
Supplementary Topics

In Chapter 1, we learned the basic mathematical tools and physical concepts of vectors
and fields. In Chapters 2 and 3, we learned the fundamental laws of electromagnetics,
namely, Maxwell’s equations, first in integral form and then in differential form. Then
in Chapters 4 through 9, we extended our study to the fundamental electromagnetic
concepts and phenomena, as relevant to electrical and computer engineering. These
comprised the propagation, transmission, and radiation of electromagnetic waves, as
well as the thread of statics-quasistatics-waves to bring out the frequency behavior of
physical structures.

This final chapter is devoted to six independent topics, each one based on, and
hence supplementary to, one or more of Chapters 4 through 9. The six topics can be
studied independently following the respective chapters on which they are based.
These supplementary topics, although independent of each other, have the common
goal of extending the knowledge gained in the corresponding previous chapter(s) for
the purpose of illustrating a concept, phenomenon, or application.

10.1 WAVE PROPAGATION IN IONIZED MEDIUM

In Chapter 4, we studied uniform plane wave propagation in free space. In this section,
we shall extend the discussion to wave propagation in ionized medium. An example of
ionized medium is the earth’s ionosphere, which is a region of the upper atmosphere
extending from approximately 50 km to more than 1000 km above the earth. In this
region, the constituent gases are ionized, mostly because of ultraviolet radiation from
the sun, thereby resulting in the production of positive ions and electrons that are free to
move under the influence of the fields of a wave incident upon the medium. The positive
ions are, however, heavy compared to electrons and hence they are relatively immobile.
The electron motion produces a current that influences the wave propagation.

In fact, in Section 1.5 we considered the motion of a cloud of electrons of uniform
density under the influence of a time-varying electric field

(10.1)E = E0 cos vt ax
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376 Chapter 10 Supplementary Topics

and found that the resulting current density is given by

(10.2)

where and are the electronic charge and mass, respectively. This result is based on
the mechanism of continuous acceleration of the electrons by the force due to the
applied electric field. In the case of the ionized medium, the electron motion is, however,
impeded by the collisions of the electrons with the heavy particles and other electrons.
We shall ignore these collisions as well as the negligible influence of the magnetic field
associated with the wave.

Considering uniform plane wave propagation in the -direction in an unbounded
ionized medium, and with the electric field oriented in the -direction, we then have

(10.3a)

(10.3b)

Differentiating (10.3a) with respect to and then substituting for from (10.3b),
we obtain the wave equation

(10.4)

Substituting

(10.5)

corresponding to the uniform plane wave solution into (10.4) and simplifying, we get

Thus, the phase constant for propagation in the ionized medium is given by
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10.1 Wave Propagation in Ionized Medium 377

This result indicates that the ionized medium behaves as though the permittivity of
free space is modified by the multiplying factor . We may therefore
write

(10.7)

where

(10.8)

is the effective permittivity of the ionized medium. We note that for 
and the medium behaves just as free space. This is to be expected since (10.2) indicates
that for . As decreases from becomes less and less until for 
equal to becomes zero. Hence for , is positive,
is real, and the solution for the electric field remains to be that of a propagating wave.
For , is negative, becomes imaginary, and the solution for the
electric field corresponds to no propagation.

Thus, waves of frequency propagate in the ionized medium
and waves of frequency do not propagate. The quantity

is known as the plasma frequency and is denoted by the symbol, .
Substituting values for , , and , we get

(10.9)

where is in electrons per meter cubed. We can now write as

(10.10)

Proceeding further, we obtain the phase velocity for the propagating range of frequen-
cies, that is, for , to be

(10.11)

where is the velocity of light in free space. From (10. 11), we observe that
and is a function of the wave frequency. The fact that is not a violation of

the principle of relativity, since the dispersive nature of the medium resulting from the
dependence of upon ensures that information always travels with a velocity less
than . The topic of dispersion is discussed in Section 8.3.

Toapplywhatwehavelearnedaboveconcerningpropagationinanionizedmedium
to the case of the earth’s ionosphere, we first provide a brief description of the ionos-
phere.A typical distribution of the ionospheric electron density versus height above the
earth is shown in Figure 10.1. The electron density exists in the form of several layers
known as , , and layers in which the ionization changes with the hour of the day, theFED
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FIGURE 10.1

A typical distribution of ionospheric
electron density versus height above
the earth.

season, the sunspot cycle, and the geographic location. The nomenclature behind the
designation of the letters for the layers is due to Appleton in England, who in 1925 and
at about the same time as Breit and Tuve in the United States demonstrated experimen-
tally the reflection of radio waves by the ionosphere. In his early work, Appleton was
accustomed to writing for the electric field of the wave reflected from the first layer he
recognized. Later, when he recognized a second layer, at a greater height, he wrote for
the field of the wave reflected from it. Still later, he conjectured that there might be a
third layer lower from either of the first two and thus he decided to name the possible
lower layer , thereby leaving earlier letters of the alphabet for other possible undis-
covered, still lower layers. Electrons were indeed detected later in the region.

The region extends over the altitude range of about 50 km to about 90 km.
Since collisions between electrons and heavy particles cannot be neglected in this
region, it is mainly an absorbing region. The region extends from about 90 km to
about 150 km. Diurnal and seasonal variations of the layer electron density are
strongly correlated with the zenith angle of the sun. In the region, the lower of the
two strata is designated as the 1 layer and the higher, more intense ionized stratum
is designated as the 2 layer. The l ledge is usually located between 160 km and
200 km. Above this region, the 2 layer electron density increases with altitude,
reaching a peak at a height generally lying between 250 km and 400 km. Above this
peak the electron density decreases monotonically with altitude. The l ledge is pre-
sent only during the day. During the night, the l and 2 layers are identified as a
single layer. The 2 layer is the most important from the point of view of radio
communication since it contains the greatest concentration of electrons. Paradoxically,
it also exhibits several anomalies.
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10.1 Wave Propagation in Ionized Medium 379

Wave propagation in the ionosphere is complicated by the presence of the earth’s
magnetic field. If we neglect the earth’s magnetic field, then for a wave of frequency
incident vertically on the ionosphere from a transmitter on the ground, it is evident from
the propagation condition that the wave propagates up to the height at which

, and since it cannot propagate beyond that height, it gets reflected at that height.
Thus, waves of frequencies less than the maximum plasma frequency corresponding to
the peak of the 2 layer cannot penetrate the ionosphere. Hence, for communication
with satellites orbiting above the peak of the ionosphere, frequencies greater than this
maximum plasma frequency, also known as the critical frequency, must be employed.
While this critical frequency is a function of the time of day, the season, the sunspot
cycle, and the geographic location, it is not greater than about 15 MHz and can be as low
as a few megahertz. For a wave incident obliquely on the ionosphere, reflection is possi-
ble for frequencies greater than the critical frequency, up to about three times its value.
Hence, for earth-to-satellite communication, frequencies generally exceeding about
40 MHz are employed. Lower frequencies permit long-distance, ground-to-ground
communication via reflections from the ionospheric layers. This mode of propagation is
familiarly known as the sky wave mode of propagation. For very low frequencies of the
order of several kilohertz and less, the lower boundary of the ionosphere and the earth
form a waveguide, thereby permitting waveguide mode of propagation.

In this section, we learned that in an ionized medium, wave propagation occurs
only for frequencies exceeding the plasma frequency corresponding to the electron
density. Applying this to the case of the earth’s ionosphere, we found that this imposes
a lower limit in frequency for communication with satellites.

REVIEW QUESTIONS

10.1. What is an ionized medium? What influences wave propagation in an ionized medium?
10.2. Provide physical explanation for the frequency dependence of the effective permittivity

of an ionized medium.
10.3. Discuss the condition for propagation in an ionized medium.
10.4. What is plasma frequency? How is it related to the electron density?
10.5. Provide a brief description of the earth’s ionosphere and discuss how it affects commu-

nication.

