Resolution Roll Call: Optical Sectioning System Overviews

Principles and Comparisons of Fluorescence-Based High-Resolution Imaging Modalities

Matt Curtis 3D Imaging Specialist

Jamie Scott Account Manager

University of Illinois January 2019

Outline of Discussion High Resolution Optical Sectioning

- Basic Aspects of Resolution in X, Y, and Z
- 2 Modalities for Enhancing Axial Resolution
- 3 Advanced Approaches for Exceeding the Resolution Limit
- 4 Summary of Techniques
- 5 Questions

Outline of Discussion High Resolution Optical Sectioning

Basic Aspects of Resolution in X, Y, and Z

- 2 Modalities for Enhancing Axial Resolution
- 3 Advanced Approaches for Exceeding the Resolution Limit
- 4 Summary of Techniques
- 5 Questions

Aspects of Resolution Defining the Limits

- Ernst Abbe deduced the "resolution limit" of lenses at Carl Zeiss' Jena workshop in 1873
 - Expanded concepts of optical imaging using wave properties of light
- Resolution defined as the minimum distance (d) necessary to distinguish two point-like objects in lateral space

Aspects of Resolution

Historical Context

 Thomas A. Edison's electric lamp (1880)

Aspects of Resolution Defining the Limits

• Numerical aperture (NA) is the defining characteristic for resolution

$$NA = n \sin \alpha$$

n = refractive index of immersion media (describes how light propagates relative to vacuum) α = half angle; acceptance cone of light

• Resolution criteria is dependent on both wavelength and NA (not magnification)

$$d_{xy} = \frac{\lambda}{2(n \sin \alpha)} = \frac{0.5 \lambda}{NA}$$

Aspects of Resolution Comparing Numerical Aperture

- All other things constant, changes in NA influence the image resolution
- In practical terms, this has significance in all applications involving structural or molecular localization
- One object/puncta or actually several?

Aspects of Resolution Comparison of Example Objectives

Magnification	NA	Resolution (XY)
4x	0.10	2.75 µm
4x	0.20	1.375 µm
10x	0.25	1.10 µm
10x	0.45	0.61 µm
20x	0.40	0.69 µm
20x	0.75	0.37 µm
40x	0.65	0.42 µm
40x	1.40	0.20 µm
63x	0.75	0.37 µm
63x	1.30	0.25 µm
100x	1.25	0.22 µm
100x	1.40	0.20 µm

Aspects of Resolution Comparison of Example Objectives

Plan-Apochromat 63x/1.4 Oil

Even small increases in NA can yield key improvements in imaging

Alpha-Fluar 100x/1.45 Oil

Aspects of Resolution Limits in the Z Dimension

$$d_{xy} = \frac{0.5 \ \lambda}{NA}$$

lateral resolution (XY) limit ~ 200 nm

- The same principles of resolution extend into the axial (Z) dimension
 - For widefield imaging system, minimum resolved distance in Z is larger than in XY

WHY WORSE IN Z?

- Out-of-focus light interference in sample
- Non-symmetrical wavefront from lens along the optical axis

$$d_{Z} = \frac{2\lambda}{NA^{2}}$$

axial resolution (Z) limit ~ 550 nm

Aspects of Resolution Comparison of Example Objectives

Magnification	NA	Resolution (XY)	Resolution (Z)
4x	0.10	2.75 µm	110 µm
4x	0.20	1.375 µm	27.5 µm
10x	0.25	1.10 µm	17.6 µm
10x	0.45	0.61 µm	5.43 µm
20x	0.40	0.69 µm	6.87 µm
20x	0.75	0.37 µm	1.95 µm
40x	0.65	0.42 µm	2.60 µm
40x	1.40	0.20 µm	0.56 µm
63x	0.75	0.37 µm	1.95 µm
63x	1.30	0.25 µm	0.65 µm
100x	1.25	0.22 µm	0.70 µm
100x	1.40	0.20 µm	0.56 µm

Aspects of Resolution Enhancing Axial Resolution

REQUIREMENTS:

- Collect images with Z step sizes smaller than the target resolution
 - Motorized focus drive
- Imaging method that results in a clearer "slice" of the source signal
 - Optical sectioning technique

