Advancements of Biological Electron Microscopy and Correlative Microscopy

Joel Mancuso Academia Life Science EM/XRM Specialist

Agenda

1	Introduction and Agenda
2	Multiscale and Correlative Microscopy
3	Traditional Electron Microscopy
4	Using an SEM in place of a TEM
5	Automated & 3D EM
6	Correlative Microscopy
7	Cryo FIB SEM

Agenda

1	Introduction and Agenda
2	Multiscale and Correlative Microscopy
3	Traditional Electron Microscopy
4	Using an SEM in place of a TEM
5	Automated & 3D EM
6	Correlative Microscopy
7	Cryo FIB SEM

The Correlative Microscopy Environment

Agenda

1	Introduction
2	Multiscale and Correlative Microscopy
3	Traditional Electron Microscopy
4	Using an SEM in place of a TEM
5	Automated & 3D EM
6	Correlative Microscopy
7	Cryo FIB SEM

Agenda

1	Introduction
2	Multiscale and Correlative Microscopy
3	Traditional Electron Microscopy
4	Using an SEM in place of a TEM
5	Automated & 3D EM
6	Correlative Microscopy
7	Cryo FIB SEM

Why use a SEM instead of a TEM?

Large frame store and Automation

Comparative Single Image Sizes:

How much information do you want in each image?

TEM of ultrathin section versus SEM of blockface: Which is which?

SEM blockface image at 1.9 keV

TEM section image at 80 keV

TEM like imaging in the SEM

STEM Sample \rightarrow Detector -

Back Scatter

SEM Resolution Achievements

Mouse Brain, Sample courtesy of Cantoni, EPFL Lausanne.

20

Darkfield

	SEM	TEM
Resolution	0.4nm (STEM)	0.2nm (STEM)
Sample types	Bulk samples – block face, whole animal mounts Thin sections – traditional TEM samples	Thin sections or thin samples ONLY
Image size	Variable – largest image size is 40k x 50k	Limited to detector or camera size usually 4k x 4k
Automation	Many Automated workflow Options including large scale 3DEM	Limited

Agenda

1	Introduction
2	Multiscale and Correlative Microscopy
3	Traditional Electron Microscopy
4	Using an SEM in place of a TEM
5	Automated & 3D EM
6	3DEM examples
7	Correlative Microscopy

Automated 3DEM Techniques

3D FIB-SEM

High resolution simultaneous milling at the Coincidence Point

ZEISS

FIB Nanotomography: Meeting the Demand for <10 nm Slice Thickness

Predictive 3D Drift Tracking in Action

Nanofabricating "chevron" fiducials, FIB'd into a protective bilayer of "dual material contrast" allows precise tracking of the cross-section and slice thickness.

Keyframes 50 nm pixels, 30x30 μ m

Carl Zeiss Microscopy, Joel Mancuso

FIB Nanotomography: Virtual Cross Sections & The Benefit of 3 nm Voxels

Data courtesy of Dr. Kedar Narayan, Research Group of Dr. Sriram Subramaniam BioPhysics Section, NCI, NIH, Bethesda MD

Array Tomography workflow

Ultramicrotome – Arrays of Serial Sections

MultiSEM the Connectomics Tool Throughput Consideration for Large Volume

A state-of-the-art single beam SEM needs around **2.5 hours** to image an area of **1 mm²** at a pixel size of **4 nm**

 \rightarrow 2.5 x 20,000 = 2083 days of imaging \rightarrow almost 6 years!

This can now be reduced!!!

→ With parallel multi-beam image acquisition!

