

Advanced Materials Characterization Workshop

Secondary Ion Mass Spectrometry

Timothy P. Spila, Ph.D.

Materials Research Laboratory University of Illinois

amc.mrl.Illinois.edu

© 2019 University of Illinois Board of Trustees. All rights reserved.

SIMS is an analytical technique based on the measurement of the mass of ions ejected from a solid surface after the surface has been bombarded with high energy (1-25 keV) primary ions.

Technique Comparison

	AES	XPS	D-SIMS	TOF-SIMS
Probe Beam	Electrons	Photons	lons	lons
Analysis Beam	Electrons	Electrons	lons	lons
Spatial Resolution	8 nm	9 µm	2 µm	0.1 μm
Sampling Depth	0.5 – 7.5 nm	0.5 – 7.5 nm	0.1 – 1 nm	0.1 – 1 nm
Detection Limits	0.1 – 5 atom %	0.01 – 0.1 atom %	1 ppm*	1 ppm*
Quantification	Good Semi-quantitative	Excellent Semi-quantitative	Challenging Large matrix effects	Challenging Large matrix effects
Information Content	Elemental	Elemental Chemical bonding	Elemental	Elemental Molecular
Insulator Analysis	Challenging	Excellent**	Good**	Excellent**
Organic Analysis	Electron beam damages organics	Excellent	DC ion beam damages organics	Excellent in static mode
Depth Profiling	Excellent for small areas	Excellent for insulating materials	Excellent for speed and sensitivity	Excellent for sensitivity

* 1 ppm sensitivity is achieved by consuming the sample surface

** requires effective charge neutralization apparatus

Block Diagram of SIMS Technique

Adapted from Wilson, Stevie, and Magee, p. I-8.

Time of Flight Mass Spectrometer

Ion Beam Sputtering

Sputtered species include:

- Monoatomic and polyatomic particles of sample material (positive, negative or neutral)
- Resputtered primary species (positive, negative or neutral)
- Electrons
- Photons

MD Simulation of ion impact

Enhancement of Sputtering Yields due to C_{60} vs. Ga Bombardment of Ag{111} as Explored by Molecular Dynamics Simulations, Z. Postawa, B. Czerwinski, M. Szewczyk, E. J. Smiley, N. Winograd and B. J. Garrison, Anal. Chem., **75**, 4402-4407 (2003).

Animations downloaded from <u>http://galilei.chem.psu.edu/sputtering-animations.html</u>.

Static and Dynamic SIMS

Dynamic SIMS

Ultra surface analysis
Elemental or molecular analysis
Analysis complete before significant fraction of molecules destroyed Material removalElemental analysisDepth profiling

Courtesy Gregory L. Fisher, Physical Electronics

InAs/GaAs Quantum Dots

In⁺ Linescans of Quantum Dots

© 2019 University of Illinois Board of Trustees. All rights reserved.

TOF-SIMS Imaging of Patterned Sample

Courtesy Josh Ritchey, Audrey Bowen, Ralph Nuzzo and Jeffrey Moore, University of Illinois

TOF-SIMS Ion Images of an Isolated Neuron

Courtesy E.B. Monroe, J.C. Jurchen, S.S. Rubakhin, J.V. Sweedler. University of Illinois at Urbana-Champaign

TOF-SIMS Ion Images of Songbird Brain

Selected ion images from the songbird brain. Each ion image consists of ~11.5 million pixels within the tissue section and is the combination of 194 individual 600m×600m ion images prepared on the same relative intensity scale. Ion images are (A) phosphate PO3- (m/z 79.0); (B) cholesterol (m/z 385.4); (C) arachidonic acid C20:4 (m/z 303.2); (D) palmitic acid C16:0 (m/z 255.2); (E) palmitoleic acid C16:1 (m/z 253.2); (F) stearic acid C18:0 (m/z 283.3); (G) oleic acid C18:1 (m/z 281.2); (H) linoleic acid C18:2 (m/z 279.23); and (I) -linolenic acid C18:3 (m/z 277.2). Scale bars = 2 mm.

Courtesy Kensey R. Amaya, Eric B. Monroe, Jonathan V. Sweedler, David F. Clayton. International Journal of Mass Spectrometry **260**, 121 (2007).