Outline of Discussion High Resolution Optical Sectioning

- 2 Modalities for Enhancing Axial Resolution
- 3 Advanced Approaches for Exceeding the Resolution Limit
- 4 Summary of Techniques
- 5 Questions

Optical Sectioning Techniques Hierarchy of Common Approaches

Optical Sectioning

Confocal Microscopy

- Laser excitation and sample emission separated by dichroic
- The **pinhole(s)** prevent detection of out-of-focus signal
 - Diaphragm situated in conjugate focal plane

Detector

Pinhole

Confocal Plane

Laser

- Laser excitation and sample emission separated by dichroic
- The pinhole(s) prevent detection of out-of-focus signal
 - Diaphragm situated in conjugate focal plane
- Thickness of resulting optical section is influenced by:
 - Numerical aperture of lens
 - Wavelength of excitation light
 - The shape, spacing, and diameter of the pinhole

Carl Zeiss Microscopy

Confocal Microscopy Methods for Scanning

- Increased scanning speeds are possible by multipoint approaches
 - Such approaches sacrifice **pinhole versatility** at emission side and thus have less control over the optical section thickness

(single point at a time)

Line Scanning Confocal (single line or slit at a time) Spinning Disk Confocal (~1000 points at a time)

Point-Scanning Confocal Basic Principles

- A diffraction-limited laser spot is moved across the sample via two independent scanning mirrors
 - The resulting image is generated a single point at a time

Point-Scanning Confocal

Common/Unique Applications

WHAT ARE THE USES?

- Easy-to-implement simultaneous detector layout enables true spectral imaging
 - Separation of closely-overlapping fluorophores, identification of autofluorescent populations

32-channel spectral readout of giant unilamellar vesicle (GUV) labelled with laurdan

Visualization of gut immune cell populations Hugues Lelouard et al (Aix Marseille Univ, France)

Point-Scanning Confocal

Common/Unique Applications

ZEISS

WHAT ARE THE USES?

- Control of pointwise illumination with nanosecond-scale photon readout permits measurement/modeling of molecular dynamics
 - **FRAP** \rightarrow mobility (parameters of diffusion, viscosity, size), transport kinetics
 - FCS \rightarrow diffusivity, concentration, transport and binding kinetics
 - **RICS** \rightarrow spatial maps of diffusivity, concentration(s)
 - **N&B** \rightarrow concentration, oligomerization

Detailed characterization of any aqueous compartment or environment via fluorescence!

Point-Scanning Confocal Typical System Footprint – ZEISS LSM 880

Point-Scanning Confocal

Practical Perspective

ADVANTAGES:

- Nearly ubiquitous 3D modality
- Easy to combine multiple channels in parallel (spectral imaging)
- Precise pixel photomanipulation possible
- Works with reflected mode imaging (non-fluorescent structures)

DISADVANTAGES:

Carl Zeiss Microscopy

- Relatively slow point-by-point acquisition
- High laser powers may cause photobleaching or photodamage
- Photocathode-based detectors are less sensitive than cameras

Spinning Disk Confocal Basic Principles

- A single rotating disk containing hundreds of pinholes scans laser light across the sample
 - Rotation speed is adjustable (~1500 – 5000 RPM)
- Paul Nipkow patented concept in 1884, later became basis for mechanical television in 1920s

Spinning Disk Confocal Basic Principles

- Pinholes are arranged along slightly curved line (Archimedean spiral)
- Over a set exposure time, these **lines assemble into one full scan** of the field of view
 - 12 scans per complete rotation, 50 μm
 pinhole diameter, 250 μm apart

To evenly scan,
 rotation speed
 and exposure
 time are
 synchronized

Spinning Disk Confocal Basic Principles

- Pinholes illuminated by laser (via focusing of microlens array)
 - Projected onto sample
- Emission collected through objective; passes pinhole array
 - Only in-focus signals
- Beamsplitter passes *fluorescence to area detector* (*e.g.* – CCD)
 - High-speed confocal

Spinning Disk Confocal **Common/Unique Applications**

Drosophila embryo (projection)

Zebrafish red blood cells

WHAT ARE THE USES?