MultiSEM the Connectomics Tool Throughput Consideration for Large Volume

MultiSEM the Connectomics Tool Throughput Consideration for Large Volume

Large-Area Imaging

Fully automatic 492 individual hexagons 1,6 x 2 mm sample size 4 nm pixel size 290 GB file size 100 ns dwell time

Typical imaging time:

6.5 minutes for 1 mm x 1 mm

(\rightarrow example 1 mm² cutout from this data set on **www.zeiss.com/zen-browser**)

Automated 3DEM Techniques

Carl Zeiss Microscopy, Joel Mancuso

3DEM Example Data

3DEM Models Created from 2D Serial Images

3D Segmentation

FIB Nanotomography: Virtual Cross Sections & The Benefit of 3 nm Voxels

Data courtesy of Dr. Kedar Narayan, Research Group of Dr. Sriram Subramaniam BioPhysics Section, NCI, NIH, Bethesda MD

Focused ion Beam Scanning Electron Microscopy Ultra High-Resolution 3D Cell

Statistical analysis from 3DEM datasets

Whole cell volumetric measurements

Cellular component	Volume (µm³)	Volume Percentage	Surface Area (µm²)
Endoplasmic reticulum	0.420643	2.2%	31.403
Nuclear envelope	0.227859	1.2%	11.416
Heterochromatin	0.577432	3.0%	24.441
Euchromatin	0.459362	2.4%	20.716
Golgi equivelent	0.022677	0.1%	1.291
Mitochondria	0.299339	1.6%	6.949
Lipid droplets	0.139214	0.7%	2.692
Vesicles	0.000256	0.0%	0.025
Vacuoles	1.480174	7.8%	27.164
Cell Wall	3.017192	15.9%	67.115
Quantitative analysis of volume, volume percentage and surface area of cellular components segmented in Avizo software.			

Wei D, Jacobs S, Modla S, Zhang S, Young CL, Cirino R, Caplan J, and Czymmek K.

Agenda

1	Introduction
2	Multiscale and Correlative Microscopy
3	Traditional Electron Microscopy
4	Using an SEM in place of a TEM
5	Automated & 3D EM
6	Correlative Microscopy
7	Cryo FIB SEM

Neurosciences The classical way of doing correlative microscopy: from LM to EM

Axio Observer.Z1 with ZEN Connect

Gemini SEM 300 with ZEN Connect

Widefieldsystem (Axio Observer.Z1):

- Acquire a fluorescence image
- Result: Fluorescence image showing the distribution of the fluorescencelabeled proteins Synapsin-I and Gephyrin in brain

Scanning electron microscope (Gemini SEM 300):

- Acquire high-resolution images
- Result: high-resolution images with ultrastructural information

- for navigation and identification of interesting regions
- for bringing the images of different imaging modalities into context
- Result: A contextual image showing functional and structural data

Imaging of an ultrathin mouse brain section with a fluorescence widefield system and a scanning electron microscope to investigate the neuronal network. Sample courtesy Michelle Ocana, Harvard University.

Correlating Electron and X-ray Microscopy

ATLAS 5 Correlative XRM → FIB/SEM Workflow Stained Mouse Cortex

XRM (tomography) Locate Cell Doublet (inset)

ATLAS 5 Register, Navigate and Drive Crossbeam to Cell Doublet

In collaboration with NCMIR @ UCSD

FIB-SEM (tomography) Efficiently located cell doublet

Carl Zeiss Microscopy, Joel Mancuso

Atlas 5: Correlative Workflow Example Using XRM to target FIB-SEM volume in Neuroscience

Agenda

1	Introduction
2	Multiscale and Correlative Microscopy
3	Traditional Electron Microscopy
4	Using an SEM in place of a TEM
5	Automated 3DEM
6	Correlative Microscopy
7	Cryo FIB SEM

Imaging Biomolecules in 3D at High-Resolution using Cryo Electron Tomography

2017 NOBEL PRIZE IN CHEMISTRY Jacques Dubochet Joachim Frank Richard Henderson

Another recommendation of provide environments of global and the derly designment with increasing resolution from with to right. Electrondependent recomming, additional particle lines with its marking it possible for provided to marking states atomic particularies instance.

Carl Zeiss Microscopy, Joel Mancuso

The Next Frontier – Cellular EM Tomography

We make it visible.