PROBLEMS

10.1. Show that the units of is and that is equal to 80.6.
10.2. Assume the ionosphere to be represented by a parabolic distribution of electron density

as given by

where is the height above the ground in kilometers. (a) Find the height at which a ver-
tically incident wave of frequency 8 MHz is reflected. (b) Find the frequency of a verti-
cally incident wave which gets reflected at a height of 220 km. (c) What is the lowest
frequency below which communication is not possible across the peak of the layer?
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380 Chapter 10 Supplementary Topics

10.3. For a uniform plane wave of frequency 10 MHz propagating normal to a slab of ionized
medium of thickness 50 km and uniform plasma frequency 8 MHz, find (a) the phase
velocity in the slab, (b) the wavelength in the slab, and (c) the number of wavelengths
undergone by the wave in the slab.

10.2 WAVE PROPAGATION IN ANISOTROPIC MEDIUM

In Section 5.1, we learned that for certain dielectric materials known as anisotropic
dielectric materials, D is not in general parallel to E and the relationship between
D and E is expressed by means of a permittivity tensor consisting of a matrix.
Similarly, in Section 5.2 we learned of the anisotropic property of certain magnetic
materials. There are several important applications based on wave propagation in
anisotropic materials. A general treatment is, however, very involved. Hence, we shall
consider two simple cases.

For the first example, we consider an anisotropic dielectric medium characterized
by the D to E relationship given by

(10.12)

and having the permeability . This simple form of permittivity tensor can be
achieved in certain anisotropic liquids and crystals by an appropriate choice of the
coordinate system. It is easy to see that the characteristic polarizations for this case are
all linear, directed along the coordinate axes and having the effective permittivities

and for the -, -, and -directed polarizations, respectively. Let us consider
a uniform plane wave propagating in the -direction. The wave will generally contain
both - and -components of the fields. It can be decomposed into two waves, one hav-
ing an -directed electric field and the other having a -directed electric field. These
component waves travel individually in the anisotropic medium as though it is isotropic
but with different phase velocities, since the effective permittivities are different. In view
of this, the phase relationship between the two waves, and hence the polarization of the
composite wave, changes with distance along the direction of propagation.

To illustrate the foregoing discussion quantitatively, let us consider the electric
field of the wave to be linearly polarized at as given by

(10.13)

Then assuming wave only, the electric field at an arbitrary value of is given by

(10.14)
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FIGURE 10.2

The change in polarization of the field of a wave propagating in the anisotropic dielectric
medium characterized by equation (10.12).

are the phase constants corresponding to the x-polarized and y-polarized component
waves, respectively. Thus, the phase difference between the x- and y-components of the
field is given by

(10.16)

As the composite wave progresses along the -direction, changes from zero at
to at to at , and so on. The polariza-

tion of the composite wave thus changes from linear at to elliptical for ,
becoming linear again at , but rotated by an angle of 2
as shown in Figure 10.2. Thereafter, it becomes elliptical again, returning back to the
original linear polarization at , and so on.z = 2p>(b2 - b1)

 (Ey0>Ex0),tan- 1z = p>(b2 - b1)
z 7 0z = 0

z = p>(b2 - b1)pz = p>2(b2 - b1)p>2z = 0
¢fz

¢f = (b2 - b1)z

For the second example, we consider propagation in a ferrite medium. Ferrites
are a class of magnetic materials which, when subject to a d.c. magnetizing field, exhib-
it anisotropic magnetic properties. Since there are phase differences associated with
the relationships between the components of B and the components of H due to this
anisotropy, it is convenient to use the phasor notation and write the relationship in
terms of the phasor components. For an applied d.c. magnetic field along the direction
of propagation of the wave, which we assume to be the -direction, this relationship is
given by

(10.17)

where and depend upon the material, the strength of the d.c. magnetic field, and
the wave frequency.
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382 Chapter 10 Supplementary Topics

To find the characteristic polarizations, we first note from (10.17) that

(10.18a)

(10.18b)

Setting equal to , we then have

which upon solution for gives

(10.19)

This result corresponds to equal amplitudes of and and phase difference of
Thus, the characteristic polarizations are both circular, rotating in opposite senses as
viewed along the -direction.

The effective permeabilities of the ferrite medium corresponding to the charac-
teristic polarizations are

(10.20)

The phase constants associated with the propagation of the characteristic waves are

(10.21)

where the subscripts and refer to and , respectively.
We note from (10.21) that can become imaginary if . When this happens,
wave propagation does not occur for that characteristic polarization. We shall hereafter
assume that the wave frequency is such that both characteristic waves propagate.

Let us now consider the magnetic field of the wave to be linearly polarized in the
direction at , that is,

(10.22)

Then we can express (10.22) as the superposition of two circularly polarized fields hav-
ing opposite senses of rotation in the -plane in the manner
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10.2 Wave Propagation in Anisotropic Medium 383

The circularly polarized field inside the first pair of parentheses on the right side of
(10.23) corresponds to

whereas that inside the second pair of parentheses corresponds to

Assuming propagation in the positive -direction, the field at an arbitrary value
of is then given by

(10.24)

The result given by (10.24) indicates that the x- and y-components of the field are
in phase at any given value of z. Hence, the field is linearly polarized for all values of z.
The direction of polarization is, however, a function of z since

(10.25)

and hence the angle made by the field vector with the x-axis is Thus,
the direction of polarization rotates linearly with z at a rate of This
phenomenon is known as Faraday rotation and is illustrated with the aid of the sketches
in Figure 10.3. The sketches in any given column correspond to a fixed value of z,
whereas the sketches in a given row correspond to a fixed value of t.At , the fieldz = 0
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For illustrating the phenomenon of Faraday rotation.
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10.2 Wave Propagation in Anisotropic Medium 385

is linearly polarized in the x-direction and is the superposition of two counter-rotating
circularly polarized fields, as shown by the time series of sketches in the first column. If
the medium is isotropic, the two counter-rotating circularly polarized fields undergo
the same amount of phase lag with z and the field remains linearly polarized in the x-
direction, as shown by the dashed lines in the second and third columns. For the case of
the anisotropic medium, the two circularly polarized fields undergo different amounts
of phase lag with z. Hence, their superposition results in a linear polarization making
an angle with the x-direction and increasing linearly with z, as shown by the solid lines
in the second and third columns.

The phenomenon of Faraday rotation in a ferrite medium that we have just dis-
cussed forms the basis for a number of devices in the microwave field. The phenomenon
itself is not restricted to ferrites. For example, an ionized medium immersed in a d.c.
magnetic field possesses anisotropic properties that give rise to Faraday rotation of a
linearly polarized wave propagating along the d.c. magnetic field.A natural example of
this is propagation along the earth’s magnetic field in the ionosphere.A simple modern
example of the application of Faraday rotation is, however, illustrated by the magneto-
optical switch. In fact, Faraday rotation was originally discovered in the optics regime.

The magneto-optical switch is a device for modulating a laser beam by switch-
ing on and off an electric current. The electric current generates a magnetic field that
rotates the magnetization vector in a magnetic iron-garnet film on a substrate of gar-
net, in the plane of the film through which a light wave passes. When it enters the
film, the light wave field is linearly polarized normal to the plane of the film. If the
current in the electric circuit is off, the magnetization vector is normal to the direc-
tion of propagation of the wave and the wave emerges out of the film without change
of polarization, as shown in Figure 10.4(a). If the current in the electric circuit is on,

Polarization

Film

Light
Beam

Light Beam

Magnetization
Vector

Magnetization
Vector

(a)

Polarization

Film

(b)

FIGURE 10.4

For illustrating the principle of
operation of a magneto-optical
switch.
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386 Chapter 10 Supplementary Topics

the magnetization vector is parallel to the direction of propagation of the wave, the
light wave undergoes Faraday rotation and emerges out of the film with its polariza-
tion rotated by 90°, as shown in Figure 10.4(b). After it emerges out of the film, the
light beam is passed through a polarizer which has the property of absorbing light of
the original polarization but passing through the light of the 90°-rotated polarization.
Thus, the beam is made to turn on and off by the switching on and off of the current
in the electric circuit. In this manner, any coded message can be made to be carried
by the light beam.

In this section, we discussed wave propagation in an anisotropic medium. In par-
ticular, we learned that in a ferrite medium, a linearly polarized wave propagating
along the direction of an applied d.c. magnetic field undergoes Faraday rotation. We
then briefly mentioned other examples of media in which Faraday rotation takes place
and finally discussed the operation of the magneto-optical switch, a device employing
Faraday rotation for modulating a light beam.

