June 4 - 5, 2019

Advanced Materials Characterization Workshop

Transmission Electron Microscopy

Jim Mabon, Wacek Swiech, CQ Chen and Honghui Zhou

Materials Research Laboratory University of Illinois

amc.mrl.Illinois.edu

© 2019 University of Illinois Board of Trustees. All rights res

Outline

1. Introduction to TEM 2. Basic Concepts 3. Basic TEM techniques Diffraction **Bright Field & Dark Field TEM imaging** High Resolution TEM Imaging 4. Scanning Transmission Electron Microscopy (STEM) 5. Aberration-corrected STEM / TEM & **Applications** 6. Microspectroscopy & spectromicroscopy X-ray Energy Dispersive Spectroscopy Electron Energy-Loss Spectroscopy **EFTEM and Spectrum Imaging** 7. Introduction to a New S/TEM: Themis Z 8. Summary

Why Use Transmission Electron Microscopy?

Optical Microscope

Transmission Electron Microscope (TEM)

High Resolution TEM

Resolution

$$d = \frac{\lambda}{2A_N}$$

 $A_{\rm N}$ is 0.95 with air up to 1.5 with oil

Resolution limit: ~200 nm

λ = h / (2mE_k)^{1/2} \sim (1.5 / U) $^{1/2}$ [nm]

200 keV electrons: λ = 0.0027 nm

 ${\sf R} = 0.66 ({\sf C}_{\rm s} \lambda^3)^{1/4}$

Resolution limit: ~0.15 nm (uncorrected)

- Sample thickness requirement:
- Thinner than 500 nm
- High quality image: <20 nm

TEM is ideal for investigating thin foil, thin edge, and nanoparticles

Basic Concepts – Electron-Sample Interaction

- 1. Transmitted electrons (beam)
- 2. Diffracted electrons (beams) (Elastically scattered)
- 3. Coherent beams
- 4. Incoherent beams
- 5. Inelastically scattered electrons
- 6. Characteristic X-rays

TEM can acquire images, diffraction patterns, spectroscopic and chemically sensitive images *at* **resolution of 50** – **1000 of picometers.**

s4

Structure of a TEM

How does a TEM Obtain Image and Diffraction?

Electron Diffraction I

Electron Diffraction II

Diffraction patterns from single grain or multiple grains

Single crystal

Polycrystal

Amorphous

 $\ensuremath{\mathbb{C}}$ 2019 University of Illinois Board of Trustees. All rights reserved.

Selected Area Electron Diffraction (SAED)

Example of SAED

Major Diffraction Techniques

- 1) Selected-Area Electron Diffraction (SAED)
- 2) NanoArea Electron Diffraction (NBED)
- 3) Convergent Beam Electron Diffraction (CBED)

- 1. Illuminate a large area of the specimen with a parallel beam.
- 2. Insert an aperture in the first image plane to select an area of the image.
- 3. Focus the first imaging lens on the OL Back Focal Plane

L. Reimer and H. Kohl, *Transmission Electron Microscopy, Physics of Image Formation*, 2008.

Selected Area Electron Diffraction (SAED)

Advantages

- 1. Can observe a large area of specimen with a bright beam
- 2. Since the image plane is magnified, can easily select an area with an aperture $\rightarrow A 50$ μm aperture can select a 2 μm area
- Useful to study thick films, bulk samples, and in-situ phase transformations

Disadvantages

- Cannot select an area less than ~1 μm due to spherical aberrations and precision in aperture position
- Difficult to record diffraction from individual nanoparticles or thin films

Nanoarea Electron Diffraction (NAED)

A. B. Shah, S. Sivapalan, and C. Murphy

Technique

- Focus the beam on the front focal plane of the objective lens and use a small condenser aperture to limit beam size
- 2. A parallel beam without selection errors \rightarrow A 10 μ m aperture can form a ~ 50 nm probe size
- 3. Useful to investigate individual nanocrystals and superlattices

Disadvantages

- 1. Very weak beam *difficult to see* and tilt the sample
- 2. More complex alignment than conventional TEM
- High resolution images are difficult to obtain → Need to switch between NAED and TEM modes)

Nanoarea Electron Diffraction

5 μ m condenser aperture \rightarrow 30 nm

M. Gao, J.M. Zuo, R.D. Twesten, I. Petrov, L.A. Nagahara & R. Zhang, *Appl. Phys. Lett.* 82, 2703 (2003)

J.M. Zuo, I. Vartanyants, M. Gao, R. Zhang and L.A. Nagahara, *Science*, 300, 1419 (2003)

