transmission-Line Analysis

Thus, we note that all passive values of normalized line impedances, that is, points in
the right half of the complex -plane shown in Figure 7.11(a) are mapped onto the re-
gion within the circle of radius unity in the complex -plane shown in Figure 7.11(b).≠–V

Z
–

n

0.5

1

1

a´b´

Re %v

%v Plane

Im %v

1

b

r

a

x

0

Zn Plane

1_
2

(a) (b)

FIGURE 7.11

For illustrating the development of the Smith Chart.

We can now assign values for compute the corresponding values of and
plot them on the -plane but indicating the values of instead of the values of .To
do this in a systematic manner, we consider contours in the -plane corresponding to
constant values of r, as shown for example by the line marked a for , and
corresponding to constant values of x, as shown for example by the line marked b for

in Figure 7.11(a).
By considering several points along line a, computing the corresponding values

of , plotting them on the -plane, and joining them, we obtain the contour marked
in Figure 7.11(b). Although it can be shown analytically that this contour is a circle

of radius and centered at , it is a simple task to write a computer program to
perform this operation, including the plotting. Similarly, by considering several points
along line b and following the same procedure, we obtain the contour marked in
Figure 7.11(b).Again, it can be shown analytically that this contour is a portion of a cir-
cle of radius 2 and centered at (1, 2). We can now identify the points on contour as
corresponding to by placing the number 1 beside it and the points on contour 
as corresponding to by placing the number 0.5 beside it. The point of intersec-
tion of contours and then corresponds to 

When the procedure discussed above is applied to many lines of constant r and
constant x covering the entire right half of the -plane, we obtain the Smith Chart. In
a commercially available form shown in Figure 7.12, the Smith Chart contains contours
of constant r and constant x at appropriate increments of r and x in the range

so that interpolation between the contours can be
carried out to a good degree of accuracy.

Let us now consider the transmission line system shown in Figure 7.13, which is
the same as that in Figure 7.10 except that a reactive element having susceptance (reci-
procal of reactance) B is connected in parallel with line 1 at a distance l from the junction.

0 6 r 6 q  and - q 6 x 6 q

Z
–

n

Z
–

n = 1 + j0.5.b¿a¿
x = 1

2

b¿r = 1
a¿

b¿

(1>2, 0)1
2

a¿
≠–V≠–V

x = 1
2

r = 1
Z
–

n

≠–VZ
–

n≠–V

≠–V,Z
–

n,

M07_RAO3333_1_SE_CHO7.QXD  4/9/08  2:37 PM  Page 248



7.3 The Smith Chart 249

0.1

0.1

0.
1

0

0.2

0.2

0.
2

0.3

0.3

0.
3

0.4

0.4

0.
4

0.5
0.5

0.
5

0.
6

0.
6

0.
6

0.
7

0.
7

0.
7

0.
8

0.
8

0.
8

0.
9

0.
9

0.
9

1.
0

1.
0

1.
0

1.
2

1.
2

1.
2

1.
4

1.
4

1.
4

1.
6

1.
6

1.
6

1.
8

1.
8

1.
8

2.0
2.0

2.
0

3.0

3.0
3.

0

4.0

4.0

4.
0

5.0

5.0

5.
0

10

10

10

20

20

20

50

50

50

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.6

0.6

0.6

0.6

0.8

0.8

0.8

0.8

1.0

1.0

1.0
1.0

20
"

20

30
"

30

40
"

40

50

"50

60

"60

70

"70

80

"80

90

"90

100

"100

110

"110

120

"120

130

"
130

14
0

"
14

0

15
0

"
15

0

16
0

"
16

0

17
0

"
17

0
18

0
&

0.
04

0.
04

0.0
5

0.0
5

0.0
6

0.0
6

0.07

0.07

0.08

0.08

0.09

0.09

0.1

0.1

0.11

0.11

0.12

0.12

0.13

0.13

0.14

0.14

0.15

0.15

0.16

0.16

0.17

0.17

0.18

0.18

0.19
0.19

0.2
0.2

0.21
0.21

0.22

0.22
0.23

0.23
0.24

0.24

0.25

0.25

0.26

0.26

0.27

0.27

0.28

0.28

0.29

0.29

0.3

0.3

0.31

0.31

0.32

0.32

0.33

0.33

0.34

0.34

0.35

0.35

0.36

0.36

0.37

0.37

0.38

0.38

0.39

0.39

0.4

0.4

0.41

0.41

0.42

0.42

0.43

0.43

0.4
4

0.4
4

0.4
5

0.4
5

0.
46

0.
46

0.
47

0.
47

0.
48

0.
48

0.
49

0.
49

0.
0

0.
0

A
N

G
LE

O
F

R
EFLEC

TIO
N

C
O

EFFIC
IEN

T
IN

D
EG

R
EES

—
>

W
A

V
EL

EN
G

TH
S

TO
W

A
R

D
G

EN
ER

A
TO

R
—

>
<—

W
A

V
EL

EN
G

TH
S

TO
W

A
R

D
LO

A
D

<— RESISTANCE COMPONENT (R/Zo), OR CONDUCTANCE COMPONENT (G/Yo)

IN
D

U
C

TI
V

E
R

EA
C

TA
N

C
E

C
O

M
PO

N
EN

T

COMPO

(+
jX

/ Zo)
, O

R

CAPAC
IT IV

ESUSCEPTANCE

NENT (+jB/Yo)

CAPACITIVEREACTANCECOMPONENT(-jX
/Zo),O

R
IN

DUCTI
VE

SU
SC

EP
TA

N
C

E
C

O
M

PO
N

EN
T

(-
jB

/Y
o)

FIGURE 7.12

A commercially available form of the Smith Chart (reproduced with the courtesy of Analog
Instrument Co., P.O. Box 950, New Providence, NJ 07974, USA).

z ! 0
z ! "l

Z01

Line 1
Z01

Line 1
jB Z02

Line 2

Y2

Z1, Y1

FIGURE 7.13

A transmission-line system for illustrating
the computation of several quantities by
using the Smith Chart.
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250 Chapter 7 Transmission-Line Analysis

Let us assume where is
the wavelength in line 1 corresponding to the source frequency, and find the following
quantities by using the Smith Chart, as shown in Figure 7.14:

1. , line impedance just to the right of First we note that since line 2 is infinitely
long, the load for line 1 is simply 50 . Normalizing this with respect to the char-
acteristic impedance of line 1, we obtain the normalized load impedance for line
1 to be

Locating this on the Smith Chart at point A in Figure 7.14 amounts to computing
the reflection coefficient at the junction, that is, Now the reflection coeffi-
cient at being equal to can be
located on the Smith Chart by moving A such that the magnitude remains con-
stant but the phase angle decreases by . This is equivalent to moving it on a
circle with its center at the center of the Smith Chart and in the clockwise direc-
tion by so that point B is reached. Actually, it is not necessary
to compute this angle, since the Smith Chart contains a distance scale in terms
of along its periphery for movement from load toward generator and vice
versa, based on a complete revolution for one-half wavelength. The normalized
impedance at point B can now be read off the chart and multiplied by the charac-
teristic impedance of the line to obtain the required impedance value. Thus,

Z
–

1 = (0.6 - j0.8)150 = (90 - j120) Æ.

l

1.5p or 270°

1.5p

≠–V(0)e-j2b1l = ≠–V(0)e-j1.5p,z = - l = -0.375l1,
≠–V(0).

Z
–

n(0) = 50
150

= 1
3

Æ
jB:Z

–
1

l1Z01 = 150 Æ, Z02 = 50 Æ, B = -0.003 S, and l = 0.375l1,

Toward
Generator

0.25l

0.125l

0.375l

0.8

0.35

1.94 30.6
0

"0.8

CF

E

D

A

B

1_
3

FIGURE 7.14

For illustrating the use of the Smith
Chart in the computation of several
quantities for the transmission-line
system of Figure 7.13.
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7.3 The Smith Chart 251

2. SWR on line 1 to the right of jB: From (7.29)

(7.36)

Comparing the right side of (7.36) with the expression for given by (7.34), we
note that it is simply equal to corresponding to phase angle of equal
to zero. Thus, to find the SWR, we locate the point on the Smith Chart having the
same as that for but having a phase angle equal to zero, that is,
the point C in Figure 7.14, and then read off the normalized resistance value at
that point.Here, it is equal to 3 and hence the required SWR is equal to 3.In fact, the
circle passing through C and having its center at the center of the Smith Chart is
known as the constant SWR circle, since for any normalized load impedance
to line 1 lying on that circle, the SWR is the same (and equal to 3).

3. line admittance just to the right of To find this, we note that the normal-
ized line admittance at any value of z, that is, the line admittance normal-
ized with respect to the line characteristic admittance (reciprocal of ) is
given by

(7.37)

Thus, at a given value of z is equal to at a value of z located from it. On
the Smith Chart, this corresponds to the point on the constant SWR circle passing
through B and diametrically opposite to it, that is, the point D. Thus,

and

In fact, the Smith Chart can be used as an admittance chart instead of as an im-
pedance chart, that is, by knowing the line admittance at one point on the line,
the line admittance at another point on the line can be found by proceeding
in the same manner as for impedances. As an example, to find we can first
find the normalized line admittance at by locating the point C diametricallyz = 0

Y
–

1,

 = (0.004 + j0.0053) S

 Y
–

1 = Y01 Y
–
n1 = 1

150
(0.6 + j0.8)

Y
–

n1 = 0.6 + j0.8

l>4Z
–

nY
–

n

 = Z
–

n a z ; l
4
b

 =
1 + ≠–V(z)e;j2bl>4
1 - ≠–V(z)e;j2bl>4 =

1 + ≠–V(z ; l>4)

1 - ≠–V(z ; l>4)

 =
1 - ≠–V(z)
1 + ≠–V(z)

=
1 + ≠–V(z)e ;jp

1 - ≠–V(z)e;jp

 Y
–

n(z) =
Y
–

(z)
Y0

=
Z0

Z
–

(z)
= 1

Z
–

n(z)

Z0Y0

Y
–
n

jB:Y
–

1,

(=  3)

z = 0,ƒ≠–V ƒ

≠–V Z
–

n

Z
–

n

SWR =
1 + ƒ≠V ƒ
1 - ƒ≠V ƒ

 =
1 + ƒ≠–V ƒej0

1 - ƒ≠–V ƒej0
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252 Chapter 7 Transmission-Line Analysis

opposite to point A on the constant SWR circle. Then we find by simply going
on the constant SWR circle by the distance toward the generator.
This leads to point D, thereby giving us the same result for as found above.

4. SWR on line 1 to the left of jB:To find this, we first locate the normalized line ad-
mittance just to the left of jB, which then determines the constant SWR circle
corresponding to the portion of line 1 to the left of jB. Thus, noting that

and hence

(7.38a)

(7.38b)

we start at point D and go along the constant real part (conductance) circle to
reach point E for which the imaginary part differs from the imaginary part at D
by the amount that is, or . We then draw the con-
stant SWR circle passing through E and then read off the required SWR value at
point F. This value is equal to 1.94.

The steps outlined above in part 4 can be applied is reverse to determine the
location and the value of the susceptance required to achieve an SWR of unity to
the left of it, that is, a condition of no standing waves. This procedure is known as
transmission-line matching. It is important from the point of view of eliminating or
minimizing certain undesirable effects of standing waves in electromagnetic energy
transmission.

To illustrate the solution to the matching problem, we first recognize that an
SWR of unity is represented by the center point of the Smith Chart. Hence, matching is
achieved if falls at the center of the Smith Chart. Now since the difference between

and is only in the imaginary part as indicated by (7.38a) and (7.38b), must
lie on the constant conductance circle passing through the center of the Smith Chart
(this circle is known as the unit conductance circle, since it corresponds to normalized
real part equal to unity). must also lie on the constant SWR circle corresponding to
the portion of the line to the right of jB. Hence, it is given by the point(s) of intersec-
tion of this constant SWR circle and the unit conductance circle. There are two such
points, G and H, as shown in Figure 7.15, in which the points A and C are repeated
from Figure 7.14. There are thus two solutions to the matching problem. If we choose
G to correspond to , then, since the distance from C to G is 

jB must be located at To find the value of jB, we note that
the normalized susceptance value corresponding to G is and hence

If, however, we choose the point H to
correspond to then we find in a similar manner that jB must be located at

or and its value must be 
The reactive element jB used to achieve the matching is commonly realized by

means of a short-circuited section of line, known as a stub. This is based on the fact that
the input impedance of a short-circuited line is purely reactive, as shown in Section 7.1.

-j0.00773 S.0.417l1z = (0.250 + 0.167)l1

Y
–
n1,

or jB = j1.16 Y01 = j0.00773 S.B>Y01 = 1.16,
-1.16

z = -0.083l1.or 0.083l1,
(0.333 - 0.250)l1,Y

–
n1

Y
–
n1

Y
–
n1Y

–
n2Y

–
n1

Y
–
n2

-0.45-0.003>(1>150),B>Y01,

 Im[Y
–

n2] = Im[Y
–

n1] + B
Y01

 Re[Y
–
n2] = Re[Y

–
n1]

Y
–

2 = Y
–

1 + jB, or Y–n2 = Y
–
n1 + jB>Y01,

Y
–

1

l(=  0.375l1)
Y
–

n1
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7.3 The Smith Chart 253

The length of the stub for a required input susceptance can be found by considering
the short circuit as the load, as shown in Figure 7.16, and using the Smith Chart. The ad-
mittance corresponding to a short circuit is infinity, and hence the load admittance nor-
malized with respect to the characteristic admittance of the stub is also equal to
infinity. This is located on the Smith Chart at point I in Figure 7.15. We then go along
the constant SWR circle passing through I (the outermost circle) toward the generator
(input) until we reach the point corresponding to the required input susceptance of the
stub normalized with respect to the characteristic admittance of the stub.Assuming the
characteristic impedance of the stub to be the same as that of the line, this quantity is
here equal to j1.16 or depending on whether point G or point H is chosen for
the location of the stub. This leads us to point J or point K, and hence the stub length
is or for or for

The arrangement of the stub corresponding to the solution for which the
stub location is at and the stub length is is shown in Figure 7.17.0.386l1,z = -0.083l1,
jB = -j1.16.

0.114l1,jB = j1.16, and (0.364 - 0.25)l1,0.386 l1,(0.25 + 0.136)l1,

-j1.16,

Toward
Generator

0.136l

0.167l

0.25l0

1.16J

C

G

K

H

A I

0.364l

0.333l"1.16

FIGURE 7.15

Solution of transmission-line matching problem by using the Smith
Chart.

jB
Input

Toward Generator

Y ! 
Load

$

FIGURE 7.16

A short-circuited stub.
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254 Chapter 7 Transmission-Line Analysis

B. TIME DOMAIN

For a lossless line, the transmission-line equations (6.86a) and (6.86b) or (7.1a) and (7.1b)
reduce to

(7.39a)

(7.39b)

In time domain, the solutions are given by

(7.40a)

(7.40b)

which can be verified by substituting them into (7.39a) and (7.39b). These solutions
represent voltage and current traveling waves propagating with velocity

(7.41)

in view of the arguments for the functions f and g, and characteristic
impedance

(7.42)

They can also be inferred from the fact that and are independent of frequency.Z0vp

Z0 = Alc
(t < z1lc)

vp = 1
 1lc

 I(z, t) = 1
 1l>c 

[Af(t - z1lc) - Bg(t + z1lc)]

 V(z, t) = Af(t - z1lc) + Bg(t + z1lc)

0I
0z

= -c0V
0t

0V
0z

 = -l0I
0t

Line 2

Stub

Line 1
SWR ! 3Line 1

SWR ! 1

0.083l1

0.386l1

FIGURE 7.17

A solution to the matching problem for
the transmission-line system of Figure 7.10.
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B. Time Domain 255

We now rewrite (7.40a) and (7.40b) as

(7.43a)

(7.43b)

or, more concisely,

(7.44a)

(7.44b)

with the understanding that is a function of is a function of
In terms of wave currents, the solution for the current may also

be written as

(7.45)

Comparing (7.44b) and (7.45), we see that

(7.46a)

(7.46b)

The minus sign in (7.46b) can be understood if we recognize that in writing (7.44a) and
(7.45), we follow the notation that both and have the same polarities with one
conductor (say, a) positive with respect to the other conductor (say, b) and that both 
and flow in the positive z-direction along conductor a and return in the negative 
z-direction along conductor b, as shown in Figure 7.18. The power flow associated with
either wave, as given by the product of the corresponding voltage and current, is then
directed in the positive z-direction, as shown in Figure 7.18. Thus,

(7.47a)P+ = V+I+ = V+ a V+

Z0
b =

(V+)2

Z0

I-
I+

V-V+

I- = - V-

Z0

I+ = V+

Z0

I = I+ + I-

(+) and (-)(t + z>vp).
(t - z>vp) and V-V+

I = 1
Z0

 (V+ - V-)

V = V+ + V-

 I(z, t) = 1
Z0
cV+ a t - z

vp
b - V- a t + z

vp
b d

 V(z, t) = V+ a t - z
vp
b + V- a t + z

vp
b

#

"

V#, V"

I#, I"

I#, I"

P#, P"

Conductor a

Conductor b

FIGURE 7.18

Polarities for voltages and currents
associated with and waves.(-)(+)
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256 Chapter 7 Transmission-Line Analysis

Since is always positive, regardless of whether is numerically positive or neg-
ative, (7.47a) indicates that the wave power does actually flow in the positive 
z-direction, as it should. On the other hand,

(7.47b)

Since is always positive, regardless of whether is numerically positive or neg-
ative, the minus sign in (7.47b) indicates that is negative, and, hence, the wave
power actually flows in the negative z-direction, as it should.

7.4 LINE TERMINATED BY RESISTIVE LOAD

Let us now consider a line of length l terminated by a load resistance and driven by a
constant voltage source in series with internal resistance , as shown in Figure 7.19.
Note again that the conductors of the transmission line are represented by double-ruled
lines, whereas the connections to the conductors are single-ruled lines, to be treated as
lumped circuits. We assume that no voltage and current exist on the line for and
the switch S is closed at We wish to discuss the transient wave phenomena on the
line for The characteristic impedance of the line and the velocity of propagation
are and respectively.vp,Z0

t 7 0.
t = 0.

t 6 0

RgV0

RL

(-)P-
V-(V-)2

P- = V-I- = V- a - V-

Z0
b = -

(V-)2

Z0

(+)
V+(V+)2

z ! 0

Z0, vp

t ! 0

z ! l

Rg

S

RL

V0

FIGURE 7.19

Transmission line terminated by a
load resistance and driven by
a constant voltage source in series
with an internal resistance .Rg

RL

When the switch S is closed at a wave originates at and travels
toward the load. Let the voltage and current of this wave be and respectively.
Then we have the situation at , as shown in Figure 7.20(a). Note that the load
resistor does not come into play here since the phenomenon is one of wave propagation;
hence, until the ( ) wave goes to the load, sets up a reflection, and the reflected wave
arrives back at the source, the source does not even know of the existence of . This is
a fundamental distinction between ordinary (lumped-) circuit theory and transmission-
line (distributed-circuit) theory. In ordinary circuit theory, no time delay is involved;
the effect of a transient in one part of the circuit is felt in all branches of the circuit in-
stantaneously. In a transmission-line system, the effect of a transient at one location on
the line is felt at a different location on the line only after an interval of time that the
wave takes to travel from the first location to the second. Returning now to the circuit

RL

+

z = 0
I+ ,V+(+)

z = 0(+)t = 0,
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7.4 Line Terminated by Resistive Load 257

in Figure 7.20(a), the various quantities must satisfy the boundary condition, that is,
Kirchhoff’s voltage law around the loop. Thus, we have

(7.48a)

We, however, know from (6.31a) that Hence, we get

(7.48b)

or

(7.49a)

(7.49b)

Thus, we note that the situation in Figure 7.20(a) is equivalent to the circuit shown in
Figure 7.20(b); that is, the voltage source views a resistance equal to the characteristic
impedance of the line, across . This is to be expected, since only a wave exists
at and the ratio of the voltage to current in the wave is equal to .

The wave travels toward the load and reaches the termination at It
does not, however, satisfy the boundary condition there, since this condition requires
the voltage across the load resistance to be equal to the current through it times its
value, . But the voltage-to-current ratio in the wave is equal to . To resolve this
inconsistency, there is only one possibility, which is the setting up of a wave, or a
reflected wave. Let the voltage and current in this reflected wave be and ,
respectively. Then the total voltage across is , and the total current through
it is , as shown in Figure 7.21(a). To satisfy the boundary condition, we have

(7.50a)V+ - V- = RL(I+ + I-)

I+ + I-
V+ + V-RL

I-V-
(-)

Z0(+)RL

t = l>vp.(+)
Z0(+)z = 0

(+)z = 0

 I+ = V+

Z0
=

V0

Rg + Z0

 V+ = V0
Z0

Rg + Z0

V0 - V+

Z0
Rg - V+ = 0

I+ = V+>Z0.

V0 - I+Rg - V+ = 0

"

#

V# V#

I#

I#

(a) (b)

z ! 0 z ! 0

Rg Rg

V0 V0

Z0

FIGURE 7.20

(a) For obtaining the wave voltage and current at for the
line of Figure 7.19. (b) Equivalent circuit for (a).

z = 0(+)

M07_RAO3333_1_SE_CHO7.QXD  4/9/08  2:37 PM  Page 257



258 Chapter 7 Transmission-Line Analysis

But from (7.46a) and (7.46b),we know that and respectively.
Hence,

(7.50b)

or

(7.51)

We now denote the voltage reflection coefficient, that is, the ratio of the reflected volt-
age to the incident voltage, by the symbol (previously ). Thus,

(7.52)

We then note that the current reflection coefficient is

(7.53)

Now, returning to the reflected wave, we observe that this wave travels back
toward the source and that it reaches there at Since the boundary condition
at , which was satisfied by the original wave alone, is then violated, a reflec-
tion of the reflection, or a re-reflection, will be set up and it travels toward the load. Let
us assume the voltage and current in this re-reflected wave, which is a wave, to be

and , respectively, with the superscripts denoting that the wave is a conse-
quence of the wave. Then the total line voltage and the line current at are

and respectively, as shown in Figure 7.21(b). To satis-
fy the boundary condition, we have

(7.54a)V+ + V- + V- + = V0 - Rg(I+ + I- + I- +)

I+ + I- + I- +,V+ + V- + V- +
z = 0(-)

(+)I- +V- +
(+)

(+)z = 0
t = 2l>vp.

I-

I+ =
-V->Z0

V+>Z0
= - V-

V+ = -≠

≠ = V-

V+ =
RL - Z0

RL + Z0

≠V≠

V- = V+
 
RL - Z0

RL + Z0

V+ - V- = RL a V+

Z0
- V-

Z0
b

I- = -V->Z0,I+ = V+>Z0

(a) (b)

V## V"# V"#V## V"

I## I"# I"#I## I"

z ! 0z ! l

RL

V0

#

"

#

"

Rg

FIGURE 7.21

For obtaining the voltages and currents associated with (a) the 
wave and (b) the wave, for the line of Figure 7.19.(- +)

(-)
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7.4 Line Terminated by Resistive Load 259

But we know that and Hence,

(7.54b)

Furthermore, substituting for from (7.49a), simplifying, and rearranging, we get

or

(7.55)

Comparing (7.55) with (7.51), we note that the reflected wave views the source
with internal resistance as the internal resistance alone; that is, the voltage source is
equivalent to a short circuit insofar as the wave is concerned. A moment’s thought
will reveal that superposition is at work here. The effect of the voltage source is taken
into account by the constant outflow of the original wave from the source. Hence,
for the reflection of the reflection, that is, for the wave, we need only consider the
internal resistance . Thus, the voltage reflection coefficient formula (7.52) is a general
formula and will be used repeatedly. In view of its importance, a brief discussion of the
values of for some special cases is in order, as follows:

1. or short-circuited line.

The reflected voltage is exactly the negative of the incident voltage, thereby
keeping the voltage across (short circuit) always zero.

2. or open-circuited line.

and the current reflection coefficient . Thus, the reflected current is
exactly the negative of the incident current, thereby keeping the current through

(open circuit) always zero.
3. or line terminated by its characteristic impedance.

This corresponds to no reflection, which is to be expected since is con-
sistent with the voltage-to-current ratio in the wave alone, and, hence, there
is no violation of boundary condition and no need for the setting up of a reflected
wave. Thus, a line terminated by its characteristic impedance is equivalent to an
infinitely long line insofar as the source is concerned.

(+)
RL( = Z0)

≠ =
Z0 - Z0

Z0 + Z0
= 0

RL = Z0,
RL

=  -≠ = -1

≠ =
q - Z0

q + Z0
= 1

RL = q ,
RL

≠ =
0 - Z0

0 + Z0
= -1

RL = 0,

≠

Rg

(- +)
(+)

(-)

V- + = V-
 

Rg - Z0

Rg + Z0

V- +
 a 1 +

Rg

Z0
b = V-

 a Rg

Z0
- 1bV+

V+ + V- + V- + = V0 -
Rg

Z0
(V+ - V- + V- +)

I- + = V- +>Z0.I+ = V+>Z0, I- = -V->Z0,
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260 Chapter 7 Transmission-Line Analysis

Returning to the discussion of the re-reflected wave, we note that this wave
reaches the load at time and sets up another reflected wave. This process of
bouncing back and forth of waves goes on indefinitely until the steady state is reached.
To keep track of this transient phenomenon, we make use of the bounce-diagram tech-
nique. Some other names given for this diagram are reflection diagram and space-time
diagram. We shall introduce the bounce diagram through a numerical example.

Example 7.4

Let us consider the system shown in Figure 7.22. Note that we have introduced a new quantity T,
which is the one-way travel time along the line from to that is, instead of specifying
two quantities and we specify Using the bounce-diagram technique, we wish to
obtain and plot line voltage and current versus t for fixed values z and line voltage and current
versus z for fixed values t.

T( = l>vp).vp,l
z = l;z = 0

t = 3l>vp

z ! 0

Z0 ! 60 '
 T ! 1 ms

t ! 0

z ! l

40 '
120 '

100 V

S

FIGURE 7.22

Transmission-line system for
illustrating the bounce-diagram
technique of keeping track of the
transient phenomenon.

Before we construct the bounce diagram, we need to compute the following quantities:

The bounce diagram is essentially a two-dimensional representation of the transient
waves bouncing back and forth on the line. Separate bounce diagrams are drawn for voltage and
current, as shown in Figure 7.23(a) and (b), respectively. Position (z) on the line is represented
horizontally and the time (t) vertically. Reflection coefficient values for the two ends are shown
at the top of the diagrams for quick reference. Note that current reflection coefficients are

and respectively, at the load and at the source. Crisscross lines are drawn as
shown in the figures to indicate the progress of the wave as a function of both z and t, with the
numerical value for each leg of travel shown beside the line corresponding to that leg and
approximately at the center of the line. The arrows indicate the directions of travel. Thus, for
example, the first line on the voltage bounce diagram indicates that the initial wave of 60 V
takes a time of 1 to reach the load end of the line. It sets up a reflected wave of 20 V, which
travels back to the source, reaching there at a time of 2 , which then gives rise to a wave of
voltage , and so on, with the process continuing indefinitely.-4 V

(+)ms
ms

(+)

-≠S = 1
5,-≠R = -1

3

 Voltage reflection coefficient at source, ≠S = 40 - 60
40 + 60

= - 1
5

 Voltage reflection coefficient at load, ≠R = 120-60
120 + 60

= 1
3

 Current carried by the initial (+) wave = 60
60

= 1 A

 Voltage carried by the initial (+) wave = 100 60
40 + 60

= 60 V
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7.4 Line Terminated by Resistive Load 261

Now, to sketch the line voltage and/or current versus time at any value of z, we note
that since the voltage source is a constant voltage source, each individual wave voltage and cur-
rent, once the wave is set up at that value of z, continues to exist there forever. Thus, at any par-
ticular time, the voltage (or current) at that value of z is a superposition of all the voltages (or
currents) corresponding to the crisscross lines preceding that value of time. These values are
marked on the bounce diagrams for and . Noting that each value corresponds to the
2-ms time interval between adjacent crisscross lines, we now sketch the time variations of line
voltage and current at and , as shown in Figures 7.24(a) and (b), respectively. Similar-
ly, by observing that the numbers written along the time axis for are actually valid for any
pair of z and t within the triangle ( ) inside which they lie and that the numbers written along
the time axis for are actually valid for any pair of z and t within the triangle ( ) inside
which they lie, we can draw the sketches of line voltage and current versus time for any other
value of z. This is done for in Figure 7.24(c).

It can be seen from the sketches of Figure 7.24 that as time progresses, the line voltage and
current tend to converge to certain values, which we can expect to be the steady-state values. In
the steady state, the situation consists of a single wave, which is actually a superposition of the
infinite number of transient waves, and a single wave, which is actually a superposition
of the infinite number of transient waves. Denoting the steady-state wave voltage and(+)(-)

(-)(+)
(+)

z = l>2 !z = l
"

z = 0
z = lz = 0

z = lz = 0

60 V

20

"4

"4/3

"4/225

"1/3

2
3

4/15

4/45

3376
45

224
3

80

0
00

2

4

6

1

3

5

7
16876

225

1124
15

76

60

zz ! 0 z ! l

(a)

t, ms

1
5

%S ! "
1
3

%R !

1 A

"1/675

"1/3375

"1/15

1
5

"%S !

9
15

28
45

1/45

0
00

2

4

6

1

3

5

7
2109
3375

141
225

1

422
675

1/225

zz ! 0 z ! l

(b)

" 
1
3

"%R !

FIGURE 7.23

(a) Voltage and (b) current bounce diagrams, depicting the bouncing back and forth of the
transient waves for the system of Figure 7.22.
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262 Chapter 7 Transmission-Line Analysis

current to be and , respectively, and the steady-state wave voltage and current to be
and , respectively, we obtain from the bounce diagrams

 I-
SS = - 1

3
+ 1

45
- 1

675
+ Á = - 1

3
a 1 - 1

15
+ 1

152 - Áb = -0.3125 A

 V-
SS = 20 - 4

3
+ 4

45
- Á = 20 a 1 - 1

 15
+ 1

 152 - Áb = 18.75 V

 I+
SS = 1 - 1

15
+ 1

225
- Á = 1 - 1

15
+ 1

152 - Á = 0.9375 A

 V+
SS = 60 - 4 + 4

 15
- Á = 60 a 1 - 1

15
+ 1

 152 - Áb = 56.25 V

I-
SSV-

SS

(-)I+
SSV+

SS

3376
45

224
3

16876
22576

60 1124
15

(a)

t, ms

9
15

2109
3375

141
225

2
3

28
45

422
675

2

100

0 4 6 8

[V]z ! 0, V

t, ms
20 4 6 8

[I]z ! 0, A

[V]z ! l, V [I]z ! l, A

[V]z ! l/2, V [I]z ! l/2, A

1
1

80

(b)

t, ms
1

100

0 3 5 7 9 9
t, ms

1

1

0 3 5 7

80

60
224

3

(c)

t, ms
0.5

100

0 2.5 4.5 6.5 8.5 8.5
t, ms

1

0

76

1
28
45

9
15

2
3

0.5 2.5 4.5 6.5

FIGURE 7.24

Time variations of line voltage and line current at (a) , (b) , and (c) for the
system of Figure 7.22.

z = l>2z = lz = 0
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7.4 Line Terminated by Resistive Load 263

Note that and as they should be. The steady-state line voltage
and current can now be obtained to be

These are the same as the voltage across and current through if the source and its internal
resistance were connected directly to , as shown in Figure 7.25. This is to be expected since the
series inductors and shunt capacitors of the distributed equivalent circuit behave like short cir-
cuits and open circuits, respectively, for the constant voltage source in the steady state.

RL

RLRL

 ISS = I+
SS + I-

SS = 0.625 A

 VSS = V+
SS + V-

SS = 75 V

I-
SS = -V-

SS>Z0,I+
SS = V+

SS>Z0

40 '
120 '

100 V "

#

z ! 0 z ! l

0.625 A

75 V

FIGURE 7.25

Steady-state equivalent for
the system of Figure 7.22.

(a)

z

100
76

0 l/2 l

[V]t ! 2.5 ms, V

80

(b)

z

1
1

0 2l/3 l

[I]t ! 1"1/3 ms, A

2
3

FIGURE 7.26

Variations with z of (a) line voltage for and (b) line current for for the
system of Figure 7.22.

t = 1 
1
3  ms,t = 2.5 ms

In Example 7.4, we introduced the bounce-diagram technique for a constant-
voltage source. The technique can also be applied if the voltage source is a pulse. In the
case of a rectangular pulse, this can be done by representing the pulse as the superposi-
tion of two step functions, as shown in Figure 7.27, and superimposing the bounce
diagrams for the two sources one on another. In doing so, we should note that the bounce
diagram for one source begins at a value of time greater than zero.Alternatively, the time

Sketches of line voltage and current as functions of distance (z) along the line for any par-
ticular time can also be drawn from considerations similar to those employed for the sketches of
Figure 7.24. For example, suppose we wish to draw the sketch of line voltage versus z for

Then we note from the voltage bounce diagram that for the line voltage is
76 V from to and 80 V from to This is shown in Figure 7.26(a).
Similarly, Figure 7.26(b) shows the variation of line current versus z for t = 1 

1
3 ms.

z = l.z = l>2z = l>2z = 0
t = 2.5 ms,t = 2.5 ms.
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264 Chapter 7 Transmission-Line Analysis

variation for each wave can be drawn alongside the time axes beginning at the time of
start of the wave. These can then be used to plot the required sketches.An example is in
order, to illustrate this technique, which can also be used for a pulse of arbitrary shape.

V V

(+)

(#)

0

1

2

320 "4

"4
4

0

1
20 60

6060

2

3

4

(")

(")

("#"#) ("#")
("#")

("#)

("#)

z ! 0 z ! lz

" 3
4

t, ms

1
5"%S !

1
3%R !

FIGURE 7.28

Voltage bounce diagram for the system of Figure 7.22 except that the voltage source is a
rectangular pulse of 1- duration from to t = 1 ms.t = 0ms

#!

t
0

Vg

V0

t0

t0
t t

0
0

V0 V0

"V0

FIGURE 7.27

Representation of a rectangular pulse as the superposition of two step functions.

Example 7.5

Let us assume that the voltage source in the system of Figure 7.22 is a 100-V rectangular pulse
extending from to and extend the bounce-diagram technique.

Considering, for example, the voltage bounce diagram, we reproduce in Figure 7.28 part of
the voltage bounce diagram of Figure 7.23(a) and draw the time variations of the individual pulses
alongside the time axes, as shown in the figure. Note that voltage axes are chosen such that posi-
tive values are to the left at the left end of the diagram, but to the right at the right end

of the diagram.1z = l2 1z = 02
t = 1 mst = 0
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7.4 Line Terminated by Resistive Load 265

From the voltage bounce diagram, sketches of line voltage versus time at and 
can be drawn, as shown in Figures 7.29(a) and (b), respectively. To draw the sketch of line volt-
age versus time for any other value of z, we note that as time progresses, the wave pulses slide
down the crisscross lines from left to right, whereas the wave pulses slide down from right to1-2 1+2 z = lz = 0

(a)

16

1

60

0 2 3 "16/15

4 5

[V]z ! 0, V

(b)

80

1

80

0 2 5 6

43

[V]z ! l, V

(c)

20

1.50.5

60

0

3.52.5 4.5 4/15

[V]z ! l/2, V

"16/3

16/45

60

"4 "4/3 5.5

t, ms

t, ms

t, ms

FIGURE 7.29

Time variations of line voltage 
at (a) (b) and 
(c) for the system of
Figure 7.22, except that the
voltage source is a rectangular
pulse of duration from 

to t = 1 ms.t = 0
1-ms

z = l>2 z = l,z = 0,
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266 Chapter 7 Transmission-Line Analysis

left. Thus, to draw the sketch for we displace the time plots of the waves at 
and of the waves at forward in time by that is, delay them by and add
them to obtain the plot shown in Figure 7.29(c).

Sketches of line voltage versus distance (z) along the line for fixed values of time can also
be drawn from the bounce diagram, based on the phenomenon of the individual pulses sliding
down the crisscross lines. Thus, if we wish to sketch V(z) for then we take the portion
from back to (since the one-way travel time on the line is

) of all the wave pulses at and lay them on the line from to and we
take the portion from back to of all the wave pulses at

and lay them on the line from back to In this case, we have only one wave
pulse, that of the wave, and only one wave pulse, that of the wave, as shown in
Figures 7.30(a) and (b). The line voltage is then the superposition of these two waveforms, as
shown in Figure 7.30(c).

Similar considerations apply for the current bounce diagram and plots of line current
versus t for fixed values of z and line current versus z for fixed values of t.

1-21-21- +2 1+2z = 0.z = lz = l
1-2t = 2.25 - 1 = 1.25 mst = 2.25 ms

z = l,z = 0z = 01+21 ms
t = 2.25 - 1 = 1.25 mst = 2.25 ms

t = 2.25 ms,

0.5 ms,0.5 ms,z = l1-2 z = 01+2z = l>2,

(b)

z

20

0 l/2 l

V", V

(a)

z0
"4 l/2 l

V"#, V

(c)

z

16
20

0 l/2 l

V, V

FIGURE 7.30

Variations with z of (a) the wave voltage,
(b) the wave voltage, and (c) the total line
voltage, at for the system of Figure 7.22,
except that the voltage source is a rectangular
pulse of duration from to t = 1 ms.t = 01-ms

t = 2.25 ms
1-2 1- +2

7.5 LINES WITH INITIAL CONDITIONS

Thus far, we have considered lines with quiescent initial conditions, that is, with no ini-
tial voltages and currents on them. As a prelude to the discussion of analysis of inter-
connections between logic gates, we shall now consider lines with nonzero initial
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7.5 Lines with Initial Conditions 267

conditions. We discuss first the general case of arbitrary initial voltage and current
distributions by decomposing them into and wave voltages and currents. To
do this, we consider the example shown in Figure 7.31, in which a line open-circuited at
both ends is charged initially, say, at to the voltage and current distributions
shown in the figure.

t = 0,

1-21+2

l/2

50

0
z

V(z, 0), V

I(z, 0)

l

l/2

1

0
z

I(z, 0), A

l

#

"

#

"

#

"

#

"

#

"

#

"

#

"

#

"

Z0 ! 50 '
T ! 1 ms

z ! 0 z ! l

V(z, 0)

FIGURE 7.31

Line open-circuited at both ends and initially charged to the voltage and current distributions V(z, 0)
and I(z, 0), respectively.

Writing the line voltage and current distributions as sums of and wave
voltages and currents, we have

(7.56a)

(7.56b)

But we know that and Substituting these into (7.56b) and
multiplying by we get

(7.57)

Solving (7.56a) and (7.57), we obtain

(7.58a)

(7.58b)

Thus, for the distributions V(z, 0) and I(z, 0) given in Figure 7.31, we obtain the distrib-
utions of and as shown by Figure 7.32(a), and hence of and

as shown by Figure 7.32(b).
Suppose that we wish to find the voltage and current distributions at some later

value of time, say, Then, we note that as the and waves propagate1-21+2t = 0.5 ms.

I-1z, 02, I+1z, 02V-1z, 02,V+1z, 02
 V-1z, 02 = 1

2 [V1z, 02 - Z0I1z, 02] V+1z, 02 = 1
2 [V1z, 02 + Z0I1z, 02]

V+1z, 02 - V-1z, 02 = Z0I1z, 02Z0,
I- = -V->Z0.I+ = V+>Z0

 I+1z, 02 + I-1z, 02 = I1z, 02 V+1z, 02 + V-1z, 02 = V1z, 02
1-21+2
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l/2

50

0
z

V#(z, 0), V

l

A

B

C

l/2

50

0

(a) (b)

z

V"(z, 0), V

l

D
C

l/2

1

0
z

I#(z, 0), A

l

l/2

–1

0
z

I"(z, 0), A

l

FIGURE 7.32

Distributions of (a) voltage and (b) current in the and waves obtained by decomposing the voltage
and current distributions of Figure 7.31.

1-21+2
and impinge on the open circuits at and respectively, they produce the 
and waves, respectively, consistent with a voltage reflection coefficient of 1 and
current reflection coefficient of at both ends. Hence, at the and 
wave voltage and current distributions and their sum distributions are as shown in
Figure 7.33, in which the points A, B, C, and D correspond to the points A, B, C, and D,
respectively, in Figure 7.32. Proceeding in this manner, one can obtain the voltage and
current distributions for any value of time.

Suppose that we connect a resistor of value at the end at instead of
keeping it open-circuited. Then the reflection coefficient at that end becomes zero
thereafter, and the wave, as it impinges on the resistor, gets absorbed in it instead
of producing the wave. The line therefore completely discharges into the resistor
by the time with the resulting time variation of voltage across as shown
in Figure 7.34, where the points A, B, C, and D correspond to the points A, B, C, and D,
respectively, in Figure 7.32.

For a line with uniform initial voltage and current distributions, the analysis
can be performed in the same manner as for arbitrary initial voltage and current
distributions. Alternatively, and more conveniently, the analysis can be carried out
with the aid of superposition and bounce diagrams. The basis behind this method
lies in the fact that the uniform distribution corresponds to a situation in which the
line voltage and current remain constant with time at all points on the line until a
change is made at some point on the line. The boundary condition is then violated at
that point, and a transient wave of constant voltage and current is set up, to be
superimposed on the initial distribution. We shall illustrate this technique of analysis
by means of an example.

RL,t = 1.5 ms,
1-21+2

t = 0z = lZ0

1-21+2t = 0.5 ms,-1
1+2 1-2z = 0,z = l
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0.5 1.0 1.5 2.0

50

0
t, ms

[V]RL, V

A

B

C
D

FIGURE 7.34

Voltage across 
resulting from connecting it at to
the end of the line of Figure 7.31.z = l

t = 0
RL1=  Z0 = 50 Æ2

Example 7.6

Let us consider a line of and initially charged to uniform voltage
and zero current. A resistor is connected at to the end of the line, as
shown in Figure 7.35(a). We wish to obtain the time variation of the voltage across for 

Since the change is made at by connecting to the line, a wave originates at
so that the total line voltage at that point is and the total line currentV0 + V+z = 0,

(+)RLz = 0
t 7 0.RL

z = 0t = 0RL = 150 Æ
V0 = 100 VT = 1 msZ0 = 50 Æ

l/2

50

0
z

V#, V

l

D

B
C

l/2

50

0
z

V", V

l

A

B

l/2

1

0
z

I#, A

l

l/2

50

0
z

V, V

100

l l/2

1

0
z

I, A

2

l

l/2

1

0 z

I", A

–1

l

(a) (b)

FIGURE 7.33

Distributions of (a) voltage and (b) current in the and waves and their sum for for the
initially charged line of Figure 7.31.

t = 0.5 ms1-21+2
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270 Chapter 7 Transmission-Line Analysis

is as shown in Figure 7.35(b). To satisfy the boundary condition at we then
write

(7.59)

But we know that Hence, we have

(7.60)

or

(7.61a)

(7.61b)

We may now draw the voltage and current bounce diagrams, as shown in Figure 7.36. We
note that in these bounce diagrams, the initial conditions are accounted for by the horizontal
lines drawn at the top, with the numerical values of voltage and current indicated on them.
Sketches of line voltage and current versus z for fixed values of t can be drawn from these
bounce diagrams in the usual manner. Sketches of line voltage and current versus t for any fixed
value of z also can be drawn from the bounce diagrams in the usual manner. Of particular inter-
est is the voltage across which illustrates how the line discharges into the resistor. The time
variation of this voltage is shown in Figure 7.37.

It is also instructive to check the energy balance, that is, to verify that the energy dissipated in
the resistor for is indeed equal to the energy stored in the line at since the line
is lossless. To do this, we note that, in general, energy is stored in both electric and magnetic fields in
the line, with energy densities and respectively. Thus, for a line charged uniformly to
voltage and current the total electric and magnetic stored energies are given by

(7.62a) = 1
2

 cV0
2

 
12lc  T = 1

2
  
V0

2

Z0
 T

 We = 1
2

 cV0
2 l = 1

2
 cV0

2vpT

I0,V0

1
2 lI2,1

2 cV2

t = 0- ,t 7 0150-Æ

RL,

For V0 = 100 V, Z0 = 50 Æ, and RL = 150 Æ, we obtain V+ = -25 V and I+ = -0.5 A.

 I+ = -V0 
1

RL + Z0

 V+ = -V0 
Z0

RL + Z0

V0 + V+ = -  
RL

Z0
 V+

I+ = V+>Z0.

V0 + V+ = -RLI+

z = 0,0 + I+ , or I+ ,

z ! 0

Z0, T V0

t ! 0 #

"

#

"

#

(a)

"

#

"

#

"

#

"

#

"

#

"

z ! l

S

z = 0

V0 + V#RLRL

+

–

(b)

I#

FIGURE 7.35

(a) Transmission line charged initially to uniform voltage (b) For obtaining the voltage and
current associated with the transient wave resulting from the closure of the switch in (a).1+2 V0.
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FIGURE 7.36

Voltage and current bounce diagrams depicting the transient phenomenon for for the line
of Figure 7.35(a), for and T = 1 ms.V0 = 100 V, Z0 = 50 Æ, RL = 150 Æ,

t 7 0

2 4 6

75

0
t, ms

[V]RL
, V

37.5
18.75 9.375

FIGURE 7.37

Time variation of voltage across 
for in Figure 7.35(a) for

and T = 1 ms.RL = 150 Æ,
Z0 = 50 Æ,V0 = 100 V,

t 7 0
RL

(7.62b)

Since, for the example under consideration, and and
Thus, the total initial stored energy in the line is Now, denoting the power dissi-

pated in the resistor to be we obtain the energy dissipated in the resistor to be

 = 2 * 10-6

150
* 752

 a 1 + 1
4

+ 1
16

+ Áb = 10-4 J

 = L
2 * 10-6 

 0
 
752

150
 dt + L

4 * 10-6

2 * 10-6
 
37.52

150
 dt + L

6 * 10-6

4 * 10-6
 
18.752

150
 dt + Á

 Wd = L
q

t = 0
Pd dt

Pd,
10-4 J.Wm = 0.

We = 10-4 JT = 1 ms,V0 = 100 V, I0 = 0,

 = 1
2

 lI0
2

 
12lc  T = 1

2
 I0

2Z0T

 Wm = 1
2

 lI0
2 l = 1

2
 lI0

2vpT
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z ! 0 z ! l

Z0 ! 50 '
T ! 1 ms

t ! 0

200 ' #

#

50 V

S

"

"

#

"

VL ! 50IL  IL
Passive Nonlinear

VLVS

IS IL

FIGURE 7.38

Line terminated by a passive nonlinear element and driven by a constant-voltage source
in series with internal resistance.

which is exactly the same as the initial stored energy in the line, thereby satisfying the energy
balance.

7.6 INTERCONNECTIONS BETWEEN LOGIC GATES

Thus far, we have been concerned with time-domain analysis for lines with termina-
tions and discontinuities made up of linear circuit elements. Logic gates present nonlin-
ear resistive terminations to the interconnecting transmission lines in digital circuits.
The analysis is then made convenient by a graphical technique known as the load-line
technique. We shall first introduce this technique by means of an example.

Example 7.7

Let us consider the transmission-line system shown in Figure 7.38, in which the line is terminated
by a passive nonlinear element having the indicated V-I relationship. We wish to obtain the time
variations of the voltages and at the source and load ends, respectively, following the clo-
sure of the switch S at using the load-line technique.t = 0,

VLVS

With reference to the notation shown in Figure 7.38, we can write the following equations
pertinent to at 

(7.63a)

(7.63b)

where and are the voltage and current, respectively, of the wave set up immediately
after closure of the switch. The two equations (7.63a) and (7.63b) can be solved graphically by
constructing the straight lines representing them, as shown in Figure 7.39, and obtaining the
point of intersection A, which gives the values of and Note in particular that (7.63b) is a
straight line of slope 1>50 and passing through the origin.

IS.VS

1+2I+V+

 IS = I+ = V+

Z0
=

VS

50

 VS = V+

 50 = 200IS + VS

z = 0:t = 0+
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20

0.1

0.2

0.3

0.4

V

I

SS

IS !