REVIEW QUESTIONS

10.6. Discuss the principle behind wave propagation in an anisotropic medium based on the
decomposition of the wave into characteristic waves.

10.7. When does a wave propagate in an anisotropic medium without change in polarization?
10.8. What is Faraday rotation? When does Faraday rotation take place in an anisotropic

medium?
10.9. Consult appropriate reference books and list three applications of Faraday rotation.

10.10. What is a magneto-optical switch? Discuss its operation.

PROBLEMS

10.4. For the anisotropic medium characterized by the D to E relationship given by (10.12),
assume , , and , and find the distance in which the phase dif-
ference between the x- and y-components of a plane wave of frequency 109 Hz propa-
gating in the z-direction changes by the amount .

10.5. Show that for plane wave propagation in an anisotropic medium,the angle between E and
H is not in general equal to 90°. For the anisotropic dielectric medium of Problem 10.4,
find the angle between E and H for E linearly polarized along the bisector of the angle
between the x- and y-axes.

10.6. For a wave of frequency , the quantities and in the permeability matrix of (10.17)
are given by

where is the d.c. magnetizing field, is the
magnetic dipole moment per unit volume in the material in the absence of the wave, e is
the charge of an electron, and m is the mass of an electron. (a) Show that the effective

M0v0 = m0 ƒe ƒH0>m, vM = m0 ƒe ƒM0>m, H0
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10.3 Electromagnetic Compatibility and Shielding 387

permeabilities corresponding to the characteristic polarizations are for

(b) Compute the Faraday rotation angle in degrees per centimeter along
the z-direction for , if , rad/s, and

.

10.7. For the quantities defined in Problem 10.6 for the ferrite medium, show that for
and , the Faraday rotation per unit distance along the z-direction is

. Compute its value in degrees per centimeter if rad/s and

.

10.3 ELECTROMAGNETIC COMPATIBILITY AND SHIELDING

As stated in the preface of the book, electromagnetics is all around us. Every time we
turn on a switch for electrical power or for electronic equipment, every time we press a
key on our computer keyboard or on our cell phone, or every time we perform a similar
action involving an everyday electrical device, electromagnetics comes into play. While
these actions are performed for intentional purposes, the resulting electromagnetic en-
ergy may cause unintentional interference of a given system on another system or even
one part of a given system on another part of the same system. For example, reception of
an FM radio signal may be noisy when the radio is located near a computer, due to radi-
ation from the digital circuits of the computer being received as noise by the radio an-
tenna, thereby degrading the performance of the radio. The computer is said to be
causing electromagnetic interference (EMI) in the radio. EMI demonstrates the need
for designing systems which are compatible with their electromagnetic environment,
which comprises the field of electromagnetic compatibility (EMC).

EMC is defined by IEC (International Electrotechnical Commission) as “the
ability of a device, unit of equipment, or system to function satisfactorily in its electro-
magnetic environment without introducing intolerable electromagnetic disturbances
to anything in that environment.” An electromagnetic disturbance may be electromag-
netic noise, an unwanted signal, or a change in the propagation medium itself.A system
is said to be electromagnetically compatible if (1) it does not cause interference with
other systems, (2) it is not susceptible to emission from other systems, and (3) it does
not cause interference with itself.

In the analysis and design of systems for EMC work, quasistatic concepts are
employed wherever they are applicable, because of simplicity compared to working
with complete field solutions. We have learned in Chapter 6 that quasistatic approxima-
tions apply when the physical dimensions of the system are much smaller than the wave-
length corresponding to the frequency of operation. Thus, three regimes come into play,
as follows:

1. When the system is electrically small in all three of its dimensions, that is, when the
physical size of the system is such that all three of its dimensions are smaller than
the wavelength corresponding to the frequency of operation, then quasistatic
approximations hold in all three dimensions and the system can be represented by
a lumped circuit equivalent and circuit analysis techniques can be employed.

P = 9P0

vM = 5 * 1010vM

2
1m0P

vM V vv0 V v

P = 9P0

v0 = 1.5 * 1010vM = 5 * 1010 rad/sv = 1010 rad/s
H
–

x>H–y = ;j.

m0 c1 +
vM

v0 < v d
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388 Chapter 10 Supplementary Topics

2. When the physical size of the system is smaller than the wavelength in two of its
dimensions and comparable to or larger than the wavelength in the third dimen-
sion, then the system becomes a transmission line extending along the longer
dimension.

3. When the physical size of the system is such that all three of its dimensions are
comparable to or larger than the wavelength, then the analysis entails full field
basis using the complete set of Maxwell’s equations.

In general, a signal is composed of a spectrum of frequencies. The wavelength above is
then the shortest significant wavelength, that is, the wavelength corresponding to the
highest frequency of importance in the frequency spectrum of the signal.

As shown in Figure 10.5, all EMC problems can be divided into three parts:
(a) source of emission or emitter, (b) receiver of emission or victim, and (c) coupling
path or mechanism by means of which emission from the source is transferred to the
receiver. In the example of noise in the FM radio due to computer, the source of noise
is the computer, the victim is the radio, and the coupling mechanism is the medium
between the digital circuits in the computer and the antenna of the radio.

EMI
Source

or Emitter

Coupling
Path

EMI
Receiver
or Victim

FIGURE 10.5

The three parts of an EMC
problem.

EMC problems can be solved by reducing or eliminating EMI, using one or more
of the following three methods: (1) decreasing the emission from the source producing
the EMI, (2) making the victim of EMI less susceptible, and (3) making the coupling
path less efficient. Although often the only option available to solve an EMC problem
is the third one, we shall first consider a simple example of the application of the first
two methods.

Thus, let us consider a parallel-wire line consisting of a pair of long, parallel wires
of spacing a and carrying currents I(t) in opposite directions in the plane, as
shown in Figure 10.6. Let a small metallic loop of area A be located in the plane of the
loop (the xy-plane) and such that the distance between the center of the wires to the
center of the loop is . The currents in the parallel wires produce a magnetic
field, resulting in a time-varying magnetic flux enclosed by the loop and hence voltage
induced in the loop, in accordance with Faraday’s law, causing EMI in the loop. The
EMC problem is to find ways to minimize the EMI in the loop.

d W a

z = 0

I(t)I(t)

d
A

a

FIGURE 10.6

Arrangement of a metallic loop in the
field of a parallel-wire line for
illustrating the EMC problem.
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10.3 Electromagnetic Compatibility and Shielding 389

The magnetic field due to the parallel wires can be computed from the fact that in
the plane transverse to the wires, the fields have the same spatial character as for the
static fields corresponding to the same geometry. Thus, applying the result for the mag-
netic field due to a long wire in Example 2.9 to the two wires and introducing the time
variation, we can write the magnetic flux density due to the parallel wires at the center
point of the loop to be

(10.26a)

and directed normal to the area of the loop. For ,

(10.26b)

Since the area of the loop is very small compared to its distance from the line, we
can assume that the magnetic field does not vary significantly within the area.Assuming
also that the current in the wires and hence the magnetic field due to it does not vary sig-
nificantly in the z-direction, we obtain the magnetic flux enclosed by the loop to be

(10.27)

The voltage induced in the loop is then given by

(10.28)

For 

(10.29)

It can be seen from (10.29) that for the induced voltage to be small, and must
be as small as possible, and d should be as large as possible. In a practical situation,
some of these parameters may be fixed and only the others may be varied. If the size of
the loop cannot be varied, the effective area of the loop can be made smaller by rotat-
ing it to make an angle with the plane of the wires. When the angle is 90°, the magnetic
field is parallel to the area of the loop and the induced voltage is zero, eliminating the
EMC problem. If the spacing between the wires can be varied, another way to decrease
EMI is to decrease the spacing, and if possible, for the wires to be twisted.An important
observation from (10.29) is that the induced voltage in the loop and hence the EMI
increases with frequency. This means that for a nonsinusoidal source, the interference
from its frequency components is amplified proportional to the frequency.

vI0, a, A,

V =
m0aAI0v

2pd2  sin vt

I(t) = I0 cos vt,

V = -
dc
dt

= -
m0aA

2pd2  
dI(t)

dt

c =
m0aAI(t)

2pd2

B at center of loop L
m0aI(t)
2pd2

d W a

B at center of loop =
m0I(t)

2p
 c 1

(d - a>2)
- 1

(d + a>2)
d
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390 Chapter 10 Supplementary Topics

As stated earlier, often the only option available to solve an EMC problem is
to make the coupling path less efficient. Therefore, it is important to understand the
coupling mechanisms. Depending on the separation distance between the source
and the victim, different techniques of analysis are used. For small separation dis-
tances, circuit models can be used by representing the electric field coupling as
capacitive coupling and magnetic field coupling as inductive coupling. An example
of analysis involving capacitive and inductive couplings is considered in Section
10.4, devoted to crosstalk on transmission lines, which is interference due to a wave
propagating along one transmission line inducing a wave on a neighboring second
transmission line. When the source and victim share a common conductor, interfer-
ence occurs through the common impedance of the conductor, and hence the cou-
pling is termed common impedance coupling. The analysis is performed using circuit
techniques. For large separation distances between the source and the victim, in-
volving an intervening medium, field techniques are employed involving radiation
from the source into the medium and the transfer of the radiated energy from the
medium into the victim.

