
Antenna Basics

In the preceding chapters, we studied the principles of propagation and transmission of
electromagnetic waves. The remaining important topic pertinent to electromagnetic
wave phenomena is radiation of electromagnetic waves. We have, in fact, touched on
the principle of radiation of electromagnetic waves in Chapter 4 when we derived the
electromagnetic field due to the infinite plane sheet of sinusoidally time-varying, spa-
tially uniform current density. We learned that the current sheet gives rise to uniform
plane waves radiating away from the sheet to either side of it. We pointed out at that
time that the infinite plane current sheet is, however, an idealized, hypothetical source.
With the experience gained thus far in our study of the elements of engineering elec-
tromagnetics, we are now in a position to learn the principles of radiation from physi-
cal antennas, which is our goal in this chapter.

We shall begin the chapter with the derivation of the electromagnetic field due
to an elemental wire antenna, known as the Hertzian dipole. After studying the radia-
tion characteristics of the Hertzian dipole, we shall consider the example of a half-
wave dipole to illustrate the use of superposition to represent an arbitrary wire
antenna as a series of Hertzian dipoles in order to determine its radiation fields. We
shall also discuss the principles of arrays of physical antennas and the concept of
image antennas to take into account ground effects. Finally, we shall briefly consider
the receiving properties of antennas and learn of their reciprocity with the radiating
properties.

9.1 HERTZIAN DIPOLE

The Hertzian dipole is an elemental antenna consisting of an infinitesimally long piece
of wire carrying an alternating current , as shown in Figure 9.1. To maintain the cur-
rent flow in the wire, we postulate two point charges and terminating the
wire at its two ends, so that the law of conservation of charge is satisfied. Thus, if

(9.1)I(t) = I0 cos vt

Q2(t)Q1(t)
I(t)

339

CHAPTER

9

M09_RAO3333_1_SE_CHO9.QXD  4/9/08  2:40 PM  Page 339



340 Chapter 9 Antenna Basics

then

(9.2a)

(9.2b)

and

(9.3a)

(9.3b)

The time variations of , and , given by (9.1), (9.3a), and (9.3b), respectively, are
illustrated by the curves and the series of sketches for the dipoles in Figure 9.2, corre-
sponding to one complete period. The different sizes of the arrows associated with the
dipoles denote the different strengths of the current, whereas the number of the plus or
minus signs is indicative of the strength of the charges.

To determine the electromagnetic field due to the Hertzian dipole, we shall
employ an intuitive approach based upon the knowledge gained in the previous chap-
ters, as follows: From the application of what we have learned in Chapter 1, we can
obtain the expressions for the electric and magnetic fields due to the point charges and
the current element, respectively, associated with the Hertzian dipole, assuming that the
fields follow exactly the time-variations of the charges and the current. These expres-
sions do not, however, take into account the fact that time-varying electric and magnetic
fields give rise to wave propagation. Hence, we shall extend them from considerations
of our knowledge of wave propagation and then check if the resulting solutions satisfy
Maxwell’s equations. If they do not, we will then have to modify them so that they do
satisfy Maxwell’s equations and at the same time reduce to the originally derived
expressions in the region where wave propagation effects are small, that is, at distances
from the dipole that are small compared to a wavelength.

Q2I, Q1

 Q2(t) = -
I0

v
 sin vt = -Q1(t)

 Q1(t) =
I0
v  sin vt

 
dQ2

dt
= -I(t) = -I0 cos vt

 
dQ1

dt
= I(t) = I0 cos vt

I(t)dl

Q1(t)

Q2(t) ! "Q1(t)

#

"
FIGURE 9.1

Hertzian dipole.
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9.1 Hertzian Dipole 341

To follow the approach outlined in the preceding paragraph, we locate the dipole at
the origin with the current directed along the z-axis, as shown in Figure 9.3, and derive
first the expressions for the fields by applying the simple laws learned in Sections 1.5 and
1.6. The symmetry associated with the problem is such that it is simpler to use a spherical
coordinate system. Hence, if the reader is not already familiar with the spherical coordi-
nate system, it is suggested that Appendix A be read at this stage. To review briefly, a
point in the spherical coordinate system is defined by the intersection of a sphere cen-
tered at the origin, a cone having its apex at the origin and its surface symmetrical about
the z-axis, and a plane containing the z-axis. Thus, the coordinates for a given point, say P,
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FIGURE 9.2

Time variations of charges and current associated with the Hertzian dipole.
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342 Chapter 9 Antenna Basics

are r, the radial distance from the origin, , the angle which the radial line from the
origin to the point makes with the z-axis, and , the angle which the line drawn from the
origin to the projection of the point onto the xy-plane makes with the x-axis, as shown in
Figure 9.3. A vector drawn at a given point is represented in terms of the unit vectors

and directed in the increasing and directions, respectively, at that point. It
is important to note that all three of these unit vectors are not uniform unlike the unit
vectors and in the Cartesian coordinate system.azax, ay,

fr, u,afar, au,

f
u

z

x

u

r1

a1

a2

r2

rQ1

Q2 ! "Q1

dl
I

dl cos u

y

af

au

ar1

ar

ar2

P

f

P, m

FIGURE 9.3

For the determination of the electromagnetic field due to the Hertzian
dipole.

Now using the expression for the electric field due to a point charge given by
(1.52), we can write the electric field at point P due to the arrangement of the two point
charges and in Figure 9.3 to be

(9.4)

where and are the distances from to P and to P, respectively, and
and are unit vectors directed along the lines from to P and to P, respec-

tively, as shown in Figure 9.3. Noting that

(9.5a)

(9.5b) ar2
= cos a2 ar - sin a2 au

 ar1
= cos a1 ar + sin a1 au

Q2Q1ar2
ar1

Q2 (=  -Q1)Q1r2r1

E =
Q1

4pPr2
1
 ar1

-
Q1

4pPr2
2
 ar2 

-Q1Q1
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9.1 Hertzian Dipole 343

we obtain the and components of the electric field at to be

(9.6a)

(9.6b)

For infinitesimal value of the length dl of the current element, that is, for ,

(9.7a)

and

(9.7b)

where we have also used the approximations that for and
. These are, of course, exact in the limit that Substitut-

ing (9.7a) and (9.7b) in (9.6a) and (9.6b), respectively, we obtain the electric field at
point P due to the arrangement of the two point charges to be given by

(9.8)

Note that is the electric dipole moment associated with the Hertzian dipole.
Using the Biot–Savart law given by (1.68), we can write the magnetic field at

point due to the infinitesimal current element in Figure 9.3 to be

(9.9)