4 6 8 10 12

"2V" # VS

50

C

D
E

B

A

IL !
2V# " VL

50

IS !
VS

50

VL ! 50IL  IL 

50 ! 200IS + VS

FIGURE 7.39

Graphical solution for obtaining time variations of and for in the
transmission-line system of Figure 7.38.

t 7 0VLVS

When the wave reaches the load end at a wave is set up. We can then
write the following equations pertinent to at 

(7.64a)

(7.64b)

where and are the wave voltage and current, respectively. The solution for and 
is then given by the intersection of the nonlinear curve representing (7.64a) and the straight line
of slope corresponding to (7.64b). Noting from (7.64b) that for we
see that the straight line passes through point A. Thus, the solution of (7.64a) and (7.64b) is given
by point B in Figure 7.39.

When the wave reaches the source end at it sets up a reflection. Denot-
ing this to be the wave, we can then write the following equations pertinent to at

(7.65a)

(7.65b) =
V+ - V- + 1VS - V+ - V-2

50
=

-2V- + VS

50
 

 IS = I+ + I- + I-
 
+ = V+ - V- + V-

 
+

Z0

 VS = V+ + V- + V-
 
+

 50 = 200IS + VS

z = 0:
t = 2T+1- +2 t = 2T,z = 01-2

IL = V+>50,VL = V+,-1>50

IL VL 1-2I- V- 

 =
V+ - 1VL - V+2

50
=

2V+ - VL

50

 IL = I+ + I- = V+ - V-

Z0

 VL = V+ + V-

 VL = 50IL ƒIL ƒ

z = l:t = T+
1-2t = T,z = l1+2
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(a)

0 2 6

10

t, ms

VS

A

C
E

4

(b)

0 1 5

5

t, ms

VL

B
D

3

FIGURE 7.40

Time variations of (a) and (b) 
for the transmission-line system of
Figure 7.38. The voltage levels A, B,
C, correspond to those in
Figure 7.39.

Á

VL,VS

where and are the wave voltage and current, respectively. Noting from (7.65a)
that for we see that (7.65b) represents a straight line of
slope passing through B. Thus, the solution of (7.65a) and (7.65b) is given by point C in
Figure 7.39.

Continuing in this manner, we observe that the solution consists of obtaining the points of
intersection on the source and load V-I characteristics by drawing successively straight lines of
slope and beginning at the origin (the initial state) and with each straight line orig-
inating at the previous point of intersection, as shown in Figure 7.39. The points A, C, E, give
the voltage and current at the source end for 
whereas the points B, D, give the voltage and current at the load end for

Thus, for example, the time variations of and are shown in
Figures 7.40(a) and (b), respectively. Finally, it can be seen from Figure 7.39 that the steady-state
values of line voltage and current are reached at the point of intersection (denoted SS) of the
source and load V-I characteristics.

VLVST 6 t 6 3T, 3T 6 t 6 5T, Á .
Á ,

0 6 t 6 2T, 2T 6 t 6 4T, 4T 6 t 6 6T, Á ,
Á ,

-1>Z0 ,1>Z0 

1>50
VS = V+ + V-, IS = 1V+ - V-2>50,

1- +2I- +V- +

Now, going back to Example 7.6, the behavior of the system for the uniformly
charged line can be analyzed by using the load-line technique, as an alternative to the
solution using the bounce-diagram technique. Thus, noting that the terminal voltage-
current characteristics at the ends and of the system in Figure 7.35 are
given by and respectively, and that the characteristic im-
pedance of the line is we can carry out the load-line construction, as shown in
Figure 7.41, beginning at the point A (100 V, 0 A), and drawing alternately straight lines
of slope 1>50 and to obtain the points of intersection B, C, D, The points B,
D, F, give the line voltage and current values at the end for intervals of 
beginning at whereas the points C, E, give the line voltage
and current values at the end for intervals of beginning at 
For example, the time variation of the line voltage at provided by the load-line
construction is the same as in Figure 7.37.

z = 0
Á .3 ms,t = 1 ms,2 msz = l

ÁÁ ,4 ms,2 ms,t = 0 ms,
2 msz = 0Á

Á .-1>50

50 Æ,
I = 0,V = -IRL = -150I

z = lz = 0
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0
50 Input 100

I, A

V, V

F

E

C

D

B

A

Output

Slope ! " 1
50

" 1
3

" 2
3

Slope ! 1
50

FIGURE 7.41

Load-line construction for the analysis of the system of Figure 7.35(a).

We shall now apply the procedure for the use of the load-line technique for a
line with uniform initial distribution, just illustrated, to the analysis of the system in
Figure 7.42(a) in which two transistor-transistor logic (TTL) inverters are intercon-
nected by using a transmission line of characteristic impedance and one-way travel
time T. As the name inverter implies, the gate has an output that is the inverse of the
input. Thus, if the input is in the HIGH (logic 1) range, the output will be in the LOW
(logic 0) range, and vice versa. Typical V-I characteristics for a TTL inverter are shown
in Figure 7.42(b). As shown in this figure, when the system is in the steady state with
the output of the first inverter in the 0 state, the voltage and current along the line are
given by the intersection of the output 0 characteristic and the input characteristic;
when the system is in the steady state with the output of the first inverter in the 1 state,
the voltage and current along the line are given by the intersection of the output 1
characteristic and the input characteristic. Thus, the line is charged to 0.2 V for the
steady-state 0 condition and to 4 V for the steady-state 1 condition. We wish to study
the transient phenomena corresponding to the transition when the output of the first
gate switches from the 0 to the 1 state, and vice versa, assuming of the line to be

.
Considering first the transition from the 0 state to the 1 state, and following the

line of argument in Example 7.7, we carry out the construction shown in Figure 7.43(a).
This construction consists of beginning at the point corresponding to the steady-
state 0 (the initial state) and drawing a straight line of slope 1>30 to intersect with
the output 1 characteristic at point A, then drawing from point A a straight line of
slope to intersect the input characteristic at point B, and so on. From this con-
struction, the variation of the voltage at the input of the second gate can be
sketched as shown in Figure 7.43(b), in which the voltage levels correspond to the

Vi

-1>30

30 Æ
Z0

Z0
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points 0, in Figure 7.43(a). The effect of the transients on the performance
of the system may now be seen by noting from Figure 7.43(b) that depending on the
value of the minimum gate voltage that will reliably be recognized as logic 1, a time
delay in excess of T may be involved in the transition from 0 to 1. Thus, if this mini-
mum voltage is 2 V, the interconnecting line will result in an extra time delay of 2T
for the input of the second gate to switch from 0 to 1, since does not exceed 2 V
until .

Considering next the transition from the 1 state to the 0 state, we carry out the
construction shown in Figure 7.44(a), with the crisscross lines beginning at the point

t = 3T+
Vi

B, D, Á ,

Z0, T

(a)

(b)

Vo

#

Vi

"

#

"

Io Ii

I, mA

V, V

10

"1

20

30

"10

"30

"20

"2 1 2 3 4 5

Input

Output 0 State

Output 1 State

Steady-State 1

Steady-State 0

FIGURE 7.42

(a) Transmission-line interconnection between two logic gates. (b) Typical
V-I characteristics for the logic gates.
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(a)

(b)
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0
t
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5T

1.55

3
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0.2

2.6
2.95

FIGURE 7.43

(a) Construction based on the load-line technique for analysis of the 
0-to-1 transition for the system of Figure 7.42(a). (b) Plot of versus t
obtained from the construction in (a).

Vi

corresponding to the steady-state 1. From this construction, we obtain the plot of 
versus t, as shown in Figure 7.44(b), in which the voltage levels correspond to the points
1, B, D, . . . , in Figure 7.44(a). If we assume a maximum gate input voltage that can be
readily recognized as logic 0 to be 1 V, it can once again be seen that an extra time
delay of 2T is involved in the switching of the input of the second gate from 1 to 0, since

does not drop below 1 V until .t = 3T+Vi

Vi
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SUMMARY

In this chapter, we first studied frequency domain analysis of transmission lines. The
general solutions to the transmission-line equations, expressed in phasor form, that is,

(7.66a)

(7.66b)
0I

-

0z
= -gV

– - jvcV
–

0V
–

0z
 = -jvlI

-

(b)

Output 1 State

(a)

I, mA

V, V

10

"1

20

30

"10

"30

"20

"2 1

2

3 4 5

Input

Output 0 State

Steady-State 1

Z0 ! 30 '

A

C

BD

T 3T

1

2

0
t

Vi, V

5T

2

3

4

0.4
0.1

FIGURE 7.44

(a) Construction based on 
the load-line technique for
analysis of the 1-to-0
transition for the system of
Figure 7.42(a). (b) Plot of 
versus t obtained from the
construction in (a).

Vi
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are given by

(7.67a)

(7.67b)

where

are the propagation constant and the characteristic impedance, respectively, of the line.
For a lossless line ( ), these reduce to

so that for a lossless line,

(7.68a)

(7.68b)

The solutions given by (7.67a) and (7.67b) or (7.68a) and (7.68b) represent the
superposition of and waves propagating in the medium between the conduc-
tors of the line, expressed in terms of the line voltage and current instead of in terms of
the electric and magnetic fields.

By applying these general solutions to the case of a lossless line short circuited at
the far end and obtaining the particular solutions for that case, we discussed the stand-
ing wave phenomenon and the standing wave patterns resulting from the complete
reflection of waves by the short circuit. We also examined the frequency behavior of
the input impedance of a short-circuited line of length l, given by

and (a) illustrated its application in a technique for the location of short circuit in a
line, and (b) learned that for a circuit element to behave as assumed by conventional
(lumped) circuit theory, its dimensions must be a small fraction of the wavelength cor-
responding to the frequency of operation.

Next, we studied reflection and transmission of waves at a junction between two
lossless lines. By applying them to the general solutions for the line voltage and current
on either side of the junction, we deduced the ratio of the reflected wave voltage to the
incident wave voltage, that is, the voltage reflection coefficient, to be

≠V =
Z02 - Z01

Z02 + Z01

Z
–

in = jZ0 tan bl

(-)(+)

 I-(z) = 1
Z0

(A
–

e-jbz - B
–
ejbz)

 V– (z) = A
–

e- jbz + B
–

ejbz

 Z–0 = Z0 = Alc (Z1m>P)

 g – = jb = jv1lc (=jv1mP)

g = 0

Z
–

0 = A jvl
g + jvc

 cZA jvm
s + jvP d

g – = 2jvl(g + jvc) [= 2jvm(s + jvP)]

 I-(z) = 1
Z –0

(A
–

e-g-z - B
–

eg
-z)

 V– (z) = A
–

e-g-z + B
–

eg
-z

M07_RAO3333_1_SE_CHO7.QXD  4/9/08  2:37 PM  Page 279
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where is the characteristic impedance of the line from which the wave is incident
and is the characteristic impedance of the line on which the wave is incident. The
ratio of the transmitted wave voltage to the incident wave voltage, that is, the voltage
transmission coefficient, is given by

The current reflection and transmission coefficients are given by

We discussed the standing wave pattern resulting from the partial reflection of the
wave at the junction and defined a quantity known as the standing wave ratio (SWR),
which is a measure of the reflection phenomenon. In terms of , it is given by

We then introduced the Smith Chart, which is a graphical aid in the solution of
transmission-line problems. After first discussing the basis behind the construction of
the Smith Chart, we illustrated its use by considering a transmission-line system and
computing several quantities of interest. We concluded the section on Smith Chart
with the solution of a transmission-line matching problem.

We devoted the remainder of the chapter to time-domain analysis of transmission
lines. For a lossless line, the transmission-line equations in time domain are given by

(7.69a)

(7.69b)

The solutions to these equations are

(7.70a)

(7.70b)

where is the characteristic impedance of the line, and is
the velocity of propagation on the line.

We then discussed time-domain analysis of a transmission line terminated by a
load resistance and excited by a constant voltage source in series with internal re-
sistance . Writing the general solutions (7.70a) and (7.70b) concisely in the manner

 I = I+ + I-
 V = V+ + V-

Rg

V0RL

vp = 1>2lcZ0 = 2l>c I(z, t) = 1
Z0
cAf a t - z

vp
b - Bg a t + z

vp
b d

V(z, t) = Af a t - z
vp
b + Bg a t + z

vp
b

 
0I
0z

 = -c0V
0t

 
0V
0z

 = -l0I
0t

 

SWR =
1 + ƒ≠V ƒ
1 - ƒ≠V ƒ

≠V

tI = 1 - ≠V

≠I = -≠V

tV = 1 + ≠V

Z02

Z01
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where

we found that the situation consists of the bouncing back and forth of transient 
and waves between the two ends of the line. The initial wave voltage is

. All other waves are governed by the reflection coefficients at the
two ends of the line, given for the voltage by

and

for the load and source ends, respectively. In the steady state, the situation is the super-
position of all the transient waves, equivalent to the sum of a single wave and a
single wave. We discussed the bounce-diagram technique of keeping track of the
transient phenomenon and extended it to a pulse voltage source.

As a prelude to the consideration of interconnections between logic gates, we dis-
cussed time-domain analysis of lines with nonzero initial conditions. For the general
case, the initial voltage and current distributions and are decomposed
into and wave voltages and currents as given by

The voltage and current distributions for are then obtained by keeping track of
the bouncing of these waves at the two ends of the line. For the special case of uniform
distribution, the analysis can be performed more conveniently by considering the situa-
tion as one in which a transient wave is superimposed on the initial distribution and
using the bounce-diagram technique. We then introduced the load-line technique of
time-domain analysis, and applied it to the analysis of transmission-line interconnec-
tion between logic gates.

t 7 0

 I-(z, 0) = - 1
Z0

V-(z, 0)

 I+(z, 0) = 1
Z0

V+(z, 0)

 V-(z, 0) = 1
2

[V(z, 0) - Z0I(z, 0)]

 V+(z, 0) = 1
2

[V(z, 0) + Z0I(z, 0)]

(-)(+)
I(z, 0)V(z, 0)

(-)
(+)

≠S =
Rg - Z0

Rg + Z0

≠R =
RL - Z0

RL + Z0

V+Z0>(Rg + Z0)
(+)(-)

(+)

I- = - V-

Z0

I+ = V+

Z0
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REVIEW QUESTIONS

7.1. Discuss the solutions for the transmission-line equations in frequency domain.
7.2. Discuss the propagation constant and characteristic impedance associated with wave

propagation on transmission lines.
7.3. What is the boundary condition to be satisfied at a short circuit on a line?
7.4. For an open-circuited line, what would be the boundary condition to be satisfied at the

open circuit?
7.5. What is a standing wave? How do complete standing waves arise? Discuss their charac-

teristics and give an example in mechanics.
7.6. What is a standing wave pattern? Discuss the voltage and current standing wave pat-

terns for the short-circuited line.
7.7. What would be the voltage and current standing wave patterns for an open-circuited

line?
7.8. Discuss the variation with frequency of the input reactance of a short-circuited line and

its application in the determination of the location of a short circuit.
7.9. Can you suggest an alternative procedure to that described in Example 7.1 to locate a

short circuit in a transmission line?
7.10. Discuss the condition for the validity of the quasistatic approximation for the input be-

havior of a physical structure.
7.11. Discuss the input behavior of a short-circuited line for frequencies slightly beyond

those for which the quasistatic approximation is valid.
7.12. What are the boundary conditions for the voltage and current at the junction between

two transmission lines?
7.13. What is the voltage reflection coefficient at the junction between two transmission

lines? How are the current reflection coefficient and the voltage and current transmis-
sion coefficients related to the voltage reflection coefficient?

7.14. What is the voltage reflection coefficient at the short circuit for a short-circuited line?
7.15. Can the transmitted wave current at the junction between two transmission lines be

greater than the incident wave current? Explain.
7.16. What is a partial standing wave? Discuss the standing wave patterns corresponding to

partial standing waves.
7.17. Define standing wave ratio (SWR). What are the standing wave ratios for (a) an infi-

nitely long line, (b) a short-circuited line, (c) an open-circuited line, and (d) a line termi-
nated by its characteristic impedance?

7.18. Define line impedance. What is its value for an infinitely long line?
7.19. What is the basis behind the construction of the Smith Chart? How does the Smith

Chart simplify the solution of transmission-line problems?
7.20. Briefly discuss the mapping of the normalized line impedances from the complex 

-plane onto the Smith Chart.
7.21. Why is a circle with its center at the center of the Smith Chart known as a constant

SWR circle? Where on the circle is the corresponding SWR value marked?
7.22. Using the Smith Chart, how do you find the normalized line admittance at a point on

the line given the normalized line impedance at that point?
7.23. Briefly discuss the solution of the transmission-line matching problem.

Z
–

n
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PROBLEMS

7.1. For a transmission line of arbitrary cross section and with the medium between the con-
ductors characterized by and it is known that

(a) Find and . (b) Find for 
7.2. For the coaxial cable of Example 6.9 employing air dielectric, find the ratio of the outer

to the inner radii for which the characteristic impedance of the cable is 
7.3. Using the general solutions for the complex line voltage and current on a lossless line

given by (7.9a) and (7.9b), respectively, obtain the particular solutions for the complex
voltage and current on an open-circuited line. Then find the input impedance of an
open-circuited line of length l.

7.4. Solve Example 7.1 by considering the standing wave patterns between the short circuit
and the generator for the two frequencies of interest and by deducing the number of
wavelengths at one of the two frequencies.

75 Æ.

f = 106 Hz.Z
–

0glc = 10- 10 F/m.
m = m0,s = 10- 16 S/m, P = 2.5P0,

7.24. How is the length of a short-circuited stub for a required input susceptance determined
by using the Smith Chart?

7.25. Discuss the general solutions for the line voltage and current in time-domain and the
notation associated with their representation in concise form.

7.26. What is the fundamental distinction between the occurrence of the response in one
branch of a lumped circuit to the application of an excitation in a different branch of the
circuit and the occurrence of the response at one location on a transmission line to the
application of an excitation at a different location on the line?

7.27. Describe the phenomenon of the bouncing back and forth of transient waves on a trans-
mission line excited by a constant voltage source in series with internal resistance and
terminated by a resistance.

7.28. Discuss the values of the voltage reflection coefficient for some special cases.
7.29. What is the steady-state equivalent of a line excited by a constant voltage source? What

is the actual situation in the steady state?
7.30. Discuss the bounce-diagram technique of keeping track of the bouncing back and forth

of the transient waves on a transmission line for a constant voltage source.
7.31. Discuss the bounce-diagram technique of keeping track of the bouncing back and forth

of the transient waves on a transmission line for a pulse voltage source.
7.32. Discuss the determination of the voltage and current distributions on an initially

charged line for any given time from the knowledge of the initial voltage and current
distributions.

7.33. Discuss with the aid of an example the discharging of an initially charged line into a
resistor.

7.34. Discuss the bounce-diagram technique of transient analysis of a line with uniform initial
voltage and current distributions.

7.35. Discuss the load-line technique of obtaining the time variations of the voltages and
currents at the source and load ends of a line from a knowledge of the terminal V-I
characteristics.

7.36. Discuss the analysis of transmission-line interconnection between two logic gates.
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7.5. For an air dielectric short-circuited line of characteristic impedance find the
minimum values of the length for which its input impedance is equivalent to that of
(a) an inductor of value at 100 MHz and (b) a capacitor of value 
at 100 MHz.

7.6. A transmission line of length 2 m having a nonmagnetic perfect dielectric is
short-circuited at the far end. A variable-frequency generator is connected at its input
and the current drawn is monitored. It is found that the current reaches a maximum
for and then a minimum for Find the permittivity of the
dielectric.

7.7. A voltage generator is connected to the input of a lossless line short-circuited at the far
end. The frequency of the generator is varied and the line voltage and line current at
the input terminals are monitored. It is found that the voltage reaches a maximum
value of 10 V at 405 MHz and the current reaches a maximum value of 0.2 A at 410 MHz.
(a) Find the characteristic impedance of the line. (b) Find the voltage and current values
at 407 MHz.

7.8. Assuming that the criterion is satisfied for frequencies less than 
compute the maximum length of an air dielectric short-circuited line for which the input
impedance is approximately that of an inductor of value equal to the total inductance of
the line for 

7.9. A lossless transmission line of length 2 m and having and is
short circuited at the far end. (a) Find the phase velocity, (b)Find the wavelength,
the length of the line in terms of the number of wavelengths, and the input imped-
ance of the line for each of the following frequencies: 100 Hz; 100 MHz; and
12.5 MHz.

7.10. Repeat Example 7.3 with the values of and interchanged.
7.11. In the transmission-line system shown in Figure 7.45, a power is incident on the junc-

tion from line 1. Find (a) the power reflected into line 1, (b) the power transmitted into
line 2, and (c) the power transmitted into line 3.

Pi

Z0 2Z01

vp.
c = 18P0l = 0.5m0

f = 100 MHz.

0.1vp>2pl,f V vp>2pl

f = 525 MHz.f = 500 MHz

(m = m0)

10- 10 F0.25 * 10- 6 H

50 Æ,

Line 2

Z 02 !
 50 '

Line 3
Z

03 ! 75 '

Line 1
Z01 ! 50 ' Pi

FIGURE 7.45

For Problem 7.11.

7.12. Show that the voltage minima of the standing wave pattern of Figure 7.9 are sharper
than the voltage maxima by computing the voltage amplitude halfway between the
locations of voltage maxima and minima.
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z ! "300 m z = 300 mz ! 0" z ! 0#z

Z0 ! 120 '
vp ! 2 ( 108 m/s

Z0 = 60 '
vp ! 3 ( 108  m/s

Vg

t ! 0

120 '
60 '

60 '

S

#
"

z

FIGURE 7.46

For Problem 7.21.

7.13. A line assumed to be infinitely long and of unknown characteristic impedance is con-
nected to a line of characteristic impedance on which standing wave measure-
ments are made. It is found that the standing wave ratio is 3 and that two consecutive
voltage minima exist at 15 cm and 25 cm from the junction of the two lines. Find the un-
known characteristic impedance.

7.14. A line assumed to be infinitely long and of unknown characteristic impedance when
connected to a line of characteristic impedance produces a standing wave ratio of
value 2 in the line. The same line when connected to a line of characteristic imped-
ance produces a standing wave ratio of value 1.5 in the line. Find the un-
known characteristic impedance.

7.15. Compute values of corresponding to several points along line a in Figure 7.11(a)
and show that the contour in Figure 7.11(b) is a circle of radius and centered at

7.16. Compute values of corresponding to several points along line b in Figure 7.11(a) and
show that the contour in Figure 7.11(b) is a portion of a circle of radius 2 and cen-
tered at (1, 2).

7.17. For the transmission-line system of Figure 7.13, and for the values of and l
specified in the text, find the value of B that minimizes the SWR to the left of jB. What
is the minimum value of SWR?

7.18. In Figure 7.13, assume and and
find (a) (b) SWR on line 1 to the right of jB, (c) and (d) SWR on line 1 to the left
of jB.

7.19. A transmission line of characteristic impedance is terminated by a load im-
pedance of Find the location and the length of a short-circuited stub
of characteristic impedance for achieving a match between the line and the
load.

7.20. Show that (7.40a) and (7.40b) satisfy the transmission-line equations (7.39a) and
(7.39b).

7.21. In the system shown in Figure 7.46, assume that is a constant voltage source of 100 V
and the switch S is closed at Find and sketch: (a) the line voltage versus z for

; (b) the line current versus z for ; (c) the line voltage versus t for
and (d) the line current versus t for z = -40 m.z = 30 m;

t = 0.4 mst = 0.2 ms
t = 0.

Vg

50 Æ
(73 + j0) Æ.

50 Æ

Y
–

1,Z
–

1,
l = 0.145l1,Z01 = 300 Æ, Z02 = 75 Æ, B = 0.002 S,

Z01, Z02,

b¿
≠–V

(1>2, 0).

1
2a¿

≠–V

150-Æ150 Æ
50-Æ

50 Æ

50 Æ
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Z0 ! 75 '
T ! 1 ms

z ! 0 z ! l

40 '
60 '

100 V

FIGURE 7.48

For Problem 7.23.

7.22. In the system shown in Figure 7.47(a), the switch S is closed at The line voltage
variations with time at and for the first are observed to be as shown in
Figure 7.47(b) and (c), respectively. Find the values of V0, Rg, RL, and T.

5 msz = lz = 0
t = 0.

(a)

(b)

Z0 ! 100 '
T ! l/vp

z ! 0

t ! 0

z ! l

Rg

S

RL

V0

90

t, ms
2

100

0 4 6

[V]z ! 0, V [V]z ! l, V

(c)

75

t, ms
2

100

0 4 6

FIGURE 7.47

For Problem 7.22.

7.23. The system shown in Figure 7.48 is in steady state. Find (a) the line voltage and current,
(b) the wave voltage and current, and (c) the wave voltage and current.(-)(+)

7.24. In the system shown in Figure 7.49, the switch S is closed at Assume to be a
direct voltage of 90 V and draw the voltage and current bounce diagrams. From these
bounce diagrams, sketch: (a) the line voltage and line current versus t (up to )
at and and (b) the line voltage and line current versus z for

and t = 3.5 ms.t = 1.2 ms
z = l>2;z = 0, z = l,

t = 7.25 ms

Vg(t)t = 0.
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z ! 0

t ! 0

z ! l

S

Vg(t)

Z0 ! 60 '
T ! 1 ms 180 '

90 '

#
"

FIGURE 7.49

For Problem 7.24.

z ! 0

t ! 0

z ! l

S

Vg(t)

Z0 ! 60 '
T ! 1 ms 20 '

30 '

t, ms
0.5

90

0 1.0 1.5 2.0

Vg(t), V

#
"

FIGURE 7.51

For Problem 7.27.

7.25. Repeat Problem 7.21 assuming to be a triangular pulse, as shown in Figure 7.50.Vg

t, ms
0.1

100

0 0.2 0.3

Vg, V

FIGURE 7.50

For Problem 7.25.

7.26. For the system of Problem 7.24, assume that the voltage source is of duration in-
stead of being of infinite duration. Find and sketch the line voltage and line current ver-
sus z for and 

7.27. In the system shown in Figure 7.51, the switch S is closed at Find and sketch:
(a) the line voltage versus z for (b) the line current versus z for 
and (c) the line voltage at versus t up to t = 4 ms.z = l

t = 21
 2 ms;t = 21

 2 ms;
t = 0.

t = 3.5 ms.t = 1.2 ms

0.3-ms
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z ! 0

Z0 ! 50 ' V ! 50 I I

t ! 0#

"

#

"

#

"

#

"

#

"

#

"

#

"

#

"

#

"

#

"

z ! l

S

I

10 V

FIGURE 7.53

For Problem 7.29.

Z0 ! 50 '
T ! 1 ms

z ! 0

t ! 0

z ! l

50 '
150 '

100 V

S

FIGURE 7.54

For Problem 7.30.

z ! 0

t ! 0

z ! l

S

Z0 ! 50 '
T ! 1 ms

50 '

#
" 10 sin 106pt V

FIGURE 7.52

For Problem 7.28.

7.28. In the system shown in Figure 7.52, the switch S is closed at Draw the voltage and
current-bounce diagrams and sketch (a) the line voltage and line current versus t for

and and (b) the line voltage and line current versus z for
and Note that the period of the source voltage is which

is equal to the two-way travel time on the line.
2 ms,3 ms.t = 2, 9>4, 5>2, 11>4,

z = lz = 0

t = 0.

7.29. In the system shown in Figure 7.53, a passive nonlinear element having the indicated
volt-ampere characteristic is connected to an initially charged line at Find the
voltage across the nonlinear element immediately after closure of the switch.

t = 0.

7.30. In the system shown in Figure 7.54, steady-state conditions are established with the
switch S closed.At the switch is opened. (a) Find the sketch the voltage across the

resistor for with the aid of a bounce diagram. (b) Show that the total energy
dissipated in the resistor after opening the switch is exactly the same as the energy
stored in the line before opening the switch.

150-Æ
t Ú 0,150-Æ
t = 0,
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z ! "l z ! lz ! 0

t ! 0

60 ' 100 V

60 '

120 '

S

Z0 ! 60 '
T ! 1 ms

Z0 ! 60 '
T ! 1 ms

FIGURE 7.55

For Problem 7.31.

7.31. In the system shown in Figure 7.55, steady-state conditions are established with the
switch S closed.At the switch is opened. (a) Sketch the voltage and current along
the system for (b) Find the total energy stored in the lines for (c) Find
and sketch the voltages across the two resistors for (d) From your sketches of part
(c), find the total energy dissipated in the resistors for t 7 0.

t 7 0.
t = 0- .t = 0- .

t = 0,

7.32. For the system of Problem 7.24, use the load-line technique to obtain and plot line
voltage and line current versus t (up to ) at and Also obtain the
steady-state values of line voltage and current from the load-line construction.

7.33. For the system of Problem 7.29, use the load-line technique to obtain and plot line
voltage versus t from up to at and 

7.34. For the example of interconnection between logic gates of Figure 7.42(a), repeat the
load-line constructions for and draw graphs of versus t for both 0-to-1 and
1-to-0 transitions.

7.35. For the example of interconnection between logic gates of Figure 7.42(a), find (a) the
minimum value of such that for the transition form 0 to 1, the voltage reaches 2V
at and (b) the minimum value of such that for the transition from 1 to 0, the
voltage reaches 1 V at t = T+ .Vi

Z0t = T+
ViZ0 

ViZ0 = 50 Æ

z = l.z = 0t = 7l>vpt = 0

z = l.z = 0t = 5.25 ms
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CHAPTER 

8
Waveguide Principles

In Chapter 6, we introduced transmission lines, and in Chapter 7, we studied their
analysis. We learned that transmission lines are made up of two (or more) parallel
conductors. In this chapter, we shall learn the principles of waveguides in which guiding
of waves is accomplished by the bouncing of waves obliquely within the guide, as com-
pared to the case of a transmission line in which the waves slide parallel to the conduc-
tors of the line.

We shall introduce waveguides by first considering a parallel-plate waveguide,
that is, a waveguide consisting of two parallel, plane conductors and then extend it to
the rectangular waveguide, which is a hollow metallic pipe of rectangular cross section,
a common form of waveguide. We shall learn that waveguides are characterized by cut-
off, which is the phenomenon of no propagation in a certain range of frequencies, and
dispersion, which is the phenomenon of propagating waves of different frequencies
possessing different phase velocities along the waveguide. In connection with the latter
characteristic, we shall introduce the concept of group velocity. We shall also discuss
the principles of cavity resonators, the microwave counterparts of resonant circuits,
and of optical waveguides.

We shall study the topic of reflection and refraction of plane waves at an inter-
face between two dielectrics, and finally introduce the dielectric slab waveguide, based
on the phenomenon of total internal reflection at the interface, when the angle of inci-
dence of the wave on the interface is greater than a certain critical value.

8.1 UNIFORM PLANE WAVE PROPAGATION IN AN ARBITRARY DIRECTION

In Chapter 4, we introduced the uniform plane wave propagating in the z-direction by
considering an infinite plane current sheet lying in the xy-plane. If the current sheet lies
in a plane making an angle to the xy-plane, the uniform plane wave would then propa-
gate in a direction different from the z-direction. Thus, let us consider a uniform plane
wave propagating in the -direction making an angle with the negative x-axis, as
shown in Figure 8.1. Let the electric field of the wave be entirely in the y-direction. The
magnetic field would then be directed as shown in the figure so that points in
the -direction.z¿

E : H

uz¿
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u

u

B

A

C

E

H

P, m

O z

z!

x

y z

x

FIGURE 8.1

Uniform plane wave propagating in the -direction lying in the xz-plane and making 
an angle with the negative x-axis.u

z¿

We can write the expression for the electric field of the wave as

(8.1)

where is the phase constant, that is, the rate of change of phase with dis-
tance along the -direction for a fixed value of time. From the construction of
Figure 8.2(a), we, however, have

(8.2)

so that

(8.3) = E0 cos (vt - bxx - bzz) ay 

 = E0 cos [vt - (-b cos u)x - (b sin u)z] ay 

 E = E0 cos [vt - b(-x cos u + z sin u)] ay 

z¿ = -x cos u + z sin u

z¿
b = v1mP 

E = E0 cos (vt - bz¿) ay 

z

x
(a) (b)

z

z!
z sin u

(x, z)

" x cos u

u

u

u
u u

u

H0 cos u

H0 sin u
" x

H0

ax

az

az!

FIGURE 8.2

Constructions pertinent to the formulation of the expressions for the fields of the uniform
plane wave of Figure 8.1.
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292 Chapter 8 Waveguide Principles

where and are the phase constants in the positive x- and
positive z-directions, respectively.

We note that and are less than , the phase constant along the direction
of propagation of the wave. This can also be seen from Figure 8.1, in which two con-
stant phase surfaces are shown by dashed lines passing through the points O and A
on the -axis. Since the distance along the x-direction between the two constant phase
surfaces, that is, the distance OB is equal to , the rate of change of phase with
distance along the x-direction is equal to

The minus sign for simply signifies the fact that insofar as the x-axis is concerned,
the wave is progressing in the negative x-direction. Similarly, since the distance along the
z-direction between the two constant phase surfaces, that is, the distance OC is equal to

, the rate of change of phase with distance along the z-direction is equal to

Since the wave is progressing along the positive z-direction, is positive. We further
note that

(8.4)

and that

(8.5)

where is the unit vector directed along -direction, as shown in Figure 8.2(b). Thus,
the vector

(8.6)

defines completely the direction of propagation and the phase constant along the
direction of propagation. Hence, the vector is known as the propagation vector.

The expression for the magnetic field of the wave can be written as

(8.7)

where

(8.8)

since the ratio of the electric field intensity to the magnetic field intensity of a uniform
plane wave is equal to the intrinsic impedance of the medium. From the construction in
Figure 8.2(b), we observe that

(8.9)H0 = H0(-sin u ax - cos u az)

ƒH0 ƒ =
E01m>P =

E0

h

H = H0 cos (vt - bz¿)

!

! = (-b cos u)ax + (b sin u)az = bxax + bzaz

z¿az¿

-cos u ax + sin u az = az¿

b2
x + b2

z = (-b cos u)2 + (b sin u)2 = b2

bz

b
OA
OC

 =
b(OA)

OA>sin u
 = b sin u

OA>sin u

bx

b
OA
OB

 =
b(OA)

OA>cos u
 = b cos u

OA>cos u
z¿

bƒbz ƒƒbx ƒ

bz = b sin ubx = -b cos u
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8.1 Uniform Plane Wave Propagation in an Arbitrary Direction 293

Thus, using (8.9) and substituting for from (8.2), we obtain

(8.10)

Generalizing the foregoing treatment to the case of a uniform plane wave propa-
gating in a completely arbitrary direction in three dimensions, as shown in Figure 8.3,
and characterized by phase constants , , and in the x-, y-, and z-directions,
respectively, we can write the expression for the electric field as

(8.11)

where

(8.12)

is the propagation vector,

(8.13)r = xax + yay + zaz

! = bxax + byay + bzaz

 = E0 cos (vt - ! # r + f0)

 = E0 cos [vt - (bxax + byay + bzaz) # (xax + yay + zaz) + f0]
 E = E0 cos (vt - bxx - byy - bzz + f0)

bzbybx

 = -
E0

h
 (sin u ax + cos u az) cos [vt - bxx - bzz]

 H = H0(-sin u ax - cos u az) cos [vt - b(-x cos u + z sin u)]

z¿

x

z

Constant Phase Surface
Phase # f

lx

lz

ly

l

y

Constant Phase Surface
Phase # f "  2p

H

E

!

FIGURE 8.3

The various quantities associated with a uniform plane wave propagating in an arbitrary
direction.
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294 Chapter 8 Waveguide Principles

is the position vector, and is the phase at the origin at . The position vector is
the vector drawn from the origin to the point (x, y, z) and hence has components x, y,
and z along the x-, y-, and z-axes, respectively. The expression for the magnetic field of
the wave is then given by

(8.14)

where

(8.15)

Since E, H, and the direction of propagation are mutually perpendicular to each other,
it follows that

(8.16a)

(8.16b)

(8.16c)

In particular, should be directed along the propagation vector as illustrated
in Figure 8.3, so that is directed along We can therefore combine the facts
(8.16) and (8.15) to obtain

(8.17)

where is the unit vector along . Thus,

(8.18)

Returning to Figure 8.3, we can define several quantities pertinent to the uniform
plane wave propagation in an arbitrary direction. The apparent wavelengths , ,
and along the coordinate axes x, y, and z, respectively, are the distances measured
along those respective axes between two consecutive constant phase surfaces between
which the phase difference is 2 , as shown in the figure, at a fixed time. From the inter-
pretations of , , and as being the phase constants along the x-, y-, and z-axes,
respectively, we have

(8.19a)

(8.19b)

(8.19c)lz = 2p
bz

ly = 2p
by

lx = 2p
bx

bzbybx

p

lz

lylx

H = 1
vm

! : E

!ab

 =
bab : E0

vm
=

! : E0

vm

 H0 =
ab : E0

h
=

ab : E01m>P =
v1mPab : E0

vm

H0.! : E0

!E : H

 E0 # H0 = 0

 H0 # ! = 0

 E0 # ! = 0

ƒH0 ƒ =
ƒE0 ƒ
h

H = H0 cos (vt - ! # r + f0)

t = 0f0
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8.1 Uniform Plane Wave Propagation in an Arbitrary Direction 295

We note that the wavelength along the direction of propagation is related to , ,
and in the manner

(8.20)

The apparent phase velocities , , and along the x-, y-, and z-axes, respectively,
are the velocities with which the phase of the wave progresses with time along the
respective axes. Thus,

(8.21a)

(8.21b)

(8.21c)

The phase velocity along the direction of propagation is related to , , and in
the manner

(8.22)

The apparent wavelengths and phase velocities along the coordinate axes are
greater than the actual wavelength and phase velocity, respectively, along the direction
of propagation of the wave. This fact can be understood physically by considering, for
example, water waves in an ocean striking the shore at an angle. The distance along the
shoreline between two successive crests is greater than the distance between the same
two crests measured along a line normal to the orientation of the crests. Also, an
observer has to run faster along the shoreline in order to keep pace with a particular
crest than he has to do in a direction normal to the orientation of the crests. We shall
now consider an example.

Example 8.1

Let us consider a 30-MHz uniform plane wave propagating in free space and given by the elec-
tric field vector

E = 5(ax + 13ay) cos [6p * 107t - 0.05p(3x - 13y + 2z)] V/m

 = 1
vpx

2 + 1
vpy

2 + 1
vpz

2

 
1
vp

2 = 1
(v>b)2 =

b2

v2 =
bx

2 + by
2 + b2

z

v2

vpzvpyvpxvp

 vpz = v
bz

 vpy = v
by

 vpx = v
bx

vpzvpyvpx

 = 1
l2

x
+ 1
l2

y
+ 1
l2

z

 
1
l2 = 1

(2p>b)2 =
b2

4p2 =
b2

x + b2
y + b2

z

4p2

lz

lylxl
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296 Chapter 8 Waveguide Principles

Then comparing with the general expression for E given by (8.11), we have

Hence, (8.16a) is satisfied; is perpendicular to .

This does correspond to a frequency of Hz or 30 MHz in free space. The direction
of propagation is along the unit vector

From (8.17),

Thus,

To verify the expression for H just derived, we note that

 = 0.05
48

(-313 - 13 + 413) = 0

 H0 # ! = c 1
48p

(- 13ax + ay + 213az) d # [0.05p(3ax - 13ay + 2az)]

H = 1
48p

(- 13ax + ay + 213az) cos [6p * 107t - 0.05p(3x - 13y + 2z)] A/m

 = 1
48p

(- 13ax + ay + 213az)

 = 1
96p †ax ay az

3 - 13 2
1 13 0

†
 = 0.05p * 5

6p * 107 * 4p * 10-7 (3ax - 13ay + 2az) : (ax + 13ay)

 H0 = 1
vm0

! : E0

ab =
!

ƒ ! ƒ
=

3ax - 13ay + 2az19 + 3 + 4
= 3

4
ax - 13

4
ay + 1

2
az

(3 * 108)>10

l = 2p
b

= 2p
0.2p

= 10 m

b = ƒ ! ƒ = 0.05p ƒ3ax - 13ay + 2az ƒ = 0.05p19 + 3 + 4 = 0.2p

!E0

 = 0.25p(3 - 3) = 0

 ! # E0 = 0.05p(3ax - 13ay + 2az) # 5(ax + 13ay)

 ! = 0.05p(3ax - 13ay + 2az)

 = 0.05p(3ax - 13ay + 2az) # (xax + yay + zaz)

 ! # r = 0.05p(3x - 13y + 2z)

 E0 = 5(ax + 13ay)
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8.1 Uniform Plane Wave Propagation in an Arbitrary Direction 297

Hence, (8.16b), (8.16c), and (8.15) are satisfied.
Proceeding further, we find that

We then obtain

Finally, to verify (8.20) and (8.22), we note that

and

 = 1

9 * 1016
= 113 * 10822 = 1

v2
p

 = 1

16 * 1016
+ 1

48 * 1016
+ 1

36 * 1016

 
1

v2
px

+ 1
v2

py
+ 1

v2
pz

= 114 * 10822 + 11413 * 10822 + 116 * 10822
 = 9

1600
+ 3

1600
+ 4

1600
= 1

100
= 1

102 = 1
l2

 
1
l2

x
+ 1
l2

y
+ 1
l2

z
= 1140>322 + 1140>1322 + 1

202

vpz = v
bz

= 6p * 107

0.1p
= 6 * 108 m/s

vpy = v

ƒby ƒ
= 6p * 107

0.0513p
= 413 * 108 m/s = 6.928 * 108 m/s

vpx = v
bx

= 6p * 107

0.15p
= 4 * 108 m/s

lz = 2p
bz

= 2p
0.1p

= 20 m

ly = 2p

ƒby ƒ
= 2p

0.0513p
= 4013

 m = 23.094 m

lx = 2p
bx

= 2p
0.15p

= 40
3

 m = 13.333 m

bz = 0.05p * 2 = 0.1p

by = -0.05p * 13 = -0.0513p

bx = 0.05p * 3 = 0.15p

 = 10
1>12p

= 120p = h0

 
ƒ E0 ƒ
ƒ H0 ƒ

=
5 ƒax + 13ay ƒ

(1>48p) ƒ - 13ax + ay + 213az ƒ
= 511 + 3

(1>48p)13 + 1 + 12

 = 5
48p

(- 13 + 13) = 0

 E0 # H0 = 5(ax + 13ay) # 1
48p

(- 13ax + ay + 213az)
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298 Chapter 8 Waveguide Principles

8.2 TRANSVERSE ELECTRIC WAVES IN A PARALLEL-PLATE WAVEGUIDE

Let us now consider the superposition of two uniform plane waves propagating sym-
metrically with respect to the z-axis, as shown in Figure 8.4, and having the electric
fields

(8.23a)

(8.23b) = -E0 cos 1vt - bx cos u - bz sin u2 ay

 E2 = -E0 cos 1vt - !2 # r2 ay

 = E0 cos 1vt + bx cos u - bz sin u2 ay

 E1 = E0 cos 1vt - !1 # r2 ay

z

x

x

zy

uuH1

H2

E1

E2

B2

B1

FIGURE 8.4

Superposition of two uniform plane waves propagating symmetrically with respect to
the z-axis.

where with and being the permittivity and the permeability, respectively,
of the medium. The corresponding magnetic fields are given by

(8.24a)

(8.24b)

where The electric and magnetic fields of the superposition of the two
waves are given by

(8.25a) = -2E0 sin 1bx cos u2 sin 1vt - bz sin u2ay

 -  cos 1vt - bz sin u - bx cos u24ay

 = E03cos 1vt - bz sin u + bx cos u2 E = E1 + E2

h = 1m>P.

H2 =
E0

h
1sin u ax - cos u az2 cos1vt - bx cos u - bz sin u2

H1 =
E0

h
1-sin u ax - cos u az2 cos1vt + bx cos u - bz sin u2

mPb = v1mP,
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8.2 Transverse Electric Waves in a Parallel-Plate Waveguide 299

(8.25b)

In view of the factors sin ( ) and cos ( ) for the x-dependence and
the factors sin ( ) and cos ( ) for the z-dependence, the com-
posite fields have standing wave character in the x-direction and traveling wave char-
acter in the z-direction. Thus, we have standing waves in the x-direction moving bodily
in the z-direction, as illustrated in Figure 8.5, by considering the electric field for two
different times. In fact, we find that the Poynting vector is given by

(8.26)

The time-average Poynting vector is given by

(8.27)

Thus, the time-average power flow is entirely in the z-direction, thereby verifying our
interpretation of the field expressions. Since the composite electric field is directed
entirely transverse to the z-direction, that is, the direction of time-average power flow,
whereas the composite magnetic field is not, the composite wave is known as the
transverse electric, or TE wave.

 =
2E2

0

h
 sin u sin2 (bx cos u) az

 +  
E2

0

h
 cos u sin (2bx cos u) 8sin 2(vt - bz sin u)9ax

 8P9 =
4E2

0

h
 sin u sin2 (bx cos u) 8sin2 (vt - bz sin u)9az

 +  
E2

0

h
 cos u sin (2bx cos u) sin 2(vt - bz sin u) ax

 =
4E2

0

h
 sin u sin2 (bx cos u) sin2 (vt - bz sin u) az

 = -EyHxaz + EyHzax 

 P = E : H = Eyay : (Hxax + Hzaz)

vt - bz sin uvt - bz sin u
bx cos ubx cos u

 -  
2E0

h
 cos u cos 1bx cos u2 cos1vt - bz sin u2 az

 =
2E0

h
 sin u sin 1bx cos u2 sin1vt - bz sin u2 ax

 +  cos 1vt - bz sin u - bx cos u24az

 -  
E0

h
 cos u 3cos1vt - bz sin u + bx cos u2 -  cos 1vt - bz sin u - bx cos u24ax

 = -
E0

h
 sin u 3cos1vt - bz sin u + bx cos u2H = H1 + H2
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x # p
b cos u

x # 2p
b cos u

x # 3p
b cos u

x # 0

t # 0

x # p
b cos u

x # 2p
b cos u

p
4v

x # 3p
b cos u

x # 0

t # 

z

x

y
z 

#
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b
 s

in
 u
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 0
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#

p
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 s
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 u
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FIGURE 8.5

Standing waves in the x-direction moving bodily in the z-direction.
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8.2 Transverse Electric Waves in a Parallel-Plate Waveguide 301

From the expressions for the fields for the TE wave given by (8.25a) and (8.25b),
we note that the electric field is zero for sin ( ) equal to zero, or

(8.28)

where

Thus, if we place perfectly conducting sheets in these planes, the waves will propagate
undisturbed, that is, as though the sheets were not present, since the boundary condi-
tion that the tangential component of the electric field be zero on the surface of a per-
fect conductor is satisfied in these planes. The boundary condition that the normal
component of the magnetic field be zero on the surface of a perfect conductor is also
satisfied since is zero in these planes.

If we consider any two adjacent sheets, the situation is actually one of uniform
plane waves bouncing obliquely between the sheets, as illustrated in Figure 8.6 for two
sheets in the planes and , thereby guiding the wave and hence
the energy in the z-direction, parallel to the plates. Thus, we have a parallel-plate wave-
guide, as compared to the parallel-plate transmission line in which the uniform plane
wave slides parallel to the plates. We note from the constant phase surfaces of the
obliquely bouncing wave shown in Figure 8.6 that is simply one-half of
the apparent wavelength of that wave in the x-direction, that is, normal to the plates.
Thus, the fields have one-half apparent wavelength in the x-direction. If we place the
perfectly conducting sheets in the planes and , the fields will
then have m number of one-half apparent wavelengths in the x-direction between the
plates. The fields have no variations in the y-direction. Thus, the fields are said to
correspond to modes, where the subscript m refers to the x-direction, denoting
m number of one-half apparent wavelengths in that direction and the subscript 0 refers
to the y-direction, denoting zero number of one-half apparent wavelengths in that
direction.

TEm, 0

x = ml>(2 cos u)x = 0

l>(2 cos u)

x = l>(2 cos u)x = 0

Hx

l = 2p
b

= 2p
v1mP

= 1
f1mP

x = ; mp
b cos u

= ; ml
2 cos u

,    m = 0, 1, 2, 3, Á

bx cos u = ;mp,    m = 0, 1, 2, 3, Á
bx cos u

l

2 cos u
x =

x # 0

u u u u

x

z
y

u uu u

l

2

FIGURE 8.6

Uniform plane waves bouncing obliquely between two parallel plane perfectly
conducting sheets.
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302 Chapter 8 Waveguide Principles

(a)

x # 0

x # a

(c)

(e)

(b)

(d)

(f)

FIGURE 8.7

For illustrating the
phenomenon of cutoff
in a parallel-plate
waveguide.