This technique was developed by CMM

Aperture-Beam Nanoarea Electron Diffraction

Applications of Electron Diffraction

Tilting sample to obtain 3-D structure of a crystal

Lattice parameter, space group, orientation relationship

To identify new phases, TEM has advantages:

- 1) Small amount of materials
- 2) No need to be single phases
- 3) Determining composition by EDS or EELS

New materials discovered by TEM

Quasi-crystal

Carbon Nanotube

Helical graphene sheet

1, 2, 3, 4, 6-fold symmetry No 5-fold for a crystal

Disadvantage: needs experience

More advanced electron diffraction techniques¹⁵

Convergent Beam Electron Diffraction (CBED)

SAED

- 1. Point and space group
- 2. Lattice parameter (3-D) strain field

Bright-disk

Thickness
Defects

Dark-disk Whole-pattern

Σ

Major Imaging Techniques

Major Imaging Contrast Mechanisms:

- 1. Mass-thickness contrast
- 2. Diffraction contrast
- 3. Phase contrast
- 4. Z-contrast (S-TEM)

Mass-thickness contrast

1) Imaging techniques in **TEM** mode

- a) Bright-Field TEM (Diff. contrast)
- b) Dark-Field TEM (Diff. contrast)
- c) Weak-beam imaging hollow-cone dark-field imaging
- d) Lattice image (Phase)
- e) High-Resolution Electron Microscopy (Phase)

Simulation and interpretation

- 2) Imaging techniques in **Scanning** Transmission Electron Microscope (**STEM**) mode
 - 1) Z-contrast imaging (Dark-Field)
 - 2) Bright-Field STEM imaging
 - 3) High-resolution Z-contrast imaging (Bright- & Dark-Field)
- 3) Spectrum imaging
 - 1) Energy-Filtered TEM (**TEM** mode)
 - 2) EELS mapping (STEM mode)
 - 3) EDS mapping (STEM mode)

TEM Imaging Techniques

I. Diffraction Contrast Image: Contrast related to crystal orientation

Phase Contrast Image

Two-beam condition

Transmitted beam

Diffracted beam

Application:

Morphology, defects, grain boundary, strain field, precipitates

TEM Imaging Techniques

II. Diffraction Contrast Image: Bright-field & Dark-field Imaging

Two-beam condition

TEM Imaging Techniques

II. Diffraction Contrast Imaging

At edge dislocation, strain from extra half plane of atoms causes atomic planes to bend. The angle between the incident beam and a few atomic planes becomes equal to the Bragg Angle $\Theta_{\rm B}$.

Dislocations & Stacking Faults Bright Field Image

Near dislocations, electrons are strongly diffracted outside the objective aperture

R. F. Egerton, *Physical Principles of Electron Microscopy*, 2007.

Weak-beam Dark Field Imaging

II. Diffraction Contrast Image

Dislocations

Dislocation loop

Stacking faults

Lattice Beam Imaging

Two-beam condition

Many-beam condition

M. Marshall

Lattice Imaging

Delocalization effect from a Schottky-emission gun (S-FEG) **From a LaB**₆ **Gun S-Field**

YBa₂Cu₃O₇

BaZrO₃

High Resolution Transmission Electron Microscopy (HRTEM)

 $1 \Delta f_{sch}$ $2\Delta f_{\rm sch}$ HRTEM YBa₂Cu₃O₇ $f(x,y) = \exp(i\sigma V_t(x,y))$ Phase contrast parallel beam $\sim 1 + i \sigma V_{t}(x,y)$ $V_t(x,y)$: projected potential Fraunhofes diffraction $\cdot \pi/2$ Jlømm diffracted direct beam beam Scherzer defocus -π/2 lens $\Delta f_{\rm sch} = -1.2 \, (\rm C_s \lambda)^{\frac{1}{2}}$ backfocal plane **Resolution limit** 0.39nm $r_{\rm sch} = 0.66 \ {\rm C_s}^{\frac{1}{4}} \, \lambda^{\frac{3}{4}}$ Image ontrast

1 Scherzer Defocus:

Positive phase contrast "black atoms"

2 Scherzer Defocus: ("2nd Passband" defocus). Contrast Transfer Function is positive Negative phase contrast ("white atoms")