The techniques for the solution of EMC problems, that is, for decreasing the
impact of EMI on the victim by making the coupling path less efficient, fall into four
categories: (a) proper layout of components and cables, (b) system grounding and
bonding, (c) surge suppression and filtering, and (d) shielding. The scope of each of
these techniques is extensive by itself. We shall here consider only the topic of shield-
ing by providing an example that makes use of the knowledge from Chapters 5 and 7.
Specifically, we shall consider the problem of a plane metallic sheet as a shield for an
incident plane wave from a distant source.

The geometry pertaining to the problem is shown in Figure 10.7, in which media 1
and 3 are free space, and medium 2 is a metallic sheet of thickness d. A uniform plane
wave of radian frequency is incident normally on to the metallic sheet from medium 1.
Thus, media 1 and 3 are characterized by the propagation parameters

(10.30a)

(10.30b)h–1 = h–3 = h0 = 120p

g–1 = g–3 = jb0 = jv>c
v

Medium 2
Metallic Sheet

Medium 1
Free Space

z
z ! 0 z ! d

z

x

y

Medium 3
Free Space

(#)

(")

(#)

(")

(#)

m0, P0m0, P0

s2, m2, P2

E

H

FIGURE 10.7

Geometry of the arrangement for the
analysis of shielding by a metallic
sheet.
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10.3 Electromagnetic Compatibility and Shielding 391

and medium 2 is characterized by the propagation parameters

(10.31a)

(10.31b)

It is desired to analyze the system for the shielding effectiveness between medium 1
and medium 3. The shielding effectiveness or the shielding factor, denoted S, is defined
to be the ratio of the amplitude of the incident electric field in medium 1 to the ampli-
tude of the transmitted electric field in medium 3.

The incident plane wave sets up a reflected wave and a transmitted wave at the
interface , with the reflected wave propagating back in the negative z-direction in
medium 1 and the transmitted wave propagating in the positive z-direction in medium 2.
When the transmitted wave in medium 2 reaches the interface , it sets up a re-
flected wave which propagates back towards the interface , and a transmitted
wave into medium 3. The reflected wave, when it reaches the interface , sets up its
own reflection that adds up to the previous transmitted wave due to the incident wave
from medium 1. It also sets up a transmitted wave into medium 1, which propagates in
the negative z-direction. The transmitted waves into media 3 and 1 will not set up any
reflections, because these media are assumed to extend to infinity in the positive z- and
negative z-directions, respectively. But each wave in medium 2 sets up a reflected wave
and a transmitted wave at the interface on which it is incident. In the steady state, all
these transient waves add up and the situation is equivalent to a single wave and a
single wave in medium 1, a single wave and a single wave in medium 2, and
a single wave in medium 3. Therefore, the complex electric and magnetic field
components of the waves in the three media can be written as follows:

Medium 1:

(10.32a)

(10.32b)

Medium 2:

(10.33a)

(10.33b)

Medium 3:

(10.34a)

(10.34b) H
–

y3 = 1
h0

 A–3e
-jb0z

 E–x3 = A
–

3e
-jb0z

 H–y2 = 1
h2
–  AA–2e

-g2z - B
–

2e
g2z B E–x2 = A

–
2e

-g2z + B
–

2e
g2z
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-jb0z - B

–
1e

jb0z B E–x1 = A–1e
-jb0z + B

–
1e

jb0z

(+)
(-)(+)(-)

(+)

z = 0
z = 0

z = d

z = 0

 h–2 = A jvm2

s2 + jvP2

 g–2 = 1jvm2(s2 + jvP2)
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392 Chapter 10 Supplementary Topics

According to the definition, the shielding factor, S, is then equal to . To
find this quantity, we note that the constants are related through
the boundary conditions at the interfaces and . These are given by

(10.35a)

(10.35b)

Thus, we have

(10.36a)

(10.36b)

(10.36c)

(10.36d)

Solving (10.36c) and (10.36d) for and in terms of , we obtain

(10.37a)

(10.37b)

where

(10.38)

is the electric field reflection coefficient, analogous to the voltage reflection coefficient
in transmission-line analysis, for a single transient wave incident from medium 2
onto the interface . Substituting for in (10.36a) and (10.36b) from (10.37b)
and solving for in terms of , we get

(10.39)

where

(10.40)

is the electric field reflection coefficient for a single transient wave incident from
medium 1 onto the interface . Note that . From (10.39) and (10.37a),
we then have

(10.41)
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10.3 Electromagnetic Compatibility and Shielding 393

and the shielding factor is given by

(10.42)

It can be shown (see Problem 10.8) that this result is also obtainable by formulat-
ing the solution in terms of the individual transient waves resulting from bouncing
back and forth between the interfaces and , writing field expressions for
the individual transient waves and adding them up. Three contributions to the right
side of (10.42) can then be identified as follows:

— contribution from attenuation in the
metallic sheet (A)

— contribution due to transmission from
free space to the metallic sheet and from
the metallic sheet to free space (T)

— contribution from multiple reflections
within the metallic sheet (M)

The general formula for Sgiven by (10.42) can be simplified for good conductor
range of frequencies ( ) for the metallic sheet, by recalling from Section 5.4
that for good conductors,

(10.43)

and , so that , and .
Also, for good conductors, Thus,

(10.44)

In terms of skin depth , the distance in which the fields are
attenuated in the good conductor by the factor ,

(10.45)

In terms of decibels,

(10.46)

with the three terms on the right side identifying the three contributions, T, M, and A,
respectively.

 + 20 log10 e
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394 Chapter 10 Supplementary Topics

From Table 10.1, we can make the following observations:

1. For thick sheets, M is approximately zero and hence not important.
2. For thin sheets, A is negligible and M is important. Furthermore, since M is nega-

tive, meaning that the field is enhanced instead of getting attenuated, it acts
counter to the shielding requirement.

3. For thin sheets, increase in T with decrease in frequency is countered by the
increase in magnitude of M.

4. T is independent of thickness.

In this section, we introduced the topic of electromagnetic compatibility (EMC),
having to do with the design of electrical systems which are compatible with the elec-
tromagnetic environment. We learned that the EMC problem can be divided into
three parts, (a) source, (b) receiver, and (c) coupling path, and that it can be solved
by three methods: (a) decreasing emission from the source, (b) making the receiver less
susceptible, and (c) making the coupling path less efficient, which is often the only
available option. We provided a simple example of the application of the first two
methods. While there are several categories pertinent to the third method, we provid-
ed the example of electromagnetic shielding by considering the problem of a plane
metallic sheet as a shield for an incident plane wave from a distant source.

REVIEW QUESTIONS

10.11. Describe EMI and EMC. What is IEEE’s definition of EMC?
10.12. Outline the three regimes that come into play in the design of systems for EMC work.
10.13. Specify and discuss the three parts of an EMC problem.
10.14. Discuss the example of EMI in a metallic loop located in the field of a parallel-wire line

and ways to minimize the EMI.
10.15. Outline the solution of the problem of a plane metallic sheet as a shield for an incident

plane wave from a distant source.
10.16. What is shielding factor? Discuss the three contributions to the shielding factor for the

plane metallic sheet arrangement.