Thus, waves of different wavelengths (or frequencies) bounce obliquely between the
plates at different values of the angle . For very small wavelengths (very high fre-
quencies), is small, , and the waves simply slide between the
plates as in the case of the transmission line, as shown in Figure 8.7(b). As increases
(f decreases), increases, decreases, and the waves bounce more and more
obliquely, as shown in Figure 8.7(c)–(e), until becomes equal to , for which

, and the waves simply bounce back and forth normally to the plates,
as shown in Figure 8.7(f), without any feeling of being guided parallel to the plates. For

and has no real solution, indicating that propaga-
tion does not occur for these wavelengths in the waveguide mode. This condition is
known as the cutoff condition.

The cutoff wavelength, denoted by the symbol is given by

(8.30)

This is simply the wavelength for which the spacing a is equal to m number of one-half
wavelengths. Propagation of a particular mode is possible only if is less than the value
of for that mode. The cutoff frequency is given by

(8.31)fc = m
2a1mP

lc

l

lc = 2a
m

lc,

ul 7 2a>m, ml>2a 7 1, cos u 7 1,

cos u = 1, u = 0°
2a>ml

uml>2a
l

cos u L 0, u L 90°ml>2a
u

Let us now consider a parallel-plate waveguide with perfectly conducting plates sit-
uated in the planes and , that is, having a fixed spacing a between them, as
shown in Figure 8.7(a). Then, for waves guided by the plates, we have from (8.28),

or

(8.29)cos u = ml
2a

= m
2a

 
1

f1mP

a = ml
2 cos u

TEm,0

x = ax = 0
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8.2 Transverse Electric Waves in a Parallel-Plate Waveguide 303

Propagation of a particular mode is possible only if f is greater than the value of for
that mode. Consequently, waves of a given frequency f can propagate in all modes for
which the cutoff wavelengths are greater than the wavelength or the cutoff frequencies
are less than the frequency.

Substituting for in (8.29), we have

(8.32a)

(8.32b)

(8.32c)

(8.32d)

We see from (8.32d) that the phase constant along the z-direction, that is, , is
real for and imaginary for , thereby explaining once again the cutoff
phenomenon. We now define the guide wavelength, , to be the wavelength in the 
z-direction, that is, along the guide. This is given by

(8.33)

This is simply the apparent wavelength, in the z-direction, of the obliquely bouncing uni-
form plane waves. The phase velocity along the guide axis, which is simply the apparent
phase velocity, in the z-direction, of the obliquely bouncing uniform plane waves, is

(8.34)

We note that the phase velocity along the guide axis is a function of frequency and
hence the propagation along the guide axis is characterized by dispersion. The topic of
dispersion is discussed in the next section.

Finally, substituting (8.32a)–(8.32d) in the field expressions (8.25a) and (8.25b),
we obtain

(8.35a)

(8.35b)

These expressions for the mode fields in the parallel-plate waveguide do not
contain the angle . They clearly indicate the standing wave character of the fields in
the x-direction, having m one-half sinusoidal variations between the plates. We shall
now consider an example.

u
TEm,0

 -
2E0

h
 
l

lc
 cos ampx

a
b  cos avt - 2p

lg
zb  az

 H =
2E0

h
 
l

lg
 sin a mpx

a
b  sin avt - 2p

lg
zb  ax

 E = -2E0 sin a mpx
a
b  sin avt - 2p

lg
zb  ay

vpz = v

b sin u
=

vp

sin u
=

vp21 - (l>lc)2
=

vp21 - (fc>f)2

lg = 2p
b sin u

= l21 - (l>lc)2
= l21 - (fc>f)2

lg

l 7 lcl 6 lc

b sin u

 b sin u = 2p
l B1 - a l

lc
b2

 b cos u = 2p
l

 
l

lc
= 2p
lc

= mp
a

 sin u = 21 - cos2 u = B1 - a l
lc
b2

= B1 - a fc

f
b2

 cos u = l
lc

=
fc

f

2a>mlc

fc
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304 Chapter 8 Waveguide Principles

Example 8.2

Let us assume the spacing a between the plates of a parallel-plate waveguide to be 5 cm and
investigate the propagating modes for 

From (8.30), the cutoff wavelengths for modes are given by

This result is independent of the dielectric between the plates. If the medium between the plates
is free space, then the cutoff frequencies for the modes are

For the propagating modes are 
and 

For each propagating mode, we can find and by using (8.32a), (8.33), and (8.34),
respectively. Values of these quantities are listed in the following:

vpzu, lg,
TE3,0(fc = 9 * 109 Hz).TE2, 0(fc = 6 * 109 Hz),

TE1,0(fc = 3 * 109 Hz),f = 10,000 MHz = 1010 Hz,

fc = 3 * 108

lc
= 3 * 108

0.1>m = 3m * 109 Hz

TEm,0

lc = 2a
m

= 10
m

 cm = 0.1
m

 m

TEm,0

f = 10,000 MHz.TEm,0

8.3 DISPERSION AND GROUP VELOCITY

In Section 8.2, we learned that for the propagating range of frequencies, the phase
velocity and the wavelength along the axis of the parallel-plate waveguide are given by

(8.36)

and

(8.37)

where and is the cutoff frequency. We note that
for a particular mode, the phase velocity of propagation along the guide axis varies
with the frequency. As a consequence of this characteristic of the guided wave propa-
gation, the field patterns of the different frequency components of a signal comprising
a band of frequencies do not maintain the same phase relationships as they propagate
down the guide. This phenomenon is known as dispersion, so termed after the phe-
nomenon of dispersion of colors by a prism.

To discuss dispersion, let us consider a simple example of two infinitely long
trains A and B traveling in parallel, one below the other, with each train made up of
boxcars of identical size and having wavy tops, as shown in Figure 8.8. Let the spacings
between the peaks (centers) of successive boxcars be 50 m and 90 m, and let the speeds

fcvp = 1>1mP, l = vp>f = 1>f1mP,

lg = l21 - (fc>f)2

vpz =
vp21 - (fc>f)2

Mode

10 3000 72.54 3.145
5 6000 53.13 3.75

3.33 9000 25.84 6.882 6.882 * 108TE3,0 
3.75 * 108TE2,0 
3.145 * 108TE1,0 

vpz, m/slg, cmu, degfc, MHzlc, cm
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FIGURE 8.8

For illustrating the concept of group velocity.

of the trains be 20 and 30 , for trains A and B, respectively. Let the peaks of the
cars numbered 0 for the two trains be aligned at time , as shown in Figure 8.8(a).
Now, as time progresses, the two peaks get out of alignment as shown, for example, for

s in Figure 8.8(b), since train B is traveling faster than train A. But at the same
time, the gap between the peaks of cars numbered decreases. This continues until at-1
t = 1

t = 0
m>sm>s
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306 Chapter 8 Waveguide Principles

s, the peak of car “ ” of train A having moved by a distance of 80 m aligns with
the peak of car “ ” of train B, which will have moved by a distance of 120 m, as shown
in Figure 8.8(c). For an observer following the movement of the two trains as a group,
the group appears to have moved by a distance of 30 m although the individual trains
will have moved by 80 m and 120 m, respectively. Thus, we can talk of a group velocity,
that is, the velocity with which the group as a whole is moving. In this case, the group
velocity is 30 s or 7.5 .

The situation in the case of the guided wave propagation of two different fre-
quencies in the parallel-plate waveguide is exactly similar to the two-train example just
discussed. The distance between the peaks of two successive cars is analogous to the
guide wavelength, and the speed of the train is analogous to the phase velocity along
the guide axis. Thus, let us consider the field patterns corresponding to two waves of
frequencies and propagating in the same mode, having guide wavelengths 
and and phase velocities along the guide axis and , respectively, as shown,
for example, for the electric field of the mode in Figure 8.9. Let the positive
peaks numbered 0 of the two patterns be aligned as shown in Figure 8.9(a). As
the individual waves travel with their respective phase velocities along the guide, these
two peaks get out of alignment but some time later, say the positive peaks num-
bered will align at some distance, say from the location of the alignment of the
“0” peaks, as shown in Figure 8.9(b). Since the “ ”th peak of wave A will have traveled
a distance with a phase velocity and the “ ”th peak of wave B will have
traveled a distance with a phase velocity in this time we have

(8.38a)

(8.38b)

Solving (8.38a) and (8.38b) for and we obtain

(8.39a)

and

(8.39b)

The group velocity, , is then given by

(8.40) =
fB - fA

1
lgB

- 1
lgA

=
vB - vA

bzB - bzA

 vg = ¢z
¢t

=
lgAvpzB - lgBvpzA

lgA - lgB
=
lgAlgBfB - lgBlgAfA

lgAlgBa 1
lgB

- 1
lgA
b

vg

¢z =
lgAvpzB - lgBvpzA

vpzA - vpzB

¢t =
lgA - lgB

vpzA - vpzB

¢z,¢t

 lgB + ¢z = vpzB ¢t

 lgA + ¢z = vpzA ¢t

¢t,vpzBlgB + ¢z
-1vpzAlgA + ¢z

-1
¢z,-1

¢t,

t = 0,
TE1, 0

vpzBvpzAlgB,
lgAfBfA

m>sm>4
-1

-1t = 4
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FIGURE 8.9

For illustrating the concept of group velocity for guided wave propagation.

where and are the phase constants along the guide axis, corresponding to 
and , respectively. Thus, the group velocity of a signal comprised of two frequencies
is the ratio of the difference between the two radian frequencies to the difference be-
tween the corresponding phase constants along the guide axis.

If we now have a signal comprised of a number of frequencies, then a value of
group velocity can be obtained for each pair of these frequencies in accordance with
(8.40). In general, these values of group velocity will all be different. In fact, this is the

fB

fAbzBbzA

M08_RAO3333_1_SE_CHO8.QXD  4/9/08  2:39 PM  Page 307



308 Chapter 8 Waveguide Principles

case for wave propagation in the parallel-plate guide, as can be seen from Figure 8.10,
which is a plot of versus corresponding to the parallel-plate guide for which

(8.41)

Such a plot is known as the diagram or the dispersion diagram.v–bz

bz = 2p
lg

= 2p
l

 A1 - a l
lc
b2

= v1mP A1 - a fc

f
b2

bzv

bz1 bz2 bz3
bz

v3

Slope # ypz

Slope # yg

v1

v2

v

vc

Slope #
mP
1

FIGURE 8.10

Dispersion diagram for the parallel-plate
waveguide.

The phase velocity, , for a particular frequency is given by the slope of the
line drawn from the origin to the point, on the dispersion curve, corresponding to that
frequency, as shown in the figure for the three frequencies , , and . The group
velocity for a particular pair of frequencies is given by the slope of the line joining
the two points, on the curve, corresponding to the two frequencies, as shown in the fig-
ure for the two pairs , and , . Since the curve is nonlinear, it can be seen that
the two group velocities are not equal. We cannot then attribute a particular value of
group velocity for the group of the three frequencies , , and .

If, however, the three frequencies are very close, as in the case of a narrow-band
signal, it is meaningful to assign a group velocity to the entire group having a value
equal to the slope of the tangent to the dispersion curve at the center frequency. Thus,
the group velocity corresponding to a narrow band of frequencies centered around a
predominant frequency is given by

(8.42)

For the parallel-plate waveguide under consideration, we have from (8.41),

 = 1mP a 1 -
fc

2

f2 b - 1>2
 = 1mP a 1 -

fc
2

f2 + v

2p
 
fc

2

f3 b a 1 -
fc

2

f2 b - 1>2
 
dbz

dv
= 1mP A1 - a fc

f
b2

+ v1mP #  
1
2
a 1 -

fc
2

f2 b - 1>2 fc
2

pf3

vg = dv
dbz

v

v3v2v1

v3v2v2v1

v3v2v1

v>bz
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8.3 Dispersion and Group Velocity 309

and

(8.43)

As a numerical example, for the case of Example 8.2, the group velocities for
for the three propagating modes , , and are

, , and , respectively. From (8.36) and
(8.43), we note that

(8.44)

An example of a narrow-band signal is an amplitude modulated signal, having a
carrier frequency modulated by a low frequency as given by

(8.45)

where m is the percentage modulation. Such a signal is actually equivalent to a super-
position of unmodulated signals of three frequencies , , and , as can
be seen by expanding the right side of (8.45). Thus

(8.46)

The frequencies and are the side frequencies. When the amplitude
modulated signal propagates in a dispersive channel such as the parallel-plate wave-
guide under consideration, the different frequency components undergo phase
changes in accordance with their respective phase constants. Thus, if , , and

are the phase constants corresponding to , , and , respec-
tively, assuming linearity of the dispersion curve within the narrow band, the amplitude
modulated wave is given by

(8.47)

This indicates that although the carrier frequency phase changes in accordance with the
phase constant , the modulation envelope and hence the information travels withbz

 = Ex0[1 + m cos (¢v # t - ¢bz
# z)] cos (vt - bzz)

 = Ex0 cos (vt - bzz) + mEx0 cos (vt - bzz) cos (¢v # t - ¢bz
# z)

 +  cos [(vt - bzz) + (¢v # t - ¢bz
# z)]} 

 +  
mEx0

2
 {cos [(vt - bzz) - (¢v # t - ¢bz

# z)]

 = Ex0 cos (vt - bzz)

 +  cos [(v + ¢v)t - (bz + ¢bz)z]}

 +  
mEx0

2
 {cos [(v - ¢v)t - (bz - ¢bz)z]

 Ex(z, t) = Ex0 cos (vt - bzz)

v + ¢vvv - ¢vbz + ¢bz

bzbz - ¢bz

v + ¢vv - ¢v

 = Ex0 cos vt +
mEx0

2
 [cos (v - ¢v)t + cos (v + ¢v)t]

 Ex(t) = Ex0 cos vt + mEx0 cos vt cos ¢v # t

v + ¢vvv - ¢v

Ex(t) = Ex0(1 + m cos ¢v # t) cos vt

¢v V v,v

vpzvg = v2
p

1.308 * 108 m/s2.40 * 108 m/s2.862 * 108 m/s
TE3,0TE2,0TE1,0f = 10,000 MHz

vg = dv
dbz

= 11mP
 A1 -

fc
2

f2 = vpA1 - a fc

f
b2
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$v
$bz

v
bz

FIGURE 8.11

For illustrating that the modulation envelope travels with the group velocity.

the group velocity , as shown in Figure 8.11. In view of this and since is less
than , the fact that is greater than is not a violation of the theory of relativity.
Since it is always necessary to use some modulation technique to convey information
from one point to another, the information always takes more time to reach from one
point to another in a dispersive channel than in the corresponding nondispersive medium.

vpvpzvp

vg¢v>¢bz

x # a y # 0

y = b

x # 0

Hx

Hz

Ey

x
z

y

FIGURE 8.12

A rectangular waveguide.

8.4 RECTANGULAR WAVEGUIDE AND CAVITY RESONATOR

Thus far, we have restricted our discussion to wave propagation in a parallel-
plate waveguide. From Section 8.2, we recall that the parallel-plate waveguide is made
up of two perfectly conducting sheets in the planes and and that the elec-
tric field of the mode has only a y-component with m number of one-half
sinusoidal variations in the x-direction and no variations in the y-direction. If we now
introduce two perfectly conducting sheets in two constant y-planes, say, and

, the field distribution will remain unaltered, since the electric field is entirely
normal to the plates, and hence the boundary condition of zero tangential electric field
is satisfied for both sheets. We then have a metallic pipe with rectangular cross section
in the xy-plane, as shown in Figure 8.12. Such a structure is known as the rectangular
waveguide and is, in fact, a common form of waveguide.

y = b
y = 0

TEm,0

x = ax = 0

TEm,0
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8.4 Rectangular Waveguide and Cavity Resonator 311

Since the mode field expressions derived for the parallel-plate waveguide
satisfy the boundary conditions for the rectangular waveguide, those expressions as
well as the entire discussion of the parallel-plate waveguide case hold also for 
mode propagation in the rectangular waveguide case. We learned that the 
modes can be interpreted as due to uniform plane waves having electric field in the
y-direction and bouncing obliquely between the conducting walls and ,
and with the associated cutoff condition characterized by bouncing of the waves back
and forth normally to these walls, as shown in Figure 8.13(a). For the cutoff condition,
the dimension a is equal to m number of one-half wavelengths such that

(8.48)[lc]TEm,0
= 2a

m

x = ax = 0

TEm,0

TEm,0

TEm,0

y
z

x

(a)

z
y

x

y
z

x

(b)

z
y

x

y

x

(c)

z
y

x
z

FIGURE 8.13

Propagation and cutoff of (a) , (b) , and (c) modes in a
rectangular waveguide.

TEm,nTE0,nTEm,0

In a similar manner, we can have uniform plane waves having electric field in the
x-direction and bouncing obliquely between the walls and , and with the
associated cutoff condition characterized by bouncing of the waves back and forth
normally to these walls, as shown in Figure 8.13(b), thereby resulting in modesTE0,n

y = by = 0
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312 Chapter 8 Waveguide Principles

having no variations in the x-direction and n number of one-half sinusoidal variations
in the y-direction. For the cutoff condition, the dimension bis equal to n number of
one-half wavelengths such that

(8.49)

We can even have modes having m number of one-half sinusoidal
variations in the x-direction and n number of one-half sinusoidal variations in the
y-direction due to uniform plane waves having both x- and y-components of the elec-
tric field and bouncing obliquely between all four walls of the guide and with the asso-
ciated cutoff condition characterized by bouncing of the waves back and forth
obliquely between the four walls as shown, for example, in Figure 8.13(c). For the cut-
off condition, the dimension a must be equal to m number of one-half apparent wave-
lengths in the x-direction and the dimension bmust be equal to n number of one-half
apparent wavelengths in the y-direction such that

(8.50)

or

(8.51)

The entire treatment of guided waves in Section 8.2 can be repeated starting with
the superposition of two uniform plane waves having their magnetic fields entirely in
the y-direction, thereby leading to transverse magnetic waves, or TM waves, so termed
because the magnetic field for these waves has no z-component, whereas the electric
field has. Insofar as the cutoff phenomenon is concerned, these modes are obviously
governed by the same condition as the corresponding TE modes. There cannot, however,
be any or modes in a rectangular waveguide, since the z-component of
the electric field, being tangential to all four walls of the guide, requires sinusoidal varia-
tions in both x- and y-directions in order that the boundary condition of zero tangential
component of electric field is satisfied on all four walls. Thus, for modes in a rec-
tangular waveguide, both m and n must be nonzero and the cutoff wavelengths are the
same as for the modes, that is,

(8.52)

The foregoing discussion of the modes of propagation in a rectangular waveguide
points out that a signal of given frequency can propagate in several modes, namely, all
modes for which the cutoff frequencies are less than the signal frequency or the cutoff
wavelengths are greater than the signal wavelength. Waveguides are, however,
designed so that only one mode, the mode with the lowest cutoff frequency (or the
largest cutoff wavelength), propagates. This is known as the dominant mode. From
(8.48), (8.49), (8.51), and (8.52), we can see that the dominant mode is the mode
or the mode, depending on whether the dimension a or the dimension bis the
larger of the two. By convention, the larger dimension is designated to be a, and hence
the mode is the dominant mode. We shall now consider an example.TE1,0

TE0,1

TE1,0

[lc]TMm,n
= 12(m>2a)2 + (n>2b)2

TEm,n

TMm,n

TM0,nTMm,0

[lc]TEm,n
= 12(m>2a)2 + (n>2b)2

1
[lc]2

TEm,n

= 1
(2a>m)2 + 1

(2b>n)2

TEm,n

[lc]TE0,n
= 2b

n
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8.4 Rectangular Waveguide and Cavity Resonator 313

Example 8.3

It is desired to determine the lowest four cutoff frequencies referred to the cutoff frequency
of the dominant mode for three cases of rectangular waveguide dimensions: (i) ,
(ii) , and (iii) . Given , it is then desired to find the propagating
mode(s) for for each of the three cases.

From (8.51) and (8.52), the expression for the cutoff wavelength for a mode where
and but not both m and n equal to zero and for a mode

where and is given by

The corresponding expression for the cutoff frequency is

The cutoff frequency of the dominant mode is . Hence,

By assigning different pairs of values for m and n, the lowest four values of can be
computed for each of the three specified values of . These computed values and the corre-
sponding modes are shown in Figure 8.14.

b>a fc>[fc]TE1,0

fc

[fc]TE1,0

= Am2 + a n 
a
b
b2

1>2a1mPTE1,0

 = 1
2a1mP

 Am2 + a n 
a
b
b2

 fc =
vp

lc
= 11mP

 A a m
2a
b2

+ a n
2b
b2

lc = 12(m>2a)2 + (n>2b)2

n = 1, 2, 3, Ám = 1, 2, 3, Á
TMm,nn = 0, 1, 2, 3, Ám = 0, 1, 2, 3, Á

TEm,n

f = 9000 MHz
a = 3 cmb>a = 1>3b>a = 1>2 b>a = 1

fc

[ fc]TE1,0

b
a 55 4321

 # 1

TE1,0
TE0,1

TM1,1
TE1,1

TE2,0
TE0,2

TM2,1
TM1,2
TE2,1
TE1,2

2

fc

[ fc]TE1,0

b
a

1
2 55 4321

 #

b
a

1
3

 #

TE1,0

TE1,0 TE2,0

TE0,1
TE2,0

TE3,0
TE0,1

TM1,1
TE1,1

TE1,1
TM1,1

8

TE2,1
TM2,1

fc

[ fc]TE1,0
510 4321

FIGURE 8.14

Lowest four cutoff frequencies referred to the cutoff frequency of the dominant mode
for three cases of rectangular waveguide dimensions.
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314 Chapter 8 Waveguide Principles

For , and assuming free space for the dielectric in the waveguide,

Hence, for a signal of frequency , all the modes for which is less than
1.8 propagate. From Figure 8.14, these are

It can be seen from Figure 8.14 that for , the second lowest cutoff frequency that cor-
responds to that of the mode is twice the cutoff frequency of the dominant mode 
For this reason, the dimension bof a rectangular waveguide is generally chosen to be less than or
equal to in order to achieve single-mode transmission over a complete octave (factor of two)
range of frequencies.

Let us now consider guided waves of equal magnitude propagating in the positive
z- and negative z-directions in a rectangular waveguide. This can be achieved by ter-
minating the guide by a perfectly conducting sheet in a constant-z plane, that is, a trans-
verse plane of the guide. Due to perfect reflection from the sheet, the fields will then be
characterized by standing wave nature along the guide axis, that is, in the z-direction, in
addition to the standing wave nature in the x- and y-directions. The standing wave pat-
tern along the guide axis will have nulls of transverse electric field on the terminating
sheet and in planes parallel to it at distances of integer multiples of from that
sheet. Placing of perfect conductors in these planes will not disturb the fields, since the
boundary condition of zero tangential electric field is satisfied in those planes.

Conversely, if we place two perfectly conducting sheets in two constant-z planes
separated by a distance d, then, in order for the boundary conditions to be satisfied,
d must be equal to an integer multiple of . We then have a rectangular box of di-
mensions a, b, and d in the x-, y-, and z-directions, respectively, as shown in Figure 8.15.
Such a structure is known as a cavity resonator and is the counterpart of the low-
frequency lumped parameter resonant circuit at microwave frequencies since it supports

lg>2
lg>2

a>2 TE1,0.TE2,0

b>a … 1>2
TE1,0, TE0,1, TM1,1, TE1,1   for b>a = 1
TE1,0   for b>a = 1>2
TE1,0   for b>a = 1>3

fc>[fc]TE1,0
f = 9000 MHz

[fc]TE1,0
= 1

2a1mP
= 3 * 108

2 * 0.03
= 5000 MHz

a = 3 cm

b

d

z

a
x

y
FIGURE 8.15

A rectangular cavity resonator.
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8.4 Rectangular Waveguide and Cavity Resonator 315

oscillations at frequencies for which the above condition, that is,

(8.53)

is satisfied. Recalling that is simply the apparent wavelength of the obliquely bounc-
ing uniform plane wave along the z-direction,we find that the wavelength corresponding
to the mode of oscillation for which the fields have m number of one-half sinusoidal varia-
tions in the x-direction, n number of one-half sinusoidal variations in the y-direction, and
l number of one-half sinusoidal variations in the z-direction is given by

(8.54)

or

(8.55)

The expression for the frequency of oscillation is then given by

(8.56)

The modes are designated by three subscripts in the manner and 
Since m, n, and l can assume combinations of integer values, an infinite number of fre-
quencies of oscillation are possible for a given set of dimensions for the cavity resonator.
We shall now consider an example.

Example 8.4

The dimensions of a rectangular cavity resonator with air dielectric are , , and
. It is desired to determine the three lowest frequencies of oscillation and specify the

mode(s) of oscillation, transverse with respect to the z-direction, for each frequency.
By substituting , , and the given dimensions for a, b, and d in (8.56), we

obtain

By assigning combinations of integer values for m, n, and l and recalling that both m and n must
be nonzero for TM modes, we obtain the three lowest frequencies of oscillation to be

 3750 * 16 = 9186 MHz for TE1,1,1  and TM1,1,1 modes

 3750 * 15 = 8385 MHz for TE0,1,1, TE2,0,1, and TE1,0,2 modes

 3750 * 12 = 5303 MHz for TE1,0,1 mode

 = 37502m2 + 4n2 + l2 MHz

 fosc = 3 * 108A a m
0.08
b2

+ a n
0.04
b2

+ a l
0.08
b2

P = P0m = m0

d = 4 cm
b = 2 cma = 4 cm

TMm,n,l.TEm,n,l

fosc =
vp

losc
= 11mP

 A a m
2a
b2

+ a n
2b
b2

+ a l
2d
b2

losc = 12(m>2a)2 + (n>2b)2 + (l>2d)2

1
l2

osc
= 1

(2a>m)2 + 1
(2b>n)2 + 1

(2d>l)2

lg

d = l
lg

2
,    l = 1, 2, 3, Á
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316 Chapter 8 Waveguide Principles

8.5 REFLECTION AND REFRACTION OF PLANE WAVES

Let us now consider a uniform plane wave that is incident obliquely on a plane bound-
ary between two different perfect dielectric media at an angle of incidence to the
normal to the boundary, as shown in Figure 8.16. To satisfy the boundary conditions at
the interface between the two media, a reflected wave and a transmitted wave will be
set up. Let be the angle of reflection and be the angle of transmission.Then without
writing the expressions for the fields, we can find the relationship among , , and by
noting that for the incident, reflected, and transmitted waves to be in step at the bound-
ary, their apparent phase velocities parallel to the boundary must be equal; that is,

(8.57)

where and are the phase velocities along the direc-
tions of propagation of the waves in medium 1 and medium 2, respectively.

From (8.57), we have

(8.58)

(8.59)

or
(8.60)

(8.61)ut =  sin-1aAm1P1

m2P2
 sin uib

ur = ui

sin ut =
vp2

vp1
 sin ui = Am1P1

m2P2
 sin ui

sin ur = sin ui

vp2(=  1>1m2P2)vp1(=  1>1m1P1)

vp1

sin ui
=

vp1

sin ur
=

vp2

sin ut

uturui

utur

ui

ui ur

ut

Incident
Wave

Transmitted
Wave

Reflective
Wave

Medium 1
P1, m1

Medium 2
P2, m2

FIGURE 8.16

Reflection and transmission of an obliquely
incident uniform plane wave on a plane
boundary between two different perfect
dielectric media.

Equation (8.60) is known as the law of reflection and (8.61) is known as the law of
refraction, or Snell’s law. Snell’s law is commonly cast in terms of the refractive index,
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8.5 Reflection and Refraction of Plane Waves 317

denoted by the symbol n and defined as the ratio of the velocity of light in free space to
the phase velocity in the medium. Thus, if and are the (phase)
refractive indices for media 1 and 2, respectively, then

(8.62)

For two dielectrics having , which is usually the case, (8.62) reduces to

(8.63)

We shall now consider the derivation of the expressions for the reflection and
transmission coefficients at the boundary. To do this, we distinguish between two cases:
(1) the electric field vector of the wave linearly polarized parallel to the interface and
(2) the magnetic field vector of the wave linearly polarized parallel to the interface.
The law of reflection and Snell’s law hold for both cases, since they result from the fact
that the apparent phase velocities of the incident, reflected, and transmitted waves par-
allel to the boundary must be equal.

The geometry pertinent to the case of the electric field vector parallel to the in-
terface is shown in Figure 8.17, in which the interface is assumed to be in the 
plane and the subscripts i, r, and t associated with the field symbols denote incident, re-
flected, and transmitted waves, respectively. The plane of incidence, that is, the plane
containing the normal to the interface and the propagation vectors, is assumed to be in
the xz-plane, so that the electric field vectors are entirely in the y-direction. The corre-
sponding magnetic field vectors are then as shown in the figure so as to be consistent

x = 0

ut = sin- 1aAP1

P2
 sin uib

m1 = m2 = m0

ut = sin- 1a n1

n2
 sin uib

n2(=  c>vp2)n1(=  c>vp1)

u1 u1

u2

x # 0

Ei

Hi
Hr

Ht

Et

Er

Medium 1
P1, m1

Medium 2
P2, m2

y

x

z

!r

!i

!t

FIGURE 8.17

For obtaining the reflection and transmission coefficients for an obliquely
incident uniform plane wave on a dielectric interface with its electric field
perpendicular to the plane of incidence.
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318 Chapter 8 Waveguide Principles

with the condition that E, H, and form a right-handed mutually orthogonal set of
vectors. Since the electric field vectors are perpendicular to the plane of incidence,
this case is also said to correspond to perpendicular polarization. The angle of inci-
dence is assumed to be From the law of reflection (8.60), the angle of reflection is
then also The angle of transmission, assumed to be , is related to by Snell’s law,
given by (8.61).

The boundary conditions to be satisfied at the interface are that (1) the
tangential component of the electric field intensity be continuous and (2) the tangen-
tial component of the magnetic field intensity be continuous. Thus, we have at the
interface 

(8.64a)
(8.64b)

Expressing the quantities in (8.64a) and (8.64b) in terms of the total fields, we obtain

(8.65a)
(8.65b)

We also know from one of the properties of uniform plane waves that

(8.66a)

(8.66b)

Substituting (8.66a) and (8.66b) into (8.65b) and rearranging, we get

(8.67)

Solving (8.65a) and (8.67) for Ei and Er, we have

(8.68a)

(8.68b)

We now define the reflection coefficient and the transmission coefficient as

(8.69a)

(8.69b) t! =
Et

Ei
=

Eyt

Eyi

 ≠! =
Er

Ei
=

Eyr

Eyi

t!≠!

 Er =
Et

2
a 1 -

h1

h2
 
cos u2

cos u1
b

 Ei =
Et

2
a 1 +

h1

h2
 
cos u2

cos u1
b

Ei - Er = Et
h1

h2
 
cos u2

cos u1

 
Et

Ht
= h2 = Am2

P2

 
Ei

Hi
=

Er

Hr
= h1 = Am1

P1

Hi cos u1 - Hr cos u1 = Ht cos u2

Ei + Er = Et

Hzi + Hzr = Hzt

Eyi + Eyr = Eyt

x = 0

x = 0

u1u2u1.
u1.

!
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8.5 Reflection and Refraction of Plane Waves 319

where the subscript refers to perpendicular polarization. From (8.68a) and (8.68b),
we then obtain

(8.70a)

(8.70b)

Equations (8.70a) and (8.70b) are known as the Fresnel reflection and transmission
coefficients for perpendicular polarization.

Before we discuss the result given by (8.70a) and (8.70b), we shall derive the cor-
responding expressions for the case in which the magnetic field of the wave is parallel to
the interface. The geometry pertinent to this case is shown in Figure 8.18. Here again
the plane of incidence is chosen to be the xz-plane, so that the magnetic field vectors are
entirely in the y-direction. The corresponding electric field vectors are then as shown in
the figure so as to be consistent with the condition that E, H, and form a right-handed
mutually orthogonal set of vectors. Since the electric field vectors are parallel to the
plane of incidence, this case is also said to correspond to parallel polarization.

!

 t! =
2h2 cos u1

h2 cos u1 + h1 cos u2

 ≠! =
h2 cos u1 - h1 cos u2

h2 cos u1 + h1 cos u2

!

u1 u1

u2

x # 0

Ei

Hi
Hr

Ht

Et

Er

Medium 1
P1, m1

Medium 2
P2, m2

y

x

z

!r

!i

!t

FIGURE 8.18

For obtaining the reflection and transmission coefficients for an obliquely
incident uniform plane wave on a dielectric interface with its electric field
parallel to the plane of incidence.

Once again the boundary conditions to be satisfied at the interface are that
(1) the tangential component of the electric field intensity be continuous and (2) the
tangential component of the magnetic field intensity be continuous. Thus, we have at
the interface ,

(8.71a)
(8.71b) Hyi + Hyr = Hyt

 Ezi + Ezr = Ezt

x = 0

x = 0
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320 Chapter 8 Waveguide Principles

Expressing the quantities in (8.71a) and (8.71b) in terms of the total fields and also
using (8.66a) and (8.66b), we obtain

(8.72a)

(8.72b)

Solving (8.72a) and (8.72b) for and , we have

(8.73a)

(8.73b)

We now define the reflection coefficient and the transmission coefficient as

(8.74a)

(8.74b)

where the subscript refers to parallel polarization. From (8.73a) and (8.73b), we then
obtain

(8.75a)

(8.75b)

Note from (8.74a) and (8.74b) that

(8.76a)

(8.76b)

Equations (8.75a) and (8.75b) are known as the Fresnel reflection and transmission
coefficients for parallel polarization.

We shall now discuss the results given by (8.70a), (8.70b), (8.75a), and (8.75b) for
the reflection and transmission coefficients for the two cases:

1. For that is, for the case of normal incidence of the uniform plane wave
upon the interface, and

 t! =
2h2

h2 + h1
,  t|| =

2h2

h2 + h1

 ≠! =
h2 - h1

h2 + h1
,  ≠|| =

h2 - h1

h2 + h1

u2 = 0
u1 = 0,

 
Ezt

Ezi
=

-Et cos u2

-Ei cos u1
= t|| 

cos u2

cos u1

 
Ezr

Ezi
=

Er cos u1

-Ei cos u1
= -

Er

Ei
= ≠||

 t|| =
2h2 cos u1

h2 cos u2 + h1 cos u1

 ≠|| =
h2 cos u2 - h1 cos u1

h2 cos u2 + h1 cos u1

||

 t|| =
Et

Ei

 ≠|| = -
Er

Ei

t||≠||

 Er =
Et

2
a h1

h2
-

cos u2

cos u1
b

 Ei =
Et

2
a h1

h2
+

cos u2

cos u1
bErEi

 Ei + Er = Et 
h1

h2

 Ei - Er = Et 
cos u2

cos u1
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8.5 Reflection and Refraction of Plane Waves 321

Thus, the reflection coefficients as well as the transmission coefficients for the two
cases become equal as they should, since for normal incidence there is no difference
between the two polarizations except for rotation by 90° parallel to the interface.

2.

or

(8.77)

where we have used Snell’s law, given by (8.61), to express sin in terms of sin 
If we assume , as is usually the case, (8.77) has real solutions for 
for . Thus, for , that is, for transmission from a dielectric medium
of higher permittivity into a dielectric medium of lower permittivity, there is a
critical angle of incidence given by

(8.78)

for which is equal to 90° and and . For , sin becomes
greater than 1, cos becomes imaginary, and and become complex, but with
their magnitudes equal to unity, and total internal reflection occurs; that is, the
time-average power of incident wave is entirely reflected, the boundary condition
being satisfied by an evanescent field in medium 2. To explain the evanescent na-
ture, we note with reference to the geometry of Figure 8.17 or Figure 8.18 that

or

For and Therefore, for 
and Thus, should be

replaced by corresponding to exponential decay of the field in the x-direc-
tion without a propagating wave character. The phenomenon of total internal re-
flection is the fundamental principle of optical waveguides, since if we have a
dielectric slab of permittivity sandwiched between two dielectric media of per-
mittivity then by launching waves at an angle of incidence greater than the
critical angle, it is possible to achieve guided wave propagation within the slab, as
we shall learn in the next section.

3. for that is, for

h221 - sin2 u1 = h1 A1 -
m1P1

m2P2
  sin2 u1

h2 cos u1 = h1 cos u2;≠! = 0

P2 6 P1,
P1

-jax2,
bx2bx2

2 6 0.u1 7 uc, bz2 = bz1 = v2m1P1 sin2u1 7 v2m2P2,
bx2

2 = 0.u1 = uc, bz2 = bz1 = v2m1P1 sin2 uc = v2m2P2,

b2
x2 = v2m2P2 - b2

z2

b2
x2 + b2

z2 = b2
t = v2m2P2

≠||≠!u2

u2u1 7 ucƒ≠|| ƒ = 1ƒ≠! ƒu2

uc = sin-1AP2

P1

uc

P2 6 P1P2 6 P1

u1m2 = m1 = m0

u1.u2

sin u1 = Am2P2

m1P1

21 - sin2 u2 = A1 -
m1P1

m2P2
 sin2 u1 = 0

≠! = 1 and ≠|| = -1 if cos u2 = 0; that is,
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322 Chapter 8 Waveguide Principles

or

(8.79)

For the usual case of transmission between two dielectric materials, that is, for
and this equation has no real solution for and hence there is

no angle of incidence for which the reflection coefficient is zero for the case of
perpendicular polarization.

4. for that is, for

or

(8.80)

If we assume this equation reduces to

which then gives

and

Thus, there exists a value of the angle of incidence given by

(8.81)

for which the reflection coefficient is zero, and hence there is complete transmis-
sion for the case of parallel polarization.

5. In view of cases 3 and 4, for an elliptically polarized wave incident on the inter-
face at the angle the reflected wave will be linearly polarized perpendicular to
the plane of incidence. For this reason, the angle is known as the polarizing
angle. It is also known as the Brewster angle. The phenomenon associated with
the Brewster angle has several applications. An example is in gas lasers in which
the discharge tube lying between the mirrors of a Fabry–Perot resonator is sealed

up

up,

up = tan-1 AP2

P1

up,

tan u1 = AP2

P1

cos2 u1 = 1 - sin2 u1 =
P1

P1 + P2

sin2 u1 =
P2

P1 + P2

m2 = m1,

sin2 u1 =
h2

2 - h1
2

h2
2(m1P1>m2P2) - h1

2 = P2 

(m2>m1)P1 - P2

P1
2 - P2

2

h2 A1 -
m1P1

m2P2
  sin2 u1 = h121 - sin2 u1

h2 cos u2 = h1 cos u1;≠|| = 0

u1,P2 Z P1,m2 = m1

sin2 u1 =
h2

2 - h1
2

h2
2 - h1

2(m1P1>m2P2)
= m2 

m2 - m1(P2>P1)

m2
2 - m1

2
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Gas Discharge Tube

MirrorMirror

Glass Window Glass Window

FIGURE 8.19

For illustrating the application of the Brewster angle effect in gas lasers.

by glass windows placed at the Brewster angle, as shown in Figure 8.19, to mini-
mize reflections from the ends of the tube so that the laser behavior is governed
by the mirrors external to the tube.

We shall now consider an example.

x # 0

Ei

Medium 1
P0, m0

Medium 2
1.5P0, m0

y

x

z

!i

60

FIGURE 8.20

For Example 8.5.

Example 8.5

A uniform plane wave having the electric field

is incident on the interface between free space and a dielectric medium of and 
as shown in Figure 8.20. We wish to obtain the expressions for the electric fields of the reflected
and transmitted waves.

First, we note from the given that the propagation vector of the incident wave is
given by

!i = 10p1ax + 13az2 = 20p a 1
2

 ax + 13
2

 azb
Ei

m = m0,P = 1.5P0

Ei = E0 a 13
2

  ax - 1
2

  azb
 
cos [6p * 109t - 10p1x + 13z2]
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324 Chapter 8 Waveguide Principles

the direction of which is consistent with the angle of incidence of 60°. We also note that the elec-
tric field vector (which is perpendicular to ) is entirely in the plane of incidence. Thus, the situ-
ation corresponds to one of parallel polarization, as in Figure 8.18.

To obtain the required fields, we first find, by using (8.63) and with reference to the nota-
tion of Figure 8.18, that

or Then from (8.75a)–(8.75b) and (8.76a)–(8.76b), we have

Finally, noting with the aid of Figure 8.21 that

!r = 20p a -  
1
2

 ax + 13
2

 azb = 10p1-ax + 13az2
 
Et

Ei
= 0.758

 
Er

Ei
= -0.072

 = 212
2 + 13

= 0.758

 t|| =
21h0>11.52 cos 60°1h0>11.52 cos 45° + h0 cos 60°

 = 2 - 13
2 + 13

= 0.072

 ≠|| =
1h0>11.52 cos 45° - h0 cos 60°1h0>11.52 cos 45° + h0 cos 60°

u2 = 45°.

sin u2 = A P0

1.5P0
  sin 60° = 112

!i

x # 0

Ei

Er

Et

1.5P0, m0

P0, m0

y

x

z

!i

!t

!r

60 60

45

FIGURE 8.21

For writing the expressions for the reflected and transmitted wave electric
fields for Example 8.5.
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and

we write the expressions for the reflected and transmitted wave fields to be

and

Note that for and so that the fields do indeed satisfy
the boundary conditions.

8.6 DIELECTRIC SLAB GUIDE

In the preceding section, we learned that for a wave that is incident obliquely from a
dielectric medium of permittivity onto another dielectric medium of permittivity

total internal reflection occurs for angles of incidence exceeding the critical
angle given by

(8.82)

where it is assumed that everywhere. In this section, we shall consider the di-
electric slab waveguide, which forms the basis for thin-film waveguides, used exten-
sively in integrated optics.

The dielectric slab waveguide consists of a dielectric slab of permittivity sand-
wiched between two dielectric media of permittivities less than For simplicity, we
shall consider the symmetric waveguide, that is, one for which the permittivities of the
dielectrics on either side of the slab are the same and equal to as shown in
Figure 8.22. Then by launching waves at an angle of incidence where is given
by (8.82), it is possible to achieve guided wave propagation within the slab, as shown in
the figure. For a given thickness d of the slab and for a given frequency of the waves,
there are only discrete values of for which the guiding can take place. In other words,
guiding of a wave of a given frequency is not ensured simply because the condition for
total internal reflection is met.

The allowed values of are dictated by the self-consistency condition, which can
be explained with the aid of the construction in Figure 8.23, as follows. If we consider a
point A on a given wavefront designated 1 and follow that wavefront as it moves to
position passing through point B, reflects at the interface giving rise tox = d>21¿

ui

ui

ucui 7 uc,
P2,

P1.
P1,

m = m0

uc = sin-1AP2

P1

uc

uiP2 6 P1,
P1

Exi + Exr = 1.5Ext,x = 0, Ezi + Ezr = Ezt

Et = 0.758E0 a 112
 ax - 112

 azb  cos [6p * 109t - 1013p1x + z2]
Er = -0.072E0 a 13

2
 ax + 1

2
 azb

 
cos [6p * 109t + 10p1x - 13z2]

!t = 20p11.5 a 112
 ax + 112

 azb = 1013p1ax + az2
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326 Chapter 8 Waveguide Principles

wavefront designated 2, then moves to position passing through point C, reflects at
the interface giving rise to wavefront designated 3, and finally moves to po-
sition passing through A, then we see that the total phase shift undergone must be
equal to an integer multiple of If is the wavelength in free space corresponding
to the wave frequency, the self-consistency condition is given by

(8.83)+ l≠–A + 2p1Pr1

l0
 1CA cos ui2 = 2mp, m = 0, 1, 2, Á

2p1Pr1

l0
 (AB cos ui2 + l≠–B +

2p1Pr1

l0
 1BC cos ui2

l02p.
3¿

x = -d>2 2¿

ui %  uc

m0, P2 &  P1

m0, P2 &  P1

m0, P1

FIGURE 8.22

Total internal reflection in a dielectric slab waveguide.

ui ui

uiui

1 1! 2 2!

3!3

C

A

B

P2

P1

P2

x # d/2

x # " d/2

x

y z

FIGURE 8.23

For explaining the self-consistency condition for waveguiding in a dielectric slab
guide.
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8.6 Dielectric Slab Guide 327

where and are the reflection coefficients at the interfaces and
respectively, and We recall that under conditions of total internal

reflection, the reflection coefficients (8.70a) and (8.75a) become complex with their
magnitudes equal to unity. For the symmetric waveguide, Thus, substituting 
for and and 2d for we write (8.83) as

or

(8.84)

To proceed further, we need to distinguish between the cases of perpendicular and
parallel polarizations as defined in the preceding section, since the reflection coefficients
for the two cases are different. We shall here consider only the case of perpendicular
polarization. The situation then corresponds to TE modes, since the electric field has no
longitudinal or z-component. Thus, substituting

and

in (8.70a), we obtain

(8.85)

so that

(8.86) = -2 tan-1
  

2sin2 ui - 1P2>P12
cos ui

 l≠– ! = -2 tan-1
  

h121P1>P22  sin2 ui - 1

h2 cos ui

≠–! =
h2 cos ui - jh121P1>P22 sin2 ui - 1

h2 cos ui + jh121P1>P22 sin2 ui - 1

 = jAP1

P2
 sin2 ui - 1

 = j2sin2 u2 - 1

 cos u2 = 21 - sin2 u2

cos u1 = cos ui

2pd1Pr1

l0
  cos ui + l≠– = mp, m = 0, 1, 2, Á

4pd1Pr1

l0
  cos ui + 2l≠– = 2mp, m = 0, 1, 2, Á

1AB + BC + CA2,≠–B≠–A

≠–≠–A = ≠–B.

Pr1 = P1>P0.x = d>2,
x = -d>2≠–B≠–A
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Substituting (8.86) into (8.84), we then obtain

or

or

(8.87)

where

(8.88a)

(8.88b)

Equation (8.87) is the characteristic equation for the guiding of TE waves in the
dielectric slab. For given values of d, and the solutions for can be obtained
by plotting the two sides of (8.87) versus and finding the points of intersection. The
nature of this construction is shown in Figure 8.24. Each solution corresponds to one

ui

uil0,P2,P1,

 g1ui2 =
2sin2 ui - 1P2>P12

cos ui

 f1ui2 =
pd1Pr1

l0
  cos ui

tan [f1ui2] = c g1ui2, m = 0, 2, 4, Á

- 1
g1ui2, m = 1, 3, 5, Á

tan a pd1Pr1

l0
 cos ui - mp

2
b =

2sin2 ui - 1P2>P12
cos ui

, m = 0, 1, 2, Á

2pd1Pr1

l0
 cos ui - 2 tan-1

  

2sin2 ui - 1P2>P12
cos ui

= mp, m = 0, 1, 2, Á

tan [ f(ui)]

m # 0

m # 1 m # 3

m # 2
m # 4

g(ui)
1

" m # 5

g(ui)

p'2

ui uc

FIGURE 8.24

Graphical construction pertinent to the solution of equation (8.87).
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TABLE 8.1 Allowed Values of for Dielectric Slab Guide Example

m

0 83.42783
1 76.77756
2 69.96263
3 62.87805
4 55.38428
5 47.28283
6 38.30225

ui 1deg2ui 

mode. It can be seen from (8.88a) and Figure 8.24 that for a given set of values of and
fewer solutions are obtained for as the ratio becomes smaller, since the

number of branches of the plot of between and become
fewer. It can also be seen that there is always one solution for a given d, even for arbi-
trarily low values of —that is, for large values of or low frequencies.