Simulation of images

Software: Web-EMAPS (UIUC) MacTempas

Contrast transfer function

Scanning Transmission Electron Microscopy

Technique

- Raster a converged probe across and collect the integrated signal on an Annular detector (Dark Field) or a circular detector (Bright Field).
- 2. An incoherent image is chemically sensitive (Z-contrast) under certain collection angles
- 3. Annular Dark Field (ADF) STEM is directly interpretable and does not have contrast reversals or delocalization effects like HRTEM
- STEM resolution is determined by the probe size, which is typically 0.15 to 0.5 nm for a modern S-FEG STEM.
- 5. Since STEM images are collected serially, the resolution is typically limited by vibrations and stray fields

SEM vs STEM

TEM vs ADF-STEM

Ge quantum dots on Si substrate

Ir nanoparticles

29

ADF STEM Applications

Superlattice of LaMnO₃-SrMnO₃-SrTiO₃

Dopant atoms in Si

A. B. Shah et al., 2008

Bright Field STEM vs ADF STEM

Spherical Aberration

Since 1936, Scherzer proved that spherical and chromatic aberrations would ultimately limit the resolution of the electron microscope. The method to correct aberrations was well known, but experimental aberration correctors were not successful until ~1998 due to complexities in alignment and lack of computing power.

Spherical Aberration Correction

Spherical Aberration Corrector for TEM & STEM

Hexapole C_s Corrector

JEOL JEM2200FS with Probe Corrector @ UIUC

Only if the instabilities of the room are controlled

The STEM can obtain 1 Å spatial resolution

Spherical Aberration Correction

Image corrector

Probe corrector

#20	C1:	15.3	32nr	n A1	: 10.	3nm	1	-157de	
#21	C1:	10.0	8nr	n A1:	: 8.8	5nm	1 .	-112.7de	
#22	C1:	20.0)4nr	n A1	: 6.1	4nm	1 .	+135.8der	
dTim	ie: 3	840s	Dat	te:	Tue S	iep 1	18 :	16:48:00	
1st order measured! (not used:)									
Sall: 6.785nm Sused: 6.785nm (1.661%)									
C1:	14.	91nm				(95	5%:	8.08nm)	
A1:	2.8	51nm	1	+90	.3deg	(95	5%:	10.9nm)	
A2:	36.	73nm	1	-40	.5deg	(95	5%:	124nm)	
B2:	49.	49mm	1	+33	.1deg	(95	5%:	107nm)	
C3:	1.7	'21um	>			(95	5%:	8.12um)	
A3:	1.1	.37um	1 -	+103	.8deg	(95	5%:	1.81um)	
S3:	1.5	74um	1 -	+115	.4deg	(95	5%:	764nm)	
A4:	6.5	73um	1 -	-174	.2deg	(95	5%:	58.5um)	
D4:	31.	83um	1	+69	.4deg	(95	5%:	39um)	
B4:	29.	75um	1	+40	.6deg	(95	5%:	71.4um)	
C5:	2.2	258mm			808	(95	5%:	9.74mm)	
A5:	1.1	41mm	1 -	+101	.9deg	(95	5%:	2.1mm)	
Btn	'Acc	ept f	lber	r' I	oress	ed.			
File	ho /ho	me/cs	scor	rr/si	n_dat	a/U]	EUC2	2200F5/0	

JEOL 2010F C _s = 1 mm	JEOL 2200FS with probe corrector
Probe size	Probe size
0.3 nm	0.1 nm

$$r_{\rm sch} = 0.66 \ {\rm C_s^{1\over 4}} \ \lambda^{3\over 4}$$

Spherical Aberration Corrector for STEM

Ondrej Krivanek Nion Company

Quadrupole-Octupole C₃-C₅ corrector

First sub-Å image resolved in a STEM

P. E. Batson et al., *Nature*, 2002.

Improved Resolution and Contrast with C_s Corrector

Aberration correction combined with a high stability environment and high quality specimens allow for atomic resolution imaging over a large area. 4k x 4k image shown.

Sub-Å test using GaN film along [211] zone axis

TEAM Microscope at LBNL

63 pm

Annular dark field STEM image of hexagonal GaN [211]

Fourier transform of the image; image Fourier components extend to below 50 pm.