To extend the expressions for E and H given by (9.8) and (9.9), respectively, we
observe that when the charges and current vary with time, the fields also vary with time

 = I dl sin u
4pr2  af

 H = B
m

 =
I dl az : ar

4pr2
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Q1 dl

E =
Q1 dl
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344 Chapter 9 Antenna Basics

giving rise to wave propagation. The effect of a given time-variation of the source
quantity is therefore felt at a point in space not instantaneously but only after a
time lag. This time lag is equal to the time it takes for the wave to propagate from the
source point to the observation point, that is, , or , where and

are the phase velocity and the phase constant, respectively. Thus, for

(9.10)

(9.11)

we would intuitively expect the fields at point P to be given by

(9.12a)

(9.12b)

There is, however, one thing wrong with our intuitive expectation of the fields
due to the Hertzian dipole! The fields do not satisfy Maxwell’s curl equations

(9.13a)

(9.13b)

(where we have set in view of the perfect dielectric medium). For example, let us
try the curl equation for H. First, we note from Appendix B that the expansion for the
curl of a vector in spherical coordinates is

(9.14) +  
1
r

 c 0
0r

(rAu) -
0Ar

0u d af 
 +  

1
r

 c 1
sin u

 
0Ar 
0f - 0

0r
(rAf) d au 

 § : A = 1
r sin u

 c 0
0u(Af sin u) -

0Au
0f d ar

J= 0

 § : H = J + 0D
0t

= P0E
0t

 § : E = - 0B
0t

= -m0H
0t

 =
I0 dl cos (vt - br)

4pr2  sin u af 

 H =
[I0 cos v(t - br>v)] dl

4pr2  sin u af 

 =
I0 dl sin (vt - br)

4pPvr3 (2 cos u ar + sin u au)

 E =
[(I0>v) sin v(t - br>v)] dl

4pPr3 (2 cos u ar + sin u au)

 I = I0 cos vt

 Q1 =
I0

v
 sin vt

b(=  v1mP)
vp(=  1>1mP)br>vr>vp
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9.1 Hertzian Dipole 345

Thus,

(9.15)

The reason behind the discrepancy associated with the expressions for the fields
due to the Hertzian dipole can be understood by recalling that in Section 4.6 we
learned from considerations of the Poynting vector that the fields far from a physical
antenna vary inversely with the radial distance away from the antenna. The expres-
sions we have derived do not contain inverse distance dependent terms and hence they
are not complete, thereby causing the discrepancy. The complete field expressions
must contain terms involving in addition to those in (9.12a) and (9.12b). Since for
small the addition of terms involving and containing 
to (9.12a) and (9.12b) would still maintain the fields in the region close to the dipole to
be predominantly the same as those given by (9.12a) and (9.12b), while making the 
terms predominant for large r, since for large .

Thus, let us modify the expression for H given by (9.12b) by adding a second term
containing in the following manner:

(9.16)

where and are constants to be determined. Then from Maxwell’s curl equation for
H, given by (9.13b), we have

(9.17) -  
Ab sin (vt - br + d)
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346 Chapter 9 Antenna Basics

(9.18)

Now, from Maxwell’s curl equation for E given by (9.13a), we have

(9.19)

(9.20)

We, however, have to rule out the terms in (9.20), since for small r these terms are
more predominant than the dependence required by (9.12b). Equation (9.20) will
then also be consistent with (9.16) from which we derived (9.18) and then (9.20). Thus,
we set

(9.21)

which gives us

(9.22a)

(9.22b)

Substituting (9.22a) and (9.22b) in (9.18) and (9.20), we then have

(9.23a) -  
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9.2 Radiation Resistance and Directivity 347

(9.23b)

These expressions for E and H satisfy both of Maxwell’s curl equations, reduce to
(9.12a) and (9.12b), respectively, for small , and they vary inversely with r
for large . They represent the complete electromagnetic field due to the
Hertzian dipole.

9.2 RADIATION RESISTANCE AND DIRECTIVITY

In the previous section, we derived the expressions for the complete electromagnetic
field due to the Hertzian dipole. These expressions look very complicated. Fortunately, it
is seldom necessary to work with the complete field expressions because one is often in-
terested in the field far from the dipole, which is governed predominantly by the terms
involving . We, however, had to derive the complete field in order to obtain the am-
plitude and phase of these terms relative to the amplitude and phase of the current in
the Hertzian dipole, since these terms alone do not satisfy Maxwell’s equations. Further-
more, by going through the exercise, we learned how to solve a difficult problem through
intuitive extension and reasoning based on previously gained knowledge.

Thus from (9.23a) and (9.23b), we find that for a Hertzian dipole of length dl ori-
ented along the z-axis and carrying current

(9.24)

the electric and magnetic fields at values of far from the dipole are given by

(9.25a)

(9.25b)

These fields are known as the radiation fields, since they are the components of the
total fields that contribute to the time-average radiated power away from the dipole
(see Problem 9.6). Before we discuss the nature of these fields, let us find out quantita-
tively what we mean by far from the dipole. To do this, we look at the expression for the
complete magnetic field given by (9.23b) and note that the ratio of the amplitudes of
the and terms is equal to . Hence for , or , the 
term is negligible compared to the term. Thus, even at a distance of a few wave-
lengths from the dipole, the fields are predominantly radiation fields.

Returning now to the expressions for the radiation fields given by (9.25a) and
(9.25b), we note that at any given point, (a) the electric field , the magnetic field

, and the direction of propagation (r) are mutually perpendicular, and (b) the ratio
of to is equal to , the intrinsic impedance of the medium, which are charac-
teristic of uniform plane waves. The phase of the field, however, is uniform over the
surfaces constant, that is, spherical surfaces centered at the dipole, whereasr =

hHfEu
(Hf)

(Eu)

1>r 1>r2r W l>2pbr W 11>br1>r1>r2
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348 Chapter 9 Antenna Basics

the amplitude of the field is uniform over surfaces constant. Hence, the
fields are only locally uniform plane waves, that is, over any infinitesimal area normal
to the r-direction at a given point.