Quantitative Surface Analysis: SIMS

In SIMS, the yield of secondary ions is strongly influenced by the electronic state of the material being analyzed.

$$I_s^m = I_p y_m \alpha^+ \theta_m \eta$$

 I_s^m = secondary ion current of species m I_p = primary particle flux

 $y_m =$ sputter yield

 α^{+} = ionization probability to positive ions

 θ_m = factional concentration of m in the layer

 $\eta =$ transmission of the analysis system

Total Ion Sputtering Yield

Sputter yield: ratio of number of atoms sputtered to number of impinging ions, typically 5-15

Ion sputter yield: ratio of ionized atoms sputtered to number of impinging ions, 10⁻⁶ to 10⁻²

Ion sputter yield may be influenced by:

Matrix effects

- •Surface coverage of reactive elements
- •Background pressure in the sample environment
- •Orientation of crystallographic axes with respect to the sample surface
- •Angle of emission of detected secondary ions

First principles prediction of ion sputter yields is not possible with this technique.

Courtesy of Prof. Rockett

Effect of Primary Beam on Secondary Ion Yields

Graphics courtesy of Charles Evans & Associates web site http://www.cea.com

Oxygen bombardment

When sputtering with an oxygen beam, the concentration of oxygen increases in the surface layer and metal-oxygen bonds are present in an oxygen-rich zone. When the bonds break during the bombardment, secondary ion emission process, oxygen becomes negatively charged because of its high electron affinity and the metal is left with the positive charge. Elements in yellow analyzed with oxygen bombardment, positive secondary ions for best sensitivity.

Cesium bombardment

When sputtering with a cesium beam, cesium is implanted into the sample surface which reduces the work function allowing more secondary electrons to be excited over the surface potential barrier. With the increased availability of electrons, there is more negative ion formation. Elements in green analyzed with cesium, negative secondary ions for best sensitivity.

Relative Secondary Ion Yield Comparison

© 2019 University of Illinois Board of Trustees. All rights reserved.

From Storms, et al., Anal. Chem. 49, 2023 (1977).

© 2019 University of Illinois Board of Trustees. All rights reserved.

Definition of Mass Resolution

Mass resolution defined by $m/\Delta m$ Mass resolution of ~1600 required to resolve 32 S from ${}^{16}O_2$

© 2019 University of Illinois Board of Trustees. All rights reserved.

 $\ensuremath{\textcircled{\sc 0}}$ 2019 University of Illinois Board of Trustees. All rights reserved.

Comparison of Static and Dynamic SIMS

TECHNIQUE	STATIC	DYNAMIC
FLUX	< 10 ¹³ ions/cm ² (per experiment)	~10 ¹⁷ ions/cm ² (minimum dose density)
INFORMATION	Elemental + Molecular	Elemental
SENSITIVITY	1 ppm	< 1 ppm (ppb for some elements)
TYPE OF ANALYSIS	Surface Mass Spectrum 2D Surface Ion Image	Depth Profile Mass Spectrum 3D Image Depth Profile
SAMPLING DEPTH	2 monolayers	10 monolayers
SPATIAL RESOLUTION	0.1 – 1.0 μm	0.1 -1.0 μm
SAMPLE DAMAGE	Minimal	Destructive in analyzed area – up to 500 µm per area

Depth Profile Application with Hydrogen

S. A. Stockman, A. W. Hanson, S. L. Jackson, J. E. Baker, and G. E. Stillman, Appl. Phys. Lett. 62, 1248 (1993).

Detects hydrogen

Large dynamic range

GaAs/AlGaAs Depth Profile

Analysis beam: 1 Sputter Beam: 3

15kV Ga⁺ 300V O₂⁺ with oxygen flood

© 2019 University of Illinois Board of Trustees. All rights reserved.