Ronchigram

100 mR

- 1. Better Contrast for STEM Imaging with smaller probe
- 2. Reduced delocalization for HRTEM imaging
- 3. Sub-Å resolution imaging at low voltage (60 100 kV) for TEM and STEM
- 4. 10-20 X more probe current in the STEM for EELS and EDS spectroscopy

Analytical (Scanning) Transmission Electron Microscopy

Characteristic Signals: EELS, EDS, XPS Signals

The emission of Auger electrons is an alternative to X-ray emission as an ionized atom returns to its ground state

Experimental XEDS, EELS, & XPS

Copper L shell

Energy (eV)

Energy (eV)

Energy resolution, Spatial resolution, Elements resolving

EELS: Electron Optical System

Compare: Hemispherical Electron Energy Analyzer (Surface Analysis)

 $V_0 = (V_1 R_1 + V_2 R_2)/2R_0$

Casaxps.com

EELS: Electron Optical System

In-Column (Omega) Filter

- 4 Dispersive elements
- Integrated into column

Experimental EELS: NiO

STEM-EELS/EDS Spectrum Imaging: Spatially Resolved Analysis

Spectral Imaging:

- 3D/4D data cube
- x-y image
- z spectrum (EDS/EELS)

ן נ

e- x 10^3

STEM-EELS Spectrum Imaging: Line Scan

EF-TEM (Energy-Filtered TEM): Parallel Beam

- Use the slit to select electrons of a specific energy
- Allow only those electrons to fall on the screen or CCD
- Analogy to dark-field imaging

Dark–Field TEM

EF-TEM Imaging

Gatan Review of EFTEM Fundamentals

EF-TEM Imaging: Using Core Loss

Jump Ratio Imaging

Three Window Mapping

Fast and Easy!

C. Chen, on 2010F, MRL

EF-TEM Imaging: Using Zero-loss

- Elastic electrons only "Inelastic fog" removed
- Contrast enhanced (Good for medium thick samples)

Fast and easy!

Gatan Review of EFTEM Fundamentals

Science, 334, 1687, 2011

HREM image and EELS spectrum showing the graphitic nature of a thin surface layer

EDS

White lines in transition metals

Changes in the Cu $L_{2,3}$ edge with oxidation: ELNES Finger-Printing

STEM-EELS Measurement of Local Thickness

 $t = \lambda_p \times \ln(I_o / I_T)$

 $\label{eq:lass} \begin{array}{l} t = thickness \\ \lambda_{P} = Plasmon MFP, \\ I_{o} = zero-loss peak \\ I_{T} = total spectrum \end{array}$

Relative thickness:

Reliable, Fast and online, High spatial resolution

Combine STEM-EDS & STEM-EELS

Comparison of EELS and EDS

	EELS (primary)		EDS (Secondary)
• • •	Atomic composition Chemical bonding Electronic properties Surface properties 	•	Atomic composition only
•	Energy resolution: ~0.15-1 eV	•	Energy resolution: ~ 130 eV (Mn K_{α})
•	Spatial resolution: 0.1 - 1 nm	•	Spatial resolution: 0.1 nm – 10 nm
•	Relatively complicated to use and to interpret	•	Easy to use Easy to interpret
•	High collection efficiency (close to 100 %)	•	Low collection efficiency (1-3%)
•	Sensitive to lighter elements Signal weak in high loss region	•	Sensitive to heavier elements Low yield for light elements

Comparison of EELS and EDS

- EDS: low x-ray yield for lower Z
- EDS: Low energy x-ray below detection limit
- EDS: higher energy favorable (>1KV ideally)
- EELS: Lower loss favorable (<1KV ideally)

Primary vs Secondary:

- EELS: Events causing ionization
- EDS: Events after Ionization

One Ionization Event (~EELS)

	TABLE 4.2 Difference Between Ec	and <i>E</i> _K
Element	Critical ionization energy $E_{\rm c}$ (keV)	X-ray energy <i>E</i> _K (keV)
С	0.282	0.277
AI	1.562	1.487
Ca	4.034	3.692
Cu	8.993	8.048
Ag	25.531	22.163

Note that the energies may be affected by bonding states but shifts will only be a few eV.

Williams and Carter 2009

Williams and Carter 2009

Beam diameter & spreading

$$b = 8 imes 10^{-12} rac{Z}{E_0} (N_v)^{1/2} t^{3/2}$$

E0 energy, <u>t thickness</u>, Z atomic number, N number of atoms per volume

- Thin foil: better R,
- Thin foil: worse MMF
- Typical MMF: 0.1–1%
- C_s correction improves both
- Achieving atomic resolution
- Approaching atomic level detection