Alternative to the graphical solution, we can use a computer to solve (8.87) for
the allowed values of for specified values of d, and Computed values of 
for values of and are listed in Table 8.1.l0 = 5 mmd = 10 mm,Pr2 = 1,Pr1 = 4,

uil0.Pr2,Pr1,ui

l01d>l02 ui = ucui = p>2tan [f1ui2] 1d>l02uiP2,
P1

Returning now to Figure 8.24, we designate the modes associated with the solu-
tions as modes, where correspond to the values of m on the plot.
We note from the plot that the solution for a given mode for does not exist
if Therefore, the cutoff condition is given by

(8.89)

where we have used (8.82). The cutoff frequency is given by

The fundamental mode, has no cutoff frequency. Thus,

(8.90)fc = mc
2d1Pr1 - Pr2

, m = 0, 1, 2, Á

TE0,

fc = c
l0

= mc
2d1Pr1 - Pr2

l0 7
2d1Pr1 - Pr2

m

pd1Pr1

l0
  A1 -

P2

P1
6 mp

2

pd1Pr1

l0
 cos uc 6 mp

2

f1uc2 6 mp>2.
m 7 1TEm

m = 0, 1, 2, ÁTEm
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(b)

Cladding P2 &  P1

Core

Cladding

Core P1

Cladding P2 &  P1

(a)

FIGURE 8.25

(a) Transverse and 
(b) longitudinal cross
sections of an optical
fiber.

Example 8.6

For the symmetric dielectric slab waveguide of Figure 8.23, let and
We wish to find the number of TE modes that can propagate by guidance in the slab.

From (8.90),

Thus, for and the modes are cut off. Therefore, the number of propagating TE
modes is 25, corresponding to 

The entire discussion for guided waves in the dielectric slab guide can be repeated
for TM modes by using in the place of in (8.84) to derive the characteristic equa-
tion for guidance. We shall include the derivation as Problem 8.32, and conclude this
section with a brief description of an optical fiber, which is a common form of optical
waveguide.

An optical fiber, so termed because of its filamentary appearance, consists typi-
cally of a core and a cladding, having cylindrical cross sections as shown in Fig-
ure 8.25(a). The core is made up of a material of permittivity greater than that of the
cladding so that a critical angle exists for waves inside the core incident on the inter-
face between the core and the cladding, and hence waveguiding is made possible in the
core by total internal reflection. The phenomenon may be visualized by considering a
longitudinal cross section of the fiber through its axis, shown in Figure 8.25(b), and
comparing it with that of the slab waveguide, shown in Figure 8.22. Although the
cladding is not essential for the purpose of waveguiding in the core, since the permit-
tivity of the core material is greater than that of free space, it serves two useful purposes:
(a) It avoids scattering and field distortion by the supporting structure of the fiber,
since the field decays exponentially outside the core, and hence is negligible outside
the cladding. (b) It allows single-mode propagation for a larger value of the radius of
the core than permitted in the absence of the cladding.

≠–!≠–||

m = 0, 1, 2, Á , 24.
fc 7 fm 7 24,

 =
mf

24.98
, m = 0, 1, 2, Á

 fc = mc
20l012.56 - 1

d = 10l0.
P2 = P0,P1 = 2.56P0,
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SUMMARY

In this chapter, we studied the principles of waveguides. To introduce the waveguiding
phenomenon, we first learned how to write the expressions for the electric and mag-
netic fields of a uniform plane wave propagating in an arbitrary direction with respect
to the coordinate axes. These expressions are given by

where and r are the propagation and position vectors given by

and is the phase of the wave at the origin at The magnitude of is equal to
the phase constant along the direction of propagation of the wave. The direc-

tion of is the direction of propagation of the wave. We learned that

that is, and are mutually perpendicular, and that

Also, since should be directed along the propagation vector it then follows
that

The quantities and are the phase constants along the x-, y-, and z-axes, re-
spectively. The apparent wavelengths and the apparent phase velocities along the co-
ordinate axes are given, respectively, by

By considering the superposition of two uniform plane waves propagating at an
angle to each other and placing two perfect conductors in appropriate planes such
that the boundary condition of zero tangential electric field is satisfied, we introduced
the parallel-plate waveguide. We learned that the composite wave is a transverse elec-
tric wave, or TE wave, since the electric field is entirely transverse to the direction of

 vpi = v
bi

, i = x, y, z

 li = 2p
bi

, i = x, y, z

bzbx, by,

H = 1
vm

 ! : E

!,E : H

ƒ E0 ƒ
ƒ H0 ƒ

= h = AmP!E0, H0,

 E0 # H0 = 0

 H0 # ! = 0

 E0 # ! = 0

!
v1mP,

!t = 0.f0

 r = xax + yay + zaz

 ! = bxax + byay + bzaz

!

 H = H0 cos 1vt - ! # r + f02 E = E0 cos 1vt - ! # r + f02
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332 Chapter 8 Waveguide Principles

time-average power flow, that is, the guide axis, but the magnetic field is not. In terms of
the uniform plane wave propagation, the phenomenon is one of waves bouncing
obliquely between the conductors as they progress down the guide. For a fixed spacing
a between the conductors of the guide, waves of different frequencies bounce obliquely
at different angles such that the spacing a is equal to an integer, say, m number of one-
half apparent wavelengths normal to the plates and hence the fields have m number of
one-half-sinusoidal variations normal to the plates. These are said to correspond to

modes, where the subscript 0 implies no variations of the fields in the direction
parallel to the plates and transverse to the guide axis. When the frequency is such that
the spacing a is equal to m one-half wavelengths, the waves bounce normally to the
plates without the feeling of being guided along the axis, thereby leading to the cutoff
condition. Thus, the cutoff wavelengths corresponding to modes are given by

and the cutoff frequencies are given by

A given frequency signal can propagate in all modes for which or For the
propagating range of frequencies, the wavelength along the guide axis, that is, the guide
wavelength, and the phase velocity along the guide axis are given, respectively, by

We discussed the phenomenon of dispersion arising from the frequency depen-
dence of the phase velocity along the guide axis, and we introduced the concept of
group velocity. Group velocity is the velocity with which the envelope of a narrow-
band modulated signal travels in the dispersive channel, and hence it is the velocity
with which the information is transmitted. It is given by

where is the phase constant along the guide axis.
We extended the treatment of the parallel-plate waveguide to the rectangular

waveguide, which is a metallic pipe of rectangular cross section. By considering a rec-
tangular waveguide of cross-sectional dimensions a and b, we discussed transverse elec-
tric or TE modes as well as transverse magnetic or TM modes, and learned that while

modes can include values of m or n equal to zero, modes require that 
both m and n be nonzero, where m and n refer to the number of one-half sinusoidal

TMm,nTEm,n

bz

vg = dv
dbz

= vp A1 - a fc

f
b2

 vpz =
vp21 - 1l>lc22 =

vp21 - 1fc>f22
 lg = l21 - 1l>lc22 = l21 - 1fc>f22

f 7 fc.l 6 lc

fc =
vp

lc
= m

2a1mP

lc = 2a
m

TEm,0

TEm,0
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variations of the fields along the dimensions a and b, respectively. The cutoff wave-
lengths for the  or  modes are given by

The mode that has the largest cutoff wavelength or the lowest cutoff frequency is the
dominant mode, which here is the TE1, 0 mode. Waveguides are generally designed to
transmit only the dominant mode.

By placing perfect conductors in two transverse planes of a rectangular wave-
guide separated by an integer multiple of one-half the guide wavelength, we intro-
duced the cavity resonator, which is the microwave counterpart of the lumped
parameter resonant circuit encountered in low-frequency circuit theory. For a rectan-
gular cavity resonator having dimensions a, b, and d, the frequencies of oscillation for
the or modes are given by

where l refers to the number of one-half sinusoidal variations of the fields along the
dimension d.

We then considered oblique incidence of a uniform plane wave on the boundary
between two perfect dielectric media. We derived the laws of reflection and refraction,
given, respectively, by

where and are the angles of incidence, reflection, and transmission, respectively,
of a uniform plane wave incident from medium 1 onto medium 2 The
law of refraction is also known as Snell’s law. We then derived the expressions for the
reflection and transmission coefficients for the cases of perpendicular and parallel po-
larizations. An examination of these expressions revealed the following, under the as-
sumption of (1) for incidence from a medium of higher permittivity onto one
of lower permittivity, there is a critical angle of incidence given by

beyond which total internal reflection occurs, and (2) for the case of parallel polariza-
tion, there is an angle of incidence, known as the Brewster angle and given by

for which the reflection coefficient is zero.
Next, we introduced the dielectric slab waveguide, consisting of a dielectric slab

of permittivity sandwiched between two dielectric media of permittivities P2 6 P1.P1

up = tan-1 AP2

P1

uc = sin-1 AP2

P1

m1 = m2:

1P2, m22.1P1, m12utui, ur,

 ut = sin-1aAm1P1

m2P2
  sin uib ur = ui

fosc = 11mP
 A a m

2a
b2

+ a n
2b
b2

+ a l
2d
b2

TMm,n,lTEm,n,l

lc = 12(m>2a)2 + (n>2b)2

TMm,nTEm,n
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334 Chapter 8 Waveguide Principles

We learned that by launching waves at an angle of incidence greater than the critical
angle for total internal reflection, it is possible to achieve guided wave propagation
within the slab. For a given frequency, several modes are possible corresponding to val-
ues of that satisfy the self-consistency condition associated with the bouncing waves.
We derived the characteristic equation for computing these values of for the TE case
and discussed its solution. The modes are designated modes and their cutoff fre-
quencies are given by

where d is the thickness of the slab. The fundamental mode, has no cutoff fre-
quency. We concluded the discussion with a description of the optical fiber.

TE0,

fc = mc
2d1Pr1 - Pr2

, m = 0, 1, 2, Á

TEm

ui

ui

ui

REVIEW QUESTIONS

8.1. What is the propagation vector? Interpret the significance of its magnitude and direction.
8.2. Discuss how the phase constants along the coordinate axes are less than the phase con-

stant along the direction of propagation of a uniform plane wave propagating in an
arbitrary direction.

8.3. Write the expressions for the electric and magnetic fields of a uniform plane wave prop-
agating in an arbitrary direction and list all the conditions to be satisfied by the electric
field, magnetic field, and propagation vectors.

8.4. What are apparent wavelengths? Why are they longer than the wavelength along the
direction of propagation?

8.5. What are apparent phase velocities? Why are they greater than the phase velocity along
the direction of propagation?

8.6. Discuss how the superposition of two uniform plane waves propagating at an angle to
each other gives rise to a composite wave consisting of standing waves traveling bodily
transverse to the standing waves.

8.7. What is a transverse electric wave? Discuss the reasoning behind the nomenclature
modes.

8.8. How would you characterize a transverse magnetic wave?
8.9. Compare the phenomenon of guiding of uniform plane waves in a parallel-plate wave-

guide with that in a parallel-plate transmission line.
8.10. Discuss how the cutoff condition arises in a waveguide.
8.11. Explain the relationship between the cutoff wavelength and the spacing between the

plates of a parallel-plate waveguide based on the phenomenon at cutoff.
8.12. Is the cutoff wavelength dependent on the dielectric in the waveguide? Is the cutoff fre-

quency dependent on the dielectric in the waveguide?
8.13. What is guide wavelength?
8.14. Provide a physical explanation for the frequency dependence of the phase velocity

along the guide axis.
8.15. Discuss the phenomenon of dispersion.
8.16. Discuss the concept of group velocity with the aid of an example.
8.17. What is a dispersion diagram? Explain how the phase and group velocities can be

determined from a dispersion diagram.

TEm,0
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8.18. When is it meaningful to attribute a group velocity to a signal comprised of more than
two frequencies? Why?

8.19. Discuss the propagation of a narrow-band amplitude modulated signal in a dispersive
channel.

8.20. Discuss the nomenclature associated with the modes of propagation in a rectangular
waveguide.

8.21. Explain the relationship between the cutoff wavelength and the dimensions of a rectan-
gular waveguide based on the phenomenon at cutoff.

8.22. Why can there be no transverse magnetic modes having no variations for the fields
along one of the dimensions of a rectangular waveguide?

8.23. What is meant by the dominant mode? Why are waveguides designed so that they prop-
agate only the dominant mode?

8.24. Why is the dimension bof a rectangular waveguide generally chosen to be less than or
equal to one-half the dimension a?

8.25. What is a cavity resonator?
8.26. How do the dimensions of a rectangular cavity resonator determine the frequencies of

oscillation of the resonator?
8.27. Discuss the condition required to be satisfied by the incident, reflected, and transmitted

waves at the interface between two dielectric media.
8.28. What is Snell’s law?
8.29. What is meant by the plane of incidence? Distinguish between the two different linear

polarizations pertinent to the derivation of the reflection and transmission coefficients
for oblique incidence on a dielectric interface.

8.30. Briefly discuss the determination of the Fresnel reflection and transmission coefficients
for an obliquely incident wave on a dielectric interface.

8.31. What is total internal reflection? Discuss the nature of the reflection coefficient and the
manner in which the boundary condition is satisfied for an angle of incidence greater
than the critical angle for total internal reflection.

8.32. What is the Brewster angle? What is the polarization of the reflected wave for an ellip-
tically polarized wave incident on a dielectric interface at the Brewster angle? Discuss
an application of the Brewster angle effect.

8.33. Discuss the principle of optical waveguides by considering the dielectric slab wave-
guide.

8.34. Explain the self-consistency condition for waveguiding in a dielectric slab waveguide.
8.35. Discuss the dependence of the number of propagating modes in a dielectric slab wave-

guide on the ratio of the thickness d of the dielectric slab to the wavelength 
8.36. Considering TE modes in a dielectric slab guide, specify the fundamental mode and dis-

cuss the associated cutoff condition.
8.37. Compare the phenomenon at cutoff in a metallic waveguide with that at cutoff in an

optical waveguide.
8.38. Provide a brief description of an optical fiber.

l0.

PROBLEMS

8.1. Assuming the x- and y-axes to be directed eastward and northward, respectively, find
the expression for the propagation vector of a uniform plane wave of frequency
15 MHz in free space propagating in the direction 30° north of east.
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336 Chapter 8 Waveguide Principles

8.2. The propagation vector of a uniform plane wave in a perfect dielectric medium having
is given by

Find (a) the apparent wavelengths and (b) the apparent phase velocities, along the
coordinate axes.

8.3. For a uniform plane wave propagating in free space, the apparent phase velocities along
the x- and y-directions are found to be and , respectively.
Find the direction of propagation of the wave.

8.4. The electric field vector of a uniform plane wave propagating in a perfect dielectric
medium having and is given by

Find (a) the frequency, (b) the direction of propagation, (c) the wavelength along the
direction of propagation, (d) the apparent wavelengths along the x-, y-, and z-axes, and
(e) the apparent phase velocities along the x-, y-, and z-axes.

8.5. Given

(a) Determine if the given E represents the electric field of a uniform plane wave prop-
agating in free space. (b) If the answer to part (a) is yes, find the corresponding mag-
netic field vector H.

8.6. Given

(a) Perform all the necessary tests and determine if these fields represent a uniform
plane wave propagating in a perfect dielectric medium. (b) Find the permittivity and the
permeability of the medium.

8.7. Two equal-amplitude uniform plane waves of frequency 25 MHz and having their elec-
tric fields along the y-direction propagate along the directions and in
free space. (a) Find the direction of propagation of the composite wave. (b) Find the
wavelength along the direction of propagation and the wavelength transverse to the
direction of propagation of the composite wave.

8.8. Show that and are equal to and zero,
respectively.

8.9. Find the spacing a for a parallel-plate waveguide having a dielectric of and
such that 6000 MHz is 20 percent above the cutoff frequency of the dominant

mode, that is, the mode with the lowest cutoff frequency.
8.10. The dimension a of a parallel-plate waveguide filled with a dielectric having 

and is 4 cm. Determine the propagating modes for a wave of frequency
6000 MHz. For each propagating mode, find 

8.11. The spacing a between the plates of a parallel-plate waveguide is equal to 5 cm. The
dielectric between the plates is free space. If a generator of fundamental frequency

fc, u, and lg.
TEm,0m = m0

P = 4P0

m = m0

P = 9P0

1>28sin 2(vt - bz sin u)98sin2 (vt - bz sin u)9
1
2(13ax + az)az

H = 1
60p

 (ax + 2ay - 13az) cos [15p * 106t - 0.05p(13x + z)]

E = (ax - 2ay - 13az) cos [15p * 106t - 0.05p(13x + z)]

E = 10ax cos [6p * 107t - 0.1p(y + 13z)]

E = 10(-ax - 213ay + 13az) cos [16p * 106t - 0.04p(13x - 2y - 3z)]

m = m0P = 9P0

213 * 108 m/s612 * 108 m/s

! = 2p(3ax + 4ay + 5az)

P = 4.5P0 and m = m0
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1800 MHz and rich in harmonics excites the waveguide, find all frequencies that propa-
gate in TE1,0 mode only.

8.12. The electric and magnetic fields of the composite wave resulting from the superposition
of two uniform plane waves are given by

(a) Find the time-average Poynting vector. (b) Discuss the nature of the composite wave.
8.13. Transverse electric modes are excited in an air dielectric parallel-plate waveguide of

dimension cm by setting up at its mouth a field distribution having

Determine the propagating mode(s) and obtain the expression for the electric field of
the propagating wave.

8.14. For the two-train example of Figure 8.8, find the group velocity if the speed of train
numbered B is (a) 36 m/s and (b) 40 m/s, instead of 30 m/s. Discuss your results with the
aid of sketches.

8.15. Find the velocity with which the group of two frequencies 2400 MHz and 2500 MHz
travels in a parallel-plate waveguide of dimension cm and having a perfect
dielectric of 

8.16. For a narrow-band amplitude modulated signal having the carrier frequency 5000 MHz
propagating in an air dielectric parallel-plate waveguide of dimension cm, find
the velocity with which the modulation envelope travels.

8.17. For an relationship given by

where and kare positive constants, find the phase and group velocities for (a)
(b) (c) 

8.18. By considering the parallel-plate waveguide, show that a point on the obliquely bounc-
ing wavefront, traveling with the phase velocity along the oblique direction, progresses
parallel to the guide axis with the group velocity.

8.19. For an air dielectric rectangular waveguide of dimensions cm and cm,
find all propagating modes for MHz.

8.20. For a rectangular waveguide of dimensions cm and cm, and having a
dielectric of and find all propagating modes for MHz.

8.21. For MHz, find the dimensions a and bof an air dielectric rectangular wave-
guide such that mode propagates with a 30 percent safety factor but
also such that the frequency is 30 percent below the cutoff frequency of the next higher
order mode.

8.22. For an air dielectric rectangular cavity resonator having the dimensions cm,
cm, and cm, find the five lowest frequencies of oscillation. Identify the

mode(s) for each frequency.
8.23. For a rectangular cavity resonator having the dimensions cm, and filled

with a dielectric of and find the three lowest frequencies of oscillation.
Identify the mode(s) for each frequency.

m = m0,P = 9P0

a = b = d = 2

d = 5b = 2
a = 2.5

(f = 1.30fc)TE1,0

f = 3000
f = 2500m = m0,P = 9P0

b = 5>3a = 5
f = 12,000

b = 1.5a = 3

v = 3v0.v = 2v0, and
v = 1.5v0,v0

v = v0 + kb2
z

v - bz

a = 5

P = 9P0 and m = m0.
a = 2.5

E = 10 (sin 20px + 0.5 sin 60px) sin 1010pt ay

a = 5

 H = Hy 0 cos bxx cos (vt - bzz) ay

 + Ez0 sin bx x sin (vt - bzz) az

 E = Ex 0 cos bxx cos (vt - bzz) ax
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338 Chapter 8 Waveguide Principles

8.24. In Figure 8.16, let and (a) For find (b) Is
there a critical angle of incidence for which 

8.25. In Figure 8.16, let and (a) For find 
(b) Find the value of the critical angle of incidence for which 

8.26. In Example 8.5, assume that

and the angle of incidence is 45°. Obtain the expressions for the electric fields of the
reflected and transmitted waves.

8.27. Repeat Problem 8.26 for

8.28. In Example 8.5, assume that the permittivity of medium 2 is unknown and that

(a) Find the value of for which the reflected wave is linearly polarized.
(b) For the value of found in (a), find the expressions for the reflected and transmit-
ted wave electric fields.

8.29. A thin-film waveguide employed in integrated optics consists of a substrate on which a
thin film of refractive index greater than that of the substrate is deposited. The
medium above the film is air. For relative permittivities of the substrate and the film
equal to 2.25 and 2.4, respectively, find the minimum bouncing angle of total internally
reflected waves in the film. Assume for both substrate and film.

8.30. For a symmetric dielectric slab waveguide, (a) Find the num-
ber of propagating TE modes for (b) Find the maximum value of for
which the waveguide supports only one TE mode.

8.31. Design a symmetric dielectric slab waveguide, with by finding
the value of such that the TE1 mode operates at 20% above its cutoff frequency.

8.32. Consider the derivation of the characteristic equation for guiding of waves in the sym-
metric dielectric slab waveguide for the case of parallel polarization, which corresponds
to TM modes. Noting that in Figure 8.18, where is given by
(8.75a), show that the characteristic equation is given by

where

g(ui) =
2sin2 ui - (P2>P1)

(P2>P1) cos ui

f(ui) =
pd1Pr1

l0
 cos ui

tan [f(ui)] = L g(ui),   m = 0, 2, 4, Á

- 1
g(ui)

,   m = 1, 3, 5, Á

≠||Er>Ei = -≠||,Hr>Hi =

d>l0

Pr1 = 2.25 and Pr2 = 2.13,

d>l0d>l0 = 10.
P1 = 2.25P0 and P2 = P0.

m = m0

(c>vp)

P2

P2

 +  E0 ay sin [6p * 109t - 10p(x + 13z)]

 Ei = E0a 13
2

 ax - 1
2

 azb
 
cos [6p * 109t - 10p(x + 13z)]

P2

Ei = E0 ay cos [6p * 108t - 12p(x + z)]

Ei = E0(ax - az) cos [6p * 108t - 12p(x + z)]

ut = 90°.uc,
ut.ut = 30°,m1 = m2 = m0.P1 = 4P0, P2 = 2.25P0,

ut = 90°?
ut.ut = 30°,m1 = m2 = m0.P1 = 4P0, P2 = 9P0,
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In the preceding chapters, we studied the principles of propagation and transmission of
electromagnetic waves. The remaining important topic pertinent to electromagnetic
wave phenomena is radiation of electromagnetic waves. We have, in fact, touched on
the principle of radiation of electromagnetic waves in Chapter 4 when we derived the
electromagnetic field due to the infinite plane sheet of sinusoidally time-varying, spa-
tially uniform current density. We learned that the current sheet gives rise to uniform
plane waves radiating away from the sheet to either side of it. We pointed out at that
time that the infinite plane current sheet is, however, an idealized, hypothetical source.
With the experience gained thus far in our study of the elements of engineering elec-
tromagnetics, we are now in a position to learn the principles of radiation from physi-
cal antennas, which is our goal in this chapter.

We shall begin the chapter with the derivation of the electromagnetic field due
to an elemental wire antenna, known as the Hertzian dipole. After studying the radia-
tion characteristics of the Hertzian dipole, we shall consider the example of a half-
wave dipole to illustrate the use of superposition to represent an arbitrary wire
antenna as a series of Hertzian dipoles in order to determine its radiation fields. We
shall also discuss the principles of arrays of physical antennas and the concept of
image antennas to take into account ground effects. Finally, we shall briefly consider
the receiving properties of antennas and learn of their reciprocity with the radiating
properties.

9.1 HERTZIAN DIPOLE

The Hertzian dipole is an elemental antenna consisting of an infinitesimally long piece
of wire carrying an alternating current , as shown in Figure 9.1. To maintain the cur-
rent flow in the wire, we postulate two point charges and terminating the
wire at its two ends, so that the law of conservation of charge is satisfied. Thus, if

(9.1)I(t) = I0 cos vt

Q2(t)Q1(t)
I(t)

339
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9
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340 Chapter 9 Antenna Basics

then

(9.2a)

(9.2b)

and

(9.3a)

(9.3b)

The time variations of , and , given by (9.1), (9.3a), and (9.3b), respectively, are
illustrated by the curves and the series of sketches for the dipoles in Figure 9.2, corre-
sponding to one complete period. The different sizes of the arrows associated with the
dipoles denote the different strengths of the current, whereas the number of the plus or
minus signs is indicative of the strength of the charges.

To determine the electromagnetic field due to the Hertzian dipole, we shall
employ an intuitive approach based upon the knowledge gained in the previous chap-
ters, as follows: From the application of what we have learned in Chapter 1, we can
obtain the expressions for the electric and magnetic fields due to the point charges and
the current element, respectively, associated with the Hertzian dipole, assuming that the
fields follow exactly the time-variations of the charges and the current. These expres-
sions do not, however, take into account the fact that time-varying electric and magnetic
fields give rise to wave propagation. Hence, we shall extend them from considerations
of our knowledge of wave propagation and then check if the resulting solutions satisfy
Maxwell’s equations. If they do not, we will then have to modify them so that they do
satisfy Maxwell’s equations and at the same time reduce to the originally derived
expressions in the region where wave propagation effects are small, that is, at distances
from the dipole that are small compared to a wavelength.

Q2I, Q1

 Q2(t) = -
I0

v
 sin vt = -Q1(t)

 Q1(t) =
I0
v  sin vt

 
dQ2

dt
= -I(t) = -I0 cos vt

 
dQ1

dt
= I(t) = I0 cos vt

I(t)dl

Q1(t)

Q2(t) ! "Q1(t)

#

"
FIGURE 9.1

Hertzian dipole.
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9.1 Hertzian Dipole 341

To follow the approach outlined in the preceding paragraph, we locate the dipole at
the origin with the current directed along the z-axis, as shown in Figure 9.3, and derive
first the expressions for the fields by applying the simple laws learned in Sections 1.5 and
1.6. The symmetry associated with the problem is such that it is simpler to use a spherical
coordinate system. Hence, if the reader is not already familiar with the spherical coordi-
nate system, it is suggested that Appendix A be read at this stage. To review briefly, a
point in the spherical coordinate system is defined by the intersection of a sphere cen-
tered at the origin, a cone having its apex at the origin and its surface symmetrical about
the z-axis, and a plane containing the z-axis. Thus, the coordinates for a given point, say P,

0
p 2p vt

!
!

!

"
"

"

"
"

"

!
!

!

!!

""

""

!!

""

!!

!!

""

I

0

I0

I0

v

p 2p vt

Q1

Q1

I

Q2

0
p 2p vt

Q2

I0
v

FIGURE 9.2

Time variations of charges and current associated with the Hertzian dipole.
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342 Chapter 9 Antenna Basics

are r, the radial distance from the origin, , the angle which the radial line from the
origin to the point makes with the z-axis, and , the angle which the line drawn from the
origin to the projection of the point onto the xy-plane makes with the x-axis, as shown in
Figure 9.3. A vector drawn at a given point is represented in terms of the unit vectors

and directed in the increasing and directions, respectively, at that point. It
is important to note that all three of these unit vectors are not uniform unlike the unit
vectors and in the Cartesian coordinate system.azax, ay,

fr, u,afar, au,

f
u

z

x

u

r1

a1

a2

r2

rQ1

Q2 ! "Q1

dl
I

dl cos u

y

af

au

ar1

ar

ar2

P

f

P, m

FIGURE 9.3

For the determination of the electromagnetic field due to the Hertzian
dipole.

Now using the expression for the electric field due to a point charge given by
(1.52), we can write the electric field at point P due to the arrangement of the two point
charges and in Figure 9.3 to be

(9.4)

where and are the distances from to P and to P, respectively, and
and are unit vectors directed along the lines from to P and to P, respec-

tively, as shown in Figure 9.3. Noting that

(9.5a)

(9.5b) ar2
= cos a2 ar - sin a2 au

 ar1
= cos a1 ar + sin a1 au

Q2Q1ar2
ar1

Q2 (=  -Q1)Q1r2r1

E =
Q1

4pPr2
1
 ar1

-
Q1

4pPr2
2
 ar2 

-Q1Q1
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9.1 Hertzian Dipole 343

we obtain the and components of the electric field at to be

(9.6a)

(9.6b)

For infinitesimal value of the length dl of the current element, that is, for ,

(9.7a)

and

(9.7b)

where we have also used the approximations that for and
. These are, of course, exact in the limit that Substitut-

ing (9.7a) and (9.7b) in (9.6a) and (9.6b), respectively, we obtain the electric field at
point P due to the arrangement of the two point charges to be given by

(9.8)

Note that is the electric dipole moment associated with the Hertzian dipole.
Using the Biot–Savart law given by (1.68), we can write the magnetic field at

point due to the infinitesimal current element in Figure 9.3 to be

(9.9)

To extend the expressions for E and H given by (9.8) and (9.9), respectively, we
observe that when the charges and current vary with time, the fields also vary with time

 = I dl sin u
4pr2  af

 H = B
m

 =
I dl az : ar

4pr2

P

Q1 dl

E =
Q1 dl

4pPr3 (2 cos u ar + sin u au)

dl : 0.sin a1 L [(dl>2) sin u]>r dl V r, (r2 - r1) L dl cos u
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r2
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+
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r2
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2 sin a1
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giving rise to wave propagation. The effect of a given time-variation of the source
quantity is therefore felt at a point in space not instantaneously but only after a
time lag. This time lag is equal to the time it takes for the wave to propagate from the
source point to the observation point, that is, , or , where and

are the phase velocity and the phase constant, respectively. Thus, for

(9.10)

(9.11)

we would intuitively expect the fields at point P to be given by

(9.12a)

(9.12b)

There is, however, one thing wrong with our intuitive expectation of the fields
due to the Hertzian dipole! The fields do not satisfy Maxwell’s curl equations

(9.13a)

(9.13b)

(where we have set in view of the perfect dielectric medium). For example, let us
try the curl equation for H. First, we note from Appendix B that the expansion for the
curl of a vector in spherical coordinates is

(9.14) +  
1
r

 c 0
0r

(rAu) -
0Ar

0u d af 
 +  

1
r

 c 1
sin u

 
0Ar 
0f - 0

0r
(rAf) d au 

 § : A = 1
r sin u

 c 0
0u(Af sin u) -

0Au
0f d ar

J= 0

 § : H = J + 0D
0t

= P0E
0t

 § : E = - 0B
0t

= -m0H
0t

 =
I0 dl cos (vt - br)

4pr2  sin u af 

 H =
[I0 cos v(t - br>v)] dl

4pr2  sin u af 

 =
I0 dl sin (vt - br)

4pPvr3 (2 cos u ar + sin u au)

 E =
[(I0>v) sin v(t - br>v)] dl

4pPr3 (2 cos u ar + sin u au)

 I = I0 cos vt

 Q1 =
I0

v
 sin vt

b(=  v1mP)
vp(=  1>1mP)br>vr>vp
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9.1 Hertzian Dipole 345

Thus,

(9.15)

The reason behind the discrepancy associated with the expressions for the fields
due to the Hertzian dipole can be understood by recalling that in Section 4.6 we
learned from considerations of the Poynting vector that the fields far from a physical
antenna vary inversely with the radial distance away from the antenna. The expres-
sions we have derived do not contain inverse distance dependent terms and hence they
are not complete, thereby causing the discrepancy. The complete field expressions
must contain terms involving in addition to those in (9.12a) and (9.12b). Since for
small the addition of terms involving and containing 
to (9.12a) and (9.12b) would still maintain the fields in the region close to the dipole to
be predominantly the same as those given by (9.12a) and (9.12b), while making the 
terms predominant for large r, since for large .

Thus, let us modify the expression for H given by (9.12b) by adding a second term
containing in the following manner:

(9.16)

where and are constants to be determined. Then from Maxwell’s curl equation for
H, given by (9.13b), we have

(9.17) -  
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(9.18)

Now, from Maxwell’s curl equation for E given by (9.13a), we have

(9.19)

(9.20)

We, however, have to rule out the terms in (9.20), since for small r these terms are
more predominant than the dependence required by (9.12b). Equation (9.20) will
then also be consistent with (9.16) from which we derived (9.18) and then (9.20). Thus,
we set

(9.21)

which gives us

(9.22a)

(9.22b)

Substituting (9.22a) and (9.22b) in (9.18) and (9.20), we then have

(9.23a) -  
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9.2 Radiation Resistance and Directivity 347

(9.23b)

These expressions for E and H satisfy both of Maxwell’s curl equations, reduce to
(9.12a) and (9.12b), respectively, for small , and they vary inversely with r
for large . They represent the complete electromagnetic field due to the
Hertzian dipole.

9.2 RADIATION RESISTANCE AND DIRECTIVITY

In the previous section, we derived the expressions for the complete electromagnetic
field due to the Hertzian dipole. These expressions look very complicated. Fortunately, it
is seldom necessary to work with the complete field expressions because one is often in-
terested in the field far from the dipole, which is governed predominantly by the terms
involving . We, however, had to derive the complete field in order to obtain the am-
plitude and phase of these terms relative to the amplitude and phase of the current in
the Hertzian dipole, since these terms alone do not satisfy Maxwell’s equations. Further-
more, by going through the exercise, we learned how to solve a difficult problem through
intuitive extension and reasoning based on previously gained knowledge.

Thus from (9.23a) and (9.23b), we find that for a Hertzian dipole of length dl ori-
ented along the z-axis and carrying current

(9.24)

the electric and magnetic fields at values of far from the dipole are given by

(9.25a)

(9.25b)

These fields are known as the radiation fields, since they are the components of the
total fields that contribute to the time-average radiated power away from the dipole
(see Problem 9.6). Before we discuss the nature of these fields, let us find out quantita-
tively what we mean by far from the dipole. To do this, we look at the expression for the
complete magnetic field given by (9.23b) and note that the ratio of the amplitudes of
the and terms is equal to . Hence for , or , the 
term is negligible compared to the term. Thus, even at a distance of a few wave-
lengths from the dipole, the fields are predominantly radiation fields.

Returning now to the expressions for the radiation fields given by (9.25a) and
(9.25b), we note that at any given point, (a) the electric field , the magnetic field

, and the direction of propagation (r) are mutually perpendicular, and (b) the ratio
of to is equal to , the intrinsic impedance of the medium, which are charac-
teristic of uniform plane waves. The phase of the field, however, is uniform over the
surfaces constant, that is, spherical surfaces centered at the dipole, whereasr =

hHfEu
(Hf)

(Eu)

1>r 1>r2r W l>2pbr W 11>br1>r1>r2

 H = -
bI0 dl sin u

4pr
 sin (vt - br) af 

 = -
hbI0 dl sin u

4pr
 sin (vt - br) au 

 E = -
b2I0 dl sin u

4pPvr
 sin (vt - br) au 

r

I = I0 cos vt

1>r1>r

r (br W 1)
r (br V 1)

 H =
I0 dl sin u

4p
 ccos (vt - br)

r2 
-
b sin (vt - br)

r
d af 
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the amplitude of the field is uniform over surfaces constant. Hence, the
fields are only locally uniform plane waves, that is, over any infinitesimal area normal
to the r-direction at a given point.

The Poynting vector due to the radiation fields is given by

(9.26)

By evaluating the surface integral of the Poynting vector over any surface enclosing
the dipole, we can find the power flow out of that surface, that is, the power radiated
by the dipole. For convenience in evaluating the surface integral, we choose the spher-
ical surface of radius r and centered at the dipole, as shown in Figure 9.4. Thus, noting
that the differential surface area on the spherical surface is ar or

ar, we obtain the instantaneous power radiated to be

(9.27)  =
2phI0

2 
3

 adl
l
b2

 sin2 (vt - br)

 =
hb2I0

2 (dl)2 
6p

 sin2 (vt - br)

 =
hb2I0

2 (dl)2 
8p

 sin2 (vt - br)L
p

u= 0
 sin3 u du

 = L
p

u= 0
 L

2p

f= 0
 
hb2I0

2 (dl)2 sin3 u
16p2 

 sin2 (vt - br) du df

 Prad = L
p

u= 0
 L

2p

f= 0
 P # r2 sin u du df ar

r2 sin u du df
(r du)(r sin u df)

 =
hb2I2

0 (dl)2 sin2 u
16p2r2 

 sin2 (vt - br) ar

 = Eu au : Hf af = EuHf ar

 P = E : H

(sin u)>r =

z

x

y

r du

r sin u df
P

H
E

FIGURE 9.4

For computing the power radiated
by the Hertzian dipole.
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9.2 Radiation Resistance and Directivity 349

The time-average power radiated by the dipole, that is, the average of over one
period of the current variation, is

(9.28)

We now define a quantity known as the radiation resistance of the antenna, denoted
by the symbol , as the value of a fictitious resistor that dissipates the same amount of
time-average power as that radiated by the antenna when a current of the same peak
amplitude as that in the antenna is passed through it. Recalling that the average power
dissipated in a resistor R when a current is passed through it is we note
from (9.28) that the radiation resistance of the Hertzian dipole is

(9.29)

For free space, and

(9.30)

As a numerical example, for equal to 0.01, Thus,
for a current of peak amplitude , the time-average radiated power is equal to 0.04 W.
This indicates that a Hertzian dipole of length is not a very effective radiator.

We note from (9.29) that the radiation resistance and hence the radiated power
are proportional to the square of the electrical length, that is, the physical length ex-
pressed in terms of wavelength, of the dipole. The result given by (9.29) is, however,
valid only for small values of since if is not small, the amplitude of the cur-
rent along the antenna can no longer be uniform and its variation must be taken into
account in deriving the radiation fields and hence the radiation resistance. We shall do
this in the following section for a half-wave dipole, that is, for a dipole of length equal
to 

Let us now examine the directional characteristics of the radiation from the
Hertzian dipole. We note from (9.25a) and (9.25b) that, for a constant r, the amplitude
of the fields is proportional to . Similarly, we note from (9.26) that, for a constant r,
the power density is proportional to . Thus, an observer wandering on the surface
of an imaginary sphere centered at the dipole views different amplitudes of the fields
and of the power density at different points on the surface. The situation is illustrated
in Figure 9.5(a) for the power density by attaching to different points on the spherical
surface vectors having lengths proportional to the Poynting vectors at those points. It
can be seen that the power density is largest for that is, in the plane normal tou = p>2,

sin2 u
sin u

l>2.

dl>ldl>l,
0.01l

1 A
Rrad = 80p2(0.01)2 = 0.08 Æ.(dl>l)

Rrad = 80p2 adl
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Rrad =
2ph
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 adl
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 b2

 Æ
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3
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350 Chapter 9 Antenna Basics

the axis of the dipole, and decreases continuously toward the axis of the dipole, be-
coming zero along the axis.

It is customary to depict the radiation characteristic by means of a radiation
pattern, as shown in Figure 9.5(b), which can be imagined to be obtained by shrinking
the radius of the spherical surface in Figure 9.5(a) to zero with the Poynting vectors
attached to it and then joining the tips of the Poynting vectors. Thus, the distance from

u ! 0

90 90

(a)

(b)

(c)

180

FIGURE 9.5

The directional characteristics of radiation from the Hertzian dipole.
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9.2 Radiation Resistance and Directivity 351

the dipole point to a point on the radiation pattern is proportional to the power density
in the direction of that point. Similarly, the radiation pattern for the fields can be drawn
as shown in Figure 9.5(c), based upon the dependence of the fields. In view of the
independence of the fields from , the patterns of Figure 9.5(b)–(c) are valid for any
plane containing the axis of the dipole. In fact, the three-dimensional radiation patterns
can be imagined to be the figures obtained by revolving these patterns about the dipole
axis. For a general case, the radiation may also depend on , and hence it will be neces-
sary to draw a radiation pattern for the plane. Here, this pattern is merely a cir-
cle centered at the dipole.

We now define a parameter known as the directivity of the antenna, denoted
by the symbol D, as the ratio of the maximum power density radiated by the antenna
to the average power density. To elaborate on the definition of D, imagine that we take
the power radiated by the antenna and distribute it equally in all directions by short-
ening some of the vectors in Figure 9.5(a) and lengthening the others so that they all
have equal lengths. The pattern then becomes nondirectional and the power density,
which is the same in all directions, will be less than the maximum power density of the
original pattern. Obviously, the more directional the radiation pattern of an antenna is,
the greater is the directivity.

From (9.26), we obtain the maximum power density radiated by the Hertzian
dipole to be

(9.31)

By dividing the radiated power given by (9.27) by the surface area of the sphere
of radius r, we obtain the average power density to be

(9.32)

Thus, the directivity of the Hertzian dipole is given by

(9.33)

To generalize the computation of directivity for an arbitrary radiation pattern, let
us consider

(9.34)Pr =
P0 sin2 (vt - br)

r2  f(u, f)

D =
[Pr]max

[Pr]av
= 1.5

[Pr]av =
Prad

4pr2 =
hb2I0

2 (dl)2

24p2r2  sin2 (vt - br)

4pr2

 =
hb2I0

2(dl)2

16p2r2  sin2 (vt - br)

 [Pr]max =
hb2I0

2(dl)2[sin2 u]max

16p2r2 
 sin2 (vt - br)

u = p>2 f

f
sin u
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where is a constant, and is the power density pattern. Then

(9.35)

Example 9.1

Let us compute the directivity corresponding to the power density pattern function

From (9.35),

The ratio of the power density radiated by the antenna as a function of direction
to the average power density is given by . This quantity is known as the
directive gain of the antenna.Another useful parameter is the power gain of the antenna,
which takes into account the ohmic power losses in the antenna. It is denoted by the
symbol G and is proportional to the directive gain, the proportionality factor being the
power efficiency of the antenna, which is the ratio of the power radiated by the antenna
to the power supplied to it by the source of excitation.
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9.3 Half-Wave Dipole 353

9.3 HALF-WAVE DIPOLE

In the previous section, we found the radiation fields due to a Hertzian dipole, which is
an elemental antenna of infinitesimal length. If we now have an antenna of any length
having a specified current distribution, we can divide it into a series of Hertzian dipoles
and by applying superposition can find the radiation fields for that antenna. We shall
illustrate this procedure in this section by considering the half-wave dipole, which is a
commonly used form of antenna.

The half-wave dipole is a center-fed, straight wire antenna of length L equal to
and having the current distribution

(9.36)

where the dipole is assumed to be oriented along the z-axis with its center at the origin,
as shown in Figure 9.6(a). As can be seen from Figure 9.6(a), the amplitude of the cur-
rent distribution varies cosinusoidally along the antenna with zeros at the ends and
maximum at the center. To see how this distribution comes about, the half-wave dipole
may be imagined to be the evolution of an open-circuited transmission line with the
conductors folded perpendicularly to the line at points from the end of the line.
The current standing wave pattern for an open-circuited line is shown in Figure 9.6(b).
It consists of zero current at the open circuit and maximum current at from the
open circuit, that is, at points a and . Hence, it can be seen that when the conductors
are folded perpendicularly to the line at a and , the half-wave dipole shown in
Figure 9.6(a) results.

a¿
a¿

l>4l>4

I(z) = I0 cos 
pz
L

 cos vt for - L
2

6 z 6 L
2

l>2

Amplitude
of Current
Distribution

z ! L
2

z ! "

I

I

z ! 0
a

a$

L
2

l

4

(a) (b)

FIGURE 9.6

(a) Half-wave dipole. (b) Open-circuited transmission line for illustrating the
evolution of the half-wave dipole.

Now, to find the radiation field due to the half-wave dipole, we divide it into a
number of Hertzian dipoles, each of length as shown in Figure 9.7. If we consider
one of these dipoles situated at distance from the origin, then from (9.36) the currentz¿

dz¿,
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in this dipole is . From (9.25a) and (9.25b), the radiation fields due
to this dipole at point P situated at distance from it are given by

(9.37a)

(9.37b)

where is the angle between the z-axis and the line from the current element to the
point P and is the unit vector perpendicular to that line, as shown in Figure 9.7. The
fields due to the entire current distribution of the half-wave dipole are then given by

(9.38a)

(9.38b)

where and are functions of z¿.au¿r¿, u¿,

 = -L
L>2
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FIGURE 9.7

For the determination of the radiation field due to the half-wave dipole.
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9.3 Half-Wave Dipole 355

For radiation fields, is at least equal to several wavelengths and hence L.
We can therefore set and since they do not vary significantly for

We can also set in the amplitude factors for the same reason,
but for in the phase factors we substitute since sin 

can vary appreciably over the range Thus, we have

where

(9.39a)

Similarly,

where

(9.39b)

The Poynting vector due to the radiation fields of the half-wave dipole is given by

(9.40)

The power radiated by the half-wave dipole is given by
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The time-average radiated power is

(9.42)

Thus, the radiation resistance of the half-wave dipole is

(9.43)

For free space,

(9.44)

Turning our attention now to the directional characteristics of the half-wave
dipole, we note from (9.39a) and (9.39b) that the radiation pattern for the fields is

whereas for the power density, it is .

These patterns, which are sketched in Figure 9.8(a)–(b), are slightly more directional
than the corresponding patterns for the Hertzian dipole. To find the directivity of the
half-wave dipole, we note from (9.40) that the maximum power density is
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4p2r2 sin2 avt - p
L

rb
 [Pr]max =

hI0
2

4p2r2 e cos2 [(p>2) cos u]

sin2 u
 f

max
 sin2 avt - p

L
rb

ccos2 ap
2

 cos ub dnsin2 uccos ap
2

 cos ub dnsin u

Rrad = 0.609 * 120 = 73 Æ

h = h0 = 120p Æ, and

Rrad =
0.609h
p

 Æ

 = 1
2

 I0
2 a0.609h

p
b

  8Prad9 =
0.609hI0

2

p
 hsin2 avt - p

L
rb i

(a)

(b)

FIGURE 9.8

Radiation patterns for (a) the fields and 
(b) the power density due to the half-wave dipole.
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The average power density obtained by dividing by is

(9.46)

Thus, the directivity of the half-wave dipole is given by

(9.47)

9.4 ANTENNA ARRAYS

In Section 4.5, we illustrated the principle of an antenna array by considering an array
of two parallel, infinite plane current sheets of uniform densities. We learned that by
appropriately choosing the spacing between the current sheets and the amplitudes and
phases of the current densities, a desired radiation characteristic can be obtained. The
infinite plane current sheet is, however, a hypothetical antenna for which the fields are
truly uniform plane waves propagating in the one dimension normal to the sheet. Now
that we have gained some knowledge of physical antennas, in this section we shall con-
sider arrays of such antennas.

The simplest array we can consider consists of two Hertzian dipoles, oriented
parallel to the z-axis and situated at points on the x-axis on either side of and equidis-
tant from the origin, as shown in Figure 9.9. We shall consider the amplitudes of the
currents in the two dipoles to be equal, but we shall allow a phase difference between
them. Thus, if and are the currents in the dipoles situated at and

, respectively, then

(9.48a)

(9.48b)

For simplicity, we shall consider a point P in the xz-plane and compute the field at that
point due to the array of the two dipoles. To do this, we note from (9.25a) that the elec-
tric field intensities at the point P due to the individual dipoles are given by

(9.49a)

(9.49b)

where , , and are as shown in Figure 9.9.au2
au1

,r1, r2,u2u1

 E2 = -
hbI0dl sin u2

4pr2
  sin avt - br2 - a

2
b  au2

 E1 = -
hbI0dl sin u1

4pr1
  sin avt - br1 + a

2
b  au1

 I2 = I0 cos avt - a
2
b

 I1 = I0 cos avt + a
2
b

(-d>2, 0, 0)
(d>2, 0, 0)I2(t)I1(t)
a

D =
[Pr]max

[Pr]av
= 1

0.609
= 1.642

[Pr]av =
0.609hI0

2

4p2r2  sin2 avt - p
L

rb
4pr2Prad 
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For that is, for points far from the array, which is the region of interest, we
can set and Also, we can set in the amplitude
factors, but for and in the phase factors, we substitute

(9.50a)

(9.50b)

where is the angle made by the line form the origin to P with the axis of the array,
that is, the x-axis, as shown in Figure 9.9. Thus we obtain the resultant field to be

(9.51)

Comparing (9.51) with the expression for the electric field at P due to a single
dipole situated at the origin, we note that the resultant field of the array is simply equal 

to the single dipole field multiplied by the factor , known as

the array factor. Thus the radiation pattern of the resultant field is given by the product of

sin , which is the radiation pattern of the single dipole field, and ,` cos a bd cos c + a
2

b `u

2 cos a bd cos c + a
2

b
 = -

2hbI0 dl sin u

4pr
 cos a bd cos c + a

2
b  sin (vt - br) au 

 +  sin avt - br -
bd
2

  cos c - a
2
b dau

 = -
hbI0 dl sin u

4pr
 csin avt - br +

bd
2

  cos c + a
2
b E = E1 + E2

c

 r2 « r + d
2

  cos c

 r1 « r - d
2

  cos c

r2r1

r1 « r2 « rau1
« au2

« au.u1 « u2 « u
r W d,

z P

x

I2

u2
u1u

c

I1

r2

r1

au2

au1au

r

d
2

d
2

FIGURE 9.9

For computing the radiation field due to an array of two Hertzian
dipoles.
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9.4 Antenna Arrays 359

which is the radiation pattern of the array if the antennas were  isotropic. We shall call
these three patterns the resultant pattern, the unit pattern, and the group pattern, respec-
tively. It is apparent that the group pattern is independent of the nature of the individual
antennas as long as they have the same spacing and carry currents having the same rela-
tive amplitudes and phase differences. It can also be seen that the group pattern is the
same in any plane containing the axis of the array. In other words, the three-dimensional
group pattern is simply the pattern obtained by revolving the group pattern in the
xz-plane about the x-axis, that is, the axis of the array.