The Poynting vector due to the radiation fields is given by

(9.26)

By evaluating the surface integral of the Poynting vector over any surface enclosing
the dipole, we can find the power flow out of that surface, that is, the power radiated
by the dipole. For convenience in evaluating the surface integral, we choose the spher-
ical surface of radius r and centered at the dipole, as shown in Figure 9.4. Thus, noting
that the differential surface area on the spherical surface is ar or

ar, we obtain the instantaneous power radiated to be

(9.27)  =
2phI0

2 
3

 adl
l
b2

 sin2 (vt - br)

 =
hb2I0

2 (dl)2 
6p

 sin2 (vt - br)

 =
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2 (dl)2 
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 sin2 (vt - br)L
p

u= 0
 sin3 u du

 = L
p

u= 0
 L

2p

f= 0
 
hb2I0

2 (dl)2 sin3 u
16p2 

 sin2 (vt - br) du df

 Prad = L
p

u= 0
 L

2p

f= 0
 P # r2 sin u du df ar

r2 sin u du df
(r du)(r sin u df)

 =
hb2I2

0 (dl)2 sin2 u
16p2r2 

 sin2 (vt - br) ar

 = Eu au : Hf af = EuHf ar

 P = E : H

(sin u)>r =

z

x

y

r du

r sin u df
P

H
E

FIGURE 9.4

For computing the power radiated
by the Hertzian dipole.
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9.2 Radiation Resistance and Directivity 349

The time-average power radiated by the dipole, that is, the average of over one
period of the current variation, is

(9.28)

We now define a quantity known as the radiation resistance of the antenna, denoted
by the symbol , as the value of a fictitious resistor that dissipates the same amount of
time-average power as that radiated by the antenna when a current of the same peak
amplitude as that in the antenna is passed through it. Recalling that the average power
dissipated in a resistor R when a current is passed through it is we note
from (9.28) that the radiation resistance of the Hertzian dipole is

(9.29)

For free space, and

(9.30)

As a numerical example, for equal to 0.01, Thus,
for a current of peak amplitude , the time-average radiated power is equal to 0.04 W.
This indicates that a Hertzian dipole of length is not a very effective radiator.

We note from (9.29) that the radiation resistance and hence the radiated power
are proportional to the square of the electrical length, that is, the physical length ex-
pressed in terms of wavelength, of the dipole. The result given by (9.29) is, however,
valid only for small values of since if is not small, the amplitude of the cur-
rent along the antenna can no longer be uniform and its variation must be taken into
account in deriving the radiation fields and hence the radiation resistance. We shall do
this in the following section for a half-wave dipole, that is, for a dipole of length equal
to 

Let us now examine the directional characteristics of the radiation from the
Hertzian dipole. We note from (9.25a) and (9.25b) that, for a constant r, the amplitude
of the fields is proportional to . Similarly, we note from (9.26) that, for a constant r,
the power density is proportional to . Thus, an observer wandering on the surface
of an imaginary sphere centered at the dipole views different amplitudes of the fields
and of the power density at different points on the surface. The situation is illustrated
in Figure 9.5(a) for the power density by attaching to different points on the spherical
surface vectors having lengths proportional to the Poynting vectors at those points. It
can be seen that the power density is largest for that is, in the plane normal tou = p>2,

sin2 u
sin u

l>2.

dl>ldl>l,
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350 Chapter 9 Antenna Basics

the axis of the dipole, and decreases continuously toward the axis of the dipole, be-
coming zero along the axis.

It is customary to depict the radiation characteristic by means of a radiation
pattern, as shown in Figure 9.5(b), which can be imagined to be obtained by shrinking
the radius of the spherical surface in Figure 9.5(a) to zero with the Poynting vectors
attached to it and then joining the tips of the Poynting vectors. Thus, the distance from

u ! 0

90 90

(a)

(b)

(c)

180

FIGURE 9.5

The directional characteristics of radiation from the Hertzian dipole.
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9.2 Radiation Resistance and Directivity 351

the dipole point to a point on the radiation pattern is proportional to the power density
in the direction of that point. Similarly, the radiation pattern for the fields can be drawn
as shown in Figure 9.5(c), based upon the dependence of the fields. In view of the
independence of the fields from , the patterns of Figure 9.5(b)–(c) are valid for any
plane containing the axis of the dipole. In fact, the three-dimensional radiation patterns
can be imagined to be the figures obtained by revolving these patterns about the dipole
axis. For a general case, the radiation may also depend on , and hence it will be neces-
sary to draw a radiation pattern for the plane. Here, this pattern is merely a cir-
cle centered at the dipole.

We now define a parameter known as the directivity of the antenna, denoted
by the symbol D, as the ratio of the maximum power density radiated by the antenna
to the average power density. To elaborate on the definition of D, imagine that we take
the power radiated by the antenna and distribute it equally in all directions by short-
ening some of the vectors in Figure 9.5(a) and lengthening the others so that they all
have equal lengths. The pattern then becomes nondirectional and the power density,
which is the same in all directions, will be less than the maximum power density of the
original pattern. Obviously, the more directional the radiation pattern of an antenna is,
the greater is the directivity.

From (9.26), we obtain the maximum power density radiated by the Hertzian
dipole to be

(9.31)

By dividing the radiated power given by (9.27) by the surface area of the sphere
of radius r, we obtain the average power density to be

(9.32)

Thus, the directivity of the Hertzian dipole is given by

(9.33)

To generalize the computation of directivity for an arbitrary radiation pattern, let
us consider

(9.34)Pr =
P0 sin2 (vt - br)

r2  f(u, f)

D =
[Pr]max
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Prad
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24p2r2  sin2 (vt - br)
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 =
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where is a constant, and is the power density pattern. Then

(9.35)

Example 9.1

Let us compute the directivity corresponding to the power density pattern function

From (9.35),

The ratio of the power density radiated by the antenna as a function of direction
to the average power density is given by . This quantity is known as the
directive gain of the antenna.Another useful parameter is the power gain of the antenna,
which takes into account the ohmic power losses in the antenna. It is denoted by the
symbol G and is proportional to the directive gain, the proportionality factor being the
power efficiency of the antenna, which is the ratio of the power radiated by the antenna
to the power supplied to it by the source of excitation.
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9.3 Half-Wave Dipole 353

9.3 HALF-WAVE DIPOLE

In the previous section, we found the radiation fields due to a Hertzian dipole, which is
an elemental antenna of infinitesimal length. If we now have an antenna of any length
having a specified current distribution, we can divide it into a series of Hertzian dipoles
and by applying superposition can find the radiation fields for that antenna. We shall
illustrate this procedure in this section by considering the half-wave dipole, which is a
commonly used form of antenna.

