

Rutherford Backscattering Spectrometry

Timothy P. Spila, Ph.D.

Materials Research Laboratory University of Illinois

amc.mrl.Illinois.edu

WITHOUT

Geiger-Marsden Experiment

Top: Expected results: alpha particles passing through the plum pudding model of the atom undisturbed.

Bottom: Observed results: a small portion of the particles were deflected, indicating a small, concentrated positive charge.

Rutherford Backscattering Spectrometry

RBS is an analytical technique where high energy ions (~2 MeV) are scattered from atomic nuclei in a sample. The energy of the back-scattered ions can be measured to give information on sample composition as a function of depth.

Van de Graaff accelerator

http://archive.thedailystar.net/newDesign/print_news.php?nid=73473

Rutherford Backscattering Spectrometry

3 MeV Van de Graaff accelerator

beam size ϕ 1-3 mm flat sample can be rotated

Rutherford Backscattering Spectrometry

3 MeV Pelletron accelerator

beam size ϕ 1-3 mm flat sample can be rotated

NEC Pelletron

- Ionization chamber
- Acceleration tube
- Focusing quadrupole
- Steering magnet
- RBS end station

NEC Pelletron

- Ionization chamber
- Acceleration tube
- Focusing quadrupole
- Steering magnet
- RBS end station

- Ionization chamber
- Acceleration tube
- Focusing quadrupole
- Steering magnet
- RBS end station

NEC Pelletron

- Ionization chamber
- Acceleration tube
- Focusing quadrupole
- Steering magnet
- RBS end station

NEC Pelletron

- Ionization chamber
- Acceleration tube
- Focusing quadrupole
- Steering magnet
- RBS end station

Primary Beam Energy

thin film projected on to a plane: atoms/cm²

 $(Nt)[at/cm^2] = N[at/cm^3] * t[cm]$

Figure after W.-K. Chu, J. W. Mayer, and M.-A. Nicolet, *Backscattering Spectrometry* (Academic Press, New York, 1978).

Elastic Two-Body Collision

^{© 2019} University of Illinois Board of Trustees. All rights reserved.

Rutherford Scattering Cross Section

Coulomb interaction between the nuclei: exact expression -> quantitative method

$$\sigma_R(E,\theta) \propto \left(\frac{Z_1 Z_2}{4E}\right)^2 \left[\sin^{-4}\left(\frac{\theta}{2}\right) - 2\left(\frac{M_1}{M_2}\right)\right] \propto \left(\frac{Z_2}{E}\right)^2$$

Electron Stopping

Figure after W.-K. Chu, J. W. Mayer, and M.-A. Nicolet, *Backscattering Spectrometry* (Academic Press, New York, 1978).

RBS – Simulated Spectra

hypothetical alloy $Au_{0.2}In_{0.2}Ti_{0.2}AI_{0.2}O_{0.2}/C$

Element (Z,M): O(8,16), Al(13,27), Ti(22,48), In(49,115), Au(79,197)

SIMNRA Simulation Program for RBS and ERD

Calibration Sample

Cu-Nb-W Alloy on SiO₂/Si

© 2019 University of Illinois Board of Trustees. All rights reserved.

Courtesy N. Vo and R.S. Averback

Thickness Effects

<mark>כ</mark>

Incident Angle Effects

Surface peaks do not change position with incident angle

Example: Average Composition

RBS: Oxidation Behavior

TiN/SiO₂

As-deposited

Experimental spectra and simulated spectra by RUMP

Areal mass density by RBS

 Free-standing polyamide films are too thin to give sufficient signal in the RBS.

 Use the added stopping power of the polymer to split the Pt peak in the RBS spectrum.

Areal mass density by RBS

- Quantitative technique for elemental composition
- Requires flat samples; beam size ϕ 1-3 mm
- Non-destructive
- Detection limit varies from 0.1 to 10⁻⁶, depending on Z
 - •optimum for heavy elements in/on light matrix, e.g. Ta/Si, Au/C...
- \bullet Depth information from monolayers to 1 μm

Optimizing Simultaneous PIXE and RBS Capabilities

Thomas J. Pollock¹, Robert White²

¹National Electrostatics Corp., Middleton, Wisconsin, U. S. A. 53562-0310 Pollock@pelletron.com
²National Renewable Energy Laboratory, Golden, Colorado, U. S. A. 80401 Robert.White@nrel.gov

Thanks to our sponsors!

© 2019 University of Illinois Board of Trustees. All rights reserved