Example 9.2

For the array of two antennas carrying currents having equal amplitudes, let us consider several
pairs of d and ! and investigate the group patterns.

Case 1: The group pattern is

This is shown sketched in Figure 9.10(a). It has maxima perpendicular to the axis of the array
and nulls along the axis of the array. Such a pattern is known as a broadside pattern.

Case 2: . The group pattern is

This is shown sketched in Figure 9.10(b). It has maxima along the axis of the array and nulls
perpendicular to the axis of the array. Such a pattern is known as an endfire pattern.

` cos a bl
4

  cos c + p
2

 b ` = ` sin ap
2

  cos cb `
d = l>2, a = p

` cos a bl
4

  cos cb `  =  cos ap
2

  cos cb
d = l>2, a = 0.

(a) (b) (c) (d)

FIGURE 9.10

Group patterns for an array of two antennas carrying currents of equal amplitude
for (a) (b) (c) and
(d) d = l, a = 0.

d = l>4, a = -p>2,d = l>2, a = p,d = l>2, a = 0,

Case 3: The group pattern is

` cos a bl
8

 cos c - p
4
b ` = cos ap

4
 cos c - p

4
b

d = l>4, a = -p>2.
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360 Chapter 9 Antenna Basics

This is shown sketched in Figure 9.10(c). It has a maximum along and null along 
Again, this is an endfire pattern, but directed to one side. This case is the same as the one con-
sidered in Section 4.5.

Case 4: The group pattern is

This is shown sketched in Figure 9.10(d). It has maxima along and
nulls along 

Proceeding further, we can obtain the resultant pattern for an array of two Hertzian dipoles
by multiplying the unit pattern by the group pattern. Thus, recalling that the unit pattern for the
Hertzian dipole is sin in the plane of the dipole and considering values of and 0 for d and 
respectively, for which the group pattern is given in Figure 9.10(a), we obtain the resultant pattern
in the xz-plane, as shown in Figure 9.11(a). In the xy-plane, that is, the plane normal to the axis
of the dipole, the unit pattern is a circle and hence the resultant pattern is the same as the group
pattern, as illustrated in Figure 9.11(b).

a,l>2u

c = 60°, 120°, 240°, and 300°.
and 270°c = 0°, 90°, 180°,

` cos a bl
2

 cos cb ` = ƒ  cos(p cos c) ƒ

d = l, a = 0.

c = p.c = 0

!

(a)

%

!

(b)

%FIGURE 9.11

Determination of the resultant
pattern of an antenna array by
multiplication of unit and group
patterns.

Example 9.3

The procedure of multiplication of the unit and group patterns to obtain the resultant pattern
illustrated in Example 9.2 can be extended to an array containing any number of antennas. Let
us, for example, consider a linear array of four isotropic antennas spaced apart and fed in
phase, as shown in Figure 9.12(a), and obtain the resultant pattern.

To obtain the resultant pattern of the four-element array, we replace it by a two-element
array of spacing , as shown in Figure 9.12(b), in which each element forms a unit representing a
two-element array of spacing . The unit pattern is then the pattern shown in Figure 9.10(a).
The group pattern, which is the pattern of two isotropic radiators having and is the
pattern given in Figure 9.10(d). The resultant pattern of the four-element array is the product of
these two patterns, as illustrated in Figure 9.12(c). If the individual elements of the four-element
array are not isotropic, then this pattern becomes the group pattern for the determination of the
new resultant pattern.

a = 0,d = l
l>2l

l>2
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l

2
l

l

2
l

2

% !

(a)

(b)

(c)

FIGURE 9.12

Determination of the resultant
pattern for a linear array of four
isotropic antennas.

9.5 IMAGE ANTENNAS

Thus far, we have considered the antennas to be situated in an unbounded medium so
that the waves radiate in all directions from the antenna without giving rise to reflec-
tions from any obstacles. In practice, however, we have to consider the effect of the
ground even if no other obstacles are present. To do this, it is reasonable to assume that
the ground is a perfect conductor. Hence, in this section we shall consider antennas sit-
uated above an infinite plane, perfect-conductor surface and introduce the concept of
image sources, a technique that is also useful in solving static field problems.

Thus, let us consider a Hertzian dipole oriented vertically and located at a height
h above a plane, perfect-conductor surface, as shown in Figure 9.13(a). Since no waves
can penetrate into the perfect conductor, as we learned in Section 5.5, the waves radi-
ated from the dipole onto the conductor give rise to reflected waves, as shown in
Figure 9.13(a) for two directions of incidence. For a given incident wave onto the con-
ductor surface, the angle of reflection is equal to the angle of incidence, as can be seen
intuitively from the following reasons: (a) The reflected wave must propagate away
from the conductor surface, (b) the apparent wavelengths of the incident and reflected
waves parallel to the conductor surface must be equal, and (c) the tangential compo-
nent of the resultant electric field on the conductor surface must be zero, which also
determines the polarity of the reflected wave electric field.

If we now produce the directions of propagation of the two reflected waves back-
ward, they meet at a point which is directly beneath the dipole and at the same distance
h below the conductor surface as the dipole is above it. Thus, the reflected waves
appear to be originating from an antenna, which is the image of the actual antenna
about the conductor surface. This image antenna must also be a vertical antenna since
in order for the boundary condition of zero tangential electric field to be satisfied at all
points on the conductor surface, the image antenna must have the same radiation pat-
tern as that of the actual antenna, as shown in Figure 9.13(a). In particular, the current
in the image antenna must be directed in the same sense as that in the actual antenna
to be consistent with the polarity of the reflected wave electric field. It can therefore be
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362 Chapter 9 Antenna Basics

seen that the charges associated with the image dipole have signs opposite to those of
the corresponding charges associated with the actual dipole.

A similar reasoning can be applied to the case of a horizontal dipole above a per-
fect conductor surface, as shown in Figure 9.13(b). Here it can be seen that the current
in the image antenna is directed in the opposite sense to that in the actual antenna.
This again results in charges associated with the image dipole having signs opposite to
those of the corresponding charges associated with the actual dipole. In fact, this is
always the case.

#

"

#

"

h

h

(a)

#

h

h

(b)

"

"
#

FIGURE 9.13

For illustrating the concept of image antennas. (a) Vertical Hertzian dipole and
(b) horizontal Hertzian dipole above a plane, perfect-conductor surface.
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% !

FIGURE 9.14

Determination of radiation pattern in the vertical plane for a vertical Hertzian dipole
above a plane, perfect-conductor surface.

From the foregoing discussion it can be seen that the field due to an antenna
in the presence of the conductor is the same as the resultant field of the array formed
by the actual antenna and the image antenna. There is, of course, no field inside the
conductor. The image antenna is only a virtual antenna that seves to simplify the field
determination outside the conductor. The simplicity arises from the fact that we can
use the knowledge gained on antenna arrays in the previous section to determine the ra-
diation pattern. Thus, for example, for a vertical Hertzian dipole at a height of 
above the conductor surface, the radiation pattern in the vertical plane is the product
of the unit pattern, which is the radiation pattern of the single dipole in the plane of its
axis, and the group pattern corresponding to an array of two isotropic radiators spaced

apart and fed in phase. This multiplication and the resultant pattern are illustrated in
Figure 9.14. The radiation patterns for the case of the horizontal dipole can be ob-
tained in a similar manner.

l

l>2

9.6 RECEIVING PROPERTIES

Thus far, we have considered the radiating, or transmitting, properties of antennas. For-
tunately, it is not necessary to repeat all the derivations for the discussion of the receiv-
ing properties of antennas, since reciprocity dictates that the receiving pattern of an
antenna be the same as its transmitting pattern. To illustrate this in simple terms with-
out going through the general proof of reciprocity, let us consider a Hertzian dipole sit-
uated at the origin and directed along the z-axis, as shown in Figure 9.15. We know that
the radiation pattern is then given by sin and that the polarization of the radiated field
is such that the electric field is in the plane of the dipole axis.

To investigate the receiving properties of the Hertzian dipole, we assume that it is
situated in the radiation field of a second antenna so that the incoming waves are essen-
tially uniform plane waves. Thus, let us consider a uniform plane wave with its electric
field E in the plane of the dipole and incident on the dipole at an angle with its axis,
as shown in Figure 9.15. Then the component of the incident electric field parallel to
the dipole is E sin . Since the dipole is infinitesimal in length, the voltage induced in the
dipole, which is the line integral of the electric field intensity along the length of 
the dipole, is simply equal to (E sin ) dl or to E dl sin . This indicates that for a given
amplitude of the incident wave field, the induced voltage in the dipole is proportional to
sin . Furthermore, for an incident uniform plane wave having its electric field normal tou

uu

u

u

u
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364 Chapter 9 Antenna Basics

the dipole axis, the voltage induced in the dipole is zero, that is, the dipole does not
respond to polarization with electric field normal to the plane of its axis. These proper-
ties are reciprocal to the transmitting properties of the dipole. Since an arbitrary anten-
na can be decomposed into a series of Hertzian dipoles, it then follows that reciprocity
holds for an arbitrary antenna. Thus, any transmitting antenna can be used as a receiv-
ing antenna, and vice versa.

We shall now briefly consider the loop antenna, a common type of receiving an-
tenna. A simple form of loop antenna consists of a circular loop of wire with a pair of
terminals. We shall orient the circular loop antenna with its axis aligned with the z-axis,
as shown in Figure 9.16, and we shall assume that it is electrically short, that is, its
dimensions are small compared to the wavelength of the incident wave, so that the spa-
tial variation of the field over the area of the loop is negligible. For a uniform plane
wave incident on the loop, we can find the voltage induced in the loop, that is, the line
integral of the electric field intensity around the loop, by using Faraday’s law. Thus, if H

y

z

x

u

A

H

FIGURE 9.16

A circular loop antenna.

z

x

y

E

dl

u

FIGURE 9.15

For investigating the receiving properties 
of a Hertzian dipole.
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9.6 Receiving Properties 365

is the magnetic field intensity associated with the wave, the magnitude of the induced
voltage is given by

(9.52)

where A is the area of the loop. Hence the loop does not respond to a wave having its
magnetic field entirely parallel to the plane of the loop, that is, normal to the axis of the
loop.

For a wave having its magnetic field in the plane of the axis of the loop, and inci-
dent on the loop at an angle with its axis, as shown in Figure 9.16, and
hence the induced voltage has a magnitude

(9.53)

Thus, the receiving pattern of the loop antenna is given by , same as that of a
Hertzian dipole aligned with the axis of the loop antenna. The loop antenna, however,
responds best to polarization with magnetic field in the plane of its axis, whereas the
Hertzian dipole responds best to polarization with electric field in the plane of its axis.

Example 9.4

The directional properties of a receiving antenna can be used to locate the source of an incident
signal. To illustrate the principle, let us consider two vertical loop antennas, numbered 1 and 2,
situated on the x-axis at and , respectively. By rotating the loop antennas
about the vertical (z-axis), it is found that no (or minimum) signal is induced in antenna 1 when
it is in the xz-plane and in antenna 2 when it is in a plane making an angle of with the axis, as
shown by the top view in Figure 9.17. Let us find the location of the source of the signal.

5°

x = 200 mx = 0 m

sin u

ƒV ƒ = mA ` 0H
0t
`  sin u

Hz = H sin u,u

 = mA ` 0Hz

0t
`

 = ` -m d
dt

 Larea of 
the loop

 H # dS az `
 ƒV ƒ = ` -  

d
dt

 Larea of 
the loop

 B # dS `

2

1

x

y

200 m

5

FIGURE 9.17

Top view of two loop antennas
used to locate the source of an
incident signal.
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#
"

ZA

ZL

Voc
FIGURE 9.18

Equivalent circuit for a receiving
antenna connected to a load.

Since the receiving properties of a loop antenna are such that no signal is induced for a
wave arriving along its axis, the source of the signal is located at the intersection of the axes of
the two loops when they are oriented so as to receive no (or minimum) signal. From simple
geometrical considerations, the source of the signal is therefore located on the y-axis at

or 2.286 km.

A useful parameter associated with the receiving properties of an antenna is the ef-
fective area, denoted and defined as the ratio of the time-average power delivered to
a matched load connected to the antenna to the time-average power density of the ap-
propriately polarized incident wave at the antenna. The matched condition is achieved
when the load impedance is equal to the complex conjugate of the antenna impedance.

Let us consider the Hertzian dipole and derive the expression for its effective
area. First, with reference to the equivalent circuit shown in Figure 9.18, where 
is the open-circuit voltage induced between the terminals of the antenna,

is the antenna impedance, and is the load impedance, we
note that the time-average power delivered to the matched load is

(9.54)

For a Hertzian dipole of length l, the open-circuit voltage is

(9.55)

where is the electric field of an incident wave linearly polarized parallel to the dipole
axis. Substituting (9.55) into (9.54), we get

(9.56)

For a lossless dipole, so that

(9.57)

The time-average power density at the antenna is

(9.58)
ƒE– ƒ2
2h0

=
ƒE– ƒ2

240p
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ƒE– ƒ2l2

640p2

RA = Rrad = 80p21l>l22,PR =
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Thus, the effective area is

(9.59)

or

(9.60)

In practice, is greater than due to losses in the antenna, and the effective area
is less than that given by (9.60). Rewriting (9.59) as

and recalling that the directivity of the Hertzian dipole is 1.5, we observe that

(9.61)

Although we have obtained this result for a Hertzian dipole, it can be shown that it
holds for any antenna.

We shall now derive the Friis transmission formula, an important equation in mak-
ing communication link calculations. To do this, let us consider two antennas, one trans-
mitting and the other receiving, separated by a distance d. Let us assume that the
antennas are oriented and polarization matched so as to maximize the received signal.
Then if is the transmitter power radiated by the transmitting antenna, the power
density at the receiving antenna is where is the directivity of the
transmitting antenna. The power received by a matched load connected to the terminals
of the receiving antenna is then given by

(9.62)

where is the effective area of the receiving antenna. Thus, the ratio of to is
given by

(9.63)

Denoting to be the effective area of the transmitting antenna if it were receiving,
and using (9.61), we obtain

(9.64)

Equation (9.64) is the Friis transmission formula. It gives the maximum value of 
for a given d and for a given pair of transmitting and receiving antennas. If the antennas
are not oriented to receive the maximum signal, or if a polarization mismatch exists, or
if the receiving antenna is not matched to its load, would be less than that given
by (9.64). Losses in the antennas would also decrease the value of PR>PT.

PR>PT

PR>PT
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AeTAeR
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PTPRAeR
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2

4p
D

Ae = 1.5 * l
2

4p

Rrad RA

Ae = 0.1194l2

Ae =
ƒE– ƒ2l2>640p2

ƒE– ƒ2>240p
= 3l2

8p
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An alternative formula to (9.64) is obtained by substituting for in (9.63) in
terms of the directivity of the receiving antenna if it were used for transmitting.
Thus, we obtain

(9.65)

SUMMARY

In this chapter we studied the principles of antennas. We first introduced the Hertzian
dipole, which is an elemental wire antenna, and derived the complete electromagnetic
field due to the Hertzian dipole by employing an intuitive approach based on the
knowledge gained in the previous chapters. For a Hertzian dipole of length dl, oriented
along the z-axis at the origin, and carrying current

we found the complete electromagnetic field to be given by

where is the phase constant.
For or for the only important terms in the complete field

expressions are the terms, since the remaining terms are negligible compared to
these terms. Thus for the Hertzian dipole fields are given by

where is the intrinsic impedance of the medium. These fields, known as the
radiation fields, correspond to locally uniform plane waves radiating away from the
dipole and, in fact, are the only components of the complete fields contributing to
the time-average radiated power. We found the time-average power radiated by the
Hertzian dipole to be given by

and identified the quantity inside the brackets to be its radiation resistance. The radia-
tion resistance, of an antenna is the value of a fictitious resistor that will dissipateRrad,
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2
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the same amount of time-average power as that radiated by the antenna when a cur-
rent of the same peak amplitude as that in the antenna is passed through it. Thus, for
the Hertzian dipole,

We then examined the directional characteristics of the radiation fields of the Hertzian
dipole, as indicated by the factor in the field expressions and hence by the factor

for the power density. We discussed the radiation patterns and introduced the
concept of the directivity of an antenna. The directivity, D, of an antenna is defined as
the ratio of the maximum power density radiated by the antenna to the average power
density. For the Hertzian dipole,

For the general case of a power density pattern the directivity is given by

As an illustration of obtaining the radiation fields due to a wire antenna of arbi-
trary length and arbitrary current distribution by representing it as a series of Hertzian
dipoles and using superposition, we considered the example of a half-wave dipole and
derived its radiation fields. We found that for a center-fed half-wave dipole of length

oriented along the z-axis with its center at the origin, and having the current
distribution given by

the radiation fields are

From these, we sketched the radiation patterns and computed the radiation resistance
and the directivity of the half-wave dipole to be

We discussed antenna arrays and introduced the technique of obtaining the
resultant radiation pattern of an array by multiplication of the unit and the group pat-
terns. For an array of two antennas having the spacing d and fed with currents of equal

 D = 1.642
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amplitude but differing in phase by we found the group pattern for the fields to be
where is the angle measured from the axis of the array, and

we investigated the group patterns for several pairs of values of d and For example,
for and the pattern corresponds to maximum radiation broadside to
the axis of the array,whereas for and the pattern corresponds to maximum
radiation endfire to the axis of the array.

To take into account the effect of ground on antennas, we introduced the concept
of an image antenna in a perfect conductor and discussed the application of the array
techniques in conjunction with the actual and the image antennas to obtain the radia-
tion pattern of the actual antenna in the presence of the ground.

Finally, we discussed receiving properties of antennas. In particular, (1) we dis-
cussed the reciprocity between the receiving and radiating properties of an antenna by
considering the simple case of a Hertzian dipole, (2) we considered the loop antenna
and illustrated the application of its directional properties for locating the source of a
radio signal, and (3) we introduced the effective area concept and derived the Friis
transmission formula.

a = p,d = l>2a = 0,d = l>2 a.
cƒ cos [1bd cos c + a2>2] ƒ ,
a,

REVIEW QUESTIONS

9.1. What is a Hertzian dipole?
9.2. Discuss the time-variations of the current and charges associated with the Hertzian

dipole.
9.3. Briefly describe the spherical coordinate system.
9.4. Explain why it is simpler to use the spherical coordinate system to find the fields due to

the Hertzian dipole.
9.5. Discuss the reasoning associated with the intuitive extension of the fields due to the

time-varying current and charges of the Hertzian dipole based on time-varying electro-
magnetic phenomena.

9.6. Explain the reason for the inconsistency with Maxwell’s equations of the intuitively
derived fields due to the time-varying current and charges of the Hertzian dipole.

9.7. Briefly outline the reasoning used for the removal of the inconsistency with Maxwell’s
equations of the intuitively derived fields due to the Hertzian dipole.

9.8. Discuss the characteristics of the complete electromagnetic field due to the Hertzian
dipole.

9.9. Consult an appropriate reference book and compare the procedure used for obtaining
the electromagnetic field due to the Hertzian dipole with the procedure used here.

9.10. What are radiation fields? Why are they important?
9.11. Discuss the characteristics of the radiation fields.
9.12. Define the radiation resistance of an antenna.
9.13. Why is the expression for the radiation resistance of a Hertzian dipole not valid for a

linear antenna of any length?
9.14. Explain why power lines are not effective radiators.
9.15. What is a radiation pattern?
9.16. Discuss the radiation pattern for the power density due to the Hertzian dipole.
9.17. Define the directivity of an antenna. What is the directivity of a Hertzian dipole?

M09_RAO3333_1_SE_CHO9.QXD  4/9/08  2:40 PM  Page 370



Problems 371

9.18. What is the directivity of a fictitious antenna that radiates equally in all directions into
one hemisphere?

9.19. How do you find the radiation fields due to an antenna of arbitrary length and arbitrary
current distribution?

9.20. Discuss the evolution of the half-wave dipole from an open-circuited transmission line.
9.21. Justify the approximations involved in evaluating the integrals in the determination of

the radiation fields due to the half-wave dipole.
9.22. What are the values of the radiation resistance and the directivity for a half-wave

dipole?
9.23. What is an antenna array?
9.24. Justify the approximations involved in the determination of the resultant field of an

array of two antennas.
9.25. Why is it that the distances and in the phase factors in equations (8.47a) and

(8.47b) cannot be set equal to r, but the same quantities in the amplitude factors can be
set equal to r?

9.26. What is an array factor? Provide a physical explanation for the array factor.
9.27. Discuss the concept of unit and group patterns and their multiplication to obtain the

resultant pattern of an array.
9.28. Distinguish between broadside and endfire radiation patterns.
9.29. Discuss the concept of an image antenna to find the field of an antenna in the vicinity of

a perfect conductor.
9.30. What determines the sense of the current flow in an image antenna relative to that in

the actual antenna?
9.31. How does the concept of an image antenna simplify the determination of the radiation

pattern of an antenna above a perfect-conductor surface?
9.32. Discuss the reciprocity associated with the transmitting and receiving properties of an

antenna. Can you think of a situation in which reciprocity does not hold?
9.33. What is the receiving pattern of a loop antenna?
9.34. How should you orient a loop antenna to receive (a) a maximum signal and (b) a mini-

mum signal?
9.35. Discuss the application of the directional receiving properties of a loop antenna in the

location of the source of a radio signal.
9.36. How is the effective area of a receiving antenna defined?
9.37. Outline the derivation of the expression for the effective area of a Hertzian dipole.
9.38. Discuss the derivation of the Friis transmission formula.

r2r1

PROBLEMS

9.1. The electric dipole moment associated with a Hertzian dipole of length 0.1 m is given by

Find the current in the dipole.
9.2. Evaluate the curl of E given by equation (9.12a) and show that it is not equal to 

where H is given by equation (9.12b).
-m0H

 0t
 ,

p = 10-9  sin 2p * 107 t az  C-m
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372 Chapter 9 Antenna Basics

9.3. Show that in the limit the complete field expressions given by equations (9.23a)
and (9.23b) tend to equations (9.12a) and (9.12b), respectively.

9.4. Show that the radiation fields given by equations (9.25a) and (9.25b) do not by them-
selves satisfy both of Maxwell’s curl equations.

9.5. Find the value of r at which the amplitude of the radiation field term in equation (9.23a)
is equal to the resultant amplitude of the remaining two terms in the -component.

9.6. Obtain the Poynting vector corresponding to the complete electromagnetic field due to
the Hertzian dipole and show that the and terms do not contribute to the time-
average power flow from the dipole.

9.7. A straight wire of length 1 m situated in free space carries a uniform current
A. (a) Calculate the amplitude of the electric field intensity at a dis-

tance of 10 km in a direction at right angle to the wire. (b) Calculate the radiation resis-
tance and the time-average power radiated by the wire.

9.8. Compute the radiation resistance per kilometer length of a straight power-line wire.
Comment on the effectiveness of the power line as a radiator.

9.9. Find the time-average power required to be radiated by a Hertzian dipole in order to
produce an electric field intensity of peak amplitude 0.01 V/m at a distance of 1 km
broadside to the dipole.

9.10. A Hertzian dipole situated at the origin and oriented along the x-axis carries a current
A second Hertzian dipole, having the same length and also situated at

the origin but oriented along the z-axis, carries a current Find the polari-
zation of the radiated electric field at (a) a point on the x-axis, (b) a point on the z-axis,
(c) a point on the y-axis, and (d) a point on the line 

9.11. Find the ratio of the currents in two antennas having directivities and and radia-
tion resistances and for which the maximum radiated power densities are
equal.

9.12. The radiation pattern for the power density of an antenna located at the origin is depen-
dent on in the manner . Find the directivity of the antenna.

9.13. The radiation pattern for the power density of an antenna located at the origin is depen-
dent on in the manner

Find the directivity of the antenna.
9.14. In Figure 9.7, let , and investigate the variations of and for

for (a) a point in the xy-plane at km and (b) a point on the
z-axis at km.

9.15. By dividing the interval into nine equal parts, numerically compute the
value of

9.16. Complete the missing steps in the evaluation of the integral in equation (9.39a).
9.17. Find the time-average power required to be radiated by a half-wave dipole in order to

produce an electric field intensity of peak amplitude 0.01 V/m at a distance of 1 km
broadside to the dipole.

L
p>2
u = 0

  
cos2 [(p>2) cos u]

sin u
 du

0 6 u 6 p>2r = 1
r = 1-L>2 6 z¿ 6 L>2 pr¿>Lr¿L = 2 m

f(u, f) = e csc2 u  for p>6 … u … p>2
0  otherwise

 

u

sin4 uu

Rrad 2Rrad 1

D2D1

x = y, z = 0.

I2 = I0 sin vt.
I1 = I0 cos vt.

10 cos 4p * 106t

1>r21>r3

u

v: 0,
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9.18. Compare the correct value of the radiation resistance of the half-wave dipole with the
incorrect value that would result from using the expression for the radiation resistance
of the Hertzian dipole.

9.19. A short dipole is a center-fed straight wire antenna having a length that is small com-
pared to a wavelength. The amplitude of the current distribution can then be approxi-
mated as decreasing linearly from a maximum at the center to zero at the ends. Thus, for
a short dipole of length L lying along the z-axis between and , the
current distribution is given by

(a) Obtain the radiation fields of the short dipole. (b) Find the radiation resistance and
the directivity of the short dipole.

9.20. For the array of two antennas of Example 9.2, find and sketch the group patterns for
(a) and (b) 

9.21. For the array of two antennas of Example 9.2, having , find the value of for
which the maxima of the group pattern are directed along , and then sketch
the group pattern.

9.22. Obtain the resultant pattern for a linear array of eight isotropic antennas, spaced 
apart, carrying equal currents, and fed in phase.

9.23. Obtain the resultant pattern for a linear array of three isotropic antennas, spaced 
apart, carrying unequal currents in the ratio 1 : 2 : 1, and fed in phase.

9.24. For the array of two Hertzian dipoles of Figure 9.9, find and sketch the resultant pattern
in the xz-plane for and 

9.25. For the array of two Hertzian dipoles of Figure 9.9, find and sketch the resultant pattern
in the xz-plane for and 

9.26. For a horizontal Hertzian dipole at a height above a plane, perfect-conductor sur-
face, find and sketch the radiation pattern in (a) the vertical plane perpendicular to the
axis of the antenna and (b) the vertical plane containing the axis of the antenna.

9.27. For a vertical antenna of length above a plane, perfect-conductor surface, find
(a) the radiation pattern in the vertical plane and (b) the directivity.

9.28. A Hertzian dipole is situated parallel to a corner reflector, which is an arrangement of
two plane, perfect conductors at right angles to each other, as shown by the cross-
sectional view in Figure 9.19. (a) Locate the image antennas required to satisfy the
boundary conditions on the corner reflector surface. (b) Find and sketch the radiation
pattern in the cross-sectional plane.

l>4
l>4a = -p>2.d = l>4 a = p.d = l>2

l>2l>2
c = ;60°

ad = l>4d = 2l, a = 0.d = l>4, a = p>2

I(z) = d I0a1 + 2z
 L
b  cos vt  for  - L

 2
 6 z 6 0

 I0a1 - 2z
 L
b  cos vt  for  0 6 z 6 L

 2
 

z = L>2z = -L>2

l_
4

l_
4

Hertzian
Dipole

FIGURE 9.19

For Problem 9.28.
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374 Chapter 9 Antenna Basics

9.29. If the Hertzian dipole in Figure 9.19 is situated at a distance from the corner and
equidistant from the two planes, find the ratio of the radiation field at a point broadside
to the dipole and away from the corner to the radiation field in the absence of the corner
reflector.

9.30. An arrangement of two identical Hertzian dipoles situated at the origin and oriented
along the x- and y-axes, known as the turnstile antenna, is used for receiving circularly
polarized signals arriving along the z-axis. Determine how you would combine the volt-
ages induced in the two dipoles so that the turnstile antenna is responsive to circular
polarization rotating in the clockwise sense as viewed by the antenna but not to that of
the counterclockwise sense of rotation.

9.31. A vertical loop antenna of area is situated at a distance of 10 km from a vertical
wire antenna of length above a perfectly conducting ground see
Problem 9.27) radiating at 2 MHz. The loop antenna is oriented so as to maximize the
signal induced in it. For a time-average radiated power of 10 kW, find the amplitude of
the voltage induced in the loop antenna.

9.32. An interferometer consists of an array of two identical antennas with spacing d.Show that
for a uniform plane wave incident on the array at an angle to the axis of the array, as
shown in Figure 9.20, the phase difference between the voltage induced in antenna 1
and the voltage induced in antenna 2 is where is the wavelength of the
incident wave. For and for find all possible values of . Take into
account the fact that the phase measurement is ambiguous by the amount where n
is an integer.

;2np,
c¢f = 30°,d = 2l

l(2pd>l) cos c,
¢f

c

(directivity = 3.28;l>4 1 m2

l>2

2 1
d

cFIGURE 9.20

For Problem 9.32.

9.33. A communication link at a frequency of 30 MHz uses a half-wave dipole for the trans-
mitting antenna and a small loop (directivity equal to 1.5) for the receiving antenna,
involving a distance of 100 km. The antennas are oriented so as to receive maximum sig-
nal and the receiving antenna is matched to its load. If the received time-average power
is to be , find the minimum required value of the maximum amplitude of the
current with which the transmitting antenna has to be excited. Assume the antennas to
be lossless.

I01 mW
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Supplementary Topics

In Chapter 1, we learned the basic mathematical tools and physical concepts of vectors
and fields. In Chapters 2 and 3, we learned the fundamental laws of electromagnetics,
namely, Maxwell’s equations, first in integral form and then in differential form. Then
in Chapters 4 through 9, we extended our study to the fundamental electromagnetic
concepts and phenomena, as relevant to electrical and computer engineering. These
comprised the propagation, transmission, and radiation of electromagnetic waves, as
well as the thread of statics-quasistatics-waves to bring out the frequency behavior of
physical structures.

This final chapter is devoted to six independent topics, each one based on, and
hence supplementary to, one or more of Chapters 4 through 9. The six topics can be
studied independently following the respective chapters on which they are based.
These supplementary topics, although independent of each other, have the common
goal of extending the knowledge gained in the corresponding previous chapter(s) for
the purpose of illustrating a concept, phenomenon, or application.

10.1 WAVE PROPAGATION IN IONIZED MEDIUM

In Chapter 4, we studied uniform plane wave propagation in free space. In this section,
we shall extend the discussion to wave propagation in ionized medium. An example of
ionized medium is the earth’s ionosphere, which is a region of the upper atmosphere
extending from approximately 50 km to more than 1000 km above the earth. In this
region, the constituent gases are ionized, mostly because of ultraviolet radiation from
the sun, thereby resulting in the production of positive ions and electrons that are free to
move under the influence of the fields of a wave incident upon the medium. The positive
ions are, however, heavy compared to electrons and hence they are relatively immobile.
The electron motion produces a current that influences the wave propagation.

In fact, in Section 1.5 we considered the motion of a cloud of electrons of uniform
density under the influence of a time-varying electric field

(10.1)E = E0 cos vt ax

N

375

10
CHAPTER
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376 Chapter 10 Supplementary Topics

and found that the resulting current density is given by

(10.2)

where and are the electronic charge and mass, respectively. This result is based on
the mechanism of continuous acceleration of the electrons by the force due to the
applied electric field. In the case of the ionized medium, the electron motion is, however,
impeded by the collisions of the electrons with the heavy particles and other electrons.
We shall ignore these collisions as well as the negligible influence of the magnetic field
associated with the wave.

Considering uniform plane wave propagation in the -direction in an unbounded
ionized medium, and with the electric field oriented in the -direction, we then have

(10.3a)

(10.3b)

Differentiating (10.3a) with respect to and then substituting for from (10.3b),
we obtain the wave equation

(10.4)

Substituting

(10.5)

corresponding to the uniform plane wave solution into (10.4) and simplifying, we get

Thus, the phase constant for propagation in the ionized medium is given by

(10.6)b = v Am0P0a1 - Ne2

mP0v
2 b

 = v2m0P0a1 - Ne2

mP0v
2 b

 b2 = v2m0P0 -
m0Ne2

m

Ex = E0 cos (vt - bz)

 =
m0Ne2

m
Ex + m0P0

02Ex

0t2

 
02Ex

0z2 = -m0 
0
0t

 c - Ne2

m LEx dt - P0
0Ex

0t
d

0Hy >0zz

0Hy

0z
= -Jx -

0Dx

0t
= - Ne2

m LEx dt - P0
0Ex

0t

0Ex

0z
= -

0By

0t
= -m0

0Hy

0t

x
z

me

J= Ne2

mv
E0 sin vt ax = Ne2

m LE dt
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10.1 Wave Propagation in Ionized Medium 377

This result indicates that the ionized medium behaves as though the permittivity of
free space is modified by the multiplying factor . We may therefore
write

(10.7)

where

(10.8)

is the effective permittivity of the ionized medium. We note that for 
and the medium behaves just as free space. This is to be expected since (10.2) indicates
that for . As decreases from becomes less and less until for 
equal to becomes zero. Hence for , is positive,
is real, and the solution for the electric field remains to be that of a propagating wave.
For , is negative, becomes imaginary, and the solution for the
electric field corresponds to no propagation.

Thus, waves of frequency propagate in the ionized medium
and waves of frequency do not propagate. The quantity

is known as the plasma frequency and is denoted by the symbol, .
Substituting values for , , and , we get

(10.9)

where is in electrons per meter cubed. We can now write as

(10.10)

Proceeding further, we obtain the phase velocity for the propagating range of frequen-
cies, that is, for , to be

(10.11)

where is the velocity of light in free space. From (10. 11), we observe that
and is a function of the wave frequency. The fact that is not a violation of

the principle of relativity, since the dispersive nature of the medium resulting from the
dependence of upon ensures that information always travels with a velocity less
than . The topic of dispersion is discussed in Section 8.3.

Toapplywhatwehavelearnedaboveconcerningpropagationinanionizedmedium
to the case of the earth’s ionosphere, we first provide a brief description of the ionos-
phere.A typical distribution of the ionospheric electron density versus height above the
earth is shown in Figure 10.1. The electron density exists in the form of several layers
known as , , and layers in which the ionization changes with the hour of the day, theFED

c
fvp

vp 7 cvp 7 c
c = 1>2m0P0

 = c21 - f2
N>f2

 vp = 11m0Peff
= 12m0P0(1 - f2

N>f2)

f 7 fN

Peff = P0a1 -
f2

N

f2 b
PeffN

fN = 180.6N Hz

P0me
fN2Ne2>4p2mP0

f 6 2Ne2/4p2mP0

f 7 2Ne2>4p2mP0

bPeffv 6 2Ne2>mP0

bPeffv 7 2Ne2>mP0Peff2Ne2>mP0,
vPeffq ,vJ: 0v: q ,

Peff : P0v: q ,

Peff = P0a1 - Ne2

mP0v
2 b

b = v1m0Peff

[1 - (Ne2>mP0v
2)]
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FIGURE 10.1

A typical distribution of ionospheric
electron density versus height above
the earth.

season, the sunspot cycle, and the geographic location. The nomenclature behind the
designation of the letters for the layers is due to Appleton in England, who in 1925 and
at about the same time as Breit and Tuve in the United States demonstrated experimen-
tally the reflection of radio waves by the ionosphere. In his early work, Appleton was
accustomed to writing for the electric field of the wave reflected from the first layer he
recognized. Later, when he recognized a second layer, at a greater height, he wrote for
the field of the wave reflected from it. Still later, he conjectured that there might be a
third layer lower from either of the first two and thus he decided to name the possible
lower layer , thereby leaving earlier letters of the alphabet for other possible undis-
covered, still lower layers. Electrons were indeed detected later in the region.

The region extends over the altitude range of about 50 km to about 90 km.
Since collisions between electrons and heavy particles cannot be neglected in this
region, it is mainly an absorbing region. The region extends from about 90 km to
about 150 km. Diurnal and seasonal variations of the layer electron density are
strongly correlated with the zenith angle of the sun. In the region, the lower of the
two strata is designated as the 1 layer and the higher, more intense ionized stratum
is designated as the 2 layer. The l ledge is usually located between 160 km and
200 km. Above this region, the 2 layer electron density increases with altitude,
reaching a peak at a height generally lying between 250 km and 400 km. Above this
peak the electron density decreases monotonically with altitude. The l ledge is pre-
sent only during the day. During the night, the l and 2 layers are identified as a
single layer. The 2 layer is the most important from the point of view of radio
communication since it contains the greatest concentration of electrons. Paradoxically,
it also exhibits several anomalies.
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10.1 Wave Propagation in Ionized Medium 379

Wave propagation in the ionosphere is complicated by the presence of the earth’s
magnetic field. If we neglect the earth’s magnetic field, then for a wave of frequency
incident vertically on the ionosphere from a transmitter on the ground, it is evident from
the propagation condition that the wave propagates up to the height at which

, and since it cannot propagate beyond that height, it gets reflected at that height.
Thus, waves of frequencies less than the maximum plasma frequency corresponding to
the peak of the 2 layer cannot penetrate the ionosphere. Hence, for communication
with satellites orbiting above the peak of the ionosphere, frequencies greater than this
maximum plasma frequency, also known as the critical frequency, must be employed.
While this critical frequency is a function of the time of day, the season, the sunspot
cycle, and the geographic location, it is not greater than about 15 MHz and can be as low
as a few megahertz. For a wave incident obliquely on the ionosphere, reflection is possi-
ble for frequencies greater than the critical frequency, up to about three times its value.
Hence, for earth-to-satellite communication, frequencies generally exceeding about
40 MHz are employed. Lower frequencies permit long-distance, ground-to-ground
communication via reflections from the ionospheric layers. This mode of propagation is
familiarly known as the sky wave mode of propagation. For very low frequencies of the
order of several kilohertz and less, the lower boundary of the ionosphere and the earth
form a waveguide, thereby permitting waveguide mode of propagation.

In this section, we learned that in an ionized medium, wave propagation occurs
only for frequencies exceeding the plasma frequency corresponding to the electron
density. Applying this to the case of the earth’s ionosphere, we found that this imposes
a lower limit in frequency for communication with satellites.

REVIEW QUESTIONS

10.1. What is an ionized medium? What influences wave propagation in an ionized medium?
10.2. Provide physical explanation for the frequency dependence of the effective permittivity

of an ionized medium.
10.3. Discuss the condition for propagation in an ionized medium.
10.4. What is plasma frequency? How is it related to the electron density?
10.5. Provide a brief description of the earth’s ionosphere and discuss how it affects commu-

nication.

PROBLEMS

10.1. Show that the units of is and that is equal to 80.6.
10.2. Assume the ionosphere to be represented by a parabolic distribution of electron density

as given by

where is the height above the ground in kilometers. (a) Find the height at which a ver-
tically incident wave of frequency 8 MHz is reflected. (b) Find the frequency of a verti-
cally incident wave which gets reflected at a height of 220 km. (c) What is the lowest
frequency below which communication is not possible across the peak of the layer?

h

N(h) = 1014

80.6
 c1 - ah - 300

100
b2 d  electrons/m3 for 200 6 h 6 400

e2>4p2mP0(seconds)- 12Ne2>mP0
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f = fN

f 7 fN
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10.3. For a uniform plane wave of frequency 10 MHz propagating normal to a slab of ionized
medium of thickness 50 km and uniform plasma frequency 8 MHz, find (a) the phase
velocity in the slab, (b) the wavelength in the slab, and (c) the number of wavelengths
undergone by the wave in the slab.

10.2 WAVE PROPAGATION IN ANISOTROPIC MEDIUM

In Section 5.1, we learned that for certain dielectric materials known as anisotropic
dielectric materials, D is not in general parallel to E and the relationship between
D and E is expressed by means of a permittivity tensor consisting of a matrix.
Similarly, in Section 5.2 we learned of the anisotropic property of certain magnetic
materials. There are several important applications based on wave propagation in
anisotropic materials. A general treatment is, however, very involved. Hence, we shall
consider two simple cases.

For the first example, we consider an anisotropic dielectric medium characterized
by the D to E relationship given by

(10.12)

and having the permeability . This simple form of permittivity tensor can be
achieved in certain anisotropic liquids and crystals by an appropriate choice of the
coordinate system. It is easy to see that the characteristic polarizations for this case are
all linear, directed along the coordinate axes and having the effective permittivities

and for the -, -, and -directed polarizations, respectively. Let us consider
a uniform plane wave propagating in the -direction. The wave will generally contain
both - and -components of the fields. It can be decomposed into two waves, one hav-
ing an -directed electric field and the other having a -directed electric field. These
component waves travel individually in the anisotropic medium as though it is isotropic
but with different phase velocities, since the effective permittivities are different. In view
of this, the phase relationship between the two waves, and hence the polarization of the
composite wave, changes with distance along the direction of propagation.

To illustrate the foregoing discussion quantitatively, let us consider the electric
field of the wave to be linearly polarized at as given by

(10.13)

Then assuming wave only, the electric field at an arbitrary value of is given by

(10.14)

where

(10.15a)

(10.15b)b2 = v1m0Pyy

b1 = v1m0Pxx

E(z) = Ex0 cos (vt - b1z) ax + Ey0 cos (vt - b2z) ay

z(+)

E(0) = (Ex0 ax + Ey0 ay) cos vt

z = 0,
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FIGURE 10.2

The change in polarization of the field of a wave propagating in the anisotropic dielectric
medium characterized by equation (10.12).

are the phase constants corresponding to the x-polarized and y-polarized component
waves, respectively. Thus, the phase difference between the x- and y-components of the
field is given by

(10.16)

As the composite wave progresses along the -direction, changes from zero at
to at to at , and so on. The polariza-

tion of the composite wave thus changes from linear at to elliptical for ,
becoming linear again at , but rotated by an angle of 2
as shown in Figure 10.2. Thereafter, it becomes elliptical again, returning back to the
original linear polarization at , and so on.z = 2p>(b2 - b1)

 (Ey0>Ex0),tan- 1z = p>(b2 - b1)
z 7 0z = 0

z = p>(b2 - b1)pz = p>2(b2 - b1)p>2z = 0
¢fz

¢f = (b2 - b1)z

For the second example, we consider propagation in a ferrite medium. Ferrites
are a class of magnetic materials which, when subject to a d.c. magnetizing field, exhib-
it anisotropic magnetic properties. Since there are phase differences associated with
the relationships between the components of B and the components of H due to this
anisotropy, it is convenient to use the phasor notation and write the relationship in
terms of the phasor components. For an applied d.c. magnetic field along the direction
of propagation of the wave, which we assume to be the -direction, this relationship is
given by

(10.17)

where and depend upon the material, the strength of the d.c. magnetic field, and
the wave frequency.

km
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To find the characteristic polarizations, we first note from (10.17) that

(10.18a)

(10.18b)

Setting equal to , we then have

which upon solution for gives

(10.19)

This result corresponds to equal amplitudes of and and phase difference of
Thus, the characteristic polarizations are both circular, rotating in opposite senses as
viewed along the -direction.

The effective permeabilities of the ferrite medium corresponding to the charac-
teristic polarizations are

(10.20)

The phase constants associated with the propagation of the characteristic waves are

(10.21)

where the subscripts and refer to and , respectively.
We note from (10.21) that can become imaginary if . When this happens,
wave propagation does not occur for that characteristic polarization. We shall hereafter
assume that the wave frequency is such that both characteristic waves propagate.

Let us now consider the magnetic field of the wave to be linearly polarized in the
direction at , that is,

(10.22)

Then we can express (10.22) as the superposition of two circularly polarized fields hav-
ing opposite senses of rotation in the -plane in the manner

(10.23)+ aH0

2
 cos vt ax -
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2
 sin vt ayb
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2
 cos vt ax +
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 sin vt ayb
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H(0) = H0 cos vt ax

z = 0x

(m - k) 6 0b+

H
–
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10.2 Wave Propagation in Anisotropic Medium 383

The circularly polarized field inside the first pair of parentheses on the right side of
(10.23) corresponds to

whereas that inside the second pair of parentheses corresponds to

Assuming propagation in the positive -direction, the field at an arbitrary value
of is then given by

(10.24)

The result given by (10.24) indicates that the x- and y-components of the field are
in phase at any given value of z. Hence, the field is linearly polarized for all values of z.
The direction of polarization is, however, a function of z since

(10.25)

and hence the angle made by the field vector with the x-axis is Thus,
the direction of polarization rotates linearly with z at a rate of This
phenomenon is known as Faraday rotation and is illustrated with the aid of the sketches
in Figure 10.3. The sketches in any given column correspond to a fixed value of z,
whereas the sketches in a given row correspond to a fixed value of t.At , the fieldz = 0
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Hy

Hx
=

H0 sin [(b- - b +)>2]z

H0 cos [(b- - b +)>2]z
= tan 

b - - b +

2
 z

 # cos avt -
b+ + b-

2
zb

 = cH0 cos ab- - b+

2
zb  ax + H0 sin ab- - b+

2
zb  ay d

 -  
H0

2
 sin avt -

b+ + b-

2
z +

b + - b-

2
zb  ay d

 +  cH0

2
 cos avt -

b+ + b -

2
z +

b+ - b-

2
zb  ax

 +  
H0

2
 sin avt -

b+ + b-

2
z -

b+ - b-

2
zb  ay d

 = cH0

2
  cos avt -

b+ + b -

2
z -

b + - b-

2
zb  ax

 +  cH0

2
  cos (vt - b-z) ax -

H0

2
  sin (vt - b-z) ay d

  H(z) = cH0

2
  cos (vt - b+z) ax +

H0

2
  sin (vt - b+z) ay d

z
z

H
–

x

H
–

y
=

H0>2
jH0>2 = -j

H
–

x

H
–

y
=

H0>2
-jH0>2 = +j

M10_RAO3333_1_SE_CH10.QXD  4/9/08  2:41 PM  Page 383



384 Chapter 10 Supplementary Topics

z ! z0 > 0z ! 0

t ! 0

t ! p
4v

z ! 2z0

t !

x

y
p
2v

t ! 3p
4v

t ! pv

FIGURE 10.3

For illustrating the phenomenon of Faraday rotation.
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10.2 Wave Propagation in Anisotropic Medium 385

is linearly polarized in the x-direction and is the superposition of two counter-rotating
circularly polarized fields, as shown by the time series of sketches in the first column. If
the medium is isotropic, the two counter-rotating circularly polarized fields undergo
the same amount of phase lag with z and the field remains linearly polarized in the x-
direction, as shown by the dashed lines in the second and third columns. For the case of
the anisotropic medium, the two circularly polarized fields undergo different amounts
of phase lag with z. Hence, their superposition results in a linear polarization making
an angle with the x-direction and increasing linearly with z, as shown by the solid lines
in the second and third columns.

The phenomenon of Faraday rotation in a ferrite medium that we have just dis-
cussed forms the basis for a number of devices in the microwave field. The phenomenon
itself is not restricted to ferrites. For example, an ionized medium immersed in a d.c.
magnetic field possesses anisotropic properties that give rise to Faraday rotation of a
linearly polarized wave propagating along the d.c. magnetic field.A natural example of
this is propagation along the earth’s magnetic field in the ionosphere.A simple modern
example of the application of Faraday rotation is, however, illustrated by the magneto-
optical switch. In fact, Faraday rotation was originally discovered in the optics regime.