- Projects requiring high-throughput 3D imaging, up to 2 simultaneous channels
- Increasingly central to screening studies (e.g. – Zebrafish sorting VAST BioImager; automated iPS cell screening)

Automated high-resolution screen (Zebrafish) Jason Early et al (Univ. Edinburgh, UK)

Spinning Disk Confocal Typical System Footprint – ZEISS Cell Observer SD

DirectFRAP photomanipulation unit

100x/1.46 oil

Spinning Disk Confocal Practical Perspective

ADVANTAGES:

- High speed acquisition ideal for live cell/tissue dynamics; capture rate is typically limited only by camera(s)
- Excitation spots are constantly moving; generally accepted as one of the most gentle confocal imaging strategies; low photobleaching
- Robust, relatively inexpensive setup that offers scalability

DISADVANTAGES:

- Confocal **pinhole diameter is fixed** and optimized only for a subset of magnifications; **lower resolution** than point-scanning confocals
- Thick, scattering samples lead to pinhole crosstalk, results in increased background

Optical Sectioning Techniques Multi-Photon Microscopy

Multi-Photon Microscopy Principles of the Two-Photon Effect

Multi-Photon Microscopy Principles of the Two-Photon Effect

- Multi-photon excitation requires that the fluorophore simultaneously absorbs two (or more) photons
- This process requires an extremely **high photon density** (*i.e.* the focal volume of the objective lens)
- A **single-photon** instrument is known as a "linear" imaging technique
 - Excitation of fluorophore is directly proportional to the laser intensity
- A multi-photon system is known as a "non-linear" technique (NLO)
 - Excitation of fluorophore is dependent on the square of the laser intensity
 - No confocal pinhole required; excitation only probable near focal plane

HOW IS THE HIGH PHOTON DENSITY OBTAINED?

Multi-Photon Microscopy Excitation by a Pulsed IR Laser

Multi-Photon Microscopy IR Laser Yields Increased Penetration

Multi-Photon Microscopy Depth Considerations

Mouse brain: YFP-labelled tissue; 80 µm deep

Multi-Photon Microscopy

Common/Unique Applications

WHAT ARE THE USES?

 Label-free imaging of collagen, myosin, starch via second harmonic generation (SHG)

Mesenterium, SHG collagen (cyan, 800 nm), endothelial cells (white), F. Kiefer (MPI Munster)

Mouse brain cleared with Sca*l*e Hiroshi Hama et al *(RIKEN BSI, Wako, Japan)*

 High depth (>5 mm) imaging of optically-cleared tissues and organs

Intensity

Multi-Photon Microscopy

Common/Unique Applications

WHAT ARE THE USES?

- Pulsed lasers can enable measurement of fluorescence lifetime (FLIM)
 - Photon counting is used to plot temporal distribution of the excited state (~100s of ps)
 - Repeating counts at each scan pixel reveals spatial distribution of lifetimes
 - Lifetimes are sensitive to microenvironment (FRET, pH, ion concentration, binding, etc)

Presence of FRET (protein-protein interaction) reduces donor lifetime

Principle of time-correlated single photon counting (TCSPC), via B&H

Output B: 1040 nm

IR laser: Coherent Discovery dual beam Output A: 690-1010 nm + 1070-1300 nm

VIS laser lines: 458, 488, 514, 561, 633 nm

LSM 880 scanhead; 34-channel (GaAsP)

Multi-Photon Microscopy

Typical System Footprint – ZEISS LSM 880 NLO

Carl Zeiss Microscopy

Objectives:

20x/0.8

40x/1.2 W

40x/1.3 oil

Observer inverted microscope (with Definite Focus)

Multi-Photon Microscopy

Practical Perspective

ADVANTAGES:

- Permits deep imaging of tissue or whole animal due to low scattering of IR light and non-descanned detection (no pinhole)
- IR light less toxic to live cells/organisms
- Optical sectioning occurs entirely through excitation; limits bleaching to the focal plane only

DISADVANTAGES:

- Not useful or recommended for thin samples; IR wavelength and power **can boil sample** (where water dominant absorber)
- Broad fluorophore absorption cross-section; multi-labeling tricky
- No ability to adjust optical slice thickness (*e.g.* for weak samples)
- IR pulsed lasers render the system expensive, large footprint