List of TEMs and Functions at UIUC

- 1. JEOL JEM 2010 LaB6 TEM
 - TEM, low dose, NBD, HRTEM, in-situ experiments
- 2. JEOL JEM 2100 LaB6 (Cryo-TEM)
 - TEM, Low dose, special cryo-shielding
- 3. Hitachi H-9500 TEM (LaB6, 300 kV)
 - Environmental TEM (in-situ heating and gas reaction)
 - Gatan K2 camera (400 fps, or 1600 fps at reduced size)
 - Dynamic TEM (developing)
- 3. JEOL JEM 2010 F Analytical (S)TEM
 - EDS, STEM, Z-contrast imaging
- 4. JEOL JEM 2200 FS C_s corrected (S)TEM
 - Ultra high resolution Z-contrast STEM, BF STEM, NBD, CBED, EDS, EELS, EFTEM
- 6. Hitachi H-600 TEM (W)
 - Biological samples, staff assisted only
- 6. ThermoFisher Scientific Themis Z STEM/TEM

ThermoFisher Scientific Themis Z STEM/TEM:

60 – 300 kV Ultra-High Resolution Analytical STEM and TEM

- X-FEG high brightness electron source with energy monochromator
- Advanced spherical aberration probe corrector for STEM
 - o <60 pm STEM resolution attainable @300kV
 - o <110 pm STEM attainable @ 80 kV
 - <120 pm STEM attainable @ 60kV
- TEM mode attainable information transfer of: 300kV-60 pm (<0.2nm point-point), 200kV-80 pm, 60kV-100pm (Young's fringe information limit method).
- Chemical mapping down to atomic resolution in 2D and 3D
 - EELS Ultra-fast Dual EELS detector for detection of light elements, mapping bonding states
 - $_{\odot}$ EDS 4-detector EDX for fast and atomic or nanoscale chemical analysis
- Monochromator for high energy resolution EELS
 - Mapping of plasmonic modes, fine structure for local chemical and electronic states
 - ${\rm \circ}$ Measurement of local bandgap in semiconductors
 - \circ Reduced chromatic aberration for imaging (in particular low kV's)
- Lower kV operation (60 and 80 kV) for 2D electronic materials and low dimensional molecular structures
- STEM/TEM Tomography acquisition
 - o 3D imaging (down to ~1 nm resolution)
 - o 3D chemical mapping (EDS)
 - o Diffraction tomography
- OptiSTEM+: Automated fine tuning low order aberrations (C1\A1, A2\B2)
- OptiMono: Automated Monochromator tuning
- iDPC: Integrated differential phase contrast (a new ABF) for imaging light elements simultaneous with heavy element (more linear with Z) at low dose

ThermoFisher Scientific Themis Z STEM/TEM:

GaN [211] imaged at 300 kV showing <63 pm resolution

Si [110] imaged at 60 kV showing <136 pm resolution

Images - Thermo Fisher Scientific https://www.fei.com/products/tem/themis-z-for-materials-science/

- Low kV operation (60/80 kV) for knock-on damage sensitive materials
- Low dose sensitivity for dose sensitive materials
- Low atomic number imaging sensitivity with iDPC

HAADF STEM image of a graphene lattice imaged at 60kV.

Zeolite imaged at 300kV and <1pA with iDPC. Oxygen atoms are visible with extreme low doses. GaN [211] imaged at 300 kV with iDPC Ga and N dumbbells are clearly visible.

Images - Thermo Fisher Scientific https://www.fei.com/products/tem/themis-z-for-materials-science/

High throughput spectrum imaging: Microprocessor X-TEM EDS

300KV, 1.2nA, 40K cps, 12 minutes

J. Mabon, C. Chen - Themis Z, MRL

EDS Spectrum Imaging and Analysis:

AlGaAs - GaAs multilayer

Area #1

Area #2

2019-05-28 09:13:25 Analysis of spectrum: Spectra from Area #1

Z	Element	Family	Atomic Fraction (%)	Atomic Error (%)	Mass Fraction (%)	Mass Error (%)	Fit error (%)
13	AI	К	33.04	5.05	15.26	1.47	2.38
31	Ga	К	12.83	2.57	15.32	2.47	0.39
33	As	К	54.13	10.83	69.42	11.18	0.16

2019-05-28 09:13:25 Analysis of spectrum: Spectra from Area #2

Z	Element	Family	Atomic Fraction (%)	Atomic Error (%)	Mass Fraction (%)	Mass Error (%)	Fit error (%)
.3	AI	К	0.00	0.05	0.00	0.02	0.00
31	Ga	К	51.29	10.66	49.49	7.97	0.14
33	As	К	48.71	10.12	50.51	8.12	0.24