TABLE 10.1 Values of T, M, A, and S, for Several Pairs of Values of d and f for the Shielding
Arrangement of Figure 10.7

d
(mm)

f
(MHz) (mm)

d

( )Æ
ƒh– 2 ƒ

d>d T
(db)

M
(db)

A
(db)

S
(db)

1 1 0.066 3.69 10 15.15 108.14 131.59 239.73
1 0.1 0.209 1.167 10 4.785 118.14 41.56 159.70

0.001 1 0.066 3.69 10 0.015 108.14 27.59 0.13 80.68
0.001 0.1 0.209 1.167 10 0.0048 118.14 37.27 0.042 80.91-- 4*

-- 4*
'0- 4*
'0- 4*

For a numerical example, for copper sheet,
. For a given set of values of d and f,

the quantities T, M, and A, and hence Scan be computed. Table 10.1 shows these quan-
tities for four pairs of values of d and f.

d = 0.066>2f m, and ƒh–2 ƒ = 3.69 * 10-72f Æ
m2 = m0, P2 = P0,s2 = 5.80 * 107 S/m,
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10.4 Crosstalk on Transmission Lines 395

PROBLEMS

10.8. For the arrangement of Figure 10.7, obtain the expression for the shielding factor by
formulating the solution in terms of the individual transient waves bouncing back and
forth between the interfaces and , writing the field expressions for the indi-
vidual transient waves, and adding them up.

10.9. Compute the value of the shielding factor for a copper shield of thickness 0.01 mm at a
frequency of 1 MHz.

10.10. Compute the value of the shielding factor for a steel shield of thickness 0.01 mm at a
frequency of 10 MHz.Values of material parameters are as follows:

and .

10.4 CROSSTALK ON TRANSMISSION LINES

When two or more transmission lines are in the vicinity of one another, a wave propa-
gating along one line, which we shall call the primary line, can induce a wave on another
line, the secondary line, due to capacitive (electric field) and inductive (magnetic field)
coupling between the two lines, resulting in the undesirable phenomenon of crosstalk
between the lines. An example is illustrated by the arrangement of Figure 10.8(a),
which is a printed-circuit board (PCB) representation of two closely spaced transmis-
sion lines. Figure 10.8(b) represents the distributed circuit equivalent, where cm and
lm are the coupling capacitance and coupling inductance, respectively, per unit length
of the arrangement.

P = P0m = 500m0,
s = 5.80 * 106 S/m,

z = 0z = d

Primary Line
Secondary Line

PCB

Ground Plane

(a) (b)

    1 $z

    1 $z

    2 $z

    2 $z
    2 $z

    2 $z

    1 $z

    1 $z

    m $z

    m $z

    m $z

    m $z

FIGURE 10.8

(a) PCB representation of two closely spaced transmission lines. (b) Distributed equivalent circuit for (a).
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396 Chapter 10 Supplementary Topics

In this section, we shall analyze a pair of coupled transmission lines for the deter-
mination of induced waves on the secondary line for a given wave on the primary line.
To keep the analysis simple, we shall consider both lines to be of the same characteristic
impedance, velocity of propagation, and length, and terminated by their characteristic
impedances, so that no reflections occur from the ends of either line. It is also conve-
nient to assume the coupling to be weak, so that the effects on the primary line of waves
induced in the secondary line can be neglected. Thus, we shall be concerned only with
the crosstalk from the primary line to the secondary line and not vice versa. Briefly, as
the wave propagates on the primary line from source toward load, each infinitesi-
mal length of that line induces voltage and current in the adjacent infinitesimal length of
the secondary line, which set up and waves on that line. The contributions due
to the infinitesimal lengths add up to give the induced voltage and current at a given
location on the secondary line.

We shall represent the coupled-line pair, as shown in Figure 10.9, with the primary
line as line 1 and the secondary line as line 2. Then, when the switch Sis closed at ,
a wave originates at on line 1 and propagates toward the load. Let us consider
a differential length at the location of line 1 charged to the wave voltage
and current and obtain its contributions to the induced voltages and currents in line 2.

(+)z = jdj
z = 0(+)

t = 0

(-)(+)

(+)

t ! 0

z ! 0 z ! l

z ! j
dj

S

Line 1
Z0, yp, T Z0

Z0

Vg(t)

Line 2
Z0, yp, T Z0Z0

z

FIGURE 10.9

Coupled transmission-line pair for analysis of crosstalk.

The capacitive coupling induces a differential crosstalk current , flowing into
the nongrounded conductor of line 2, given by

(10.47a)

where is the line-1 voltage. This induced current is modeled by an ideal current
source,connected in parallel with line 2 at on that line,as shown in Figure 10.10(a).
The current source views the characteristic impedance of the line to either side of z = j,

z = j
V1(j, t)

¢Ic2(j, t) = cm ¢j 
0V1(j, t)

0t

¢Ic2
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Line 2

(a) (b)

$IC2(j, t) Z0 $IC2

z ! j z ! jz

1
2 Z0 $IC2$IC2

1
2

#

"

#

"

FIGURE 10.10

(a) Modeling for capacitive coupling in crosstalk analysis. (b) Equivalent circuit for (a).

so that the equivalent circuit is as shown in Figure 10.10(b). Thus, voltages of
are produced to the right and left of and propagate as forward-crosstalk and
backward-crosstalk voltages, respectively, on line 2.

The inductive coupling induces a differential crosstalk voltage, , which is
given by

(10.47b)

This induced voltage is modeled by an ideal voltage source in series with line 2 at 
on that line, as shown in Figure 10.11(a). The polarity of the voltage source is such that
the current due to it in line 2 produces a magnetic flux, which opposes the change in the
flux due to the current in line 1, in accordance with Lenz’s law. The voltage source
views the characteristic impedance of the line to either side of it, so that the equivalent
circuit is as shown in Figure 10.11(b). Thus, voltages of and are produced
to the left and right of , respectively, and propagate as backward-crosstalk and
forward-crosstalk voltages, respectively, on line 2.

z = j
-1

2¢Vc2
1
2¢Vc2

z = j

¢Vc2(j, t) = lm ¢j 
0I1(j, t)

0t

¢Vc2

z = j
1
2Z0 ¢Ic2

Line 2

(a) (b)

$VC2 $VC2

$VC2

z ! j
z ! jz

1
2 $VC2

1
2

#

"

"

#

FIGURE 10.11

(a) Modeling for inductive coupling in crosstalk analysis. (b) Equivalent circuit for (a).
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398 Chapter 10 Supplementary Topics

Combining the contributions due to capacitive coupling and inductive coupling,
we obtain the total differential voltages produced to the right and left of to be

(10.48a)

(10.48b)

respectively. Substituting (10.47a) and (10.47b) into (10.48a) and (10.48b), we obtain

(10.49a)

(10.49b)

where we have substituted , in accordance with the relationship between
the voltage and current of a wave.

We are now ready to apply (10.49a) and (10.49b) in conjunction with super-
position to obtain the and wave voltages at any location on line 2, due to a 
wave of voltage on line 1. Thus, noting that the effect of at at a
given time t is felt at a location on line 2 at time , we can write

(10.50)

or

(10.51)

where we have defined

(10.52)

and the prime associated with denotes differentiation with time. The quantity is
called the forward-crosstalk coefficient. Note that the upper limit in the integral in
(10.50) is z, because the line-1 voltage to the right of a given location z on that line does
not contribute to the forward-crosstalk voltage on line 2 at that same location. The
result given by (10.51) tells us that the forward-crosstalk voltage is proportional to z
and the time derivative of the primary line voltage.
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To obtain , we note that the effect of at at a given time t is felt at
a location on line 2 at time . Hence,

(10.53)

or

(10.54)

where we have defined the backward-crosstalk coefficient

(10.55)

Note that the lower limit in the integral in (10.53) is z, because the line-1 voltage to the
left of a given location z on that line does not contribute to the backward-crosstalk
voltage on line 2 at that same location.