The magneto-optical switch is a device for modulating a laser beam by switch-
ing on and off an electric current. The electric current generates a magnetic field that
rotates the magnetization vector in a magnetic iron-garnet film on a substrate of gar-
net, in the plane of the film through which a light wave passes. When it enters the
film, the light wave field is linearly polarized normal to the plane of the film. If the
current in the electric circuit is off, the magnetization vector is normal to the direc-
tion of propagation of the wave and the wave emerges out of the film without change
of polarization, as shown in Figure 10.4(a). If the current in the electric circuit is on,

Polarization

Film

Light
Beam

Light Beam

Magnetization
Vector

Magnetization
Vector

(a)

Polarization

Film

(b)

FIGURE 10.4

For illustrating the principle of
operation of a magneto-optical
switch.
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386 Chapter 10 Supplementary Topics

the magnetization vector is parallel to the direction of propagation of the wave, the
light wave undergoes Faraday rotation and emerges out of the film with its polariza-
tion rotated by 90°, as shown in Figure 10.4(b). After it emerges out of the film, the
light beam is passed through a polarizer which has the property of absorbing light of
the original polarization but passing through the light of the 90°-rotated polarization.
Thus, the beam is made to turn on and off by the switching on and off of the current
in the electric circuit. In this manner, any coded message can be made to be carried
by the light beam.

In this section, we discussed wave propagation in an anisotropic medium. In par-
ticular, we learned that in a ferrite medium, a linearly polarized wave propagating
along the direction of an applied d.c. magnetic field undergoes Faraday rotation. We
then briefly mentioned other examples of media in which Faraday rotation takes place
and finally discussed the operation of the magneto-optical switch, a device employing
Faraday rotation for modulating a light beam.

REVIEW QUESTIONS

10.6. Discuss the principle behind wave propagation in an anisotropic medium based on the
decomposition of the wave into characteristic waves.

10.7. When does a wave propagate in an anisotropic medium without change in polarization?
10.8. What is Faraday rotation? When does Faraday rotation take place in an anisotropic

medium?
10.9. Consult appropriate reference books and list three applications of Faraday rotation.

10.10. What is a magneto-optical switch? Discuss its operation.

PROBLEMS

10.4. For the anisotropic medium characterized by the D to E relationship given by (10.12),
assume , , and , and find the distance in which the phase dif-
ference between the x- and y-components of a plane wave of frequency 109 Hz propa-
gating in the z-direction changes by the amount .

10.5. Show that for plane wave propagation in an anisotropic medium,the angle between E and
H is not in general equal to 90°. For the anisotropic dielectric medium of Problem 10.4,
find the angle between E and H for E linearly polarized along the bisector of the angle
between the x- and y-axes.

10.6. For a wave of frequency , the quantities and in the permeability matrix of (10.17)
are given by

where is the d.c. magnetizing field, is the
magnetic dipole moment per unit volume in the material in the absence of the wave, e is
the charge of an electron, and m is the mass of an electron. (a) Show that the effective

M0v0 = m0 ƒe ƒH0>m, vM = m0 ƒe ƒM0>m, H0

 k = -m0 
vvM

v2
0 - v2 

 m = m0 c1 +
v0vM

v2
0 - v2 d  

kmv

p

Pzz = 2P0Pyy = 9P0Pxx = 4P0
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10.3 Electromagnetic Compatibility and Shielding 387

permeabilities corresponding to the characteristic polarizations are for

(b) Compute the Faraday rotation angle in degrees per centimeter along
the z-direction for , if , rad/s, and

.

10.7. For the quantities defined in Problem 10.6 for the ferrite medium, show that for
and , the Faraday rotation per unit distance along the z-direction is

. Compute its value in degrees per centimeter if rad/s and

.

10.3 ELECTROMAGNETIC COMPATIBILITY AND SHIELDING

As stated in the preface of the book, electromagnetics is all around us. Every time we
turn on a switch for electrical power or for electronic equipment, every time we press a
key on our computer keyboard or on our cell phone, or every time we perform a similar
action involving an everyday electrical device, electromagnetics comes into play. While
these actions are performed for intentional purposes, the resulting electromagnetic en-
ergy may cause unintentional interference of a given system on another system or even
one part of a given system on another part of the same system. For example, reception of
an FM radio signal may be noisy when the radio is located near a computer, due to radi-
ation from the digital circuits of the computer being received as noise by the radio an-
tenna, thereby degrading the performance of the radio. The computer is said to be
causing electromagnetic interference (EMI) in the radio. EMI demonstrates the need
for designing systems which are compatible with their electromagnetic environment,
which comprises the field of electromagnetic compatibility (EMC).

EMC is defined by IEC (International Electrotechnical Commission) as “the
ability of a device, unit of equipment, or system to function satisfactorily in its electro-
magnetic environment without introducing intolerable electromagnetic disturbances
to anything in that environment.” An electromagnetic disturbance may be electromag-
netic noise, an unwanted signal, or a change in the propagation medium itself.A system
is said to be electromagnetically compatible if (1) it does not cause interference with
other systems, (2) it is not susceptible to emission from other systems, and (3) it does
not cause interference with itself.

In the analysis and design of systems for EMC work, quasistatic concepts are
employed wherever they are applicable, because of simplicity compared to working
with complete field solutions. We have learned in Chapter 6 that quasistatic approxima-
tions apply when the physical dimensions of the system are much smaller than the wave-
length corresponding to the frequency of operation. Thus, three regimes come into play,
as follows:

1. When the system is electrically small in all three of its dimensions, that is, when the
physical size of the system is such that all three of its dimensions are smaller than
the wavelength corresponding to the frequency of operation, then quasistatic
approximations hold in all three dimensions and the system can be represented by
a lumped circuit equivalent and circuit analysis techniques can be employed.

P = 9P0

vM = 5 * 1010vM

2
1m0P

vM V vv0 V v

P = 9P0

v0 = 1.5 * 1010vM = 5 * 1010 rad/sv = 1010 rad/s
H
–

x>H–y = ;j.

m0 c1 +
vM

v0 < v d
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388 Chapter 10 Supplementary Topics

2. When the physical size of the system is smaller than the wavelength in two of its
dimensions and comparable to or larger than the wavelength in the third dimen-
sion, then the system becomes a transmission line extending along the longer
dimension.

3. When the physical size of the system is such that all three of its dimensions are
comparable to or larger than the wavelength, then the analysis entails full field
basis using the complete set of Maxwell’s equations.

In general, a signal is composed of a spectrum of frequencies. The wavelength above is
then the shortest significant wavelength, that is, the wavelength corresponding to the
highest frequency of importance in the frequency spectrum of the signal.

As shown in Figure 10.5, all EMC problems can be divided into three parts:
(a) source of emission or emitter, (b) receiver of emission or victim, and (c) coupling
path or mechanism by means of which emission from the source is transferred to the
receiver. In the example of noise in the FM radio due to computer, the source of noise
is the computer, the victim is the radio, and the coupling mechanism is the medium
between the digital circuits in the computer and the antenna of the radio.

EMI
Source

or Emitter

Coupling
Path

EMI
Receiver
or Victim

FIGURE 10.5

The three parts of an EMC
problem.

EMC problems can be solved by reducing or eliminating EMI, using one or more
of the following three methods: (1) decreasing the emission from the source producing
the EMI, (2) making the victim of EMI less susceptible, and (3) making the coupling
path less efficient. Although often the only option available to solve an EMC problem
is the third one, we shall first consider a simple example of the application of the first
two methods.

Thus, let us consider a parallel-wire line consisting of a pair of long, parallel wires
of spacing a and carrying currents I(t) in opposite directions in the plane, as
shown in Figure 10.6. Let a small metallic loop of area A be located in the plane of the
loop (the xy-plane) and such that the distance between the center of the wires to the
center of the loop is . The currents in the parallel wires produce a magnetic
field, resulting in a time-varying magnetic flux enclosed by the loop and hence voltage
induced in the loop, in accordance with Faraday’s law, causing EMI in the loop. The
EMC problem is to find ways to minimize the EMI in the loop.

d W a

z = 0

I(t)I(t)

d
A

a

FIGURE 10.6

Arrangement of a metallic loop in the
field of a parallel-wire line for
illustrating the EMC problem.
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10.3 Electromagnetic Compatibility and Shielding 389

The magnetic field due to the parallel wires can be computed from the fact that in
the plane transverse to the wires, the fields have the same spatial character as for the
static fields corresponding to the same geometry. Thus, applying the result for the mag-
netic field due to a long wire in Example 2.9 to the two wires and introducing the time
variation, we can write the magnetic flux density due to the parallel wires at the center
point of the loop to be

(10.26a)

and directed normal to the area of the loop. For ,

(10.26b)

Since the area of the loop is very small compared to its distance from the line, we
can assume that the magnetic field does not vary significantly within the area.Assuming
also that the current in the wires and hence the magnetic field due to it does not vary sig-
nificantly in the z-direction, we obtain the magnetic flux enclosed by the loop to be

(10.27)

The voltage induced in the loop is then given by

(10.28)

For 

(10.29)

It can be seen from (10.29) that for the induced voltage to be small, and must
be as small as possible, and d should be as large as possible. In a practical situation,
some of these parameters may be fixed and only the others may be varied. If the size of
the loop cannot be varied, the effective area of the loop can be made smaller by rotat-
ing it to make an angle with the plane of the wires. When the angle is 90°, the magnetic
field is parallel to the area of the loop and the induced voltage is zero, eliminating the
EMC problem. If the spacing between the wires can be varied, another way to decrease
EMI is to decrease the spacing, and if possible, for the wires to be twisted.An important
observation from (10.29) is that the induced voltage in the loop and hence the EMI
increases with frequency. This means that for a nonsinusoidal source, the interference
from its frequency components is amplified proportional to the frequency.
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390 Chapter 10 Supplementary Topics

As stated earlier, often the only option available to solve an EMC problem is
to make the coupling path less efficient. Therefore, it is important to understand the
coupling mechanisms. Depending on the separation distance between the source
and the victim, different techniques of analysis are used. For small separation dis-
tances, circuit models can be used by representing the electric field coupling as
capacitive coupling and magnetic field coupling as inductive coupling. An example
of analysis involving capacitive and inductive couplings is considered in Section
10.4, devoted to crosstalk on transmission lines, which is interference due to a wave
propagating along one transmission line inducing a wave on a neighboring second
transmission line. When the source and victim share a common conductor, interfer-
ence occurs through the common impedance of the conductor, and hence the cou-
pling is termed common impedance coupling. The analysis is performed using circuit
techniques. For large separation distances between the source and the victim, in-
volving an intervening medium, field techniques are employed involving radiation
from the source into the medium and the transfer of the radiated energy from the
medium into the victim.

The techniques for the solution of EMC problems, that is, for decreasing the
impact of EMI on the victim by making the coupling path less efficient, fall into four
categories: (a) proper layout of components and cables, (b) system grounding and
bonding, (c) surge suppression and filtering, and (d) shielding. The scope of each of
these techniques is extensive by itself. We shall here consider only the topic of shield-
ing by providing an example that makes use of the knowledge from Chapters 5 and 7.
Specifically, we shall consider the problem of a plane metallic sheet as a shield for an
incident plane wave from a distant source.

The geometry pertaining to the problem is shown in Figure 10.7, in which media 1
and 3 are free space, and medium 2 is a metallic sheet of thickness d. A uniform plane
wave of radian frequency is incident normally on to the metallic sheet from medium 1.
Thus, media 1 and 3 are characterized by the propagation parameters

(10.30a)

(10.30b)h–1 = h–3 = h0 = 120p

g–1 = g–3 = jb0 = jv>c
v

Medium 2
Metallic Sheet

Medium 1
Free Space

z
z ! 0 z ! d

z

x

y

Medium 3
Free Space

(#)

(")

(#)

(")

(#)

m0, P0m0, P0

s2, m2, P2

E

H

FIGURE 10.7

Geometry of the arrangement for the
analysis of shielding by a metallic
sheet.
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10.3 Electromagnetic Compatibility and Shielding 391

and medium 2 is characterized by the propagation parameters

(10.31a)

(10.31b)

It is desired to analyze the system for the shielding effectiveness between medium 1
and medium 3. The shielding effectiveness or the shielding factor, denoted S, is defined
to be the ratio of the amplitude of the incident electric field in medium 1 to the ampli-
tude of the transmitted electric field in medium 3.

The incident plane wave sets up a reflected wave and a transmitted wave at the
interface , with the reflected wave propagating back in the negative z-direction in
medium 1 and the transmitted wave propagating in the positive z-direction in medium 2.
When the transmitted wave in medium 2 reaches the interface , it sets up a re-
flected wave which propagates back towards the interface , and a transmitted
wave into medium 3. The reflected wave, when it reaches the interface , sets up its
own reflection that adds up to the previous transmitted wave due to the incident wave
from medium 1. It also sets up a transmitted wave into medium 1, which propagates in
the negative z-direction. The transmitted waves into media 3 and 1 will not set up any
reflections, because these media are assumed to extend to infinity in the positive z- and
negative z-directions, respectively. But each wave in medium 2 sets up a reflected wave
and a transmitted wave at the interface on which it is incident. In the steady state, all
these transient waves add up and the situation is equivalent to a single wave and a
single wave in medium 1, a single wave and a single wave in medium 2, and
a single wave in medium 3. Therefore, the complex electric and magnetic field
components of the waves in the three media can be written as follows:

Medium 1:

(10.32a)

(10.32b)

Medium 2:

(10.33a)

(10.33b)

Medium 3:
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392 Chapter 10 Supplementary Topics

According to the definition, the shielding factor, S, is then equal to . To
find this quantity, we note that the constants are related through
the boundary conditions at the interfaces and . These are given by

(10.35a)

(10.35b)

Thus, we have

(10.36a)

(10.36b)

(10.36c)

(10.36d)

Solving (10.36c) and (10.36d) for and in terms of , we obtain

(10.37a)

(10.37b)

where

(10.38)

is the electric field reflection coefficient, analogous to the voltage reflection coefficient
in transmission-line analysis, for a single transient wave incident from medium 2
onto the interface . Substituting for in (10.36a) and (10.36b) from (10.37b)
and solving for in terms of , we get

(10.39)

where

(10.40)

is the electric field reflection coefficient for a single transient wave incident from
medium 1 onto the interface . Note that . From (10.39) and (10.37a),
we then have

(10.41)
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10.3 Electromagnetic Compatibility and Shielding 393

and the shielding factor is given by

(10.42)

It can be shown (see Problem 10.8) that this result is also obtainable by formulat-
ing the solution in terms of the individual transient waves resulting from bouncing
back and forth between the interfaces and , writing field expressions for
the individual transient waves and adding them up. Three contributions to the right
side of (10.42) can then be identified as follows:

— contribution from attenuation in the
metallic sheet (A)

— contribution due to transmission from
free space to the metallic sheet and from
the metallic sheet to free space (T)

— contribution from multiple reflections
within the metallic sheet (M)

The general formula for Sgiven by (10.42) can be simplified for good conductor
range of frequencies ( ) for the metallic sheet, by recalling from Section 5.4
that for good conductors,

(10.43)

and , so that , and .
Also, for good conductors, Thus,

(10.44)

In terms of skin depth , the distance in which the fields are
attenuated in the good conductor by the factor ,

(10.45)

In terms of decibels,

(10.46)

with the three terms on the right side identifying the three contributions, T, M, and A,
respectively.

 + 20 log10 e
d>d + 20 log10 ƒ1 - e-2d>de-j2d>d ƒ

 S in dB = 20 log10 1h0>4 ƒh–2 ƒ2
S L

h0

4 ƒh2 ƒ ƒ
1 - e-2d/de-j2d/d ƒed/d

e-1
d = 1>a = 1>2pfm2s2

S L
h0

4 ƒh2 ƒ ƒ
1 - e-2a2de-j2a2d ƒ ea2d

a2 = b2 L 2pfm2s2.
(1 + ≠–23) L 2≠–12 L -1, ≠–23 L 1, (1 + ≠–12) L 2h–2>h0ƒh–2 ƒ V h0

h2
– L (1 + j)2pf m2>s2

s2 W vP2

A1 + ≠–12≠
–

23e
- 2g2d B

a 1

ƒ1 + ≠–12 ƒ ƒ1 + ≠–23 ƒ
bea2d

z = 0z = d

S =
ƒA–1 ƒ
ƒA–3 ƒ

=
ƒ1 + ≠12 ≠23e

-2g2d ƒea2d

ƒ1 + ≠12 ƒ ƒ1 + ≠23 ƒ
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394 Chapter 10 Supplementary Topics

From Table 10.1, we can make the following observations:

1. For thick sheets, M is approximately zero and hence not important.
2. For thin sheets, A is negligible and M is important. Furthermore, since M is nega-

tive, meaning that the field is enhanced instead of getting attenuated, it acts
counter to the shielding requirement.

3. For thin sheets, increase in T with decrease in frequency is countered by the
increase in magnitude of M.

4. T is independent of thickness.

In this section, we introduced the topic of electromagnetic compatibility (EMC),
having to do with the design of electrical systems which are compatible with the elec-
tromagnetic environment. We learned that the EMC problem can be divided into
three parts, (a) source, (b) receiver, and (c) coupling path, and that it can be solved
by three methods: (a) decreasing emission from the source, (b) making the receiver less
susceptible, and (c) making the coupling path less efficient, which is often the only
available option. We provided a simple example of the application of the first two
methods. While there are several categories pertinent to the third method, we provid-
ed the example of electromagnetic shielding by considering the problem of a plane
metallic sheet as a shield for an incident plane wave from a distant source.

REVIEW QUESTIONS

10.11. Describe EMI and EMC. What is IEEE’s definition of EMC?
10.12. Outline the three regimes that come into play in the design of systems for EMC work.
10.13. Specify and discuss the three parts of an EMC problem.
10.14. Discuss the example of EMI in a metallic loop located in the field of a parallel-wire line

and ways to minimize the EMI.
10.15. Outline the solution of the problem of a plane metallic sheet as a shield for an incident

plane wave from a distant source.
10.16. What is shielding factor? Discuss the three contributions to the shielding factor for the

plane metallic sheet arrangement.

TABLE 10.1 Values of T, M, A, and S, for Several Pairs of Values of d and f for the Shielding
Arrangement of Figure 10.7

d
(mm)

f
(MHz) (mm)

d

( )Æ
ƒh– 2 ƒ

d>d T
(db)

M
(db)

A
(db)

S
(db)

1 1 0.066 3.69 10 15.15 108.14 131.59 239.73
1 0.1 0.209 1.167 10 4.785 118.14 41.56 159.70

0.001 1 0.066 3.69 10 0.015 108.14 27.59 0.13 80.68
0.001 0.1 0.209 1.167 10 0.0048 118.14 37.27 0.042 80.91-- 4*

-- 4*
'0- 4*
'0- 4*

For a numerical example, for copper sheet,
. For a given set of values of d and f,

the quantities T, M, and A, and hence Scan be computed. Table 10.1 shows these quan-
tities for four pairs of values of d and f.

d = 0.066>2f m, and ƒh–2 ƒ = 3.69 * 10-72f Æ
m2 = m0, P2 = P0,s2 = 5.80 * 107 S/m,
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10.4 Crosstalk on Transmission Lines 395

PROBLEMS

10.8. For the arrangement of Figure 10.7, obtain the expression for the shielding factor by
formulating the solution in terms of the individual transient waves bouncing back and
forth between the interfaces and , writing the field expressions for the indi-
vidual transient waves, and adding them up.

10.9. Compute the value of the shielding factor for a copper shield of thickness 0.01 mm at a
frequency of 1 MHz.

10.10. Compute the value of the shielding factor for a steel shield of thickness 0.01 mm at a
frequency of 10 MHz.Values of material parameters are as follows:

and .

10.4 CROSSTALK ON TRANSMISSION LINES

When two or more transmission lines are in the vicinity of one another, a wave propa-
gating along one line, which we shall call the primary line, can induce a wave on another
line, the secondary line, due to capacitive (electric field) and inductive (magnetic field)
coupling between the two lines, resulting in the undesirable phenomenon of crosstalk
between the lines. An example is illustrated by the arrangement of Figure 10.8(a),
which is a printed-circuit board (PCB) representation of two closely spaced transmis-
sion lines. Figure 10.8(b) represents the distributed circuit equivalent, where cm and
lm are the coupling capacitance and coupling inductance, respectively, per unit length
of the arrangement.

P = P0m = 500m0,
s = 5.80 * 106 S/m,

z = 0z = d

Primary Line
Secondary Line

PCB

Ground Plane

(a) (b)

    1 $z

    1 $z

    2 $z

    2 $z
    2 $z

    2 $z

    1 $z

    1 $z

    m $z

    m $z

    m $z

    m $z

FIGURE 10.8

(a) PCB representation of two closely spaced transmission lines. (b) Distributed equivalent circuit for (a).
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396 Chapter 10 Supplementary Topics

In this section, we shall analyze a pair of coupled transmission lines for the deter-
mination of induced waves on the secondary line for a given wave on the primary line.
To keep the analysis simple, we shall consider both lines to be of the same characteristic
impedance, velocity of propagation, and length, and terminated by their characteristic
impedances, so that no reflections occur from the ends of either line. It is also conve-
nient to assume the coupling to be weak, so that the effects on the primary line of waves
induced in the secondary line can be neglected. Thus, we shall be concerned only with
the crosstalk from the primary line to the secondary line and not vice versa. Briefly, as
the wave propagates on the primary line from source toward load, each infinitesi-
mal length of that line induces voltage and current in the adjacent infinitesimal length of
the secondary line, which set up and waves on that line. The contributions due
to the infinitesimal lengths add up to give the induced voltage and current at a given
location on the secondary line.

We shall represent the coupled-line pair, as shown in Figure 10.9, with the primary
line as line 1 and the secondary line as line 2. Then, when the switch Sis closed at ,
a wave originates at on line 1 and propagates toward the load. Let us consider
a differential length at the location of line 1 charged to the wave voltage
and current and obtain its contributions to the induced voltages and currents in line 2.

(+)z = jdj
z = 0(+)

t = 0

(-)(+)

(+)

t ! 0

z ! 0 z ! l

z ! j
dj

S

Line 1
Z0, yp, T Z0

Z0

Vg(t)

Line 2
Z0, yp, T Z0Z0

z

FIGURE 10.9

Coupled transmission-line pair for analysis of crosstalk.

The capacitive coupling induces a differential crosstalk current , flowing into
the nongrounded conductor of line 2, given by

(10.47a)

where is the line-1 voltage. This induced current is modeled by an ideal current
source,connected in parallel with line 2 at on that line,as shown in Figure 10.10(a).
The current source views the characteristic impedance of the line to either side of z = j,

z = j
V1(j, t)

¢Ic2(j, t) = cm ¢j 
0V1(j, t)

0t

¢Ic2
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Line 2

(a) (b)

$IC2(j, t) Z0 $IC2

z ! j z ! jz

1
2 Z0 $IC2$IC2

1
2

#

"

#

"

FIGURE 10.10

(a) Modeling for capacitive coupling in crosstalk analysis. (b) Equivalent circuit for (a).

so that the equivalent circuit is as shown in Figure 10.10(b). Thus, voltages of
are produced to the right and left of and propagate as forward-crosstalk and
backward-crosstalk voltages, respectively, on line 2.

The inductive coupling induces a differential crosstalk voltage, , which is
given by

(10.47b)

This induced voltage is modeled by an ideal voltage source in series with line 2 at 
on that line, as shown in Figure 10.11(a). The polarity of the voltage source is such that
the current due to it in line 2 produces a magnetic flux, which opposes the change in the
flux due to the current in line 1, in accordance with Lenz’s law. The voltage source
views the characteristic impedance of the line to either side of it, so that the equivalent
circuit is as shown in Figure 10.11(b). Thus, voltages of and are produced
to the left and right of , respectively, and propagate as backward-crosstalk and
forward-crosstalk voltages, respectively, on line 2.

z = j
-1

2¢Vc2
1
2¢Vc2

z = j

¢Vc2(j, t) = lm ¢j 
0I1(j, t)

0t

¢Vc2

z = j
1
2Z0 ¢Ic2

Line 2

(a) (b)

$VC2 $VC2

$VC2

z ! j
z ! jz

1
2 $VC2

1
2

#

"

"

#

FIGURE 10.11

(a) Modeling for inductive coupling in crosstalk analysis. (b) Equivalent circuit for (a).
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398 Chapter 10 Supplementary Topics

Combining the contributions due to capacitive coupling and inductive coupling,
we obtain the total differential voltages produced to the right and left of to be

(10.48a)

(10.48b)

respectively. Substituting (10.47a) and (10.47b) into (10.48a) and (10.48b), we obtain

(10.49a)

(10.49b)

where we have substituted , in accordance with the relationship between
the voltage and current of a wave.

We are now ready to apply (10.49a) and (10.49b) in conjunction with super-
position to obtain the and wave voltages at any location on line 2, due to a 
wave of voltage on line 1. Thus, noting that the effect of at at a
given time t is felt at a location on line 2 at time , we can write

(10.50)

or

(10.51)

where we have defined

(10.52)

and the prime associated with denotes differentiation with time. The quantity is
called the forward-crosstalk coefficient. Note that the upper limit in the integral in
(10.50) is z, because the line-1 voltage to the right of a given location z on that line does
not contribute to the forward-crosstalk voltage on line 2 at that same location. The
result given by (10.51) tells us that the forward-crosstalk voltage is proportional to z
and the time derivative of the primary line voltage.

KfV1

Kf = 1
2

 acmZ0 -
lm

Z0
b

V+
2 (z, t) = zKfV¿1(t - z>vp)

 = 1
2
acmZ0 -

lm

Z0
bLz

0
 
0V1(t - z>vp)

0t
 dj

 V+
2 (z, t) = L

z

0
 
1
2
acmZ0 -

lm

Z0
b  

0
0t

 cV1a t -
j

vp
-

z - j
vp
b d  dj

t + (z - j)>vpz 7 j
z = jV1V1(t - z>vp)

(+)(-)(+)

(+)
I1 = V1>Z0

 ¢V-
2(j, t) = 1

2
 acmZ0 +

lm

Z0
b  

0V1(j, t)
0t

 ¢j

 = 1
2

 acmZ0 -
lm

Z0
b  

0V1(j, t)
0t

 ¢j

 ¢V+
2 (j, t) = c1

2
cmZ0 

0V1(j, t)
0t

- 1
2

 lm
0I1(j, t)

0t
d¢j

 ¢V-
2 = 1

2
 Z0 ¢Ic2 + 1

2
¢Vc2

 ¢V+
2 = 1

2
 Z0 ¢Ic2 - 1

2
¢Vc2

z = j
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10.4 Crosstalk on Transmission Lines 399

To obtain , we note that the effect of at at a given time t is felt at
a location on line 2 at time . Hence,

(10.53)

or

(10.54)

where we have defined the backward-crosstalk coefficient

(10.55)

Note that the lower limit in the integral in (10.53) is z, because the line-1 voltage to the
left of a given location z on that line does not contribute to the backward-crosstalk
voltage on line 2 at that same location.

For an example to illustrate the application of (10.51) and (10.54), let in
Figure 10.9 be the function shown in Figure 10.12, where . We wish to
determine the and wave voltages on line 2.(-)(+)

T0 6 T( = l>vp)
Vg(t)

Kb = 1
4

vpacmZ0 +
lm

Z0
b

V-
2(z, t) = Kb cV1a t - z

vp
b - V1a t - 2l

vp
+ z

vp
b d

 = - 1
4

 vpacmZ0 +
lm

Z0
b cV1a t + z

vp
-

2j
vp
b d
j= z

l

 = - 1
4

 vpacmZ0 +
lm

Z0
bL l

z
 

0
0j cV1a t + z

vp
-

2j
vp
b d  dj

 = 1
2
acmZ0 +

lm

Z0
bL l

z
 
0
0t

 cV1a t + z
vp

-
2j
vp
b d  dj

 V-
2(z, t) = L

l

z
 
1
2
acmZ0 +

lm

Z0
b  

0
0t

 cV1a t -
j

vp
-
j - z

vp
b d  dj

t + (j - z)>vpz 6 j
z = jV1V-

2 (z, t)

0 T0

2V0

t

Vg

FIGURE 10.12

Source voltage for the system of
Figure 10.9.

Noting that

and hence

V¿1(t) = eV0>T0 for 0 6 t 6 T0 
0 for t 7 T0

V1(t) = 1
2

Vg(t) = e (V0>T0)t for 0 6 t 6 T0

V0 for t 7 T0
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400 Chapter 10 Supplementary Topics

and using (10.51), we can write the wave voltage on line 2 as

This is shown in the three-dimensional plot of Figure 10.13, in which the cross section
in any constant-z plane is a pulse of voltage for .
Note that the pulse voltage is shown to be negative. This is because normally the effect
of inductive coupling dominates that of the capacitive coupling, so that is negative.Kf

(z>l)T 6 t 6 (z>l)T + T0zKfV0>T0

 = e zKfV0>T0  for (z>l)T 6 t 6 [(z>l)t + T0]
0  otherwise

 = e zKfV0>T0  for (z>vp) 6 t 6 (z>vp + T0)
0  otherwise

 = e zKfV0>T0  for 0 6 (t - z>vp) 6 T0

0  otherwise

 V+
2 (z, t) = zKfV¿1(t - z>vp)

(+)

l

T T + T0T0
0

z

V2
#

t

lKfV0/T0

FIGURE 10.13

Three-dimensional depiction of forward-crosstalk voltage for the system of
Figure 10.9, with as in Figure 10.12.Vg(t)

Using (10.54), the wave voltage can be written as

where

 = L V0

T0
at - z

l
Tb   for 

z
l
 T 6 t 6 a z

l
 T + T0b

V0   for t 7 az
l
 T + T0b

 V1at - z
vp
b = L V0

T0
at - z

vp
b   for 0 6 at - z

vp
b 6 T0

V0   for at - z
vp
b 7 T0

V-
2(z, t) = Kb[V1(t - z>vp) - V1(t - 2l>vp + z>vp)]

(-)

M10_RAO3333_1_SE_CH10.QXD  4/9/08  2:41 PM  Page 400



10.4 Crosstalk on Transmission Lines 401

 = L V0

T0
at - 2T + z

l
 Tb  for a2T - z

l
 Tb 6 t 6 a2T - z

l
 T + T0b

V0  for t 7 a2T - z
l
 T + T0b

 V1at - 2l
vp

+ z
vp
b = L V0

T0
at - 2l

vp
+ z

vp
b  for 0 6 at - 2l

vp
+ z

vp
b 6 T0

V0  for at - 2l
vp

+ z
vp
b 7 T0

0 T

V0

t

V1 t "
z
yp

z
l T # T0

z
l

Tz
l T # T0

z
l

0

V0

t

V1  t " +2l
yp

z
yp

0 T

KbV0

t

V2
–

z
l + T02T " Tz

l2T "

Tz
l + T02T – Tz

l2T –

FIGURE 10.14

Determination of backward-crosstalk voltage for the system of Figure 10.9, with
as in Figure 10.12.Vg(t)

These two voltages and the wave voltage for a value of z for which
are shown in Figure 10.14. Figure 10.15 shows the three-

dimensional plot of , in which the cross section in any given constant-z plane
gives the time variation of for that value of z. Note that as z varies from zero to l, the
shape of changes from a trapezoidal pulse with a height of at to a triangular
pulse of height and width at and then changes to a trapezoidal
pulse again but with a height continuously decreasing from to zero at .z = lKbV0

z = (1 - T0>2T)l2T0KbV0

z = 0KbV0V-
2

V-
2

V-
2(z, t)

(z>l)T + T0 6 2T - (z>l)T
(-)
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0

T

z

l

l
T0

T # T0

T0 T + T0/2

2T

2T

KbV0

2T # T0

1 "

t

V2
–

FIGURE 10.15

Three-dimensional depiction of backward-crosstalk voltage for the system of Figure 10.9, with as
in Figure 10.12.

Vg(t)

In this section, we studied the topic of crosstalk on transmission lines, by con-
sidering the case of weak coupling between two lines. We learned that for a given
wave on the primary line, the crosstalk consists of two waves, forward and backward,
induced on the secondary line and governed by the forward-crosstalk coefficient and
the backward-crosstalk coefficient, respectively. We illustrated by means of an exam-
ple the determination of crosstalk voltages for a specified excitation for the primary
line.

REVIEW QUESTIONS

10.17. Discuss briefly the weak-coupling analysis for crosstalk between two transmission lines.
10.18. Discuss the modeling of capacitive and inductive couplings for crosstalk on transmis-

sion lines.
10.19. Discuss and distinguish between the dependence of the forward- and backward-

crosstalk coefficients on the line parameters.
10.20. Outline the determination of the forward- and backward-crosstalk voltages induced on

a secondary line for a given excitation for the primary line.

PROBLEMS

10.11. For the system of Figure 10.9, assume that is the function shown in Figure 10.16,
instead of as in Figure 10.12. Find and sketch the following (a) ; (b) ; and
(c) .V-

2(0.8l, t)
V-

2(0, t)V+
2 (l, t)

Vg(t)
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t
0.1T

2V0

0 0.4T 0.5T

Vg

FIGURE 10.16

For Problem 10.11.

10.12. For the system of Figure 10.9, assume that

Find and sketch the following: (a) ; (b) ; (c) .
10.13. For the system of Figure 10.9, assume that and . For 

given in Figure 10.12, find and sketch the following: (a) ; (b) ; and
(c) .

10.5 PARALLEL-PLATE WAVEGUIDE DISCONTINUITY

In Section 8.2, we introduced waves in a parallel-plate waveguide. Let us now con-
sider reflection and transmission at a dielectric discontinuity in a parallel-plate guide,as
shown in Figure 10.17.If a wave is incident on the junction from section 1, then it will
set up a reflected wave into section 1 and a transmitted wave into section 2, provided that
mode propagates in that section. The fields corresponding to these incident, reflected,
and transmitted waves must satisfy the boundary conditions at the dielectric disconti-
nuity. These boundary conditions were derived in Section 5.5. Denoting the incident,
reflected, and transmitted wave fields by the subscripts i, r, and t, respectively, we have
from the continuity of the tangential component of E at a dielectric discontinuity,

(10.56)

and from the continuity of the tangential component of H at a dielectric discontinuity,

(10.57)Hxi + Hxr = Hxt at z = 0

Eyi + Eyr = Eyt at z = 0

TEm,0

TEm,0

V2(z, 1.1T)
V-

2(z, 1.1T)V+
2 (z, 1.1T)

Vg(t)T0 = 0.2TKb>Kf = -25vp

V-
2(0.75 l, t)V-

2(0, t)V2
+(l, t)

Vg(t) = e2V0 sin2 pt>T  for 0 6 t 6 T
0  otherwise

x ! 0

z ! 0x ! a

trans.

inc.

ref.

Section 1

P1, m1

Section 2

P2, m2

zy

x

FIGURE 10.17

For consideration of reflection
and transmission at a dielectric 
discontinuity in a parallel-plate
waveguide.

We now define the guide characteristic impedance, , of section 1 as

(10.58)

Recognizing that , we note that is simply the ratio of the trans-
verse components of the electric and magnetic fields of the wave that give riseTEm,0

hg1ay : (-ax) = az

hg1 =
Eyi

-Hxi

hg1
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to time-average power flow down the guide. From (8.35a) and (8.35b) applied to sec-
tion 1, we have

(10.59)

The guide characteristic impedance is analogous to the characteristic impedance of a
transmission line, if we recognize that and are analogous to and ,
respectively. In terms of the reflected wave fields, it then follows that

(10.60)

This result can also be seen from the fact that for the reflected wave, the power flow is
in the negative z-direction and since is equal to . For the
transmitted wave fields, we have

(10.61)

where

(10.62)

is the guide characteristic impedance of section 2.
Using (10.58), (10.60), and (10.61), (10.57) can be written as

(10.63)

Solving (10.56) and (10.63), we get

(10.64)

or the reflection coefficient at the junction is given by

(10.65)

and the transmission coefficient at the junction is given by

(10.66)

These expressions for and are similar to those obtained in Section 7.2 for reflection
and transmission at a transmission-line discontinuity. Hence, insofar as reflection and
transmission at the junction are concerned, we can replace the waveguide sections by
transmission lines having characteristic impedances equal to the guide characteristic

t≠

t =
Eyt

Eyi
=

Eyi + Eyr

Eyi
= 1 + ≠

≠ =
Eyr

Eyi
=
hg2 - hg1

hg2 + hg1

Eyia1 -
hg2

hg1
b + Eyra1 +

hg2

hg1
b = 0

Eyi

hg1
-

Eyr

hg1
=

Eyt

hg2

hg2 = h2

lg2

l2
=

h221 - (l2>lc)2
=

h221 - (fc2>f)2

Eyt

-Hxt
= hg2

Eyr>Hxray : ax = -az, hg1

hg1 = - a Eyr

-Hxr
b =

Eyr

Hxr

I+V+-HxiEyi

hg1 = h1

lg1

l1
=

h121 - (l1>lc)2
=

h121 - (fc1>f)2
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10.5 Parallel-Plate Waveguide Discontinuity 405

impedances, as shown in Figure 10.18. It should be noted that unlike the characteristic
impedance of a lossless line, which is a constant independent of frequency, the guide
characteristic impedance of the lossless waveguide is a function of the frequency.

Line 1

hg1

Line 2

hg2

z ! 0

FIGURE 10.18

Transmission-line equivalent of
parallel-plate waveguide discontinuity.

5 
cm P0, m0 9P0, m0

z ! 0

FIGURE 10.19

For illustrating the computation of
reflection and transmission coefficients at
a parallel-plate waveguide discontinuity.

For the mode, , independent of the dielectric. For
,

Since in both sections, mode propagates in both sections. Thus,

For , we would obtain and .t = 0.371≠ = -0.629f = 4000 MHz

 t = 1 + ≠ = 1 - 0.572 = 0.428

 ≠ =
hg2 - hg1

hg2 + hg1
= 128.25 - 471.24

128.25 + 471.24
= -0.572

 hg2 =
h221 - (l2>lc)2

=
120p>2921 - (2>10)2

= 40p21 - 0.04
= 128.25 Æ

 hg1 =
h121 - (l1>lc)2

= 120p21 - (6>10)2
= 471.24 Æ

TE1, 0l 6 lc

 l2 = wavelength on the dielectric side = 3 * 10829 * 5 * 109
= 6

3
= 2 cm

 l1 = wavelength on the free space side = 3 * 108

5 * 109 = 6 cm

f = 5000 MHz
lc = 2a = 10 cmTE1,0

For a numerical example of computing and , let us consider the parallel-plate
waveguide discontinuity shown in Figure 10.19, and waves of frequency

, incident on the junction from the free space side.f = 5000 MHz
TE1,0

t≠
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406 Chapter 10 Supplementary Topics

In this section, we discussed the solution of problems involving reflection and
transmission at a discontinuity in a waveguide by using the transmission-line analogy.
This consists of replacing each section of the waveguide by a transmission line whose
characteristic impedance is equal to the guide characteristic impedance and then com-
puting the reflection and transmission coefficients as in the transmission-line case. The
guide characteristic impedance, , which is the ratio of the transverse electric field to
the transverse magnetic field, is given for the TE modes by

(10.67)

REVIEW QUESTIONS

10.21. Define guide characteristic impedance.
10.22. Provide a physical explanation for why the guide characteristic impedance is different

from the intrinsic impedance of the medium in the guide.
10.23. Discuss the use of the transmission-line analogy for solving problems involving reflec-

tion and transmission at a waveguide discontinuity.
10.24. Why are the reflection and transmission coefficients for a given mode at a lossless

waveguide discontinuity dependent on frequency whereas the reflection and transmis-
sion coefficients at the junction of two lossless lines are independent of frequency?

PROBLEMS

10.14. For the parallel-plate waveguide discontinuity of Figure 10.19, find the reflection and
transmission coefficients for propagating in (a) mode and (b) 
mode.

10.15. The left half of a parallel-plate waveguide of dimension is filled with a dielec-
tric of and . The right half is filled with a dielectric of and

For waves of frequency 2500 MHz incident on the discontinuity from the
left, find the reflection and transmission coefficients.

10.16. Assume that the permittivity of the dielectric to the right side of the parallel-plate
waveguide discontinuity of Figure 10.19 is unknown. If the reflection coefficient for

waves of frequency 5000 MHz incident on the junction from the free space side is
, find the permittivity of the dielectric.

10.6 MAGNETIC VECTOR POTENTIAL AND THE LOOP ANTENNA

In Section 6.1, we learned that since

for the static electric field, E can be expressed as the gradient of a scalar potential in
the manner

We then proceeded with the discussion of the electric scalar potential and its applica-
tion for the computation of static electric fields. In this section, we shall introduce a

E = - §V

¥ : E = 0

-0.2643
TE1,0

TE1,0m = m0.
P = 9P0m = m0P = 4P0

a = 4 cm

TE2,0TE1,0f = 7500 MHz

hg =
h21 - (l>lc)2

=
h21 - (fc>f)2

hg
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10.6 Magnetic Vector Potential and the Loop Antenna 407

similar tool for the magnetic field computation, namely, the magnetic vector potential.
When extended to the time-varying case, the magnetic vector potential has useful
application in the determination of fields due to antennas.

To introduce the magnetic vector potential concept, we recall that the divergence
of the magnetic flux density vector,whether static or time-varying, is equal to zero,that is,

(10.68)

If the divergence of a vector is zero, then that vector can be expressed as the curl of
another vector, since the divergence of the curl of a vector is identically equal to zero,
as can be seen by expansion in Cartesian coordinates:

Thus, the magnetic field vector B can be expressed as the curl of a vector A, that is,

(10.69)

The vector A is known as the magnetic vector potential in analogy with the electric
scalar potential for V.

If we can now find A due to an infinitesimal current element, we can then find A
for a given current distribution and determine B by using (10.69). Let us therefore con-
sider an infinitesimal current element of length dl situated at the origin and oriented
along the z-axis, as shown in Figure 10.20. Assuming first that the current is constant

B = ¥ : A

 = 5 0
0x

0
0y

0
0z

0
0x

0
0y

0
0z

Ax Ay Az

5 = 0

 § # § : A = aax
0

0x
+ ay

0
0y

+ az
0
0z
b # ∞ ax ay az

0
0x

0
0y

0
0z

Ax Ay Az

∞

§ # B = 0

z

u

r

P

dl y

f

x

FIGURE 10.20

For finding the magnetic vector
potential due to an infinitesimal
current element.
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408 Chapter 10 Supplementary Topics

and equal to I, we note from (1.68) that the magnetic field at a point P due to the cur-
rent element is given by

(10.70)

where r is the distance from the current element to the point P and is the unit vector
directed from the element toward P. Expressing B as

(10.71)

and using the vector identity

(10.72)

we obtain

(10.73)

Since d l is a constant, , and (10.73) reduces to

(10.74)

Comparing (10.74) with (10.69), we now see that the vector potential due to the cur-
rent element situated at the origin is simply given by

(10.75)

Thus, it has a magnitude inversely proportional to the radial distance from the element
(similar to the inverse distance dependence of the scalar potential due to a point
charge) and direction parallel to the element.

If the current in the element is now assumed to be time-varying in the manner

we would intuitively expect that the corresponding magnetic vector potential would
also be time-varying in the same manner but with a time-lag factor included, as dis-
cussed in Section 9.1 in connection with the determination of the electromagnetic
fields due to the time-varying current element (Hertzian dipole). To verify our intu-
itive expectation, we note from (9.23b) that the magnetic field due to the time-varying
current element is given by

 =
mI0 d l

4p
: e - §c cos (vt - br)

r
d f

 =
mI0 dl

4p
: e ccos (vt - br)

r2 -
b sin (vt - br)

r
dar f

 B = mH =
mI0 dl sin u

4p
ccos (vt - br)

r2 -
b sin (vt - br)

r
daf

I = I0 cos vt

A =
mI dl
4pr

B = § : amI dl
4pr

b§ : d l = 0

B = -
mI
4pr

§ : dl + § : amI dl
4pr
b

A : §V = V§ : A - § : (VA)

B =
m

4p
Idl : a - § 

1
r
b

ar

B =
m

4p
 
Idl : ar

r2
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10.6 Magnetic Vector Potential and the Loop Antenna 409

and proceed in the same manner as for the constant current case to obtain the vector
potential to be

(10.76)

Comparing (10.76) with (10.75), we find that our intuitive expectation is indeed correct
for the vector potential case, unlike the case of the fields in Section 9.1! The result
given by (10.76) is familiarly known as the retarded vector potential in view of the
phase-lag factor contained in it.

To illustrate an example of the application of (10.76), we now consider a circular
loop antenna having circumference that is small compared to the wavelength so that
it is an electrically small antenna. Under this condition, the current flowing in the
loop can be assumed to be uniform around the loop. Recall that the electrically small
loop antenna as a receiving antenna was introduced in Section 9.6. Let us assume
the loop to be in the xy-plane with its center at the origin, as shown in Figure 10.21, and
the loop current to be in the direction. In view of the circular symmetry
around the z-axis, we can consider a point P in the xz-plane without loss of generality
to find the vector potential. To do this, we divide the loop into a series of infinitesimal
elements. Considering one such current element , as
shown in Figure 10.21, and using (10.76), we obtain the vector potential at P due to that
current element to be

(10.77)

where

(10.78) = [r2 + a2 - 2ar sin u cos a]1>2 R = [(r sin u - a cos a)2 + (a sin a)2 + (r cos u)2]1>2
dA =

mI0a da (-sin a ax + cos a ay)

4pR
 cos (vt - bR)

dl = a da (-sin a ax + cos a ay)

fI = I0 cos vt

br

A =
mI0 d l
4pr

 cos (vt - br)

z

x

u

daa

a

r

P

I

R

y

dl
FIGURE 10.21

For finding the magnetic vector
potential due to a small circular loop
antenna.
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410 Chapter 10 Supplementary Topics

The vector potential at point P due to the entire current loop is then given by

(10.79)

The first integral on the right side of (10.79) is, however, zero since the contributions to
it due to elements situated symmetrically about the xz-plane cancel. Replacing in
the second term by to generalize the result to an arbitrary point , we then
obtain

(10.80)

Although the evaluation of the integral in (10.80) is complicated, some approxi-
mations can be made for obtaining the radiation fields. For these fields, we can set the
quantity R in the amplitude factor of the integrand equal to r. For R in the phase factor
of the integrand, we write

(10.81)

Thus, for the radiation fields,

(10.82)

Now, since , or , we can write

(10.83)

Substituting (10.83) into (10.82) and evaluating the integral, we obtain

(10.84)A = -
mI0pa2b sin u

4pr
 sin (vt - br) af

cos (vt - br + ba sin u cos a)
  L cos(vt - br) - ba sin u cos a sin (vt - br)

ba V 12pa V l

A = cL2p

a= 0
 
mI0 a cos a da

4pr
 cos (vt - br + ba sin u cos a) daf

 L r c1 - a
r

 sin u cos a d
 R = r c1 + a2

r2 - 2a
r

 sin u cos a d1/2

A = cL2p

a= 0
 
mI0 a cos a da

4pR
 cos (vt - bR) daf

P(r, u, f)af
ay

 + cL2p

a= 0
 
mI0 a cos a da

4pR
 cos (vt - bR) day

 = - cL2p

a= 0
 
mI0 a sin a da

4pR
 cos (vt - bR) dax

 A = L
2p

a= 0
dA
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10.6 Magnetic Vector Potential and the Loop Antenna 411

Having obtained the required magnetic vector potential, we can now determine
the radiation fields. Thus from (10.69),

(10.85)

From , we have

(10.86)

Comparing (10.85) and (10.86) with (9.25a) and (9.25b), respectively, we note that a
duality exists between the radiation fields of the small current loop and those of the
infinitesimal current element aligned along the axis of the current loop.

