APPENDIX

Curl, Divergence, and
Gradient in Cylindrical
and Spherical
Coordinate Systems

In Sections 3.1, 3.4, and 6.1, we introduced the curl, divergence, and gradient, respec-
tively, and derived the expressions for them in the Cartesian coordinate system. In this
appendix, we shall derive the corresponding expressions in the cylindrical and spheri-
cal coordinate systems. Considering first the cylindrical coordinate system, we recall
from Appendix A that the infinitesimal box defined by the three orthogonal surfaces
intersecting at point P(r, 6, ¢) and the three orthogonal surfaces intersecting at point
O(r + dr,¢ + do, z + dz) is as shown in Figure B.1.

O(r +dr,¢ +do, z +dz)

P(r, ¢, z)
dr (r+dryde

FIGURE B.1

Infinitesimal box formed by incrementing the coordinates in the
cylindrical coordinate system.
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From the basic definition of the curl of a vector introduced in Section 3.3 and

given by
VXA = Li JeA-dl B.1
TS as M (B.1)
we find the components of V X A as follows with the aid of Figure B.1:
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Combining (B.2a), (B.2b), and (B.2c), we obtain the expression for the curl of a vector
in cylindrical coordinates as
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To find the expression for the divergence, we make use of the basic definition of
the divergence of a vector, introduced in Section 3.6 and given by
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Evaluating the right side of (B.4) for the box of Figure B.1, we obtain
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To obtain the expression for the gradient of a scalar, we recall from Appendix A
that in cylindrical coordinates,
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Thus,
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Turning now to the spherical coordinate system, we recall from Appendix A that
the infinitesimal box defined by the three orthogonal surfaces intersecting at P(r, 6, ¢)
and the three orthogonal surfaces intersecting at Q(r + dr,0 + df, ¢ + d¢) is as
shown in Figure B.2. From the basic definition of the curl of a vector given by (B.1), we
then find the components of V X A as follows with the aid of Figure B.2:
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FIGURE B.2

Infinitesimal box formed by incrementing the coordinates in the spherical
coordinate system.
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Combining (B.9a), (B.9b), and (B.9c), we obtain the expression for the curl of a vector
in spherical coordinates as
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To find the expression for the divergence, we make use of the basic definition of
the divergence of a vector given by (B.4) and by evaluating its right side for the box of
Figure B.2, we obtain
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To obtain the expression for the gradient of a scalar, we recall from Appendix A
that in spherical coordinates,

dl =dra, + rdfa, + rsinfdea, (B.12)
and hence
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REVIEW QUESTIONS

B.1. Briefly discuss the basic definition of the curl of a vector.

B.2. Justify the application of the basic definition of the curl of a vector to determine sepa-
rately the individual components of the curl.

B.3. How would you generalize the interpretations for the components of the curl of a vec-
tor in terms of the lateral derivatives involving the components of the vector to hold in
cylindrical and spherical coordinate systems?
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B.4. Briefly discuss the basic definition of the divergence of a vector.

B.S. How would you generalize the interpretation for the divergence of a vector in terms of
the longitudinal derivatives involving the components of the vector to hold in cylindri-
cal and spherical coordinate systems?

B.6. Provide general interpretation for the components of the gradient of a scalar.

PROBLEMS
B.1. Find the curl and the divergence for each of the following vectors in cylindrical coordi-
. 1 1
nates: (a) 7 cos ¢ a, — rsin ¢ ay; (b) S (c) A
B.2. Find the gradient for each of the following scalar functions in cylindrical coordinates:
1
(a) - cos &; (b) rsin ¢.

B.3. Find the expansion for the Laplacian, that is, the divergence of the gradient, of a scalar
in cylindrical coordinates.

B.4. Find the curl and the divergence for each of the following vectors in spherical coordi-

hl 1
nates: (a) 72a, + r sin 6 a,; (b) 67 ag; (c) -
r
B.S. Find the gradient for each of the following scalar functions in spherical coordinates:
in 0
(a) SH; ; (b) r cos 6.
B.6. Find the expansion for the Laplacian, that is, the divergence of the gradient, of a scalar

in spherical coordinates.