Determination of RSF Using Ion Implants 10⁵ Phosphorus Ion Implant in Silicon $(dose = 1 \times 10^{15} / cm^2, energy = 100 \text{ KeV})$ $I_{s}^{m} = I_{p} y_{m} \alpha^{+} \theta_{m} \eta$ 10 Secondary lons (s⁻¹) Integral = 3.681×10^6 (ions) $RSF = \frac{I_m}{I_{\cdot}}\rho_i$ Level **Profile:** 10^{2} Crater Depth m/z 3 $RSF = \frac{I_m \phi Ct}{d \sum I_i - dI_b C}$ 0.74 µm Gaussian 10 Profile:

Where:

RSF = Relative Sensitivity Factor I_m , I_i = ion intensity (counts/sec) ρ = atom density (atoms/cm³) ϕ = implant fluence (atoms/cm²) C = # measurement cycles t = analysis time (s/cycle) d = crater depth (cm) I_{b} = background ion counts

50

100

Time (second)

Graphics courtesy of Charles Evans & Associates web site http://www.cea.com

150

© 2019 University of Illinois Board of Trustees. All rights reserved.

Positive and Negative Secondary Ions

© 2019 University of Illinois Board of Trustees. All rights reserved.

^{© 2019} University of Illinois Board of Trustees. All rights reserved.

Electrolessly etched silicon nanowire arrays

Dope NW tips by SODs

J.S Sadhu, H. Tian, T. Spila, J. Kim, B. Azeredo, P. Ferreira, and S. Sinha. Nanotechnology 25, 375701 (2014).

Defect Engineering via Near-Surface Electrostatic Effects

Charged point defects interact with space charge in the near-surface region via 3 mechanisms

- Field-induced drift (O in TiO_2)¹ 1.
- Change in charge state of defect with local potential (B in Si)² 2.
- 3. Potential energy-dependent formation energy of V_{0} (O in SrTiO₃)³

³R.A. De Souza and M. Martin, *PCCP* **10**, 2356 (2008).

Zn-terminated ZnO

space charge ¹⁸O piles up in the first 10-30 nm in ZnO and TiO₂¹

Amount of pile-up (P) = integrated area between pile-up and bulk extrapolated profiles

 V_{s}

surface

 $\overrightarrow{E}(x)$

 $\Phi(x)$

Analytical model quantifies effects⁴

- Drift opposite to diffusion causes pile-up
- Drift in diffusion direction depletes near-surface of mobile defects
- P increases linearly with time & flux, quadratically with V_s
- V_s of only a few meV can cause the amount of pile-up observed

²P. Gorai et al., J. Appl. Phys. **111**, 094510 (2012).

⁴P. Gorai and E. G. Seebauer, *Appl. Phys. Lett.* 105, 021604 (2014).

Transition-Metal Accumulation on Anodes in Li-ion Batteries

Diamond-Like-Carbon Friction Testing

DLC coated ball

DLC coated disk

Courtesy O.L. Eryilmaz and A. Erdemir Energy Systems Division, Argonne National Laboratory Argonne, IL 60439 USA

3-D TOF-SIMS imaging of DLC

Wear track from hydrogenated DLC tested in dry nitrogen

Courtesy O.L. Eryilmaz and A. Erdemir Energy Systems Division, Argonne National Laboratory Argonne, IL 60439 USA

3-D TOF-SIMS Movies of DLC

NFC6 H2 Environment TOF-SIMS Images

Courtesy O.L. Eryilmaz and A. Erdemir

Energy Systems Division, Argonne National Laboratory Argonne, IL 60439 USA

Probe/Detected Species

Information

Surface Mass Spectrum 2D Surface Ion Image Elemental Depth Profiling 3D Image Depth Profiling

Elements Detectable H and above

Sensitivity ppb - atomic %

Analysis Diameter/Sampling Depth ~1 μm - several mm/0.5 - 1nm

Where do Drug Molecules go Inside of Cells? A New Method to Probe the Composition of Cellular Organelles

Ashley Ellsworth¹, Corryn E. Chini², Ben Johnson³, Michael M. Tamkun³, Gregory L. Fisher¹, and Mary L. Kraft²

¹ Physical Electronics, Chanhassen, MN, USA

² University of Illinois at Urbana-Champaign, School of Chemical Sciences, Urbana, IL, USA

³ Colorado State University, Department of Biomedical Science, Fort Collins, CO, USA

Atom Probe Tomography for Additive Manufacturing

Katherine P. Rice, Yimeng Chen Ty J. Prosa, Robert M. Ulfig

CAMECA Instruments, Inc. 5470 Nobel Drive, Madison, WI USA

Thanks to our sponsors!

© 2019 University of Illinois Board of Trustees. All rights reserved