Proceeding further, we can find the Poynting vector, the instantaneous radiated
power and the time-average radiated power due to the loop antenna by following steps
similar to those employed for the Hertzian dipole in Section 9.2. Thus,

 = 1
2

 I2
0 c8p5h

3
 a a
l
b4 d 8Prad9 =

hb4I2
0p

2a4

6p
 8cos2 (vt - br)9

 =
hb4I2

0p
2a4

6p
 cos2 (vt - br)

 = L
p

u= 0
 L

2p

f= 0
 
hb4I2

0p
2a4 sin3

 u

16p2  cos2 (vt - br) du df

 Prad = L
p

u= 0
 L

2p

f= 0
 P # r2 sin u du df ar

 =
hb4I2

0p
2a4 sin2 u

16p2r2  cos2 (vt - br) ar

 P = E : H = Ef af : Hu au = -EfHuar

 =
hI0pa2b2 sin u

4pr
 cos (vt - br) af

 E =
I0pa2b3 sin u

4pvPr
 cos (vt - br) af

 = -
I0pa2b3 sin u

4pPr
 sin (vt - br) af

 
0E
0t

= 1
P§ : H = 1

Pr
 

0
0r

 (rHu) af

§ : H = 0D
0t

= P0E
0t

 = -
I0pa2b2 sin u

4pr
 cos (vt - br) au

 = - 1
mr

 
0
0r

 (rAf) au

 H = B
m

= 1
m

¥ : A
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412 Chapter 10 Supplementary Topics

We now identify the radiation resistance of the small loop antenna to be

(10.87)

For free space, , and

(10.88)

Comparing this result with the radiation resistance of the Hertzian dipole given by
(9.30), we note that the radiation resistance of the small loop antenna is proportional
to the fourth power of its electrical size (circumference/wavelength) whereas that of
the Hertzian dipole is proportional to the square of its electrical size (length/wave-
length). The directivity of the small loop antenna is, however, the same as that of the
Hertzian dipole, that is, 1.5, as given by (9.33), in view of the proportionality of the
Poynting vectors to in both cases.

In this section, we introduced the magnetic vector potential as a tool for computing
the magnetic fields due to current distributions.In particular,we derived the expression for
the retarded magnetic vector potential for a Hertzian dipole and illustrated its application
by considering the case of a small circular loop antenna. We derived the radiation fields for
the loop antenna and compared its characteristics with those of the Hertzian dipole.

REVIEW QUESTIONS

10.25. Why can the magnetic flux density vector be expressed as the curl of another vector?
10.26. Discuss the analogy between the magnetic vector potential due to an infinitesimal cur-

rent element and the electric scalar potential due to a point charge.
10.27. What does the word retarded in the terminology retarded magnetic vector potential refer

to? Explain.
10.28. Discuss the application of the magnetic vector potential in the determination of the

electromagnetic fields due to an antenna.
10.29. Discuss the duality between the radiation fields of a small circular loop antenna with

those of a Hertzian dipole at the center of the loop and aligned with its axis.
10.30. Compare the radiation resistance and directivity of a small circular loop antenna with

those of a Hertzian dipole.

PROBLEMS

10.17. By expansion in Cartesian coordinates, show that

10.18. For the half-wave dipole of Section 9.3, determine the magnetic vector potential for the
radiation fields.Verify your result by finding the radiation fields and comparing with the
results of Section 9.3.

10.19. A circular loop antenna of radius 1 m in free space carries a uniform current
. (a) Calculate the amplitude of the electric field intensity at a dis-

tance of 10 km in the plane of the loop. (b) Calculate the radiation resistance and the
time-average power radiated by the loop.

10.20. Find the length of a Hertzian dipole that would radiate the same time-average power as the
loop antenna of Problem 10.19 for the same current and frequency as in Problem 10.19.

10 cos 4p * 106t A

A : §V = V§ : A - § : (VA).

sin2 u

Rrad = 320p6a a
l
b4

= 20p2a2pa
l
b4

h = h0 = 120p Æ

Rrad =
8p5h

3
a a
l
b4

M10_RAO3333_1_SE_CH10.QXD  4/9/08  2:41 PM  Page 412



413

In Section 1.2, we learned that the Cartesian coordinate system is defined by a set of
three mutually orthogonal surfaces, all of which are planes. The cylindrical and spheri-
cal coordinate systems also involve sets of three mutually orthogonal surfaces. For the
cylindrical coordinate system, the three surfaces are a cylinder and two planes, as
shown in Figure A.1(a). One of these planes is the same as the constant plane
in the Cartesian coordinate system.The second plane contains the -axis and makes an
angle with a reference plane, conveniently chosen to be the -plane of the Cartesian
coordinate system.This plane is therefore defined by constant.The cylindrical sur-
face has the -axis as its axis. Since the radial distance from the -axis to points on the
cylindrical surface is a constant, this surface is defined by constant. Thus, the three
orthogonal surfaces defining the cylindrical coordinates of a point are constant,

constant, and constant. Only two of these coordinates ( and ) are distances;
the third coordinate ( ) is an angle. We note that the entire space is spanned by vary-
ing from 0 to , from 0 to , and from to .

The origin is given by , , and . Any other point in space is given
by the intersection of three mutually orthogonal surfaces obtained by incrementing the
coordinates by appropriate amounts. For example, the intersection of the three surfaces

, and defines the point as shown in Figure A.1(a).
These three orthogonal surfaces define three curves that are mutually perpendicular.
Two of these are straight lines and the third is a circle. We draw unit vectors, , , and

tangential to these curves at the point and directed toward increasing values of
, and , respectively.These three unit vectors form a set of mutually orthogonal unit

vectors in terms of which vectors drawn at can be described. In a similar manner, we
can draw unit vectors at any other point in the cylindrical coordinate system, as shown,
for example, for point in Figure A.1(a). It can now be seen that the unit
vectors and at point B are not parallel to the corresponding unit vectors at
point A. Thus, unlike in the Cartesian coordinate system, the unit vectors and in
the cylindrical coordinate system do not have the same directions everywhere, that is,
they are not uniform. Only the unit vector , which is the same as in the Cartesian co-
ordinate system, is uniform. Finally, we note that for the choice of as in Figure A.l(a),f

az

afar

afar

B(1, 3p>4, 5)

A
zr, f

Aaz

afar

A(2, p>4, 3),z = 3f = p>4,r = 2

z = 0f = 0r = 0
q- qz2pfqr

f
zrz =f =

r =
r =

zrz
f =

xzf
z
z =

Cylindrical and
Spherical Coordinate
Systems

APPENDIX

A
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414 Appendix A Cylindrical and Spherical Coordinate Systems

that is, increasing from the positive -axis toward the positive -axis, the coordinate sys-
tem is right-handed, that is, .

To obtain expressions for the differential lengths, surfaces, and volume in the
cylindrical coordinate system, we now consider two points and 

where is obtained by incrementing infinitesimally each coordinate
from its value at , as shown in Figure A.1(b). The three orthogonal surfaces intersect-
ing at and the three orthogonal surfaces intersecting at define a box which can be
considered to be rectangular, since are infinitesimally small. The three
differential length elements, forming the contiguous sides of this box are ,
, and . The differential length vector from to is thus given by

(A.1)

The differential surfaces formed by pairs of the differential length elements are

(A.2a)
(A.2b)
(A.2c)

Finally, the differential volume formed by the three differential lengths is simply the
volume of the box, that is,

(A.3)dv = (dr)(r df)(dz) = r dr df dz

dv

 ; dS af = ; (dz)(dr)af = ; dz az : dr ar

 ; dS ar  = ; (r df)(dz)ar = ; r df af : dz az

 ; dS az  = ; (dr)(r df)az = ; dr ar : r df af

dl = dr ar + r df af + dz az

QPdldz az

afr dfdr ar

dr, df, and dz
QP

P
Qf + df, z + dz),

Q(r + dr,P(r, f, z)

ar : af = az

yx

(a) (b)

p
f

f

f df

4
 !

af

af

ar

az

ar

az

r ! 2

z ! 3

A

x

r

x x

y y

z z

B

r

r df
dr

z

dr
P

Q

dz

r df

FIGURE A.1

Cylindrical coordinate system. (a) Orthogonal surfaces and unit vectors.
(b) Differential volume formed by incrementing the coordinates.
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p
f

u

f

df

duu

f

3
 !

p
u

6
!

af

af

au

au

ar

ar

r ! 3

A

B

r

x x

y y

z z

r df

dr

dr

P
Q

r du

r

r sin u df

(a) (b)

FIGURE A.2

Spherical coordinate system. (a) Orthogonal surfaces and unit vectors. (b) Differential
volume formed by incrementing the coordinates.

For the spherical coordinate system, the three mutually orthogonal surfaces are
a sphere, a cone, and a plane, as shown in Figure A.2(a).The plane is the same as the 
constant plane in the cylindrical coordinate system. The sphere has the origin as its
center. Since the radial distance from the origin to points on the spherical surface is a
constant, this surface is defined by constant. The spherical coordinate should not
be confused with the cylindrical coordinate .When these two coordinates appear in the
same expression, we shall use the subscripts and to distinguish between cylindrical
and spherical. The cone has its vertex at the origin and its surface is symmetrical about
the -axis. Since the angle is the angle that the conical surface makes with the -axis,
this surface is defined by constant. Thus, the three orthogonal surfaces defining the
spherical coordinates of a point are constant, constant, and constant. Only
one of these coordinates is distance; the other two coordinates ( and ) are angles.
We note that the entire space is spanned by varying from 0 to , from 0 to , and 
from 0 to .2p

fpuqr
fu(r)

f =u =r =
u =

zuz

sc
r

rr =
r

f =

The origin is given by , , and . Any other point in space is given
by the intersection of three mutually orthogonal surfaces obtained by incrementing the
coordinates by appropriate amounts. For example, the intersection of the three sur-
faces , , and defines the point as shown in Fig-
ure A.2(a). These three orthogonal surfaces define three curves that are mutually
perpendicular. One of these is a straight line and the other two are circles.We draw unit
vectors , , and tangential to these curves at point and directed toward increas-
ing values of , respectively. These three unit vectors form a set of mutuallyr, u, and f

Aafauar

A(3, p>6, p>3)f = p>3u = p>6r = 3

f = 0u = 0r = 0
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orthogonal unit vectors in terms of which vectors drawn at can be described. In a
similar manner, we can draw unit vectors at any other point in the spherical coordi-
nate system, as shown, for example, for point in Figure A.2(a). It can now
be seen that these unit vectors at point are not parallel to the corresponding unit
vectors at point . Thus, in the spherical coordinate system, all three unit vectors

do not have the same directions everywhere, that is, they are not uniform.
Finally, we note that for the choice of as in Figure A.2(a), that is, increasing from the
positive -axis toward the -plane, the coordinate system is right-handed, that is,

.
To obtain expressions for the differential lengths, surfaces, and volume in the

spherical coordinate system, we now consider two points and 
where is obtained by incrementing infinitesimally each coordinate

from its value at , as shown in Figure A.2(b). The three orthogonal surfaces intersect-
ing at and the three orthogonal surfaces intersecting at define a box that can be
considered to be rectangular, since are infinitesimally small. The three
differential length elements forming the contiguous sides of this box are 

. The differential length vector from to is thus given by

(A.4)

The differential surfaces formed by pairs of the differential length elements are

(A.5a)
(A.5b)
(A.5c)

Finally, the differential volume formed by the three differential lengths is simply the
volume of the box, that is,

(A.6)

In the study of electromagnetics it is sometimes useful to be able to convert the
coordinates of a point and vectors drawn at a point from one coordinate system to
another, particularly from the Cartesian system to the cylindrical system and vice versa,
and from the Cartesian system to the spherical system and vice versa.To derive first the
relationships for the conversion of the coordinates, let us consider Figure A.3(a), which
illustrates the geometry pertinent to the coordinates of a point in the three different
coordinate systems. Thus, from simple geometrical considerations, we have

(A.7)
(A.8)

Conversely, we have

(A.9)

(A.10) rs = 2x2 + y2 + z2  u = tan - 1 
2x2 + y2

z
  f = tan - 1 

y
x

 rc = 2x2 + y2  f = tan - 1 
y
x

  z = z

 x = rs sin u cos f   y = rs sin u sin f   z = rs cos u
 x = rc cos f  y = rc sin f  z = z

P

dv = (dr)(r du)(r sin u df) = r2 sin u dr du df

dv

 ; dS au  = ; (r sin u df)(dr)au = ; r sin u df af : dr ar

 ; dS ar  = ; (r du)(r sin u df)ar = ; r du au : r sin u df af

 ; dS af = ; (dr)(r du)af = ; dr ar : r du au

dl = dr ar + r du au + r sin u df af

QPdlr du au, and r sin u df af
dr ar,

dr, du, and df
QP

P
Qu + du, f + df),

Q(r + dr,P(r, u, f)

ar : au = af
xyz

u
ar, au, and af

A
B

B(1, p>2, 0)

A
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Relationships (A.7) and (A.9) correspond to conversion from cylindrical coordinates
to Cartesian coordinates and vice versa. Relationships (A.8) and (A.10) correspond to
conversion from spherical coordinates to Cartesian coordinates and vice versa.

Considering next the conversion of vectors from one coordinate system to another,
we note that in order to do this, we need to express each of the unit vectors of the first
coordinate system in terms of its components along the unit vectors in the second coor-
dinate system. From the definition of the dot product of two vectors, the component of a
unit vector along another unit vector, that is, the cosine of the angle between the unit vec-
tors, is simply the dot product of the two unit vectors. Thus, considering the sets of unit
vectors in the cylindrical and Cartesian coordinate systems, we have with the aid of
Figure A.3(b),

(A.11a)
(A.11b)
(A.11c)

Similarly, for the sets of unit vectors in the spherical and Cartesian coordinate systems,
we obtain with the aid of Figure A.3(c) and Figure A.3(b),

(A.12a)
(A.12b)
(A.12c)

We shall now illustrate the use of these relationships by means of an example.

 af # ax = - sin f  af # ay = cos f  af # az = 0
 au # ax = cos u cos f  au # ay = cos u sin f  au # az = - sin u

 ars # ax = sin u cos f  ars # ay = sin u sin f  ars # az = cos u

 az # ax = 0  az # ay = 0  az # az = 1
 af # ax = - sin f  af # ay = cos f  af # az = 0
 arc # ax = cos f  arc # ay = sin f  arc # az = 0

u

u

f

f

af

af

au

ay

arc

arc

ars

ax

az

az

O

x

x

y

y

z

z

rc

rs
P

(a)

(b) (c)

FIGURE A.3

(a) For conversion of coordinates of a point from one coordinate system to another.
(b) and (c) For expressing unit vectors in cylindrical and spherical coordinate systems,
respectively, in terms of unit vectors in the Cartesian coordinate system.
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418 Appendix A Cylindrical and Spherical Coordinate Systems

Example A.1

Let us consider the vector at the point (3, 4, 5) and convert the vector to one in
spherical coordinates.

First, from the relationships (A.10), we obtain the spherical coordinates of the point (3, 4, 5)
to be

Then noting from the relationships (A.12) that at the point under consideration,

we obtain

This result is to be expected since the given vector has components equal to the coordinates of
the point at which it is specified. Hence, its magnitude is equal to the distance of the point from
the origin, that is, the spherical coordinate of the point, and its direction is along the line
drawn from the origin to the point, that is, along the unit vector at that point. In fact, the
given vector is a particular case of the vector , known as the position
vector, since it is the same as the vector drawn from the origin to the point .

REVIEW QUESTIONS

A.1. What are the three orthogonal surfaces defining the cylindrical coordinate system?
A.2. What are the limits of variation of the cylindrical coordinates?
A.3. Which of the unit vectors in the cylindrical coordinate system are not uniform?
A.4. State whether the vector at the point (1, 0, 2) and the vector

at the point are equal or not.
A.5. What are the differential length vectors in cylindrical coordinates?
A.6. What are the three orthogonal surfaces defining the spherical coordinate system?
A.7. What are the limits of variation of the spherical coordinates?

(2, p>2, 3)3ar + 4af + 5az

3ar + 4af + 5az

(x, y, z)
xax + yay + zaz = rsars

ars

r

+ (0.922 + 1.622 - 2.522)au + ( - 2.4 + 2.4)af = 522ars

 3ax + 4ay + 5az = (0.922 + 1.622 + 2.522)ars

 az = cos u ars - sin u au = 0.522ars - 0.522au

 = 0.422ars + 0.422au + 0.6af

 ay = sin u sin f ars + cos u sin f au + cos f af

 = 0.322ars + 0.322au - 0.8af

 ax = sin u cos f ars + cos u cos f au - sin f af

 f = tan - 1 
4
3

= 53.13°

 u = tan - 1 
232 + 42

5
= tan - 1 1 = 45°

 rs = 232 + 42 + 52 = 522

3ax + 4ay + 5az
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A.8. Which of the unit vectors in the spherical coordinate system are not uniform?
A.9. State if the vector at the point and the vector at the

point are equal or not.
A.10. What are the differential length vectors in spherical coordinates?
A.11. Outline the procedure for converting a vector at a point from one coordinate system to

another.
A.12. What is the expression for the position vector in the cylindrical coordinate system?

PROBLEMS

A.1. Express in terms of Cartesian coordinates the vector drawn from the point 
to the point in cylindrical coordinates.

A.2. Express in terms of Cartesian coordinates the vector drawn from the point
to the point in spherical coordinates.

A.3. Determine if the vector at the point and the vector 
at the point are equal or not.

A.4. Determine if the vector at the point and the vector 
at the point are equal or not.

A.5. Find the dot and cross products of the unit vector at the point (1, 0, 0) and the unit
vector at the point in cylindrical coordinates.

A.6. Find the dot and cross products of the unit vector at the point and the unit
vector at the point in spherical coordinates.

A.7. Convert the vector at the point (5, 12, 4) to one in cylindrical
coordinates.

A.8. Convert the vector at the point (3, 4, 5) to one in spherical coordinates.3ax + 4ay - 5az

5ax + 12ay + 6az

(2, p>2, p>2)au
(1, p>4, 0)ar

(2, p>4, 1)af
ar

(1, p>6, p>3)ar + 23au - 223af

(2, p>3, p>6)3ar + 23au - 2af

(2, p>2, 3)22ar + 2az

(1, p>4, 2)ar + af + 2az

Q(2, 2p>3, 3p>4)P(1, p>3, p>4)

Q(4, 2p>3, 2)
P(2, p>3, 1)

(2, 0, p>2)
3ar + 4au(1, p>2, 0)3ar + 4au
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Curl, Divergence, and
Gradient in Cylindrical
and Spherical
Coordinate Systems 

420

In Sections 3.1, 3.4, and 6.1, we introduced the curl, divergence, and gradient, respec-
tively, and derived the expressions for them in the Cartesian coordinate system. In this
appendix, we shall derive the corresponding expressions in the cylindrical and spheri-
cal coordinate systems. Considering first the cylindrical coordinate system, we recall
from Appendix A that the infinitesimal box defined by the three orthogonal surfaces
intersecting at point and the three orthogonal surfaces intersecting at point

is as shown in Figure B.1.Q(r + dr, f + df, z + dz)
P(r, u, f)

APPENDIX

d

a
P(r, f, z)

dz

dr

f

g

c

h

e
b

r df

Q(r ! dr, f ! df, z ! dz)

(r ! dr) df

FIGURE B.1

Infinitesimal box formed by incrementing the coordinates in the
cylindrical coordinate system.

B
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From the basic definition of the curl of a vector introduced in Section 3.3 and
given by

(B.1)

we find the components of as follows with the aid of Figure B.1:

(B.2a)

(B.2b)

(B.2c) = 1
r

 
0
0r

 (rAf) - 1
r

 
0Ar

0f  

 = Lim
dr:0

 
[rAf](r + dr, z) - [rAf](r, z)

r dr
+ Lim

df:0
 
[Ar](f, z) - [Ar](f + df, z)

r df

 = Lim
dr:0
df:0

 

e [Ar](f, z) dr + [Af](r + dr, z) (r + dr) df
-  [Ar](f + df, z) dr - [Af](r, z)r df

f
r dr df

 (§ : A)z = Lim
dr:0
df:0

 
Aafgba A # dl

area afgb
 

 =
0Ar

0z
-

0Az

0r
 

 = Lim
dz:0

 
[Ar](f, z + dz) - [Ar](f, z)

dz
+ Lim

dr:0
 
[Az](r, f) - [Az](r + dr, f)

dr

 = Lim
dz:0
dr:0

  

e [Az](r, f) dz + [Ar](f, z + dz) dr
-  [Az](r + dr, f) dz - [Ar](f, z) dr

f
dr dz

 (§ : A)f = Lim
dz:0
dr:0

 
Aadefa A # dl

area adef
 

 = 1
r

 
0Az

0f -
0Af
0z

 

 = Lim
df:0

 
[Az](r, f + df) - [Az](r, f)

r df
+ Lim

dz:0
 
[Af](r, z) - [Af](r, z + dz)

dz

 = Lim
df:0
dz:0

 

e [Af](r, z) r df + [Az](r, f + df) dz
-  [Af](r, z + dz)r df - [Az](r, f) dz

f
r df dz

 (§ : A)r = Lim
df:0
dz:0

 
Aabcda A # dl

area abcd

§ : A

§ : A = Lim
¢S:0 

c AC A # dl
¢S

d
max

an
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422 Appendix B Curl, Divergence, and Gradient

Combining (B.2a), (B.2b), and (B.2c), we obtain the expression for the curl of a vector
in cylindrical coordinates as

(B.3)

To find the expression for the divergence, we make use of the basic definition of
the divergence of a vector, introduced in Section 3.6 and given by

(B.4)

Evaluating the right side of (B.4) for the box of Figure B.1, we obtain

(B.5)

To obtain the expression for the gradient of a scalar, we recall from Appendix A
that in cylindrical coordinates,

(B.6)

and hence

(B.7) = §£ # dl 

 = a 0£
0r

 ar + 1
r

 
0£
0f  af + 0£

0z
 azb # (dr ar + r df af + dz az) 

 d£ = 0£
0r

 dr + 0£
0f  df + 0£

0z
 dz 

dl = dr ar + r df af + dz az

 = 1
r

 
0
0r

 (rAr) + 1
r

 
0Af
0f +

0Az

0z

 + Lim
dz:0

 
[Az]z + dz - [Az]z

dz

 = Lim
dr:0

 
[rAr]r + dr - [rAr]r

r dr
+ Lim

df:0
 
[Af]f + df - [Af]f

r df

 § # A = Lim
dr:0
df:0
dz:0

e [Ar]r + dr(r + dr) df dz - [Ar]rr df dz + [Af]f + df dr dz
-  [Af]f dr dz + [Az]z + dzr dr df - [Az]zr dr df

f
r dr df dz

 

§ # A = Lim
¢v:0

 AS A # dS

¢v

 = 5 ar

r
0
0r
Ar

af

0
0f
rAf

az

r
0
0z
Az

5 § : A = c1
r

 
0Az

0f -
0Af
0z
dar + c 0Ar

0z
-

0Az

0r
daf + 1

r
 c 0

0r
 (rAf) -

0Ar

0f d  az
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Thus,

(B.8)

Turning now to the spherical coordinate system, we recall from Appendix A that
the infinitesimal box defined by the three orthogonal surfaces intersecting at 
and the three orthogonal surfaces intersecting at is as
shown in Figure B.2. From the basic definition of the curl of a vector given by (B.1), we
then find the components of as follows with the aid of Figure B.2:

(B.9a) = 1
r sin u

 
0
0u (Af sin u) - 1

r sin u
 
0Au
0f

 + Lim
df:0

 
[Au](r, f) - [Au](r, f + df)

r sin u df

 = Lim
du:0

 
[Af sin u](r, u + du) - [Af sin u](r, u)

r sin u du

 = Lim
du:0
df:0

e [Au](r, f)r du + [Af](r, u + du)r sin (u + du) df
 -  [Au](r, f + df)r du - [Af](r, u)r sin u df

f
r2 sin u du df

 

 (§ : A)r = Lim
du:0
df:0

 Aabcda A # dl

area abcd

§ : A

Q(r + dr, u + du, f + df)
P(r, u, f)

§£ = 0£
0r

 ar + 1
r

 
0£
0f  af + 0£

0z
 az

P(r, u, f)
a

r du

r sin u df

b

g

e

h

f

dr

c

d (r ! dr) sin u df

(r ! dr) du

Q(r ! dr, u ! du, f ! df)

r sin (u ! du) df

FIGURE B.2

Infinitesimal box formed by incrementing the coordinates in the spherical
coordinate system.
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424 Appendix B Curl, Divergence, and Gradient

(B.9b)

(B.9c)

Combining (B.9a), (B.9b), and (B.9c), we obtain the expression for the curl of a vector
in spherical coordinates as

(B.10) = 5 ar

r2 sin u
0
0r
Ar

au
r sin u

0
0u

rAu

af
r
0

0f
r sin uAf

5
 

 + 1
r

 c 1
sin u

 
0Ar

0f  - 0
0r

 (rAf) dau + 1
r

 c 0
0r

 (rAu) -
0Ar

0u daf
  § : A = 1

r sin u
c 0
0u (Af sin u) -

0Au
0f dar 

 = 1
r

 
0
0r

 (rAu) - 1
r

 
0Ar

0u

  + Lim
du:0

 
[Ar](u, f) dr - [Ar](u + du, f) dr

r du

 = Lim
dr:0

 
[rAu](r + dr, f) - [rAu](r, f)

r dr

 = Lim
dr:0
du:0

e [Ar](u, f) dr + [Au](r + dr, f)(r + dr) du
 -  [Ar](u + du, f) dr - [Au](r, f)r du

f
r dr du

 (§ : A)f = Lim
dr:0
du:0

 
Aafgba A # dl

area afgb

 = 1
r sin u

 
0Ar

0f - 1
r

 
0
0r

 (rAf) 

 + Lim
dr:0

 
[rAf](r, u) - [rAf](r + dr, u)

r dr

 = Lim
df:0

 
[Ar](u, f + df) - [Ar](u, f)

r sin u df

 = Lim
df:0
dr:0

e [Af](r, u)r sin u df + [Ar](u, f + df) dr
 -  [Af](r + dr, u)(r + dr) sin u df - [Ar](u, f) dr

f
r sin u dr df

 

 (§ : A)u = Lim
df:0
dr:0

 
Aadefa A # dl

area adef
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To find the expression for the divergence, we make use of the basic definition of
the divergence of a vector given by (B.4) and by evaluating its right side for the box of
Figure B.2, we obtain

(B.11)

To obtain the expression for the gradient of a scalar, we recall from Appendix A
that in spherical coordinates,

(B.12)

and hence

(B.13)

Thus,

(B.14)

REVIEW QUESTIONS

B.1. Briefly discuss the basic definition of the curl of a vector.
B.2. Justify the application of the basic definition of the curl of a vector to determine sepa-

rately the individual components of the curl.
B.3. How would you generalize the interpretations for the components of the curl of a vec-

tor in terms of the lateral derivatives involving the components of the vector to hold in
cylindrical and spherical coordinate systems?

§£ = 0£
0r

 ar + 1
r

 
0£
0u  au + 1

r sin u
 
0£
0f  af

 = §£ # dl

 = a 0£
0r

 ar + 1
r

 
0£
0u  au + 1

r sin u
 
0£
0f  afb # (dr ar + r du au + r sin u df af)

 d£ = 0£
0r

 dr + 0£
0u  du + 0£

0f  df

dl = dr ar + r du au + r sin u df af

 = 1
r2 

0
0r

 (r2Ar) + 1
r sin u

 
0

0u  (Au sin u) + 1
r sin u

 
0Af
0f

 + Lim
df:0

 
[Af]f + df - [Af]f

r sin u df

 = Lim
dr:0

 
[r2Ar]r + dr - [r2Ar]r

r2 dr
+ Lim

du:0
 
[Au sin u]u + du - [Au sin u]u

r sin u du

 § # A = Lim
dr:0
du:0
df:0

c [Ar]r + dr(r + dr)2 sin u du df - [Ar]rr
2 sin u du df

+  [Au]u + dur sin (u + du) dr df - [Au]ur sin u dr df
+  [Af]f + dfr dr du - [Af]fr dr du

s
r2 sin u dr du df
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426 Appendix B Curl, Divergence, and Gradient

B.4. Briefly discuss the basic definition of the divergence of a vector.
B.5. How would you generalize the interpretation for the divergence of a vector in terms of

the longitudinal derivatives involving the components of the vector to hold in cylindri-
cal and spherical coordinate systems?

B.6. Provide general interpretation for the components of the gradient of a scalar.

PROBLEMS

B.1. Find the curl and the divergence for each of the following vectors in cylindrical coordi-

nates: (a) ; (b) ; (c) .

B.2. Find the gradient for each of the following scalar functions in cylindrical coordinates:

(a) ; (b) .

B.3. Find the expansion for the Laplacian, that is, the divergence of the gradient, of a scalar
in cylindrical coordinates.

B.4. Find the curl and the divergence for each of the following vectors in spherical coordi-

nates: (a) ; (b) ; (c) .

B.5. Find the gradient for each of the following scalar functions in spherical coordinates:

(a) ; (b) .

B.6. Find the expansion for the Laplacian, that is, the divergence of the gradient, of a scalar
in spherical coordinates.

r cos u
sin u

r

1

r2
 ar

e- r

r
 aur2 ar + r sin u au

r sin f
1
r

 cos f

1
r

 af
1
r

 arr cos f ar - r sin f af
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In 1960 the International System of Units was given official status at the Eleventh
General Conference on weights and measures held in Paris, France. This system of
units is an expanded version of the rationalized meter-kilogram-second-ampere
(MKSA) system of units and is based on six fundamental or basic units. The six basic
units are the units of length, mass, time, current, temperature, and luminous intensity.

The international unit of length is the meter. It is exactly 1,650,763.73 times the
wavelength in vacuum of the radiation corresponding to the unperturbed transition be-
tween the levels 2p10 and 5d5 of the atom of krypton-86, the orange-red line. The inter-
national unit of mass is the kilogram. It is the mass of the International Prototype
Kilogram which is a particular cylinder of platinum-iridium alloy preserved in a vault at
Sevres, France, by the International Bureau of Weights and Measures. The international
unit of time is the second. It is equal to 9,192,631,770 times the period corresponding
to the frequency of the transition between the hyperfine levels and

of the fundamental state of the cesium–133 atom unperturbed by
external fields.

To present the definition for the international unit of current, we first define the
newton, which is the unit of force, derived from the fundamental units meter, kilogram,
and second in the following manner. Since velocity is rate of change of distance with
time, its unit is meter per second. Since acceleration is rate of change of velocity with
time, its unit is meter per second per second or meter per second squared. Since force
is mass times acceleration, its unit is kilogram-meter per second squared, also known as
the newton.Thus, the newton is that force which imparts an acceleration of 1 meter per
second squared to a mass of 1 kilogram. The international unit of current, which is the
ampere, can now be defined. It is the constant current that when maintained in two
straight, infinitely long, parallel conductors of negligible cross section and placed
1 meter apart in vacuum produces a force of newtons per meter length of the
conductors.

The international unit of temperature is the Kelvin degree. It is based on the def-
inition of the thermodynamic scale of temperature by designating the triple-point of
water as a fixed fundamental point to which a temperature of exactly 273.16 degrees
Kelvin is attributed. The international unit of luminous intensity is the candela. It is

2 * 10- 7

2S1>2F = 3, M = 0
F = 4, M = 0

Units and Dimensions
APPENDIX

C
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defined such that the luminance of a blackbody radiator at the freezing temperature of
platinum is 60 candelas per square centimeter.

We have just defined the six basic units of the International System of Units.
Two supplementary units are the radian and the steradian for plane angle and solid
angle, respectively.All other units are derived units. For example, the unit of charge, the
coulomb, is the amount of charge transported in 1 second by a current of 1 ampere; the
unit of energy, the joule, is the work done when the point of application of a force of
1 newton is displaced a distance of 1 meter in the direction of the force; the unit
of power, the watt, is the power that gives rise to the production of energy at the rate of
1 joule per second; the unit of electric potential difference, the volt, is the difference of
electric potential between two points of a conducting wire carrying constant current
of 1 ampere when the power dissipated between these points is equal to 1 watt; and
so on. The units for the various quantities used in this book are listed in Table C.1,
together with the symbols of the quantities and their dimensions.

TABLE C.1 Symbols, Units, and Dimensions of Various Quantities

Quantity Symbol Unit (symbol) Dimensions

Admittance siemens (S) M!1L!2TQ2

Area A square meter (m2) L2

Attenuation constant neper/meter (Np/m) L!1

Capacitance C farad (F) M!1L!2T2Q2

Capacitance per unit length farad/meter (F/m) M!1L!3T2Q2

x meter (m) L
Cartesian coordinates y meter (m) L

z meter (m) L
Characteristic admittance Y0 siemens (S) M!1L!2TQ2

Characteristic impedance Z0 ohm ML2T!1Q!2

Charge Q, q coulomb (C) Q
Conductance G siemens (S) M!1L!2TQ2

Conductance per unit length siemens/meter (S/m) M!1L!3TQ2

Conduction current density Jc ampere/square meter (A/m2) L!2T!1Q
Conductivity siemens/meter (S/m) M!1L!3TQ2

Current I ampere (A) T!1Q
Cutoff frequency fc hertz (Hz) T!1

Cutoff wavelength meter (m) L
r, rc meter (m) L

Cylindrical coordinates radian (rad) —
z meter (m) L

Differential length element d l meter (m) L
Differential surface element dS square meter (m2) L2

Differential volume element cubic meter (m3) L3

Directivity D — —
Displacement flux density D coulomb/square meter (C/m2) L!2Q
Electric dipole moment p coulomb-meter (C-m) LQ
Electric field intensity E volt/meter (V/m) MLT!2Q!1

Electric potential V volt (V) ML2T!2Q!1

Electric susceptibility — —
Electron density N (meter)!3 (m!3) L!3

Electronic charge e coulomb (C) Q
Energy W joule (J) ML2T!2

xe

dv

f

lc

s

g

(Æ)

c

a

Y
–

3
3
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TABLE C.1 Continued

Quantity Symbol Unit (symbol) Dimensions

Energy density w joule/cubic meter (J/m3) ML!1T!2

Force F newton (N) MLT!2

Frequency f hertz (Hz) T!1

Group velocity meter/second (m/s) LT!1

Guide characteristic impedance ohm ML2T!1Q!2

Guide wavelength meter (m) L
Impedance ohm ML2T!1Q!2

Inductance L henry (H) ML2Q!2

Inductance per unit length l henry/meter (H/m) MLQ!2

Intrinsic impedance ohm ML2T!1Q!2

Length l meter (m) L
Line charge density L coulomb/meter (C/m) L!1Q
Magnetic dipole moment m ampere-square meter (A-m2) L2T!1Q
Magnetic field intensity H ampere/meter (A/m) L!1T!1Q
Magnetic flux weber (Wb) ML2T!1Q!1

Magnetic flux density B tesla or weber/square MT!1Q!1

meter (T or Wb/m2)
Magnetic susceptibility — —
Magnetic vector potential A weber/meter (Wb/m) MLT!1Q!1

Magnetization current density Jm ampere/square meter (A/m2) L!2T!1Q
Magnetization vector M ampere/meter (A/m) L!1T!1Q
Mass m kilogram (kg) M
Mobility square meter/volt-second (m2/V-s) M!1TQ
Permeability henry/meter (H/m) MLQ!2

Permeability of free space henry/meter (H/m) MLQ!2

Permittivity farad/meter (F/m) M!1L!3T2Q2

Permittivity of free space farad/meter (F/m) M!1L!3T2Q2

Phase constant radian/meter (rad/m) L!1

Phase velocity meter/second (m/s) LT!1

Plasma frequency fN hertz (Hz) T!1

Polarization current density Jp ampere/square meter (A/m2) L!2T!1Q
Polarization vector P coulomb/square meter (C/m2) L!2Q
Power P watt (W) ML2T!3

Power density p watt/square meter (W/m2) MT!3

Poynting vector P watt/square meter (W/m2) MT!3

Propagation constant (meter)!1(m!1) L!1

Propagation vector radian/meter (rad/m) L!1

Radian frequency radian/second (rad/s) T!1

Radiation resistance Rrad ohm ( ) ML2T!1Q!2

Reactance X ohm ( ) ML2T!1Q!2

Reflection coefficient — —
Refractive index n — —
Relative permeability — —
Relative permittivity — —
Resistance R ohm ( ) ML2T!1Q!2

Shielding factor S — —
Skin depth meter (m) L

r, rs meter (m) L
Spherical coordinates radian (rad) —

radian (rad) —f

u

d

Æ
Pr

mr

≠
Æ
Æ

v

!
g–

vp

b

P0

P
m0

m

m

xm

c

r

(Æ)h

(Æ)Z
–
lg

(Æ)hg

vg

3

(continued)
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TABLE C.1 Continued

Quantity Symbol Unit (symbol) Dimensions

Standing wave ratio SWR — —
Surface charge density coulomb/square meter (C/m2) L!2Q
Surface current density JS ampere/meter (A/m) L!1T!1Q
Susceptance B siemens (S) M!1L!2TQ2

Time t second (s) T
Transmission coefficient — —
Unit normal vector an — —
Velocity meter/second (m/s) LT!1

Velocity of light in free space c meter/second (m/s) LT!1

Voltage V volt (V) ML2T!2Q!1

Volume V cubic meter (m3) L3

Volume charge density coulomb/cubic meter (C/m3) L!3Q
Volume current density J ampere/square meter (A/m2) L!2T!1Q
Wavelength meter (m) L
Work W joule (J) ML2T!2

l

r

v

t

rS

Dimensions are a convenient means of checking the possible validity of a derived
equation.The dimension of a given quantity can be expressed as some combination of a
set of fundamental dimensions. These fundamental dimensions are mass (M), length
(L), and time (T). In electromagnetics, it is the usual practice to consider the charge (Q),
instead of the current, as the additional fundamental dimension. For the quantities
listed in Table C.1, these four dimensions are sufficient. Thus, for example, the dimen-
sion of velocity is length (L) divided by time (T), that is, the dimension of accel-
eration is length (L) divided by time squared (T2), that is, the dimension of force
is mass (M) times acceleration , that is, ; the dimension of ampere is
charge (Q) divided by time (T), that is, and so on.

To illustrate the application of dimensions for checking the possible validity of a
derived equation, let us consider the equation for the phase velocity of an electromag-
netic wave in free space, given by

We know that the dimension of is . Hence, we have to show that the dimension
of is also . To do this, we note from Coulomb’s law that

Hence, the dimension of is , or . We note from
Ampere’s law of force applied to two infinitesimal current elements parallel to each
other and normal to the line joining them that

m0 = 4pFR2

(I1 dl1)(I2 dl2)

M- 1L- 3T2Q2Q2>[(MLT- 2)(L2)]P0

P0 =
Q1Q2

4pFR2

LT- 11>1m0P0

LT- 1vp

vp = 11m0P0

QT- 1;
MLT- 2(LT- 2)

LT- 2;
LT- 1;
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Hence, the dimension of is , or Now we obtain 
the dimension of as or which is the same
as the dimension of . It should, however, be noted that the test for the equality of the
dimensions of the two sides of a derived equation is not a sufficient test to establish
the equality of the two sides, since any dimensionless constants associated with the
equation may be in error.

It is not always necessary to refer to the table of dimensions for checking the pos-
sible validity of a derived equation. For example, let us assume that we have derived
the expression for the characteristic impedance of a transmission line, that is,
and we wish to verify that does indeed have the dimension of impedance. To do
this, we write

We now recognize from our knowledge of circuit theory that both and being
the reactances of L and C, respectively, have the dimension of impedance. Hence, we
conclude that has the dimension of or impedance.2(impedance)2,1l>c 1>vC,vL

Alc = Avll
vcl

= AvL
vC

= A(vL)a 1
vC
b

1l/c
1l/c,

vp

LT- 1,1>1(M- 1L- 3T2Q2)(MLQ- 2),1>1m0P0

MLQ- 2.[(MLT- 2)(L2)]>(QT- 1L)2m0
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Answers to Odd-Numbered
Problems
CHAPTER 1

1.1. (a) 2 m; (b) 0.8 m northward and 0.4 m eastward; (c) 0.8944 m
1.5. 21
1.7.

1.9.
1.11.
1.13.
1.15.
1.17.
1.19. Traveling wave progressing in the negative z-direction
1.21. (a) Linear; (b) circular; (c) elliptical
1.23. Elliptical polarization
1.25.
1.27.

1.29.

1.31.

1.33.

1.35. (a)
(b)

1.37.

1.39. (a) (b)
1.41.
1.43. - v0B0114ay + 7az20.179m0Iaz

- 110- 4m0>4p 2az15 * 10- 5m0>p 2az;

dF1 = 0; dF2 =
m0

4p
I1I2 dx dy ax

0.4485 * 10- 8 sin 2p * 107t A
0.4485 * 10- 6 sin 2p * 107t ax A/m2

4 * 10- 7

pP0
a
50

i = 1
a
50

j = 1
310 - 412i - 122 + 10- 412j - 122 + 14- 3>2

 az

10- 7

pP0
a
50

i = 1
12i - 12310- 412i - 122 + 14- 3>2ay

0.0555Q
P0

 1ax + ay + az2 N/C

28pP0l
2mg

5 cos 1vt + 6.87°2
v1 - yax + xay2x + y + z = constant
14ax - ay2>217
14ax + 4ay + az2 dz
14ax - 5ay + 3az2>522; 622

2ax + 2ay + az
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CHAPTER 2

2.1. 0.855
2.3. 1
2.7.

2.9. ; 0.20825, 0.21009, 0.21070, 0.21071

2.11.
2.13. 30 A

2.15.

2.17.

2.19.
2.21. 0
2.23. (a) 0; (b)

2.25. for and for , where r is the radial distance from the axis;

direction circular to the axis of the wire
2.27. (a) ; (b)
2.29. 0.31606 C
2.31. where r is the radial distance from

the center of the charge, and direction radially away from the center of the
charge

2.33.
2.35.

CHAPTER 3

3.1.

3.3. (a) (b) 0

3.5.

3.7.

3.9.

3.11.
3.13. Curl will have a component in the y-direction in addition to the -component
3.15. Curl has only a -componentz

x
J01a + z2ay for - a 6 z 6 0, J01a - z2ay for 0 6 z 6 a, 0 otherwise

B = 10- 7

3
 cos 16p * 108t - 2p z2 ay

E = 10 cos 16p * 108t - 2p z2 ax

E = - v2m0P0E0 
z4

12
 sin vt ax

B = - vm0P0E0 
z3

3
 cos vt ay

1
3

* 10- 7 cos 16p * 108t - 2p z2 ay Wb/m2

zax + xay + yaz;

vB0 
z2

2
 sin vt ax

p 2>2- 1 A

r0 r>3P0 for r 6 a and r0 a
3>3P0r

2 for r 7 a,

I>4I>4
r 7 a

J0a
2

2r
r 6 a

J0 r
2

I1 - I2

2B0 v sin vt

B0 bv ln 
x0 + a

x0
 sin vt - B0 bv0 a 1

x0 + a
- 1

x0
b  cos vt

- B0 bv0 a 1
x0 + a

- 1
x0
b

16p

14n2 - 1211 - e- 12
12n311 - e- 1>n2  e- 1>2n

1>6
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3.17.

3.19. (a) (b) 0
3.21. (a) (b) (c) 0, 1; (d) 0, 0

3.23.

3.25. (a) and (c)
3.27.
3.29.
3.31. 0

CHAPTER 4

4.1. (a) 0.2 A; (b) 0; (c) 0.2 A
4.3. (a) (b) ; (c)
4.5. (a) (b)

4.7.

4.9.

4.15. corresponds to a wave; corresponds to a
wave

4.17.

For Problem 4.13, for and

4.19.

4.21. Spacing amplitudes phase difference

4.23. (a) right circular; (b) left circular

4.25.

4.27.

+  sin a 2p * 108t - 2p
3

 z + 0.2048p b  ay d
1.25 E0 ccos a 2p * 108t - 2p

3
 z + 0.2048p b  ax

+  
E0

2
 3cos 1vt + bz2 ax + sin 1vt + bz2 ay4

E0

2
 3cos 1vt + bz2 ax - sin 1vt + bz2 ay4

= p >2= JS0, 
1
3

 JS0;= l>4;

H = ;
Ex

h0
 ay for z ! 0

for z ! 0
 cos 112p * 108t < 4p z24axE = 30.1h0 cos 16p * 108t < 2p z2 + 0.05h0

Hy = ;
Ex

h0
 for z ! 0

z ! 0Ex =
h0JS0

2
 1t < z2m0P022C =

h0JS0

2

1 - 2 1t + z2m0P0221+21t - z2m0P022- 1r0a>P02ax for x 6 - a, 1r0x>P02ax for - a 6 x 6 a, 1r0a>P02ax for x 7 a

0 6 z 6 a, - J0 
a
2

 ay for z 7 a

J0
a
2

 ay for z 6 - a, - J0 a z + z2

2a
b  ay for - a 6 z 6 0, - J0 a z - z2

2a
b  ay for

;0.0135 cos vt ay for z = 0;;0.0368 cos vt ay for z = 0;;
0.2828 sin 1vt + 45°2 A0.2 sin vt A0.2 cos vt A;

AS A # dS = 2p , § # A = 3
§ # r = 3

r0

2aP0
1x2 - a22 ax for - a 6 x 6 a, 0 otherwise

- az, 0;- xaz, y;
31x2 + y2 + z22;AC A # dl = 0 for any C
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4.29. (a) Same as in Figure 4.17, except displaced to the left by 1!3 s;

(b) 75.4 V"m for and for 

(c) and 

A/m for 

4.31. 30 mV/m

CHAPTER 5

5.1. (a)
(b)
(c)

5.3.
5.5. (a) (b)

(c)
5.7. (a) ; (b) ;

(c)

5.9.

5.11.

5.13.

5.15. 0.00083 Np/m, 1321.05 m,

5.17.

5.19. 16.09 m, 1.917:1, 90° out of phase
5.21. (a) 30 MHz; (b) 5 m; (c) (d)

(e)

5.23. (a) Same as in Figure 4.17;
(b) 75.4 V/m for and for

(c) for and 
for for 

5.25. (a) 0.0211 Np/m, 18.73 rad/m, 0.3354 m,
(b)

5.27.
5.29.
5.31. Yes

2P0

E0(4ax + 2ay - 6az), H0(4ax - 3ay)
2p * 10 - 3 Np/m, 2p * 10 - 3 rad/m, 107 m/s, 1000 m, 2p (1 + j) Æ

42.15 Æ;0.3354 * 108 m/s,
n = 1, 2, 3, Á100(n - 2>3) 6 |z| 6 100n,

- 0.3z>|z| A/m100(n - 1) 6 |z| 6 100(n - 2>3)0.6z>|z| A/m
100(n - 1) 6 |z| 6 100(n - 1>3), n = 1, 2, 3, Á ;

- 37.7 V/m100(n - 1>3) 6 |z| 6 100n

1
6p

 cos(6p * 107t - 0.4p z) ay A/m

4P0;1.5 * 108 m/s;

H = ;0.05e<0.0404z cos (2p * 106t < 0.0976z) ay for z ! 0

E = 3.736e<0.0404z cos a 2p * 106t < 0.0976z + p
8
b  ax for z ! 0

(161.102 + j28.115) Æ
1.32105 * 108 m/s,4.7562 * 10 - 3 rad/m,

02Hy
–

0z2 = g– 2H
–

y

0.5 * 10 - 6 sin 2p z A
ƒe ƒ2B0a

2>2m, 0.7035 * 10 - 18 A-m2

0.5E0(3ax - ay - az)
8P0E0(ax + ay + az)P0E0(4ax + 2ay + 2az)

- 4.444 * 10- 5 sin 2p * 109t A
- 2.778 * 10- 6 sin 2p * 109t A;- 8.667 * 10- 7 sin 2p * 109t A;

1.5245 * 10- 19 s
250 V/m, 2.5 V, 25 Æ
0.2857 * 10- 4 V/m, 0.2857 * 10- 6 V, 0.2857 * 10- 5 Æ;
0.1724 * 10- 4 V/m, 0.1724 * 10- 6 V, 0.1724 * 10- 5 Æ;

3001n - 2>32 6 ƒ z ƒ 6 300n, n = 1, 2, 3, . . .- 0.1z> ƒ z ƒ
0.2z> ƒ z ƒ  A/m for 3001n - 12 6 ƒ z ƒ 6 3001n - 2>323001n - 12 6 ƒ z ƒ 6 3001n - 1>32, n = 1, 2, 3, . . . ; 

- 37.7 V/m3001n - 1>32 6 ƒ z ƒ 6 300n

m
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5.33.

5.35. (b)

(c)

5.37. (a) 4; (b) 16; (c)

5.39.

CHAPTER 6

6.1. (a) (b) 

6.3.

6.5. 2.121
6.7.

6.9.

6.11. (a) ; (b)

6.13.

6.15. (a)

(b) (c)

6.17.