Optical Sectioning Techniques Light Sheet Microscopy

Light Sheet Fluorescence Microscopy Fundamental Characteristics of LSFM

PRINCIPLES

- Orthogonal light paths for illumination and detection
- Horizontal microscope configuration
- Whole field of view illuminated; camerabased collection

ZEK

Light Sheet Fluorescence Microscopy Comparison to Confocal Microscopy

Scan

Focal plane

Fluorescence

Objective

Detection

Light Sheet Fluorescence Microscopy **Samples Types and Preparation**

Reynaud et al., HFSP J. (5) 2008

Multiple configurations ideal for medium-sized to large living specimens in an aqueous solution

hooks, clamps, and variety of sample formats

Light Sheet Fluorescence Microscopy Multiview Imaging

- Larger samples benefit from applying illumination features (e.g. twosided illumination, pivot scanning) to different rotational views
 - Complementary information from **unique viewing angles**; **resolution gain**

Light Sheet Fluorescence Microscopy Multiview Imaging – Fusion

Z-Stack View 1

Registration + Fusion

Z-Stack View 2

Light Sheet Fluorescence Microscopy Common/Unique Applications

WHAT ARE THE USES?

Tracking and invasion of cells in unperturbed
3D culture models (spheroids, seeded scaffolds, invasion assays) and intact organisms

Spheroid cultures

Drosophila embryo lineage reconstruction (H2A), 30 s interval over 11 hr, 10 frame avg Amat et al. (*Nature Methods 2014*)

Light Sheet Fluorescence Microscopy Typical System Footprint – ZEISS Lightsheet Z.1

Lightsheet Z.1 unit (with temperature controllers)

Objectives: 5x/0.16 20x/1.0 water 40x/1.0 water

Light Sheet Fluorescence Microscopy Practical Perspective

E15.5 mouse kidney cleared with glycerol (blood vessels, eGFP) Renata Prunskaite-Hyyryläinen *(Univ. Oulu, Finland)*

ADVANTAGES:

- Fast and **gentle** optical sectioning
- Multiview positioning allows for more efficient light delivery at high depths
- Enables large format cleared tissue imaging

DISADVANTAGES:

- Light sheet thickness ranges from 1 to 10 microns thick; subcellular resolution possible but lower than confocal imaging
- High throughput requires considerations for large datasets

Outline of Discussion High Resolution Optical Sectioning

- Basic Aspects of Resolution in X, Y, and Z
- 2 Modalities for Enhancing Axial Resolution
- **3** Advanced Approaches for Exceeding the Resolution Limit
- 4 Summary of Techniques
- 5 Questions

Optical Sectioning Techniques Common Superresolution Approaches

Optical Sectioning Techniques Common Superresolution Approaches

Carl Zeiss Microscopy

53

Structured Illumination Microscopy Basic Principles

- Method of casting patterned light in highly-controlled manner to yield composite images with double resolution in X,Y, and Z
 - Use of **grid or lattice** illumination reveals Moiré patterns with lower frequencies that are not hindered by the resolution limit of an objective

Structured Illumination Microscopy Understanding Frequency Space

Structured Illumination Microscopy Fourier Spectrum – Objective Limit

Structured Illumination Microscopy Fourier Spectrum – Objective Limit

Structured Illumination Microscopy Fourier Spectrum – Objective Limit

d=) Insing

Extending resolution beyond limits means finding a way to detect higher frequencies outside of this region

Structured Illumination Microscopy Acquisition Process

- Final image is reconstructed from ~15 images, each with different phase (position) of the lattice light pattern
 - High speeds are possible via rapid sweeping of lattice + camera readout

Structured Illumination Microscopy Common/Unique Applications

Myoblast C2C12, BrdU + Dnmt1 Schermelleh lab (*LMU Munich*)

WHAT ARE THE USES?