The half-wave dipole is a center-fed, straight wire antenna of length L equal to
and having the current distribution

(9.36)

where the dipole is assumed to be oriented along the z-axis with its center at the origin,
as shown in Figure 9.6(a). As can be seen from Figure 9.6(a), the amplitude of the cur-
rent distribution varies cosinusoidally along the antenna with zeros at the ends and
maximum at the center. To see how this distribution comes about, the half-wave dipole
may be imagined to be the evolution of an open-circuited transmission line with the
conductors folded perpendicularly to the line at points from the end of the line.
The current standing wave pattern for an open-circuited line is shown in Figure 9.6(b).
It consists of zero current at the open circuit and maximum current at from the
open circuit, that is, at points a and . Hence, it can be seen that when the conductors
are folded perpendicularly to the line at a and , the half-wave dipole shown in
Figure 9.6(a) results.

a¿
a¿

l>4l>4

I(z) = I0 cos 
pz
L

 cos vt for - L
2

6 z 6 L
2

l>2

Amplitude
of Current
Distribution

z ! L
2

z ! "

I

I

z ! 0
a

a$

L
2

l

4

(a) (b)

FIGURE 9.6

(a) Half-wave dipole. (b) Open-circuited transmission line for illustrating the
evolution of the half-wave dipole.

Now, to find the radiation field due to the half-wave dipole, we divide it into a
number of Hertzian dipoles, each of length as shown in Figure 9.7. If we consider
one of these dipoles situated at distance from the origin, then from (9.36) the currentz¿

dz¿,
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in this dipole is . From (9.25a) and (9.25b), the radiation fields due
to this dipole at point P situated at distance from it are given by

(9.37a)

(9.37b)

where is the angle between the z-axis and the line from the current element to the
point P and is the unit vector perpendicular to that line, as shown in Figure 9.7. The
fields due to the entire current distribution of the half-wave dipole are then given by

(9.38a)

(9.38b)

where and are functions of z¿.au¿r¿, u¿,

 = -L
L>2

z¿ = -L>2 bI0 cos (pz¿>L) sin u¿dz¿
4pr¿  sin (vt - br¿) af 
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FIGURE 9.7

For the determination of the radiation field due to the half-wave dipole.
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For radiation fields, is at least equal to several wavelengths and hence L.
We can therefore set and since they do not vary significantly for

We can also set in the amplitude factors for the same reason,
but for in the phase factors we substitute since sin 

can vary appreciably over the range Thus, we have

where

(9.39a)

Similarly,

where

(9.39b)

The Poynting vector due to the radiation fields of the half-wave dipole is given by

(9.40)

The power radiated by the half-wave dipole is given by

(9.41) =
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The time-average radiated power is

(9.42)

Thus, the radiation resistance of the half-wave dipole is

(9.43)

For free space,

(9.44)

Turning our attention now to the directional characteristics of the half-wave
dipole, we note from (9.39a) and (9.39b) that the radiation pattern for the fields is

whereas for the power density, it is .

These patterns, which are sketched in Figure 9.8(a)–(b), are slightly more directional
than the corresponding patterns for the Hertzian dipole. To find the directivity of the
half-wave dipole, we note from (9.40) that the maximum power density is

(9.45) =
hI0

2

4p2r2 sin2 avt - p
L

rb
 [Pr]max =

hI0
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4p2r2 e cos2 [(p>2) cos u]
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 f
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 sin2 avt - p
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2
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 Æ

 = 1
2

 I0
2 a0.609h

p
b

  8Prad9 =
0.609hI0

2

p
 hsin2 avt - p

L
rb i

(a)

(b)

FIGURE 9.8

Radiation patterns for (a) the fields and 
(b) the power density due to the half-wave dipole.
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The average power density obtained by dividing by is

(9.46)

Thus, the directivity of the half-wave dipole is given by

(9.47)

9.4 ANTENNA ARRAYS

In Section 4.5, we illustrated the principle of an antenna array by considering an array
of two parallel, infinite plane current sheets of uniform densities. We learned that by
appropriately choosing the spacing between the current sheets and the amplitudes and
phases of the current densities, a desired radiation characteristic can be obtained. The
infinite plane current sheet is, however, a hypothetical antenna for which the fields are
truly uniform plane waves propagating in the one dimension normal to the sheet. Now
that we have gained some knowledge of physical antennas, in this section we shall con-
sider arrays of such antennas.

The simplest array we can consider consists of two Hertzian dipoles, oriented
parallel to the z-axis and situated at points on the x-axis on either side of and equidis-
tant from the origin, as shown in Figure 9.9. We shall consider the amplitudes of the
currents in the two dipoles to be equal, but we shall allow a phase difference between
them. Thus, if and are the currents in the dipoles situated at and

, respectively, then

(9.48a)

(9.48b)

For simplicity, we shall consider a point P in the xz-plane and compute the field at that
point due to the array of the two dipoles. To do this, we note from (9.25a) that the elec-
tric field intensities at the point P due to the individual dipoles are given by

(9.49a)

(9.49b)

where , , and are as shown in Figure 9.9.au2
au1
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For that is, for points far from the array, which is the region of interest, we
can set and Also, we can set in the amplitude
factors, but for and in the phase factors, we substitute

(9.50a)

(9.50b)

where is the angle made by the line form the origin to P with the axis of the array,
that is, the x-axis, as shown in Figure 9.9. Thus we obtain the resultant field to be

(9.51)

Comparing (9.51) with the expression for the electric field at P due to a single
dipole situated at the origin, we note that the resultant field of the array is simply equal 

to the single dipole field multiplied by the factor , known as

the array factor. Thus the radiation pattern of the resultant field is given by the product of

sin , which is the radiation pattern of the single dipole field, and ,` cos a bd cos c + a
2

b `u

2 cos a bd cos c + a
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FIGURE 9.9

For computing the radiation field due to an array of two Hertzian
dipoles.
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9.4 Antenna Arrays 359

which is the radiation pattern of the array if the antennas were  isotropic. We shall call
these three patterns the resultant pattern, the unit pattern, and the group pattern, respec-
tively. It is apparent that the group pattern is independent of the nature of the individual
antennas as long as they have the same spacing and carry currents having the same rela-
tive amplitudes and phase differences. It can also be seen that the group pattern is the
same in any plane containing the axis of the array. In other words, the three-dimensional
group pattern is simply the pattern obtained by revolving the group pattern in the
xz-plane about the x-axis, that is, the axis of the array.

Example 9.2

For the array of two antennas carrying currents having equal amplitudes, let us consider several
pairs of d and ! and investigate the group patterns.