For an example to illustrate the application of (10.51) and (10.54), let in
Figure 10.9 be the function shown in Figure 10.12, where . We wish to
determine the and wave voltages on line 2.(-)(+)

T0 6 T( = l>vp)
Vg(t)

Kb = 1
4

vpacmZ0 +
lm

Z0
b

V-
2(z, t) = Kb cV1a t - z

vp
b - V1a t - 2l

vp
+ z

vp
b d

 = - 1
4

 vpacmZ0 +
lm

Z0
b cV1a t + z

vp
-

2j
vp
b d
j= z

l

 = - 1
4

 vpacmZ0 +
lm

Z0
bL l

z
 

0
0j cV1a t + z

vp
-

2j
vp
b d  dj

 = 1
2
acmZ0 +

lm

Z0
bL l

z
 
0
0t

 cV1a t + z
vp

-
2j
vp
b d  dj

 V-
2(z, t) = L

l

z
 
1
2
acmZ0 +

lm

Z0
b  

0
0t

 cV1a t -
j

vp
-
j - z

vp
b d  dj

t + (j - z)>vpz 6 j
z = jV1V-

2 (z, t)

0 T0

2V0

t

Vg

FIGURE 10.12

Source voltage for the system of
Figure 10.9.

Noting that

and hence

V¿1(t) = eV0>T0 for 0 6 t 6 T0 
0 for t 7 T0

V1(t) = 1
2

Vg(t) = e (V0>T0)t for 0 6 t 6 T0

V0 for t 7 T0
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400 Chapter 10 Supplementary Topics

and using (10.51), we can write the wave voltage on line 2 as

This is shown in the three-dimensional plot of Figure 10.13, in which the cross section
in any constant-z plane is a pulse of voltage for .
Note that the pulse voltage is shown to be negative. This is because normally the effect
of inductive coupling dominates that of the capacitive coupling, so that is negative.Kf

(z>l)T 6 t 6 (z>l)T + T0zKfV0>T0

 = e zKfV0>T0  for (z>l)T 6 t 6 [(z>l)t + T0]
0  otherwise

 = e zKfV0>T0  for (z>vp) 6 t 6 (z>vp + T0)
0  otherwise

 = e zKfV0>T0  for 0 6 (t - z>vp) 6 T0

0  otherwise

 V+
2 (z, t) = zKfV¿1(t - z>vp)

(+)

l

T T + T0T0
0

z

V2
#

t

lKfV0/T0

FIGURE 10.13

Three-dimensional depiction of forward-crosstalk voltage for the system of
Figure 10.9, with as in Figure 10.12.Vg(t)

Using (10.54), the wave voltage can be written as

where

 = L V0

T0
at - z

l
Tb   for 

z
l
 T 6 t 6 a z

l
 T + T0b

V0   for t 7 az
l
 T + T0b

 V1at - z
vp
b = L V0

T0
at - z

vp
b   for 0 6 at - z

vp
b 6 T0

V0   for at - z
vp
b 7 T0

V-
2(z, t) = Kb[V1(t - z>vp) - V1(t - 2l>vp + z>vp)]

(-)
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 = L V0

T0
at - 2T + z

l
 Tb  for a2T - z

l
 Tb 6 t 6 a2T - z

l
 T + T0b

V0  for t 7 a2T - z
l
 T + T0b

 V1at - 2l
vp

+ z
vp
b = L V0

T0
at - 2l

vp
+ z

vp
b  for 0 6 at - 2l

vp
+ z

vp
b 6 T0

V0  for at - 2l
vp

+ z
vp
b 7 T0

0 T

V0

t

V1 t "
z
yp

z
l T # T0

z
l

Tz
l T # T0

z
l

0

V0

t

V1  t " +2l
yp

z
yp

0 T

KbV0

t

V2
–

z
l + T02T " Tz

l2T "

Tz
l + T02T – Tz

l2T –

FIGURE 10.14

Determination of backward-crosstalk voltage for the system of Figure 10.9, with
as in Figure 10.12.Vg(t)

These two voltages and the wave voltage for a value of z for which
are shown in Figure 10.14. Figure 10.15 shows the three-

dimensional plot of , in which the cross section in any given constant-z plane
gives the time variation of for that value of z. Note that as z varies from zero to l, the
shape of changes from a trapezoidal pulse with a height of at to a triangular
pulse of height and width at and then changes to a trapezoidal
pulse again but with a height continuously decreasing from to zero at .z = lKbV0

z = (1 - T0>2T)l2T0KbV0

z = 0KbV0V-
2

V-
2

V-
2(z, t)

(z>l)T + T0 6 2T - (z>l)T
(-)
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0

T

z

l

l
T0

T # T0

T0 T + T0/2

2T

2T

KbV0

2T # T0

1 "

t

V2
–

FIGURE 10.15

Three-dimensional depiction of backward-crosstalk voltage for the system of Figure 10.9, with as
in Figure 10.12.

Vg(t)

In this section, we studied the topic of crosstalk on transmission lines, by con-
sidering the case of weak coupling between two lines. We learned that for a given
wave on the primary line, the crosstalk consists of two waves, forward and backward,
induced on the secondary line and governed by the forward-crosstalk coefficient and
the backward-crosstalk coefficient, respectively. We illustrated by means of an exam-
ple the determination of crosstalk voltages for a specified excitation for the primary
line.

REVIEW QUESTIONS

10.17. Discuss briefly the weak-coupling analysis for crosstalk between two transmission lines.
10.18. Discuss the modeling of capacitive and inductive couplings for crosstalk on transmis-

sion lines.
10.19. Discuss and distinguish between the dependence of the forward- and backward-

crosstalk coefficients on the line parameters.
10.20. Outline the determination of the forward- and backward-crosstalk voltages induced on

a secondary line for a given excitation for the primary line.

PROBLEMS

10.11. For the system of Figure 10.9, assume that is the function shown in Figure 10.16,
instead of as in Figure 10.12. Find and sketch the following (a) ; (b) ; and
(c) .V-

2(0.8l, t)
V-

2(0, t)V+
2 (l, t)

Vg(t)
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t
0.1T

2V0

0 0.4T 0.5T

Vg

FIGURE 10.16

For Problem 10.11.

10.12. For the system of Figure 10.9, assume that

Find and sketch the following: (a) ; (b) ; (c) .
10.13. For the system of Figure 10.9, assume that and . For 

given in Figure 10.12, find and sketch the following: (a) ; (b) ; and
(c) .

10.5 PARALLEL-PLATE WAVEGUIDE DISCONTINUITY

In Section 8.2, we introduced waves in a parallel-plate waveguide. Let us now con-
sider reflection and transmission at a dielectric discontinuity in a parallel-plate guide,as
shown in Figure 10.17.If a wave is incident on the junction from section 1, then it will
set up a reflected wave into section 1 and a transmitted wave into section 2, provided that
mode propagates in that section. The fields corresponding to these incident, reflected,
and transmitted waves must satisfy the boundary conditions at the dielectric disconti-
nuity. These boundary conditions were derived in Section 5.5. Denoting the incident,
reflected, and transmitted wave fields by the subscripts i, r, and t, respectively, we have
from the continuity of the tangential component of E at a dielectric discontinuity,

(10.56)

and from the continuity of the tangential component of H at a dielectric discontinuity,

(10.57)Hxi + Hxr = Hxt at z = 0

Eyi + Eyr = Eyt at z = 0

TEm,0

TEm,0

V2(z, 1.1T)
V-

2(z, 1.1T)V+
2 (z, 1.1T)

Vg(t)T0 = 0.2TKb>Kf = -25vp

V-
2(0.75 l, t)V-

2(0, t)V2
+(l, t)

Vg(t) = e2V0 sin2 pt>T  for 0 6 t 6 T
0  otherwise

x ! 0

z ! 0x ! a

trans.

inc.

ref.

Section 1

P1, m1

Section 2

P2, m2

zy

x

FIGURE 10.17

For consideration of reflection
and transmission at a dielectric 
discontinuity in a parallel-plate
waveguide.