- Resolved capture of vesicle trafficking, membrane ruffling, and dynamic processes
- 110-120 nm XY, 300 nm Z
- Minimal sample prep often triggers renewed assessments of colocalization

Structured Illumination Microscopy Typical System Footprint – ZEISS Elyra 7 (SIM)

Laser lines (100 mW)

Elyra 7 beam path module

Objectives: 63x/1.2 W 63x/1.4 oil 100x/1.46 oil

Darkening chamber

Observer inverted stand (with motorized XY stage)

PCO.edge CMOS camera (SIM)

Structured Illumination Microscopy

Practical Perspective

ADVANTAGES:

- Relatively easy entry to superresolution; low learning curve
- Maintains a large field of view
- Demodulation processing retains quantitative information
- Concepts can be easily tailored for live cell experiments (up to 255 frames/sec with lattice SIM)

DISADVANTAGES:

 Largely incompatible with thicker (>50 micron) samples due to scattering and loss of patterned illumination with depth

Optical Sectioning Techniques Common Superresolution Approaches

Sectioning Methods Optics & Mathematics Optics Mathematics Light Sheet 3D Structured Confocal **Total Internal Multi-Photon** Microscopy Reflection Illumination Deconvolution Microscopy PALM **PiMP dSTORM** SRRF STED **FIONA SR-SIM SHReC 3D PALM** 4 Pi **NaLMS** (PRILM) SHRImP PAINT Airyscan **3D STORM**

Localization Microscopy

- Refers to a number of conceptually similar time-sensitive techniques
 - Photoactivated Localization Microscopy (PALM)
 - direct Stochastic Optical Reconstruction Microscopy (dSTORM)
- Use of emission-limiting conditions, weighting algorithms to pinpoint (or "localize") individual fluorescent molecules
- Lateral resolution up to 10 times greater than widefield imaging
- TIRF-based illumination yields excellent Z-resolution (~100 nm)

Localization Microscopy Single Molecule Localization

Localization Microscopy PALM Experiment Design

 PALM relies on fluorochromes that can be either photoactivated, photoconverted, or reversibly photoswitched to control emission over time

Localization Microscopy dSTORM: Dye, to Die, to Sleep?

 Instead of using fluorescent proteins, high laser powers (with a specialized reducing cocktail to prevent bleaching) can be used to keep conventional fluorescent dyes in a dark state, from which they wake up stochastically

Localization Microscopy Extending High Resolution into 3D

- Extended Z capture range (up to 1.4 micron) is possible using approaches of PSF engineering
- Double phase ramp within back aperture of objective creates a double helix pattern for each emitter
 - Allows for pinpointing of Z position for single molecules

Localization Microscopy

Common/Unique Applications

WHAT ARE THE USES?

- Understanding clustering, aggregation at the nanoscale
- Precise correlation of <u>function</u> (fluorescent labelling) with <u>ultrastructure</u> (electron microscopy)
 - Correlative Light and Electron Microscopy (CLEM)

Ultrathin *S. cerevisiae* overlay SIM, dSTORM (hA1ar), FE-SEM J. Caplan, K. Czymmek (*Delaware Biotech. Instit.*)

dSTORM

Focal adhesion complexes (Alexa 488), Martin Bastmeyer (*Univ. Karlsruhe, Germany*)

Objectives: 100x/1.46 oil

Darkening chamber

Observer inverted stand (with motorized XY stage)

Andor iXon EMCCD camera (PALM/dSTORM)

Localization Microscopy

Practical Perspective

ADVANTAGES:

- Provides highest resolution available for fluorescence approaches
- Light path is always optimized for TIRF, providing additional out-ofthe-box versatility

DISADVANTAGES:

- Optimizing blinking, fluorophore concentration, and imaging buffers requires expertise, trial-and-error
- Extending to multi-color imaging doubles complexity of acquisition and experiment design
- Even with 3D-based tools, depths are generally limited to <10 microns

Optical Sectioning Techniques Common Superresolution Approaches

Airyscan Dedicated Superresolution Detector

Airyscan Basic Principles

- Mechanical pinhole is rejecting emitted photons based on diameter
- 1 Airy Unit ("AU") often acts as an ideal compromise between thin optical sections and reasonable signal levels

Airyscan Basic Principles

- 32 GaAsP detectors in hexagonal lattice
- Each detector approximately 0.2 AU in diameter
- Total detection area approximately 1.25 AU in diameter
- Simultaneous improvement in resolution and signal

Airyscan Innovations in the Literature

Sheppard, C.J., Super-resolution in confocal imaging. Optik, 1988. 80(2): p. 53-54