6.19. equivalent circuit is a series combination of

C = Pw l
d

 and 
1
3

 L, where L =
mdl
w

Y
–

in = jv 
Pw l
d
a 1 +

v2mPl2

3
b ;

m1m2

m1 + m2
a 2dl

w
b

P1P2w l
P1(d - t) + P2t

P1(d - t)
P1(d - t) + P2t

 V0;

P1(d - x)
P1(d - t) + P2t

 V0 for t 6 x 6 d

P1(d - t) + P2(t - x)
P1(d - t) + P2t

 V0 for 0 6 x 6 t,

V = - kx3

6P + kd2x
8P  for - d

2
6 x 6 d

2

[rs]x = 0 = 0, [rs]x = d =
4P0V0

3d
-

4P0V0

9d2 a x
d
b - 2>3E = 10 - 5

pP0
 a

50

i = 1
[10 - 4(2i - 1)2 + 1] - 3>2ay

V = 10 - 5

pP0
 a

50

i = 1
[10 - 4(2i - 1)2 + y2] - 1>2Q>30pP0

1

325
 (5ax + 2ay + 4az)

yzax + zxay + xyaz

xax + yay + zaz2x2 + y2 + z2
;

[JS]z = 0 =
2E0

h
 cos vt ax

E = 2E0 sin vt sin bz ax, H =
2E0

h
 cos vt cos bz ay

Er = - E0 cos (vt + bz) ax, Hr =
E0

h
 cos (vt + bz) ay

4>9E0

120p
 sin 3p * 109t az on both sheets

E0

120p
 cos 10px sin 3p * 109t ay;

4|D0|
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6.21. (b) equivalent circuit consists of an inductor L in

parallel with a resistor 3R where 
6.23. (a) (b)

(c)
6.29. exact values are and

respectively

6.31.

CHAPTER 7

7.1. (a)
(b)

7.3.

7.5. (a) 0.60286 m; (b) 1.35286 m
7.7. (a) (b) 8.09 V, 0.1176 A
7.9. (a) (b)

7.11. (a) (b) (c)

7.13.
7.17.
7.19.
7.21. (a)

(b) 0 otherwise;

(c)

(d)

7.23. (a) 60 V, 1 A; (b) 67.5 V, 0.9 A; (c)
7.25.

0 0.1 0.4

40

[V ]z = 30 m’ V

t, ms

(c)

z, m
!80 !20

30 120

[I ] t = 0.4 m s’ A
2_
3

1
3!

(b)

40

0 60

20

!40

[V ] t = 0.2 m s’ V

z, m

(a)

0
0.2 0.5

[I ]z = !40 m’ A

1
3!

t, ms

(d)

- 7.5 V, 0.1 A

0 for 0 6 t 6 0.2 ms, - 1
3

 A for t 7 0.2 ms

0 for 0 6 t 6 0.1 ms, 40 V for t 7 0.1 ms;

2
3

 A for 0 6 z 6 120 m, - 1
3

 A for - 80 m 6 z 6 0,

40 V for - 40 6 z 6 60 m, 0 otherwise;
0.14l, 0.192l
- 0.00533 S, 1.667
150 Æ

3
8

Pi
9
16

Pi;
1
16

Pi;

106 m, 2 * 10 - 6, j0.00079 Æ; 1m, 2, 0; 8m, 0.25, q108 m/s;
50 Æ;

V
– (z) = 2A

–  cos bz, I-(z) = - j 
2A

–

Z0
 sin bz; Z– in = - jZ0 cot bl

(52.73 + j0) Æ
l = 0.278 * 10 - 6 H/m, g = 4.524 * 10 - 16 S/m;

1
9

 m, 9P, 9s

2.3855s,
0.4192m, 2.3855P,l = 0.429m, c = 2.333P, g = 2.333s;

0.5p  cos2 (2p * 106t - 0.02p z) W
0.25 cos (2p * 106t - 0.02p z) A;2p  cos (2p * 106t - 0.02p z) V;

L = mdl>w  and R = d>slw

Z
–

in =
jvmdl

w
a 1 -

jvmsl2

3
b ;
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7.27.

7.29. 1.46 V
7.31. (a) 40 V for A for A for 

(b)

(c) Voltage across for 10 V for 
0 otherwise; voltage across for 0 otherwise;

(d)

7.33.

7.35. (a) ; (b)

CHAPTER 8

8.1.

8.3.

8.5. (a) Yes; (b)
1

24p
(13ay - az) cos [6p * 107t - 0.1p (y + 13z)]

1
212

ax + 13
2

ay + 1
212

az

0.05p (13ax + ay)

48.4 Æ38.4 Æ

1.5

0
2l

!0.8 !0.4

0.5

yp

t
4l
yp

6l
yp

10

0
l

!7
!4.4

5.4 3.6

yp

t
3l
yp

7l
yp

5l
yp

[V]z " 0, V [V]z " l, V

130
3

* 10 - 6 J

0 6 t 6 1 ms,120 Æ = 40 V
1 6 t 6 3 ms,0 6 t 6 1 ms,60 Æ = 40 V

130
3

* 10- 6 J;

0 6 z 6 l;- l 6 z 6 0, 
1
3

- l 6 z 6 l; - 2
3

30 30

0 1 2 3 4

[V ]z " l,V

3
10

60

30 30

!30

V, V

z
l

3
!20

2
l

t " 2 2
1 ms

t, ms

1.5

0.5

1.5

1

0

I, A

z
l

2
l

9
2

3
1

t " 2 2
1 ms

(a)

(c)

(b)
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8.7. (a) (b)

8.9. 1 cm
8.11. 3600 MHz, 5400 MHz

8.13.

8.15.
8.17. (a) (b) (c)
8.19.
8.21. 6.5 cm, 3.5 cm
8.23.

8.25. (a) (b)
8.27.

8.29.
8.31.

CHAPTER 9

9.1.
9.5.
9.7. (a) (b)
9.9. 1.111 W

9.11.

9.13.

9.15. 0.60943
9.17. 1.015 W

9.19. (a)

(b)

9.21.

9.23.

9.25.

9.27. where is the angle from the vertical,

9.29. 4
9.31. 0.00587 V
9.33. 13.262 A

D = 3.284uccos a p
2

 cos ub d nsin u,

` cos c cos a p
4

 cos c - p
4
b `cos2 a p

2
 cos cb

- p
4

, cos a p
4

 cos c - p
8
bRrad = 20p 2(L>l)2, D = 1.5

Eu = -
hbLI0 sin u

8p r
 sin (vt - br), Hf =

Eu
h

;

1
7
8

2(D2Rrad2)>(D1Rrad1)

Rrad = 0.0351 Æ, 8Prad9 = 1.7546 W1.257 * 10 - 3 V/m;
0.2l
0.2p  cos 2p * 107t A

13
75.52°
Et = 0.8284E0ay cos [6p * 108t - 22p (22x + z)]
Er = - 0.1716E0ay cos [6p * 108t + 22p (x - z)]

48.6°41.81°;
(TE2,0,1, TE0,2,1, TE1,0,2, TE0,1,2)

5590.2 MHz4330.1 MHz (TE1,1,1, TM1,1,1),3535.5 MHz (TE1,0,1, TE0,1,1),

TE1,0, TE0,1, TE2,0, TE1,1, and TM1,1

2.1211kv0, 2.8281kv021kv0, 21kv0;2.1211kv0, 1.4141kv0;
0.5769 * 108 m/s

TE1,0 mode; 10 sin 20px sin a 1010p t - 80p
3

zb  ay

813 m, 24 m
1
2

(ax + 13az);
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CHAPTER 10

10.3. (a)
10.5.
10.7. 143.24
10.9. 121.71 db

10.11. (a) otherwise

(b) 

(c)

10.13. (a)
(b) for 
(c) for 

10.15.
10.19. (a) (b)

APPENDIX A

A.1.
A.3. Equal

A.5.

A.7.

APPENDIX B

B.1. (a) (b) (c) 0 except at 

B.3.

B.5. (a) (b) cos u ar - sin u au- 1
r2 (sin u ar - cos u au);

1
r

 
0
0r

 a r 
0£
0r
b + 1

r2 
02£
0f2 + 02£

0z2

r = 0, 00, 0 except at r = 0;- sin f az, cos f;

13ar + 6az

- 112
, 

112
 az

- 3ax + 13ay + az

Rrad = 0.6077 * 10 - 3 Æ, 8Prad9 = 0.0304 W0.1654 * 10 - 3 V/m;
≠ = - 0.3252, t = 0.6748

0.9l 6 z 6 lKbV0(10 - 10.2z>l)KbV0 for 0 6 z 6 0.9l,
0.9l 6 z 6 l;KbV0 for 0 6 z 6 0.9l, 10KbV0(1 - z>l)- 0.2KbV0(z>l) for 0.9l 6 z 6 l;

t

V2 (0, t)!

0.1T
0

KbV0

KbV0

!KbV0

!KbV0

0.4T 0.5T 2T

2.1T 2.4T

2.5TT

t

V2 (0.8l, t)!

0
1.2T

1.3T 1.6T 1.7T

0.8T

0.9T

T

10lKfV0>T for T 6 t 6 1.1T, - 10lKfV0>T for 1.4T 6 t 6 1.5T, 0

101.31°
5 * 108 m/s; (b) 50 m; (c) 1000
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A

A. see Magnetic vector potential.
Acceptor, 193
Addition

of complex numbers, 19
of vectors, 3, 4

Admittance
characteristic, 251
input, 211
line, 251

Ampere, definition of, 427
Ampere’s circuital law

illustration of, 55
in differential form, 79, 82
in integral form, 54, 55, 78
statement of, 64

Ampere’s law of force, 27–28
Amplitude modulated signal, 309

group velocity for, 309–10
Anisotropic dielectric

effective permittivity of, 149
example of, 380
wave propagation in, 380–81

Anisotropic dielectric materials, 148
Anisotropic magnetic material

effective permeability of, 182
example of, 381

Anisotropic magnetic materials, 153
Antenna

directivity of, 351
half-wave dipole. see Half-wave dipole.
Hertzian dipole. see Hertzian dipole.
image, 361
loop. see Loop antenna.
radiation pattern, 350

radiation resistance of, 349
short dipole, 373

Antenna array
group pattern for, 359
of two current sheets, 124
principle of, 124–25
resultant pattern for, 359

Antenna arrays
of two Hertzian dipoles, 357–60
radiation patterns for, 359–61

Antennas
in sea water, 165
receiving properties of, 363

Antiferromagnetic material, 150
Apparent phase velocity, 295, 331
Apparent wavelength, 294, 331
Array. see Antenna array.
Array factor, 358
Atom, classical model of, 141
Attenuation, 157
Attenuation constant, 157

for good conductor, 163
for imperfect dielectric, 162
units of, 157

B

B. see Magnetic flux density.
B-H curve, 154
Biot-Savart law, 29
Bounce diagram, 260
Bounce diagram technique

for arbitrary voltage source, 263–66
for constant voltage source, 260–63
for initially charged line, 268–71

Bound electrons, 141, 143
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Boundary condition
at transmission line short circuit, 234
for normal component of B, 170, 180
for normal component of D, 169, 180
for tangential component of E, 167, 180
for tangential component of H, 168, 180

Boundary conditions
at dielectric interface, 171, 180
at transmission line junction, 242
explained, 166
on perfect conductor surface, 171, 180
summary of, 170, 179

Brewster angle, 322
Broadside radiation pattern, 359

C

Cable, coaxial. see Coaxial cable.
Candela, definition of, 427–28
Capacitance

definition of, 199
for parallel-plate arrangement, 199
stray, 241
units of, 199

Capacitance per unit length
for arbitrary line, 220, 225–26
for coaxial cable, 222, 226
for parallel-plate line, 214, 225
related to conductance per unit 

length, 214
related to inductance per unit 

length, 214
Capacitive coupling, 390

modeling for, 396–97
Capacitor, 199

energy stored in, 199
Cartesian coordinate system, 9–12

arbitrary curve in, 11
arbitrary surface in, 11
coordinates for, 9
curl in, 77, 99
differential length vector in, 11, 32
differential lengths, 11
differential surfaces, 11, 32
differential volume, 11, 32
divergence in, 90, 99
gradient in, 187, 224
Laplacian in, 193
orthogonal surfaces, 9
unit vectors, 9

Cavity resonator, 314
frequencies of oscillation, 315, 333

Characteristic admittance, 251
Characteristic impedance, 233, 279

for lossless line, 234, 279
Characteristic polarizations, 149,

380, 382
Charge, 1, 21

conservation of, 62, 65
line, 25, 36
magnetic, 63
of an electron, 21
point. see Point charge.
surface, 25, 36
unit of, 21

Charge density
line, 36
surface, 36
volume, 59–60

Circuit, distributed, 216
Circuit parameters, 214
Circuit theory, 216
Circuital law, Ampere’s. see Ampere’s 

circuital law.
Circuits, lumped, 216
Circular polarization, 18

clockwise, 125
counterclockwise, 125
left-handed, 125
right-handed, 125

Circulation, 42
per unit area, 84, 86

Cladding, of optical fiber, 330
Closed path, line integral around, 42
Closed surface integral, 47
Coaxial cable, 221

capacitance per unit length of, 222, 226
conductance per unit length of, 222, 226
field map for, 221
inductance per unit length of,

221, 226
Common impedance coupling, 390
Communication

from earth to moon, 132
from earth to satellite, 379
ground-to-ground, 379
under water, 165

Commutative property of vector 
dot product, 5

Complete standing waves, 236
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Complex number, conversion into
exponential form, 19

Complex numbers, addition of, 19
Conductance

definition of, 203
for parallel-plate arrangement, 203
units of, 203

Conductance per unit length
for arbitrary line, 220–21, 225–26
for coaxial cable, 222, 226
for parallel-plate line, 214, 225
related to capacitance per unit length, 214

Conduction, 142
Conduction current, 142

power dissipation due to, 216
Conduction current density, 142–43

relationship with E, 143, 155, 177
Conductivities, table of, 143
Conductivity

definition of, 142
for conductors, 142
for semiconductors, 142
units of, 143

Conductor
decay of charge placed inside, 182
good. see Good conductor.
perfect. see Perfect conductor.
power dissipation density in, 161, 178

Conductors, 142, 177
good, 162, 163, 179
perfect, 179

Conservation of charge, 62
law of, 62, 65

Conservative field, 191
Constant of universal gravitation, 21
Constant phase surfaces

far from a physical antenna, 131
for uniform plane wave, 292

Constant SWR circle, 251
Constitutive relations, 141, 155, 178
Continuity equation, 95, 99
Coordinate system

Cartesian, 12
cylindrical, 413–14
spherical, 415–16

Coordinates
Cartesian, 9
cylindrical, 413
relationships between, 416
spherical, 415

Core, of optical fiber, 330
Corner reflector, 373
Coulomb, as unit of charge, 21, 428
Coulomb’s law, 22
Critical angle, 321, 325, 334
Critical frequency, 379
Cross product of vectors, 6

distributive property of, 7, 8
Crosstalk

explained, 395
modeling for capacitive coupling, 396–97
modeling for inductive coupling, 397–98
weak coupling analysis for, 396

Crosstalk coefficient
backward, 399
forward, 398

Crosstalk voltage
backward, 399
forward, 398

Crosstalk voltages, example of determination
of, 399–402

Curl, 82–86
definition of, 83, 99
divergence of, 100, 407
in Cartesian coordinates, 77, 99
in cylindrical coordinates, 422
in spherical coordinates, 424
of E, 77, 98, 155
of gradient of scalar, 187
of H, 82, 98, 155
physical interpretation of, 84–86

Curl meter, 84
Current

conduction, 142
crossing a line, 107–08
crossing a surface, 26, 54
displacement, 55
magnetization, 152
polarization, 147
unit of, 427

Current density
conduction, 142–43
definition of, 26
displacement, 82
due to motion of electron cloud, 25–26
surface, 107
volume, 54

Current element
magnetic field of, 29, 33
magnetic force on, 29
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Current enclosed by closed path,
uniqueness of, 56–58

Current loop. see also Loop antenna.
dipole moment of, 149
vector potential due to, 410

Current reflection coefficient, 243, 258, 280
Current sheet, infinite plane. see Infinite plane

current sheet.
Current transmission coefficient, 243, 280
Curve, equation for, 11
Curvilinear squares, 221, 225
Cutoff condition, 302, 311–12
Cutoff frequencies

determination of, 313–14
for TEm,0 modes, 302, 332
for TEm,n modes, 313
for TMm,n modes, 313

Cutoff frequency, 302
of dominant mode, 313

Cutoff wavelength, 302
Cutoff wavelengths

for TE0,n modes, 312
for TEm,0 modes, 302, 311, 332
for TEm,n modes, 312, 333
for TMm,n modes, 313, 333

Cylindrical coordinate system
coordinates for, 413
curl in, 422
differential length vector in, 414
differential lengths, 414
differential surfaces, 414
differential volume, 414
divergence in, 422
gradient in, 422–23
limits of coordinates, 413
orthogonal surfaces, 413
unit vectors, 413

D

D. see Displacement flux density.
Degree Kelvin, definition of, 427
Del operator, 77
Density

charge. see Charge density.
current. see Current density.

Depletion layer, 193
Depth, skin, 164
Derived equation, checking the 

validity of, 430–31

Diamagnetic materials, values of for, 154
Diamagnetism, 149
Dielectric

Imperfect. see Imperfect dielectric.
Perfect. see Perfect dielectric.

Dielectric constant, 148
Dielectric interface

boundary conditions at, 171, 180
oblique incidence of uniform plane 

waves on, 316, 333
Dielectrics, 142, 177

anisotropic, 148
imperfect, 162
linear isotropic, 148
perfect, 161
polarization in, 143
table of relative permittivities for, 148

Dielectric slab waveguide
description, 325
propagating TE modes in, 330
self-consistency condition for 

waveguiding in, 325
TE modes in, 327
TM modes in, 330

Differential
net longitudinal, 90
net right-lateral, 76
right-lateral, 76

Differential length vector
in Cartesian coordinates, 11, 32
in cylindrical coordinates, 414
in spherical coordinates, 416

Differential lengths
in Cartesian coordinates, 11
in cylindrical coordinates, 414
in spherical coordinates, 416

Differential surface, as a vector, 11
Differential surfaces

in Cartesian coordinates, 11, 32
in cylindrical coordinates, 414
in spherical coordinates, 416

Differential volume
in Cartesian coordinates, 11, 32
in cylindrical coordinates, 414
in spherical coordinates, 416

Dimensions, 428, 430
table of, 428–30

Diode
tunnel, 196
vacuum, 228

xm

446 Index
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Dipole
electric. see Electric dipole.
half-wave. see Half-wave dipole.
Hertzian. see Hertzian dipole.
magnetic. see Magnetic dipole.
short, 373

Dipole moment
electric, 143
magnetic, 149
of current loop, 149
per unit volume, 144, 150

Dipole moment per unit volume
electric. see Polarization vector.
magnetic. see Magnetization vector.

Direction lines, 15
for point charge field, 23

Directive gain, of an antenna, 352
Directivity

definition of, 351
for arbitrary radiation pattern, 351–52
of half-wave dipole, 357, 369
of Hertzian dipole, 351, 369
of loop antenna, 412

Discharge tube, in gas lasers, 322
Dispersion, 158, 304
Dispersion diagram, 308
Displacement current, 55

in a capacitor, 58
Displacement current density, 82
Displacement flux, 55
Displacement flux density, 55

divergence of, 90, 98
due to point charge, 61
relationship with E, 65, 99, 147, 155
units of, 55

Displacement vector. see Displacement 
flux density.

Distributed circuit, 216
physical interpretation of, 216–17

Distributive property
of vector cross product, 7, 8
of vector dot product, 6

Divergence, 93–96
definition of, 94, 99
in Cartesian coordinates, 90, 99
in cylindrical coordinates, 422
in spherical coordinates, 425
of B, 93, 98
of curl of a vector, 100, 407
of D, 90, 98

of gradient of scalar, 192
of J, 95, 99
physical interpretation of, 94–96

Divergence meter, 95
Divergence theorem, 96, 100

verification of, 97–98
Division of vector by a scalar, 4
Dominant mode, 312, 333

cutoff frequency of, 313
Donor, 193, 342
Dot product of vectors, 5

commutative property of, 5
distributive property of, 6

Drift velocity, 142

E

E. see Electric field intensity.
Effective area, 366

for Hertzian dipole, 366–67
Effective permeabilities, of ferrite 

medium, 382
Effective permeability, of anisotropic

magnetic material, 182
Effective permittivity

of anisotropic dielectric, 149
of ionized medium, 377

Electrets, 144
Electric dipole, 143

dipole moment of, 143
schematic representation of, 144
torque on, 144, 182

Electric dipole moment, definition of, 143
Electric energy density

in free space, 133, 135
in material medium, 161, 179

Electric field, 21
energy density in, 133, 135, 161, 179
energy storage in, 132, 216
far from a physical antenna, 131
Gauss’ law for, 59, 65, 88
induced, 52
motion of electron cloud in, 25–26
source of, 23
static. see Static electric field.

Electric field intensity
curl of, 77, 98, 155
definition of, 22
due to charge distribution, 91–92
due to point charge, 23, 33
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Electric field intensity (Continued)
due to point charges, 23–25
relationship with D, 65, 99, 147, 155
unit of, 22

Electric force
between two point charges, 21–22
on a test charge, 22

Electric polarization. see Polarization in
dielectrics.

Electric potential, 190. see also Potential field.
Electric potential difference. see Potential

difference.
Electric susceptibility, 145
Electromagnetic compatibility

defined, 387
example of solution of problem of, 388–89
methods of solution of problem of, 388, 390

Electromagnetic field
due to current sheet, 121, 127, 134, 159, 178
due to Hertzian dipole, 346–47
power flow density in, 131

Electromagnetic interference, 387
Electromagnetic waves

guiding of, 290. see also Waveguide.
prediction of, 102
propagation of, 106, 339. see also Wave

propagation.
qualitative discussion, 101
radiation and propagation of, 65
radiation of, 106, 339. see also Radiation.
transmission of, 339. see also Transmission

lines.
Electromagnetostatic field, 197, 202
Electromotive force, 42, 49, 50

motional, 52
Electron

charge of, 21
mobility of, 142

Electron cloud, motion in electric field, 25–26
Electron density, related to plasma 

frequency, 377
Electronic orbit, 149
Electronic polarization, 143
Electrons

bound, 141
conduction, 141
free, 141

Electroquasistatic fields, 205
Electrostatic fields, 197, 198. see also Static

electric field.

Elliptical polarization, 18
clockwise, 125
counterclockwise, 125
left-handed, 125
right-handed, 125

EMC. see Electromagnetic compatibility.
EMI. see Electromagnetic interference.
Emf. see Electromotive force.
Endfire radiation pattern, 125, 359
Energy density

in electric field, 133, 135, 161, 179
in magnetic field, 133, 135, 161, 179

Energy storage
in electric field, 132, 216
in magnetic field, 132, 216

Equipotential surfaces, 190
for point charge, 191–92

F

Fabry-Perot resonator, 322
Faraday rotation, 383
Faraday’s law, 49

illustration of, 51
in differential form, 73, 77, 98
in integral form, 51, 64, 71
statement of, 64

Ferrimagnetic material, 150
Ferrites, 381

characteristic polarizations for, 382
effective permeabilities for, 382
wave propagation in, 381–85

Ferroelectric materials, 144
Ferromagnetic materials, 150
Field

definition of, 13
electric. see Electric field.
gravitational, 13, 21, 24
magnetic. see Magnetic field.

Field intensity
Electric. see Electric field intensity.
Magnetic. see Magnetic field intensity.

Field map, 217
for arbitrary line, 217–19
for coaxial cable, 222

Field mapping, determination of line
parameters from, 217–21

Fields
conservative, 191
electrostatic, 205

448 Index
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magnetostatic, 205
quasistatic, 205. see also Quasistatic fields.
radiation, 347. see also Radiation fields.
scalar, 13–14. see also Scalar fields.
sinusoidally time-varying, 16–18
static, 13. see also Static fields.
time-varying, 13–14
vector, 14–15. see also Vector fields

Flux
displacement, 55
magnetic, 43–45

Flux density
displacement. see Displacement flux

density.
magnetic. see Magnetic flux density.

Flux lines, 15
Force

Ampere’s law of, 27–28
electric. see Electric force.
gravitational, 13, 21
magnetic. see Magnetic force.
unit of, 427

Free electrons, 141
Free space

intrinsic impedance of, 123
permeability of, 27
permittivity of, 21
velocity of light in, 119
wave propagation in, 118–29

Frequencies of oscillation, for cavity
resonator, 315, 333

Frequency
cutoff, 302, 312, 332
plasma, 377
times wavelength, 123

Fresnel coefficients
for parallel polarization, 320
for perpendicular polarization, 319
reflection, 319, 320
transmission, 319, 320

Friis transmission formula, 367

G

Gas lasers, 322
Gauss’ law for the electric field

illustration of, 60
in differential form, 90, 98
in integral form, 59, 65, 88
statement of, 59, 65

Gauss’ law for the magnetic field
illustration of, 63
in differential form, 93, 98
in integral form, 63, 65, 92
physical significance of, 63
statement of, 63, 65

Good conductor
attenuation constant for, 163
definition of, 162 
intrinsic impedance for, 164
phase constant for, 164
skin effect in, 165
wave propagation in, 163–65

Good conductors, 179
Gradient, 187

curl of, 187
divergence of, 192
in Cartesian coordinates, 187, 223
in cylindrical coordinates, 422–23
in spherical coordinates, 425
physical interpretation of, 187–88

Gravitational field, 13, 21
Gravitational force, 13, 21
Ground, effect on antenna, 361
Group pattern, 359
Group patterns, determination of, 359–60
Group velocity

concept of, 306
for a pair frequencies, 306
for amplitude modulated signal, 309–10
for narrowband signal, 308
in parallel-plate waveguide, 308

Guide characteristic impedance, 403
compared to characteristic impedance, 404

Guide wavelength, 303, 332

H

H. see Magnetic field intensity.
Half-wave dipole

directivity of, 357, 369
evolution of, 353
radiation fields for, 355, 369
radiation patterns for, 356
radiation resistance for, 356, 369

Hertzian dipole, 339
above perfect conductor surface, 361–63
charges and currents associated with, 339–40
directivity of, 351, 369
electromagnetic field for, 346–47
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Hertzian dipole (Continued)
radiation fields for, 347, 368
radiation patterns for, 349–51
radiation resistance for, 349, 369
receiving properties of, 363–64
retarded potential for, 409
time-average radiated power, 349, 368

Hertzian dipoles, array of, 357
Holes, 142, 193

mobility of, 142
Hysteresis, 154
Hysteresis curve, 154

I

Image antennas, 361
illustration of, 362

Impedance
characteristic, 233, 234, 279
input, 238, 279
intrinsic,123, 159. see also Intrinsic

impedance.
line, 246

Imperfect dielectric
attenuation constant for, 162
definition of, 162
intrinsic impedance for, 163
phase constant for, 162
wave propagation in, 162–63

Imperfect dielectrics, 179
Induced electric field, 52
Inductance, definition of, 201

units of, 201
Inductance per unit length

for arbitrary line, 220, 225–26
for coaxial cable, 221, 226
for parallel-plate line, 214, 225
related to capacitance per unit 

length, 214
Inductive coupling, 390

modeling for, 397–98
Inductor, 201

energy stored in, 201
Infinite plane current sheet, 107

as an idealized source, 107, 339
electromagnetic field due to, 121, 127, 134,

159, 178
magnetic field adjacent to, 108–11
nonsinusoidal excitation, 127
radiation from, 122, 160

Input behavior, for low frequencies,205,239–40
Input impedance

low frequency behavior of, 239–40
of short-circuited line, 238, 279

Input reactance, of short-circuited line, 238–39
Insulators, 142
Integral

closed line. see Circulation.
closed surface, 47
line, 41
surface, 46
volume, 60

Integrated optics, 325
Interferometer, 374
Internal inductance, 201
International system of units, 21, 427
Intrinsic impedance

definition of, 123
for free space, 123, 134
for good conductor, 164
for imperfect dielectric, 163
for material medium, 159, 178
for perfect dielectric, 162

Ionic polarization, 144
Ionized medium

condition for propagation in, 377
effective permittivity of, 377
example of, 375
phase velocity in, 377
wave propagation in, 375–77

Ionosphere, 375
condition for reflection of wave, 379
description of, 377–78

J

J. see Volume current density.
Jc. see Conduction current density.
Joule, definition of, 428
Junction, p-n, 193

K

Kelvin degree, definition of, 427
Kilogram, definition of, 427
Kirchhoff’s current law, 215
Kirchhoff’s voltage law, 215

L

Laplace’s equation, 196, 224
in one dimension, 198

450 Index
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Laplacian, 192
in Cartesian coordinates, 193

Laser beam, 385
Lasers, gas, 322
Law of conservation of charge,

62, 65, 94
in differential form, 95, 99

Law of reflection, 316, 333
Law of refraction, 316, 333
Lenz’s law, 52, 53
Light, velocity of. see Velocity of light.
Line admittance, 251

from the Smith Chart, 251–52
normalized, 251

Line charge, 25, 36
Line charge density, 36

units of, 36
Line current, magnetic field due 

to, 56–57
Line impedance, 246

from the Smith Chart, 250–51
normalized, 247

Line integral, 41
around closed path, 42
evaluation of, 42–43
to surface integral, 86, 100

Line integral of E, physical meaning 
of, 41

Linear isotropic dielectrics, 148
Linear polarization, 16–17
Lines

direction. see Direction lines.
transmission. see Transmission lines.

Load line technique, 272
example of, 272–74
for initially charged line, 274–75
for interconnections between two TTL

inverters, 275–78
Logic gates, interconnections between, 275
Longitudinal differential, net, 90
Loop antenna, 364, 409

directivity of, 412
magnetic vector potential for, 410
power radiated by, 411
radiation fields of, 411
radiation resistance of, 412
receiving properties of, 364–66

Lorentz force equation, 31, 33
Loss tangent, 158
Lossless line, 234, 254

Low frequency behavior, determination of,
239–40

via quasistatics, 205
Lumped circuits, 216

M

Magnetic charge, 63
Magnetic dipole, 149

schematic representation of, 149
torque on, 150, 182

Magnetic dipole moment, definition of, 149
Magnetic dipole moment per unit volume.

see Magnetization vector.
Magnetic energy density

in free space, 133, 135
in material medium, 161, 179

Magnetic field
energy density in, 133, 135, 161, 179
energy storage in, 132, 216
far from a physical antenna, 131
Gauss’ law for, 63, 65, 92
inside a good conductor, 165
realizability of, 93
source of, 30

Magnetic field intensity, 55
adjacent to current sheet, 108–11
curl of, 82, 98, 155
due to current distribution, 80–81
due to infinitely long wire of current, 56–57
relationship with B, 65, 99, 153, 155
units of, 55

Magnetic flux, crossing a surface, 43–45
Magnetic flux density

definition of, 30
divergence of, 93, 98
due to current element, 29, 33, 37
from A, 407
relationship with H, 65, 99, 153, 155
units of, 28

Magnetic force
between two current elements, 27
in terms of current, 29
on a moving charge, 30

Magnetic materials, 149, 177
anisotropic, 153

Magnetic susceptibilities, values of, 154
Magnetic susceptibility, 150
Magnetic vector potential, 407

application of, 409
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Magnetic vector potential (Continued)
due to current element, 408
for circular loop antenna, 410
for Hertzian dipole, 409
relationship with B, 407

Magnetization, 149
Magnetization current, 152
Magnetization current density, 152
Magnetization vector

definition of, 150
in magnetic iron-garnet film, 385
relationship with B, 150
units of, 150

Magnetomotive force, 55, 58
Magneto-optical switch, 385
Magnetoquasistatic fields, 205
Magnetostatic fields, 197, 200. see also Static

magnetic field.
Magnitude of vector, 4
Mass, 21

unit of, 427
Matching, transmission line, 252–54
Materials

antiferromagnetic, 150
classification of, 141, 177
conductive. see Conductors.
constitutive relations for, 155, 178
diamagnetic. see Diamagnetic 

materials.
dielectric. see Dielectrics.
ferrimagnetic, 150
ferroelectric, 144
ferromagnetic, 150
magnetic. see Magnetic materials.
paramagnetic. see Paramagnetic 

materials.
Maxwell’s curl equations

for material medium, 155, 178
for static fields, 186–87
successive solution of, 112–14, 135

Maxwell’s equations
as a set of laws, 1, 38
for static fields, 197, 224
in differential form, 98
in integral form, 64–65, 166
independence of, 65, 100–01

Meter, definition of, 427
MKSA system of units, 427
Mmf. see Magnetomotive force.
Mobility, 142

Mode, Dominant. see Dominant mode.
Modes

TE. see TE modes.
TM. see TM modes.

Moment
electric dipole, 143
magnetic dipole, 149

Moving charge, magnetic force on, 30
Multiplication of vector, by a scalar, 4

N

Newton, definition of, 427
Newton’s law of gravitation, 21
Newton’s third law, 28
Normal component of B, boundary condition

for, 170, 171, 180
Normal component of D, boundary condition

for, 169, 171, 180
Normal vector to a surface

from cross product, 12
from gradient, 188–89

Normalized line admittance, 251
Normalized line impedance, 247
Nucleus, 141

O

Ohm, 429
Ohm’s law, 143

diagram, 308
Operator, del, 77
Optical fiber, 330
Optical waveguides, principle of, 321
Orbit, electronic, 149
Orientational polarization, 144
Origin, 9

P

Paddle wheel, 84
Parallel-plate arrangement

capacitance of, 199
conductance of, 203
electromagnetostatic field analysis 

of, 202–05
electroquasistatic field analysis of, 205–07
electrostatic field analysis of, 198–99
inductance of, 201
low frequency input behavior, 206, 208, 211
magnetoquasistatic field analysis of, 207–08
magnetostatic field analysis of, 200–01

v–bz
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Parallel-plate transmission line, 212
capacitance per unit length for, 214
conductance per unit length for, 214
inductance per unit length for, 214
parameters for, 214, 225
power flow along, 213
voltage and current along, 212–13

Parallel-plate waveguide, 301
cutoff frequencies for, 302
cutoff wavelengths for, 302
discontinuity in, 403
group velocity in, 306
guide wavelength in, 303
phase velocity along, 303
TEm,0 mode fields in, 303
TEm,0 modes in, 301

Parallel polarization, 319
Fresnel coefficients for, 320

Parallelepiped, volume of, 35
Paramagnetic materials, 149

values of for, 154
Paramagnetism, 150
Partial standing waves, 245

standing wave patterns 
for, 245–46

Pattern multiplication, 360
Perfect conductor

boundary conditions, 171, 180
definition of, 165

Perfect conductors, 179
Perfect dielectric

boundary conditions, 171, 180
definition of, 161
intrinsic impedance for, 162
phase constant for, 161
phase velocity in, 161
wave propagation in, 162

Perfect dielectrics, 179
Permanent magnetization, 150
Permeability

effective, 182, 382
of free space, 27
of magnetic material, 153
relative, 153
units of, 27

Permeability tensor, 182
Permittivity

effective, 149, 377
of dielectric material, 148
of free space, 21

xm

relative, 148
units of, 22

Permittivity tensor, 149, 182
Perpendicular polarization, 318

Fresnel coefficients for, 319
Phase, 16
Phase constant

for free space, 121, 134
for good conductor, 164
for ionized medium, 376
for imperfect dielectric, 162
for material medium, 158
for perfect dielectric, 161

Phase velocity
along guide axis, 303, 332
apparent, 295, 331
in free space, 121, 134
in good conductor, 164
in imperfect dielectric, 162
in ionized medium, 377
in material medium, 158
in perfect dielectric, 161

Phasor technique, review of, 19–21
Plane surface, equation for, 11
Plane wave, uniform. see Uniform plane 

wave.
Plasma frequency

definition of, 377
related to electron density, 377

p-n junction semiconductor, 193
analysis of, 193–96

Point charge
electric field of, 23, 33
equipotential surfaces for,
191–92
potential field of, 192, 224

Point charges, 23
electric field of, 23–25

Poisson’s equation, 193, 224
application of, 193–96

Polarization current, 147
Polarization current density, 147
Polarization in dielectrics, 143

electronic, 143
ionic, 144
orientational, 144

Polarization of vector fields
circular, 18
elliptical, 18
linear, 16–17
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Polarization of vector fields  (Continued)
of uniform plane wave fields, 125–27
parallel, 319
perpendicular, 318

Polarization vector
definition of, 144
relationship with E, 145
units of, 144

Polarizer, 386
Polarizing angle, 322
Position vector, 293–94, 331, 418
Potential

Electric. see Electric potential.
magnetic vector. see Magnetic vector

potential.
retarded, 409

Potential difference, 190
compared to voltage, 191

Potential field, of point charge, 192, 224
Power

carried by an electromagnetic wave, 130
dissipated in a conductor, 161
radiated by half-wave dipole, 355
radiated by Hertzian dipole, 348
radiated by loop antenna, 411
time-average, 349, 356, 411

Power balance, at junction of transmission
lines, 244

Power density, associated with an
electromagnetic field, 131, 133

Power dissipation density, 161, 178
Power flow

along parallel-plate line, 213
along short-circuited line, 236
in parallel-plate waveguide, 299

Poynting’s theorem, 133
for material medium, 161

Poynting vector, 131–33, 135
for half-wave dipole fields, 355
for Hertzian dipole fields, 348
for loop antenna fields, 411
for TE waves, 299
surface integral of, 133, 213, 348
time-average, 299
units of, 130

Propagating modes, determination of, 304,
313–14

Propagation
sky wave mode of, 379
waveguide mode of, 379

Propagation constant
for material medium, 157, 178
for transmission line, 233, 279

Propagation vector, 293, 331

Q

Quasistatic approximation, 225
condition for validity, 241

Quasistatic extension
analysis beyond, 229
of static field solution, 225

Quasistatic fields, 186, 205
in a conductor, 208

Quasistatics, 186

R

Radiation
far from a physical antenna,

131–32
from current sheet, 122, 160
principle of, 107
simplified explanation of, 65–66

Radiation fields
definition of, 347
for half-wave dipole, 355, 369
for Hertzian dipole, 347, 368
for loop antenna, 411

Radiation pattern, 350
broadside, 359
endfire, 125, 359

Radiation patterns
for antenna above perfect 

conductor, 363
for antenna arrays, 359–61
for half-wave dipole, 356
for Hertzian dipole, 349–51

Radiation resistance
definition of, 349
for half-wave dipole, 356, 369
for Hertzian dipole, 349, 369
for loop antenna, 412

Radio communication, 378
Rationalized MKSA units, 427
Receiving properties

of Hertzian dipole, 363–64
of loop antenna, 364-66

Reciprocity, 363

454 Index
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Index 455

Rectangular coordinate system.
see Cartesian coordinate system.

Rectangular waveguide, 310
determination of propagating modes 

in, 313–14
TE modes in, 311
TM modes in, 312

Reflection coefficient
at boundary between material media, 174–75
at waveguide discontinuity, 404
current, 243, 258, 280
for oblique incidence, 318, 320
from the Smith Chart, 250
voltage, 243, 247, 258, 279, 281

Reflection condition, for incidence on
ionosphere, 379

Reflection diagram, 260
Reflection of plane waves

normal incidence, 173
oblique incidence, 316

Refraction of plane waves, 316
Refractive index, 316
Relative permeability, 153

for ferromagnetic materials, 154
Relative permittivity, 148

table of values of, 148
Resistance, 181, 203
Resonator, cavity. see Cavity resonator.
Resultant pattern, 359
Resultant patterns, determination of, 360–61
Retarded potential, 409
Right-hand screw rule, 51, 72, 75, 79

illustration of, 51
Right-handed coordinate system, 9
Right-lateral differential, net, 76

S

Scalar
definition of, 1
gradient of. see Gradient.
Laplacian of, 192

Scalar fields, 13–14
graphical representation of, 13–14
sinusoidally time-varying, 16

Scalar product. see Dot product of vectors.
Scalar triple product, 7–8
Scalars, example of, 1
Second, definition of, 427
Semiconductor, p-n junction, 193

Semiconductors, 142
conductivity of, 142

Separation of variables technique, 116
Shielded strip line, 230
Shielding, 165, 390
Shielding arrangement, example of 

analysis of, 390–94
Shielding effectiveness, 391
Shielding factor, 391
Short circuit, location of, 239
Short-circuited line

input impedance of, 238, 279
instantaneous power flow down, 236
standing wave patterns for, 238
voltage and current on, 235

Short dipole, 373
Signal source, location of, 365
Sine functions, addition of, 19
Sinusoidally time-varying fields,

16–18
Skin depth, 164, 179

for copper, 164
Skin effect, 165
Smith Chart

applications of, 248–54
construction of, 247–48
use as admittance chart, 251

Snell’s law, 316, 333
Space charge layer, 193
Spherical coordinate system

brief review of, 341–42
coordinates for, 415
curl in, 424
differential length vector in, 416
differential lengths, 416
differential surfaces, 416
differential volume, 416
divergence in, 425
gradient in, 425
limits of coordinates, 415
orthogonal surfaces, 415
unit vectors, 415

Standing wave patterns, 238
for partial standing wave, 245–46
for short-circuited line, 238

Standing wave ratio, 247, 280
from the Smith chart, 251, 252

Standing waves
complete, 236
partial, 245
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Static electric field. see also Electrostatic
fields.

conservative property of, 191
determination of, 61
in terms of potential, 190, 223

Static fields, 186
Maxwell’s equations for, 197, 224
subdivision of, 197

Static magnetic field. see also Magnetostatic
fields.

determination of, 57
Stoke’s theorem, 86, 100

verification of, 87–88
Stray capacitance, 241
Stream lines, 15
Stub, 252
Subtraction of vectors, 4
Surface

Differential. see Differential surface.
equation for, 11

Surface charge, 36
Surface charge density, 36

units of, 36
Surface current density, 107

units of, 107
Surface integral, 46

closed, 47
evaluation of, 47–49
of , 130
to volume integral, 96, 100

Surfaces
constant phase. see Constant phase 

surfaces.
Differential. see Differential surfaces.
Equipotential. see Equipotential surfaces.

Susceptibility
electric, 145
magnetic, 150

SWR. see Standing wave ratio.

T

Table
of conductivities, 143
of dimensions, 428–30
of relative permittivities, 148
of transmission line parameters, 222
of units, 428–30

Tangential component of E, boundary
condition for, 167, 180

E : H

Tangential component of H, boundary
condition for, 168, 180

TE0,n modes, 311, 312
TEm modes, in a dielectric slab guide, 329, 334
TEm,0 modes, 301

cutoff frequencies for, 302, 332
cutoff wavelengths for, 302, 311, 332
field expressions for, 303
guide characteristic impedance for, 403
in parallel-plate waveguide, 301
in rectangular waveguide, 310–11

TEm,n modes, 312
cutoff frequencies for, 313
cutoff wavelengths for, 312, 333

TEm,n,l modes, in cavity resonator, 315
TE wave, 299, 331
TEM wave, 212, 217
Thin film waveguide, 338
Time-average power

radiated by half-wave dipole, 356
radiated by Hertzian dipole, 349, 368
radiate by loop antenna, 411

Time-average power flow
along short-circuited line, 236
for TE wave, 299

Time-average Poynting vector, 299
Time constant, for decay of charge inside a

conductor, 182
TMm,n modes, 312

cutoff frequencies for, 313
cutoff wavelengths for, 312, 333

TMm,n,l modes, in cavity resonator, 315
TM wave, 312
Torque

on electric dipole, 144, 182
on magnetic dipole, 150, 182

Total internal reflection, 321, 325,
333, 334

Transmission coefficient
at boundary between material 

media, 175
at waveguide discontinuity, 404
current, 243, 280
for oblique incidence, 318, 320
voltage, 243, 280

Transmission line
characteristic impedance of, 233, 279
compared to waveguide, 290
field mapping, 217–21
location of short circuit in, 239

456 Index

Z06_RAO3333_1_SE_IND.QXD  4/9/08  1:48 PM  Page 456



Index 457

parallel-plate. see Parallel-plate
transmission line.

propagation constant for, 233, 279
short-circuited. see Short-circuited line.

Transmission-line admittance. see Line
admittance.

Transmission-line discontinuity
boundary conditions at, 242
reflection coefficients, 243
transmission coefficients, 243

Transmission-line equations, 215, 225,
232, 254

circuit representation of, 215–16
in phasor form, 233, 278

Transmission-line equivalent, for waveguide
discontinuity, 404–05

Transmission-line impedance. see Line
impedance.

Transmission-line matching, 252–54
Transmission-line parameters

for arbitrary line, 221, 226
for coaxial cable, 221–22
for parallel-plate line, 214, 225
table of, 222

Transmission lines
crosstalk on, 395. see also Crosstalk.
power balance at junction of, 244

Transverse electric wave, 299, 331
Transverse electromagnetic wave, 212, 217
Transverse magnetic wave, 312
Transverse plane, 212, 213
Traveling wave, 119

negative going, 119
positive going, 119
velocity of, 119

TTL inverters, interconnection between, 275
Tunnel diode, 196

U

Uniform plane wave
guided between perfect conductors, 212
oblique incidence on a dielectric, 316
parameters associated with, 121–24
radiation from current sheet, 122, 160
terminology, 121

Uniform plane wave fields
from nonsinusoidal excitation, 127–29
magnetization induced by, 150
polarization induced by, 145

polarization of, 125–27
reflection and refraction of, 316

Uniform plane wave in three dimensions
apparent phase velocities, 295, 331
apparent wavelengths, 294, 331
electric field vector of, 293
expressions for field vectors, 331
magnetic field vector of, 294
propagation vector for, 293, 331

Uniform plane wave propagation.
see Wave propagation.

Uniform plane waves
bouncing obliquely of, 301
reflection and transmission 

of, 173
superposition of, 298

Unit conductance circle, 252
Unit pattern, 359
Unit vector, 2, 5
Unit vector normal to a surface

from cross product, 12
from gradient, 189

Unit vectors
cross products of, 6
dot products of, 5, 417
in Cartesian coordinates, 9
in cylindrical coordinates, 413
in spherical coordinates, 415
left-handed system of, 2
right-handed system of, 2

Units
International system of, 21, 427
MKSA rationalized, 427
table of, 428–30

V

V. see Electric potential; and Voltage.
Vacuum diode, 228
Vector

circulation of, 42
curl of. see Curl.
definition of, 1
divergence of. see Divergence.
division by a scalar, 4
graphical representation of, 2
magnitude of, 4
multiplication by a scalar, 4
position, 293–94, 331, 418
unit, 2, 5
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Vector algebra, summary of rules of, 32
Vector fields, 14–15

graphical description of, 15
sinusoidally time-varying, 16–18

Vector potential. see Magnetic vector
potential.

Vector product. see Cross product of vectors.
Vectors

addition of, 3, 4
cross product of, 6
dot product of, 5
examples of, 1
scalar triple product of, 7–8
subtraction of, 4
unit. see Unit vectors.

Velocity
drift, 142
group. see Group velocity.
phase. see Phase velocity.

Velocity of light, in free space, 119
Velocity of propagation, 121
Volt, definition of, 22, 428
Voltage, 41

compared to potential difference, 191
Voltage reflection coefficient, 243, 247, 258,

279, 281
Voltage transmission coefficient, 243, 280
Volume, differential. see Differential volume.
Volume charge density, 59–60

units of, 60
Volume current density, 54. see also Current

density.
Volume integral, evaluation of, 60

W

Watt, definition of, 428
Wave

TE, 299, 331
TEM, 212, 217

TM, 312
Traveling. see Traveling wave.

Wave equation, 116
for ionized medium, 376
for material medium, 156

Wave motion, 106
Wave propagation

in anisotropic dielectric, 380–81
in ferrite medium, 381–85
in free space, 118–29
in good conductor, 163–65
in imperfect dielectric, 163–64
in ionized medium, 375–77
in material medium, 154–61
in perfect dielectric, 161–62
in terms of circuit quantities, 215

Waveguide
compared to transmission line, 290
optical, 330
parallel-plate. see Parallel-plate 

waveguide.
rectangular. see Rectangular 

waveguide.
thin-film, 338

Wavelength
apparent, 294, 331
definition of, 123
guide, 303, 332
in free space, 123, 134
in good conductor, 164
in imperfect dielectric, 162
in material medium, 158
in perfect dielectric, 162
times frequency, 123

Waves
electromagnetic. see Electromagnetic

waves.
standing. see Standing waves.

Work, in movement of charge in 
electric field, 38–39
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