We now define the guide characteristic impedance, , of section 1 as

(10.58)

Recognizing that , we note that is simply the ratio of the trans-
verse components of the electric and magnetic fields of the wave that give riseTEm,0

hg1ay : (-ax) = az

hg1 =
Eyi

-Hxi

hg1
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to time-average power flow down the guide. From (8.35a) and (8.35b) applied to sec-
tion 1, we have

(10.59)

The guide characteristic impedance is analogous to the characteristic impedance of a
transmission line, if we recognize that and are analogous to and ,
respectively. In terms of the reflected wave fields, it then follows that

(10.60)

This result can also be seen from the fact that for the reflected wave, the power flow is
in the negative z-direction and since is equal to . For the
transmitted wave fields, we have

(10.61)

where

(10.62)

is the guide characteristic impedance of section 2.
Using (10.58), (10.60), and (10.61), (10.57) can be written as

(10.63)

Solving (10.56) and (10.63), we get

(10.64)

or the reflection coefficient at the junction is given by

(10.65)

and the transmission coefficient at the junction is given by

(10.66)

These expressions for and are similar to those obtained in Section 7.2 for reflection
and transmission at a transmission-line discontinuity. Hence, insofar as reflection and
transmission at the junction are concerned, we can replace the waveguide sections by
transmission lines having characteristic impedances equal to the guide characteristic

t≠

t =
Eyt

Eyi
=

Eyi + Eyr

Eyi
= 1 + ≠

≠ =
Eyr

Eyi
=
hg2 - hg1

hg2 + hg1

Eyia1 -
hg2

hg1
b + Eyra1 +

hg2

hg1
b = 0

Eyi

hg1
-

Eyr

hg1
=

Eyt

hg2

hg2 = h2

lg2

l2
=

h221 - (l2>lc)2
=

h221 - (fc2>f)2

Eyt

-Hxt
= hg2

Eyr>Hxray : ax = -az, hg1

hg1 = - a Eyr

-Hxr
b =

Eyr

Hxr

I+V+-HxiEyi

hg1 = h1

lg1

l1
=

h121 - (l1>lc)2
=

h121 - (fc1>f)2
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10.5 Parallel-Plate Waveguide Discontinuity 405

impedances, as shown in Figure 10.18. It should be noted that unlike the characteristic
impedance of a lossless line, which is a constant independent of frequency, the guide
characteristic impedance of the lossless waveguide is a function of the frequency.

Line 1

hg1

Line 2

hg2

z ! 0

FIGURE 10.18

Transmission-line equivalent of
parallel-plate waveguide discontinuity.

5 
cm P0, m0 9P0, m0

z ! 0

FIGURE 10.19

For illustrating the computation of
reflection and transmission coefficients at
a parallel-plate waveguide discontinuity.

For the mode, , independent of the dielectric. For
,

Since in both sections, mode propagates in both sections. Thus,

For , we would obtain and .t = 0.371≠ = -0.629f = 4000 MHz

 t = 1 + ≠ = 1 - 0.572 = 0.428

 ≠ =
hg2 - hg1

hg2 + hg1
= 128.25 - 471.24

128.25 + 471.24
= -0.572

 hg2 =
h221 - (l2>lc)2

=
120p>2921 - (2>10)2

= 40p21 - 0.04
= 128.25 Æ

 hg1 =
h121 - (l1>lc)2

= 120p21 - (6>10)2
= 471.24 Æ

TE1, 0l 6 lc

 l2 = wavelength on the dielectric side = 3 * 10829 * 5 * 109
= 6

3
= 2 cm

 l1 = wavelength on the free space side = 3 * 108

5 * 109 = 6 cm

f = 5000 MHz
lc = 2a = 10 cmTE1,0

For a numerical example of computing and , let us consider the parallel-plate
waveguide discontinuity shown in Figure 10.19, and waves of frequency

, incident on the junction from the free space side.f = 5000 MHz
TE1,0

t≠
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In this section, we discussed the solution of problems involving reflection and
transmission at a discontinuity in a waveguide by using the transmission-line analogy.
This consists of replacing each section of the waveguide by a transmission line whose
characteristic impedance is equal to the guide characteristic impedance and then com-
puting the reflection and transmission coefficients as in the transmission-line case. The
guide characteristic impedance, , which is the ratio of the transverse electric field to
the transverse magnetic field, is given for the TE modes by

(10.67)

REVIEW QUESTIONS

10.21. Define guide characteristic impedance.
10.22. Provide a physical explanation for why the guide characteristic impedance is different

from the intrinsic impedance of the medium in the guide.
10.23. Discuss the use of the transmission-line analogy for solving problems involving reflec-

tion and transmission at a waveguide discontinuity.
10.24. Why are the reflection and transmission coefficients for a given mode at a lossless

waveguide discontinuity dependent on frequency whereas the reflection and transmis-
sion coefficients at the junction of two lossless lines are independent of frequency?

PROBLEMS

10.14. For the parallel-plate waveguide discontinuity of Figure 10.19, find the reflection and
transmission coefficients for propagating in (a) mode and (b) 
mode.

10.15. The left half of a parallel-plate waveguide of dimension is filled with a dielec-
tric of and . The right half is filled with a dielectric of and

For waves of frequency 2500 MHz incident on the discontinuity from the
left, find the reflection and transmission coefficients.

10.16. Assume that the permittivity of the dielectric to the right side of the parallel-plate
waveguide discontinuity of Figure 10.19 is unknown. If the reflection coefficient for

waves of frequency 5000 MHz incident on the junction from the free space side is
, find the permittivity of the dielectric.

10.6 MAGNETIC VECTOR POTENTIAL AND THE LOOP ANTENNA

In Section 6.1, we learned that since

for the static electric field, E can be expressed as the gradient of a scalar potential in
the manner

We then proceeded with the discussion of the electric scalar potential and its applica-
tion for the computation of static electric fields. In this section, we shall introduce a

E = - §V

¥ : E = 0

-0.2643
TE1,0

TE1,0m = m0.
P = 9P0m = m0P = 4P0

a = 4 cm

TE2,0TE1,0f = 7500 MHz

hg =
h21 - (l>lc)2

=
h21 - (fc>f)2

hg
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10.6 Magnetic Vector Potential and the Loop Antenna 407

similar tool for the magnetic field computation, namely, the magnetic vector potential.
When extended to the time-varying case, the magnetic vector potential has useful
application in the determination of fields due to antennas.

To introduce the magnetic vector potential concept, we recall that the divergence
of the magnetic flux density vector,whether static or time-varying, is equal to zero,that is,

(10.68)

If the divergence of a vector is zero, then that vector can be expressed as the curl of
another vector, since the divergence of the curl of a vector is identically equal to zero,
as can be seen by expansion in Cartesian coordinates:

Thus, the magnetic field vector B can be expressed as the curl of a vector A, that is,

(10.69)

The vector A is known as the magnetic vector potential in analogy with the electric
scalar potential for V.

If we can now find A due to an infinitesimal current element, we can then find A
for a given current distribution and determine B by using (10.69). Let us therefore con-
sider an infinitesimal current element of length dl situated at the origin and oriented
along the z-axis, as shown in Figure 10.20. Assuming first that the current is constant

B = ¥ : A

 = 5 0
0x

0
0y

0
0z

0
0x

0
0y

0
0z

Ax Ay Az

5 = 0

 § # § : A = aax
0

0x
+ ay

0
0y

+ az
0
0z
b # ∞ ax ay az

0
0x

0
0y

0
0z

Ax Ay Az

∞

§ # B = 0

z

u

r

P

dl y

f

x

FIGURE 10.20

For finding the magnetic vector
potential due to an infinitesimal
current element.
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and equal to I, we note from (1.68) that the magnetic field at a point P due to the cur-
rent element is given by

(10.70)

where r is the distance from the current element to the point P and is the unit vector
directed from the element toward P. Expressing B as

(10.71)

and using the vector identity

(10.72)

we obtain

(10.73)

Since d l is a constant, , and (10.73) reduces to

(10.74)

Comparing (10.74) with (10.69), we now see that the vector potential due to the cur-
rent element situated at the origin is simply given by

(10.75)

Thus, it has a magnitude inversely proportional to the radial distance from the element
(similar to the inverse distance dependence of the scalar potential due to a point
charge) and direction parallel to the element.