First theorized about pinhole plane image detection and reassignment

Proposed reassignment to position halfway between excitation/detection positions for improving resolution

With identical PSFs, this reassigned position corresponds to the most probable position of an emitter

Muller, C.B. and J. Enderlein, Image scanning microscopy. Phys Rev Lett, 2010. 104(19): p. 198101

First to implement Sheppard's concept using a camera as an area detector

A full camera image was captured for each laser spot position moving across an object

Pixels with a greater displacement from the given optical axis yield narrower effective PSFs [at those pixels]

Sheppard, C.J., S.B. Mehta, and R. Heintzmann, Superresolution by image scanning microscopy using pixel reassignment. Opt Lett, 2013. 38(15): p. 2889-2892

Argued that an off-axis detector can improve resolution up to 1.53-fold (assuming no Stokes shift) (Normalized transverse coordinate vd = 0 yields 1.39-fold resolution for zero pinhole; vd = 2.75 yields 1.45-fold)

York, A.G., et al., Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy. Nat Methods, 2012. 9(7): p. 749-754

Parallelized the image scanning microscopy procedure using illumination patterns via a digital micromirror device Multifocal pattern (e.g. – spinning disk) is shifted after each image, followed by postprocessing (2x scaling, summing) Resulting resolution reached ~145 nm laterally and 400 nm axially (at 480 x 480 pixels, ~1 final 2D per second)

Roth, S., Sheppard, C.J., Wicker, K., and R. Heintzmann, Optical photon reassignment microscopy (OPRA). Optical Nanoscopy, 2013. 2(5): p. 1-6

First to implement hardware-based pixel reassignment by introducing a re-scanning unit in the detection path Expanded the beam in pupil plane by a certain factor, which shrinks the corresponding image on the detector Confocal sectioning possible by combining a pinhole in the detection path prior to rescanning

York, A.G., et al., Instant super-resolution imaging in live cells and embryos via analog image processing. Nat Methods, 2013. 10(11): p. 1122-1126

Parallelized the re-scan approach using microlens and pinhole array, coupled with second microlens array Second microlens array used to locally contract each pinholed emission; galvo scan to sum over camera exposure Claim lateral resolution of ~145 nm and axial resolution of ~350 nm, albeit with fixed pinholes

Airyscan Isotropic Resolution Improvements (2-fold)

Airyscan Common/Unique Applications

Dictyostelium discoideum (slime mold) Plunge-freezing on EM support; tubulin-mRFP

WHAT ARE THE USES?

 New benchmark in point-scanning resolution for thicker specimens

Biofilm (3D render), collected with Airyscan, 63x/1.4 oil

- High(er) resolution cryo imaging of vitrified specimens (plunge freezing)
 - Compatibility with cryo-EM

Airyscan Typical System Footprint – (Confocal Upgrade)

Airyscan Practical Perspective

ADVANTAGES:

- Relatively versatile superresolution tool at high depths
- No specific sample preparations required

DISADVANTAGES:

- Oversampling initially yields larger file sizes
- Airyscan concept requires a complete point-scanning confocal system

Autofluorescence, calcium oxalate crystals in kidney stone (Sivaguru *et al*, *Nature Scientific Reports* 2018)

Collagen network, depth color-coded (100 microns thick, 633 nm ex.)

Outline of Discussion High Resolution Optical Sectioning

- 2 Modalities for Enhancing Axial Resolution
- 3 Advanced Approaches for Exceeding the Resolution Limit
- 4 Summary of Techniques
- 5 Questions

Summary The Right Tool for the Job?

• No aforementioned tool/technique is inherently better than another

- Selecting the wrong imaging modality is likely to have a far greater consequence than any performance differences between competitor systems with the same class
 - The "best" point-scanning confocal is about **3x** more sensitive than "worst"
 - For study of development in 3D, even the "worst" light sheet system will be 50-100x more gentle than the "best" point-scanning confocal

Summary Comparison of Techniques

Outline of Discussion High Resolution Optical Sectioning

- Basic Aspects of Resolution in X, Y, and Z
- 2 Modalities for Enhancing Axial Resolution
- 3 Advanced Approaches for Exceeding the Resolution Limit
- 4 Summary of Techniques
- 5 Questions

We make it visible.