Case 1: The group pattern is

This is shown sketched in Figure 9.10(a). It has maxima perpendicular to the axis of the array
and nulls along the axis of the array. Such a pattern is known as a broadside pattern.

Case 2: . The group pattern is

This is shown sketched in Figure 9.10(b). It has maxima along the axis of the array and nulls
perpendicular to the axis of the array. Such a pattern is known as an endfire pattern.

` cos a bl
4

  cos c + p
2

 b ` = ` sin ap
2

  cos cb `
d = l>2, a = p

` cos a bl
4

  cos cb `  =  cos ap
2

  cos cb
d = l>2, a = 0.

(a) (b) (c) (d)

FIGURE 9.10

Group patterns for an array of two antennas carrying currents of equal amplitude
for (a) (b) (c) and
(d) d = l, a = 0.

d = l>4, a = -p>2,d = l>2, a = p,d = l>2, a = 0,

Case 3: The group pattern is

` cos a bl
8

 cos c - p
4
b ` = cos ap

4
 cos c - p

4
b

d = l>4, a = -p>2.
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360 Chapter 9 Antenna Basics

This is shown sketched in Figure 9.10(c). It has a maximum along and null along 
Again, this is an endfire pattern, but directed to one side. This case is the same as the one con-
sidered in Section 4.5.

Case 4: The group pattern is

This is shown sketched in Figure 9.10(d). It has maxima along and
nulls along 

Proceeding further, we can obtain the resultant pattern for an array of two Hertzian dipoles
by multiplying the unit pattern by the group pattern. Thus, recalling that the unit pattern for the
Hertzian dipole is sin in the plane of the dipole and considering values of and 0 for d and 
respectively, for which the group pattern is given in Figure 9.10(a), we obtain the resultant pattern
in the xz-plane, as shown in Figure 9.11(a). In the xy-plane, that is, the plane normal to the axis
of the dipole, the unit pattern is a circle and hence the resultant pattern is the same as the group
pattern, as illustrated in Figure 9.11(b).

a,l>2u

c = 60°, 120°, 240°, and 300°.
and 270°c = 0°, 90°, 180°,

` cos a bl
2

 cos cb ` = ƒ  cos(p cos c) ƒ

d = l, a = 0.

c = p.c = 0

!

(a)

%

!

(b)

%FIGURE 9.11

Determination of the resultant
pattern of an antenna array by
multiplication of unit and group
patterns.

Example 9.3

The procedure of multiplication of the unit and group patterns to obtain the resultant pattern
illustrated in Example 9.2 can be extended to an array containing any number of antennas. Let
us, for example, consider a linear array of four isotropic antennas spaced apart and fed in
phase, as shown in Figure 9.12(a), and obtain the resultant pattern.

To obtain the resultant pattern of the four-element array, we replace it by a two-element
array of spacing , as shown in Figure 9.12(b), in which each element forms a unit representing a
two-element array of spacing . The unit pattern is then the pattern shown in Figure 9.10(a).
The group pattern, which is the pattern of two isotropic radiators having and is the
pattern given in Figure 9.10(d). The resultant pattern of the four-element array is the product of
these two patterns, as illustrated in Figure 9.12(c). If the individual elements of the four-element
array are not isotropic, then this pattern becomes the group pattern for the determination of the
new resultant pattern.

a = 0,d = l
l>2l

l>2
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l
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(a)

(b)

(c)

FIGURE 9.12

Determination of the resultant
pattern for a linear array of four
isotropic antennas.

9.5 IMAGE ANTENNAS

Thus far, we have considered the antennas to be situated in an unbounded medium so
that the waves radiate in all directions from the antenna without giving rise to reflec-
tions from any obstacles. In practice, however, we have to consider the effect of the
ground even if no other obstacles are present. To do this, it is reasonable to assume that
the ground is a perfect conductor. Hence, in this section we shall consider antennas sit-
uated above an infinite plane, perfect-conductor surface and introduce the concept of
image sources, a technique that is also useful in solving static field problems.

Thus, let us consider a Hertzian dipole oriented vertically and located at a height
h above a plane, perfect-conductor surface, as shown in Figure 9.13(a). Since no waves
can penetrate into the perfect conductor, as we learned in Section 5.5, the waves radi-
ated from the dipole onto the conductor give rise to reflected waves, as shown in
Figure 9.13(a) for two directions of incidence. For a given incident wave onto the con-
ductor surface, the angle of reflection is equal to the angle of incidence, as can be seen
intuitively from the following reasons: (a) The reflected wave must propagate away
from the conductor surface, (b) the apparent wavelengths of the incident and reflected
waves parallel to the conductor surface must be equal, and (c) the tangential compo-
nent of the resultant electric field on the conductor surface must be zero, which also
determines the polarity of the reflected wave electric field.

If we now produce the directions of propagation of the two reflected waves back-
ward, they meet at a point which is directly beneath the dipole and at the same distance
h below the conductor surface as the dipole is above it. Thus, the reflected waves
appear to be originating from an antenna, which is the image of the actual antenna
about the conductor surface. This image antenna must also be a vertical antenna since
in order for the boundary condition of zero tangential electric field to be satisfied at all
points on the conductor surface, the image antenna must have the same radiation pat-
tern as that of the actual antenna, as shown in Figure 9.13(a). In particular, the current
in the image antenna must be directed in the same sense as that in the actual antenna
to be consistent with the polarity of the reflected wave electric field. It can therefore be

M09_RAO3333_1_SE_CHO9.QXD  4/9/08  2:40 PM  Page 361



362 Chapter 9 Antenna Basics

seen that the charges associated with the image dipole have signs opposite to those of
the corresponding charges associated with the actual dipole.

A similar reasoning can be applied to the case of a horizontal dipole above a per-
fect conductor surface, as shown in Figure 9.13(b). Here it can be seen that the current
in the image antenna is directed in the opposite sense to that in the actual antenna.
This again results in charges associated with the image dipole having signs opposite to
those of the corresponding charges associated with the actual dipole. In fact, this is
always the case.

#

"

#

"

h

h

(a)

#

h

h

(b)

"

"
#

FIGURE 9.13

For illustrating the concept of image antennas. (a) Vertical Hertzian dipole and
(b) horizontal Hertzian dipole above a plane, perfect-conductor surface.
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% !

FIGURE 9.14

Determination of radiation pattern in the vertical plane for a vertical Hertzian dipole
above a plane, perfect-conductor surface.