If the current in the element is now assumed to be time-varying in the manner

we would intuitively expect that the corresponding magnetic vector potential would
also be time-varying in the same manner but with a time-lag factor included, as dis-
cussed in Section 9.1 in connection with the determination of the electromagnetic
fields due to the time-varying current element (Hertzian dipole). To verify our intu-
itive expectation, we note from (9.23b) that the magnetic field due to the time-varying
current element is given by

 =
mI0 d l

4p
: e - §c cos (vt - br)

r
d f

 =
mI0 dl

4p
: e ccos (vt - br)

r2 -
b sin (vt - br)

r
dar f

 B = mH =
mI0 dl sin u

4p
ccos (vt - br)

r2 -
b sin (vt - br)

r
daf

I = I0 cos vt

A =
mI dl
4pr

B = § : amI dl
4pr

b§ : d l = 0

B = -
mI
4pr

§ : dl + § : amI dl
4pr
b

A : §V = V§ : A - § : (VA)

B =
m

4p
Idl : a - § 

1
r
b

ar

B =
m

4p
 
Idl : ar

r2
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10.6 Magnetic Vector Potential and the Loop Antenna 409

and proceed in the same manner as for the constant current case to obtain the vector
potential to be

(10.76)

Comparing (10.76) with (10.75), we find that our intuitive expectation is indeed correct
for the vector potential case, unlike the case of the fields in Section 9.1! The result
given by (10.76) is familiarly known as the retarded vector potential in view of the
phase-lag factor contained in it.

To illustrate an example of the application of (10.76), we now consider a circular
loop antenna having circumference that is small compared to the wavelength so that
it is an electrically small antenna. Under this condition, the current flowing in the
loop can be assumed to be uniform around the loop. Recall that the electrically small
loop antenna as a receiving antenna was introduced in Section 9.6. Let us assume
the loop to be in the xy-plane with its center at the origin, as shown in Figure 10.21, and
the loop current to be in the direction. In view of the circular symmetry
around the z-axis, we can consider a point P in the xz-plane without loss of generality
to find the vector potential. To do this, we divide the loop into a series of infinitesimal
elements. Considering one such current element , as
shown in Figure 10.21, and using (10.76), we obtain the vector potential at P due to that
current element to be

(10.77)

where

(10.78) = [r2 + a2 - 2ar sin u cos a]1>2 R = [(r sin u - a cos a)2 + (a sin a)2 + (r cos u)2]1>2
dA =

mI0a da (-sin a ax + cos a ay)

4pR
 cos (vt - bR)

dl = a da (-sin a ax + cos a ay)

fI = I0 cos vt

br

A =
mI0 d l
4pr

 cos (vt - br)

z

x

u

daa

a

r

P

I

R

y

dl
FIGURE 10.21

For finding the magnetic vector
potential due to a small circular loop
antenna.
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The vector potential at point P due to the entire current loop is then given by

(10.79)

The first integral on the right side of (10.79) is, however, zero since the contributions to
it due to elements situated symmetrically about the xz-plane cancel. Replacing in
the second term by to generalize the result to an arbitrary point , we then
obtain

(10.80)

Although the evaluation of the integral in (10.80) is complicated, some approxi-
mations can be made for obtaining the radiation fields. For these fields, we can set the
quantity R in the amplitude factor of the integrand equal to r. For R in the phase factor
of the integrand, we write

(10.81)

Thus, for the radiation fields,

(10.82)

Now, since , or , we can write

(10.83)

Substituting (10.83) into (10.82) and evaluating the integral, we obtain

(10.84)A = -
mI0pa2b sin u

4pr
 sin (vt - br) af

cos (vt - br + ba sin u cos a)
  L cos(vt - br) - ba sin u cos a sin (vt - br)

ba V 12pa V l

A = cL2p

a= 0
 
mI0 a cos a da

4pr
 cos (vt - br + ba sin u cos a) daf

 L r c1 - a
r

 sin u cos a d
 R = r c1 + a2

r2 - 2a
r

 sin u cos a d1/2

A = cL2p

a= 0
 
mI0 a cos a da

4pR
 cos (vt - bR) daf

P(r, u, f)af
ay

 + cL2p

a= 0
 
mI0 a cos a da

4pR
 cos (vt - bR) day

 = - cL2p

a= 0
 
mI0 a sin a da

4pR
 cos (vt - bR) dax

 A = L
2p

a= 0
dA
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10.6 Magnetic Vector Potential and the Loop Antenna 411

Having obtained the required magnetic vector potential, we can now determine
the radiation fields. Thus from (10.69),

(10.85)

From , we have

(10.86)

Comparing (10.85) and (10.86) with (9.25a) and (9.25b), respectively, we note that a
duality exists between the radiation fields of the small current loop and those of the
infinitesimal current element aligned along the axis of the current loop.

Proceeding further, we can find the Poynting vector, the instantaneous radiated
power and the time-average radiated power due to the loop antenna by following steps
similar to those employed for the Hertzian dipole in Section 9.2. Thus,

 = 1
2

 I2
0 c8p5h

3
 a a
l
b4 d 8Prad9 =

hb4I2
0p

2a4

6p
 8cos2 (vt - br)9

 =
hb4I2

0p
2a4

6p
 cos2 (vt - br)

 = L
p

u= 0
 L

2p

f= 0
 
hb4I2

0p
2a4 sin3

 u

16p2  cos2 (vt - br) du df

 Prad = L
p

u= 0
 L

2p

f= 0
 P # r2 sin u du df ar

 =
hb4I2

0p
2a4 sin2 u

16p2r2  cos2 (vt - br) ar

 P = E : H = Ef af : Hu au = -EfHuar

 =
hI0pa2b2 sin u

4pr
 cos (vt - br) af

 E =
I0pa2b3 sin u

4pvPr
 cos (vt - br) af

 = -
I0pa2b3 sin u

4pPr
 sin (vt - br) af

 
0E
0t

= 1
P§ : H = 1

Pr
 

0
0r

 (rHu) af

§ : H = 0D
0t

= P0E
0t

 = -
I0pa2b2 sin u

4pr
 cos (vt - br) au

 = - 1
mr

 
0
0r

 (rAf) au

 H = B
m

= 1
m

¥ : A
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We now identify the radiation resistance of the small loop antenna to be

(10.87)

For free space, , and

(10.88)

Comparing this result with the radiation resistance of the Hertzian dipole given by
(9.30), we note that the radiation resistance of the small loop antenna is proportional
to the fourth power of its electrical size (circumference/wavelength) whereas that of
the Hertzian dipole is proportional to the square of its electrical size (length/wave-
length). The directivity of the small loop antenna is, however, the same as that of the
Hertzian dipole, that is, 1.5, as given by (9.33), in view of the proportionality of the
Poynting vectors to in both cases.

In this section, we introduced the magnetic vector potential as a tool for computing
the magnetic fields due to current distributions.In particular,we derived the expression for
the retarded magnetic vector potential for a Hertzian dipole and illustrated its application
by considering the case of a small circular loop antenna. We derived the radiation fields for
the loop antenna and compared its characteristics with those of the Hertzian dipole.

REVIEW QUESTIONS

10.25. Why can the magnetic flux density vector be expressed as the curl of another vector?
10.26. Discuss the analogy between the magnetic vector potential due to an infinitesimal cur-

rent element and the electric scalar potential due to a point charge.
10.27. What does the word retarded in the terminology retarded magnetic vector potential refer

to? Explain.
10.28. Discuss the application of the magnetic vector potential in the determination of the

electromagnetic fields due to an antenna.
10.29. Discuss the duality between the radiation fields of a small circular loop antenna with

those of a Hertzian dipole at the center of the loop and aligned with its axis.
10.30. Compare the radiation resistance and directivity of a small circular loop antenna with

those of a Hertzian dipole.

PROBLEMS

10.17. By expansion in Cartesian coordinates, show that

10.18. For the half-wave dipole of Section 9.3, determine the magnetic vector potential for the
radiation fields.Verify your result by finding the radiation fields and comparing with the
results of Section 9.3.

10.19. A circular loop antenna of radius 1 m in free space carries a uniform current
. (a) Calculate the amplitude of the electric field intensity at a dis-

tance of 10 km in the plane of the loop. (b) Calculate the radiation resistance and the
time-average power radiated by the loop.

10.20. Find the length of a Hertzian dipole that would radiate the same time-average power as the
loop antenna of Problem 10.19 for the same current and frequency as in Problem 10.19.

10 cos 4p * 106t A

A : §V = V§ : A - § : (VA).

sin2 u

Rrad = 320p6a a
l
b4

= 20p2a2pa
l
b4

h = h0 = 120p Æ

Rrad =
8p5h

3
a a
l
b4

M10_RAO3333_1_SE_CH10.QXD  4/9/08  2:41 PM  Page 412