EDS 4 minute acquisition time, 50 pA, 300kV

Fast EDS spectrum imaging @ high resolution: LMO/SMO

DCFI HAADF

4

Intensity (kCounts) 3

68

Atomic resolution EDS spectrum imaging - GaAs

HAADF Filtered (Radial Wiener de-blur) Raw HAVADE Ga As GaAs (110) 0.14 nm 500 pm Overlay of filtered maps on HAADF -As O-Ga J. Mabon - Themis Z, MRL EDS 1.5 minute acquisition time, 50 pA, 300kV

Atomic resolution EELS mapping and analysis (with monochromator):

BaTiO3/SrTiO3 interface

DCFI HAADF

La & Mn

Lanthanum Manganese Oxide/ Strontium Manganese Oxide Multilayer

Mn

Images - ThermoFisher Scientific - U of I Instrument Demonstration and https://www.fei.com/products/tem/themis-z-for-materials-science/

EELS Spectra J. Mabon

Also possible:

- Mapping of light elements
- Mapping of bonding, oxidation states
- Measurement of local electronic and optical states
- Mapping of plasmon excitations

Example: Study of a defects in nanocrystalline alloy

Imaging of planar defects in the nanotwinned, nanocrystalline microstructure of a Ni-25Mo-8Cr superalloy

The HRSTEM shows the atomic ordering in the side view of a direct current magnetron sputtered film. FCCand HCP-like ordering behavior are noted on the left; on the right FCC and HCP regions are indicated in green and yellow, and regions that contain nanotwinned FCC are indicated in blue.

> M.G. Emigh, R.D. McAuliffe, C. Chen, J.C. Mabon, T. Weihs, K.J. Hemker, J.A. Krogstad Influence of a nanotwinned, nanocrystalline microstructure on aging of a Ni-25Mo-8Cr superalloy Acta Mater., 156 (2018), pp. 411-419

<mark>ז ר</mark>

Example: mesoporous silica coating on gold nanorods

Tomographic reconstruction allows visualization of pore size and orientation for applications such as drug delivery.

Chemical mapping at the nanoscale: electron energy loss spectral image (EELS-SI) of a mesoporous silica coating on gold nanorods. Carbon is confined in the pores in mesoporous silica.

Images acquired by Blanka Janicek (Professor P. Huang Group)

-Silica

Study of lattice distortions in an fcc High Entropy Alloy, Al0.1CrFeCoNi

Yu-Tsun Shao, Renliang Yuan, Yang Hu, Qun Yang, Jian-Min Zuo. (2019). The Paracrystalline Nature of Lattice Distortion in a High Entropy Alloy

EDS elemental X-ray analysis of Al0.1CrFeCoNi HEA

EDS spectrum image 180x180 pixels with step sizes of 1nm and dwell of 1s acquired about the same region as for SCBED. Total acquisition time of ~11hrs for detection of Al rich inclusions and fluctuation of composition at length scales of a few to tens of nm

Yu-Tsun Shao, Renliang Yuan, Yang Hu, Qun Yang, Jian-Min Zuo. (2019). The Paracrystalline Nature of Lattice Distortion in a High Entropy Alloy

Examples: Tungsten Diselenide and Boron Arsenide

STEM image and FFT of cubic boron arsenide. This material represents the experimental realization of new class of high thermal conductivity materials.

S. Li et al. <u>High thermal conductivity in cubic boron arsenide</u> <u>crystals</u>, Science 8982 (2018).

Image acquired by Yinchuan Lv (Professor P. Huang Group)

False-colored atomic-resolution scanning transmission electron microscope images of WSe₂ A) Two atomic layers of WSe₂. The two layers are rotationally aligned with one another but

shifted, forming the 3R structure

B) Moiré pattern in twisted bilayer WSe2 where the two layers are rotated by an angle of 17 degrees

C) A grain boundary of in bilayer WSe2 results in a change in stacking orders across the diagonal

Images acquired by Chia-hao Lee (Professor P. Huang Group)

For more information start with the following resources:

http://mrl.illinois.edu/facilities/equipment/f ei-themis-z-advanced-probe-aberrationcorrected-analytical-temstem

https://www.fei.com/products/tem/themisz-for-materials-science/

Or

See MRL Facility Staff Members:

Dr. Jim Mabon or Dr. C.Q. Chen

Thanks to our sponsors!

© 2019 University of Illinois Board of Trustees. All rights reserved.

Thank you! Questions?