From the foregoing discussion it can be seen that the field due to an antenna
in the presence of the conductor is the same as the resultant field of the array formed
by the actual antenna and the image antenna. There is, of course, no field inside the
conductor. The image antenna is only a virtual antenna that seves to simplify the field
determination outside the conductor. The simplicity arises from the fact that we can
use the knowledge gained on antenna arrays in the previous section to determine the ra-
diation pattern. Thus, for example, for a vertical Hertzian dipole at a height of 
above the conductor surface, the radiation pattern in the vertical plane is the product
of the unit pattern, which is the radiation pattern of the single dipole in the plane of its
axis, and the group pattern corresponding to an array of two isotropic radiators spaced

apart and fed in phase. This multiplication and the resultant pattern are illustrated in
Figure 9.14. The radiation patterns for the case of the horizontal dipole can be ob-
tained in a similar manner.

l

l>2

9.6 RECEIVING PROPERTIES

Thus far, we have considered the radiating, or transmitting, properties of antennas. For-
tunately, it is not necessary to repeat all the derivations for the discussion of the receiv-
ing properties of antennas, since reciprocity dictates that the receiving pattern of an
antenna be the same as its transmitting pattern. To illustrate this in simple terms with-
out going through the general proof of reciprocity, let us consider a Hertzian dipole sit-
uated at the origin and directed along the z-axis, as shown in Figure 9.15. We know that
the radiation pattern is then given by sin and that the polarization of the radiated field
is such that the electric field is in the plane of the dipole axis.

To investigate the receiving properties of the Hertzian dipole, we assume that it is
situated in the radiation field of a second antenna so that the incoming waves are essen-
tially uniform plane waves. Thus, let us consider a uniform plane wave with its electric
field E in the plane of the dipole and incident on the dipole at an angle with its axis,
as shown in Figure 9.15. Then the component of the incident electric field parallel to
the dipole is E sin . Since the dipole is infinitesimal in length, the voltage induced in the
dipole, which is the line integral of the electric field intensity along the length of 
the dipole, is simply equal to (E sin ) dl or to E dl sin . This indicates that for a given
amplitude of the incident wave field, the induced voltage in the dipole is proportional to
sin . Furthermore, for an incident uniform plane wave having its electric field normal tou

uu

u

u

u
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the dipole axis, the voltage induced in the dipole is zero, that is, the dipole does not
respond to polarization with electric field normal to the plane of its axis. These proper-
ties are reciprocal to the transmitting properties of the dipole. Since an arbitrary anten-
na can be decomposed into a series of Hertzian dipoles, it then follows that reciprocity
holds for an arbitrary antenna. Thus, any transmitting antenna can be used as a receiv-
ing antenna, and vice versa.

We shall now briefly consider the loop antenna, a common type of receiving an-
tenna. A simple form of loop antenna consists of a circular loop of wire with a pair of
terminals. We shall orient the circular loop antenna with its axis aligned with the z-axis,
as shown in Figure 9.16, and we shall assume that it is electrically short, that is, its
dimensions are small compared to the wavelength of the incident wave, so that the spa-
tial variation of the field over the area of the loop is negligible. For a uniform plane
wave incident on the loop, we can find the voltage induced in the loop, that is, the line
integral of the electric field intensity around the loop, by using Faraday’s law. Thus, if H

y

z

x

u

A

H

FIGURE 9.16

A circular loop antenna.

z

x

y

E

dl

u

FIGURE 9.15

For investigating the receiving properties 
of a Hertzian dipole.
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is the magnetic field intensity associated with the wave, the magnitude of the induced
voltage is given by

(9.52)

where A is the area of the loop. Hence the loop does not respond to a wave having its
magnetic field entirely parallel to the plane of the loop, that is, normal to the axis of the
loop.

For a wave having its magnetic field in the plane of the axis of the loop, and inci-
dent on the loop at an angle with its axis, as shown in Figure 9.16, and
hence the induced voltage has a magnitude

(9.53)

Thus, the receiving pattern of the loop antenna is given by , same as that of a
Hertzian dipole aligned with the axis of the loop antenna. The loop antenna, however,
responds best to polarization with magnetic field in the plane of its axis, whereas the
Hertzian dipole responds best to polarization with electric field in the plane of its axis.

Example 9.4

The directional properties of a receiving antenna can be used to locate the source of an incident
signal. To illustrate the principle, let us consider two vertical loop antennas, numbered 1 and 2,
situated on the x-axis at and , respectively. By rotating the loop antennas
about the vertical (z-axis), it is found that no (or minimum) signal is induced in antenna 1 when
it is in the xz-plane and in antenna 2 when it is in a plane making an angle of with the axis, as
shown by the top view in Figure 9.17. Let us find the location of the source of the signal.

5°

x = 200 mx = 0 m

sin u

ƒV ƒ = mA ` 0H
0t
`  sin u

Hz = H sin u,u

 = mA ` 0Hz

0t
`

 = ` -m d
dt

 Larea of 
the loop

 H # dS az `
 ƒV ƒ = ` -  

d
dt

 Larea of 
the loop

 B # dS `

2

1

x

y

200 m

5

FIGURE 9.17

Top view of two loop antennas
used to locate the source of an
incident signal.
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#
"

ZA

ZL

Voc
FIGURE 9.18

Equivalent circuit for a receiving
antenna connected to a load.

Since the receiving properties of a loop antenna are such that no signal is induced for a
wave arriving along its axis, the source of the signal is located at the intersection of the axes of
the two loops when they are oriented so as to receive no (or minimum) signal. From simple
geometrical considerations, the source of the signal is therefore located on the y-axis at

or 2.286 km.

A useful parameter associated with the receiving properties of an antenna is the ef-
fective area, denoted and defined as the ratio of the time-average power delivered to
a matched load connected to the antenna to the time-average power density of the ap-
propriately polarized incident wave at the antenna. The matched condition is achieved
when the load impedance is equal to the complex conjugate of the antenna impedance.

Let us consider the Hertzian dipole and derive the expression for its effective
area. First, with reference to the equivalent circuit shown in Figure 9.18, where 
is the open-circuit voltage induced between the terminals of the antenna,

is the antenna impedance, and is the load impedance, we
note that the time-average power delivered to the matched load is

(9.54)

For a Hertzian dipole of length l, the open-circuit voltage is

(9.55)

where is the electric field of an incident wave linearly polarized parallel to the dipole
axis. Substituting (9.55) into (9.54), we get

(9.56)

For a lossless dipole, so that

(9.57)

The time-average power density at the antenna is

(9.58)
ƒE– ƒ2
2h0

=
ƒE– ƒ2

240p

PR =
ƒE– ƒ2l2

640p2

RA = Rrad = 80p21l>l22,PR =
ƒE– ƒ2l2

8RA

E
–

V
–

oc = E
–

l

PR = 1
2

  a ƒV–oc ƒ
2RA
b2

RA =
ƒV–oc ƒ2
8RA

Z – L = Z – A
*Z – A = RA + jXA

V – oc

Ae

y = 200>tan 5°
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9.6 Receiving Properties 367

Thus, the effective area is

(9.59)

or

(9.60)

In practice, is greater than due to losses in the antenna, and the effective area
is less than that given by (9.60). Rewriting (9.59) as

and recalling that the directivity of the Hertzian dipole is 1.5, we observe that

(9.61)

Although we have obtained this result for a Hertzian dipole, it can be shown that it
holds for any antenna.

We shall now derive the Friis transmission formula, an important equation in mak-
ing communication link calculations. To do this, let us consider two antennas, one trans-
mitting and the other receiving, separated by a distance d. Let us assume that the
antennas are oriented and polarization matched so as to maximize the received signal.
Then if is the transmitter power radiated by the transmitting antenna, the power
density at the receiving antenna is where is the directivity of the
transmitting antenna. The power received by a matched load connected to the terminals
of the receiving antenna is then given by

(9.62)

where is the effective area of the receiving antenna. Thus, the ratio of to is
given by

(9.63)

Denoting to be the effective area of the transmitting antenna if it were receiving,
and using (9.61), we obtain

(9.64)

Equation (9.64) is the Friis transmission formula. It gives the maximum value of 
for a given d and for a given pair of transmitting and receiving antennas. If the antennas
are not oriented to receive the maximum signal, or if a polarization mismatch exists, or
if the receiving antenna is not matched to its load, would be less than that given
by (9.64). Losses in the antennas would also decrease the value of PR>PT.

PR>PT

PR>PT

PR

PT
=

AeTAeR

l2d2

AeT

PR

PT
=

DTAeR

4pd2

PTPRAeR

PR =
PTDT

4pd2 AeR

DT(PT>4pd2)DT,
PT

Ae = l
2

4p
D

Ae = 1.5 * l
2

4p

Rrad RA

Ae = 0.1194l2

Ae =
ƒE– ƒ2l2>640p2

ƒE– ƒ2>240p
= 3l2

8p
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368 Chapter 9 Antenna Basics

An alternative formula to (9.64) is obtained by substituting for in (9.63) in
terms of the directivity of the receiving antenna if it were used for transmitting.
Thus, we obtain

(9.65)

SUMMARY

In this chapter we studied the principles of antennas. We first introduced the Hertzian
dipole, which is an elemental wire antenna, and derived the complete electromagnetic
field due to the Hertzian dipole by employing an intuitive approach based on the
knowledge gained in the previous chapters. For a Hertzian dipole of length dl, oriented
along the z-axis at the origin, and carrying current

we found the complete electromagnetic field to be given by

where is the phase constant.
For or for the only important terms in the complete field

expressions are the terms, since the remaining terms are negligible compared to
these terms. Thus for the Hertzian dipole fields are given by

where is the intrinsic impedance of the medium. These fields, known as the
radiation fields, correspond to locally uniform plane waves radiating away from the
dipole and, in fact, are the only components of the complete fields contributing to
the time-average radiated power. We found the time-average power radiated by the
Hertzian dipole to be given by

and identified the quantity inside the brackets to be its radiation resistance. The radia-
tion resistance, of an antenna is the value of a fictitious resistor that will dissipateRrad,

8Prad9 = 1
2

 I0
2 c2ph

3
 adl
l
b2 d

h = 1m>P  H = -  
bI0 dl sin u

4pr
  sin 1vt - br2 af

 E = -  
hbI0 dl sin u

4pr
  sin 1vt - br2 au

r 77l>2p,
1>r r 77 l>2p,br 77 1

b = v1mP
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4p
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r2 -
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r
daf

+
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DTDRl
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Summary 369

the same amount of time-average power as that radiated by the antenna when a cur-
rent of the same peak amplitude as that in the antenna is passed through it. Thus, for
the Hertzian dipole,

We then examined the directional characteristics of the radiation fields of the Hertzian
dipole, as indicated by the factor in the field expressions and hence by the factor

for the power density. We discussed the radiation patterns and introduced the
concept of the directivity of an antenna. The directivity, D, of an antenna is defined as
the ratio of the maximum power density radiated by the antenna to the average power
density. For the Hertzian dipole,

For the general case of a power density pattern the directivity is given by

As an illustration of obtaining the radiation fields due to a wire antenna of arbi-
trary length and arbitrary current distribution by representing it as a series of Hertzian
dipoles and using superposition, we considered the example of a half-wave dipole and
derived its radiation fields. We found that for a center-fed half-wave dipole of length

oriented along the z-axis with its center at the origin, and having the current
distribution given by

the radiation fields are

From these, we sketched the radiation patterns and computed the radiation resistance
and the directivity of the half-wave dipole to be

We discussed antenna arrays and introduced the technique of obtaining the
resultant radiation pattern of an array by multiplication of the unit and the group pat-
terns. For an array of two antennas having the spacing d and fed with currents of equal

 D = 1.642
 Rrad = 73 ohms for free space

 H = -  
I0

2pr
   

cos [1p>22 cos u]

sin u
  sin avt - p

L
 rb  af

 E = -  
hI0

2pr
   

cos [1p>22 cos u]
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 rb  au
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2

 6 z 6 L
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370 Chapter 9 Antenna Basics

amplitude but differing in phase by we found the group pattern for the fields to be
where is the angle measured from the axis of the array, and

we investigated the group patterns for several pairs of values of d and For example,
for and the pattern corresponds to maximum radiation broadside to
the axis of the array,whereas for and the pattern corresponds to maximum
radiation endfire to the axis of the array.

To take into account the effect of ground on antennas, we introduced the concept
of an image antenna in a perfect conductor and discussed the application of the array
techniques in conjunction with the actual and the image antennas to obtain the radia-
tion pattern of the actual antenna in the presence of the ground.

Finally, we discussed receiving properties of antennas. In particular, (1) we dis-
cussed the reciprocity between the receiving and radiating properties of an antenna by
considering the simple case of a Hertzian dipole, (2) we considered the loop antenna
and illustrated the application of its directional properties for locating the source of a
radio signal, and (3) we introduced the effective area concept and derived the Friis
transmission formula.

a = p,d = l>2a = 0,d = l>2 a.
cƒ cos [1bd cos c + a2>2] ƒ ,
a,

REVIEW QUESTIONS

9.1. What is a Hertzian dipole?
9.2. Discuss the time-variations of the current and charges associated with the Hertzian

dipole.
9.3. Briefly describe the spherical coordinate system.
9.4. Explain why it is simpler to use the spherical coordinate system to find the fields due to

the Hertzian dipole.
9.5. Discuss the reasoning associated with the intuitive extension of the fields due to the

time-varying current and charges of the Hertzian dipole based on time-varying electro-
magnetic phenomena.

9.6. Explain the reason for the inconsistency with Maxwell’s equations of the intuitively
derived fields due to the time-varying current and charges of the Hertzian dipole.

9.7. Briefly outline the reasoning used for the removal of the inconsistency with Maxwell’s
equations of the intuitively derived fields due to the Hertzian dipole.

9.8. Discuss the characteristics of the complete electromagnetic field due to the Hertzian
dipole.

9.9. Consult an appropriate reference book and compare the procedure used for obtaining
the electromagnetic field due to the Hertzian dipole with the procedure used here.

9.10. What are radiation fields? Why are they important?
9.11. Discuss the characteristics of the radiation fields.
9.12. Define the radiation resistance of an antenna.
9.13. Why is the expression for the radiation resistance of a Hertzian dipole not valid for a

linear antenna of any length?
9.14. Explain why power lines are not effective radiators.
9.15. What is a radiation pattern?
9.16. Discuss the radiation pattern for the power density due to the Hertzian dipole.
9.17. Define the directivity of an antenna. What is the directivity of a Hertzian dipole?
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9.18. What is the directivity of a fictitious antenna that radiates equally in all directions into
one hemisphere?

9.19. How do you find the radiation fields due to an antenna of arbitrary length and arbitrary
current distribution?

9.20. Discuss the evolution of the half-wave dipole from an open-circuited transmission line.
9.21. Justify the approximations involved in evaluating the integrals in the determination of

the radiation fields due to the half-wave dipole.
9.22. What are the values of the radiation resistance and the directivity for a half-wave

dipole?
9.23. What is an antenna array?
9.24. Justify the approximations involved in the determination of the resultant field of an

array of two antennas.
9.25. Why is it that the distances and in the phase factors in equations (8.47a) and

(8.47b) cannot be set equal to r, but the same quantities in the amplitude factors can be
set equal to r?

9.26. What is an array factor? Provide a physical explanation for the array factor.
9.27. Discuss the concept of unit and group patterns and their multiplication to obtain the

resultant pattern of an array.
9.28. Distinguish between broadside and endfire radiation patterns.
9.29. Discuss the concept of an image antenna to find the field of an antenna in the vicinity of

a perfect conductor.
9.30. What determines the sense of the current flow in an image antenna relative to that in

the actual antenna?
9.31. How does the concept of an image antenna simplify the determination of the radiation

pattern of an antenna above a perfect-conductor surface?
9.32. Discuss the reciprocity associated with the transmitting and receiving properties of an

antenna. Can you think of a situation in which reciprocity does not hold?
9.33. What is the receiving pattern of a loop antenna?
9.34. How should you orient a loop antenna to receive (a) a maximum signal and (b) a mini-

mum signal?
9.35. Discuss the application of the directional receiving properties of a loop antenna in the

location of the source of a radio signal.
9.36. How is the effective area of a receiving antenna defined?
9.37. Outline the derivation of the expression for the effective area of a Hertzian dipole.
9.38. Discuss the derivation of the Friis transmission formula.

r2r1

PROBLEMS

9.1. The electric dipole moment associated with a Hertzian dipole of length 0.1 m is given by

Find the current in the dipole.
9.2. Evaluate the curl of E given by equation (9.12a) and show that it is not equal to 

where H is given by equation (9.12b).
-m0H

 0t
 ,

p = 10-9  sin 2p * 107 t az  C-m
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372 Chapter 9 Antenna Basics

9.3. Show that in the limit the complete field expressions given by equations (9.23a)
and (9.23b) tend to equations (9.12a) and (9.12b), respectively.

9.4. Show that the radiation fields given by equations (9.25a) and (9.25b) do not by them-
selves satisfy both of Maxwell’s curl equations.

9.5. Find the value of r at which the amplitude of the radiation field term in equation (9.23a)
is equal to the resultant amplitude of the remaining two terms in the -component.

9.6. Obtain the Poynting vector corresponding to the complete electromagnetic field due to
the Hertzian dipole and show that the and terms do not contribute to the time-
average power flow from the dipole.

9.7. A straight wire of length 1 m situated in free space carries a uniform current
A. (a) Calculate the amplitude of the electric field intensity at a dis-

tance of 10 km in a direction at right angle to the wire. (b) Calculate the radiation resis-
tance and the time-average power radiated by the wire.

9.8. Compute the radiation resistance per kilometer length of a straight power-line wire.
Comment on the effectiveness of the power line as a radiator.

9.9. Find the time-average power required to be radiated by a Hertzian dipole in order to
produce an electric field intensity of peak amplitude 0.01 V/m at a distance of 1 km
broadside to the dipole.

9.10. A Hertzian dipole situated at the origin and oriented along the x-axis carries a current
A second Hertzian dipole, having the same length and also situated at

the origin but oriented along the z-axis, carries a current Find the polari-
zation of the radiated electric field at (a) a point on the x-axis, (b) a point on the z-axis,
(c) a point on the y-axis, and (d) a point on the line 

9.11. Find the ratio of the currents in two antennas having directivities and and radia-
tion resistances and for which the maximum radiated power densities are
equal.

9.12. The radiation pattern for the power density of an antenna located at the origin is depen-
dent on in the manner . Find the directivity of the antenna.

9.13. The radiation pattern for the power density of an antenna located at the origin is depen-
dent on in the manner

Find the directivity of the antenna.
9.14. In Figure 9.7, let , and investigate the variations of and for

for (a) a point in the xy-plane at km and (b) a point on the
z-axis at km.

9.15. By dividing the interval into nine equal parts, numerically compute the
value of

9.16. Complete the missing steps in the evaluation of the integral in equation (9.39a).
9.17. Find the time-average power required to be radiated by a half-wave dipole in order to

produce an electric field intensity of peak amplitude 0.01 V/m at a distance of 1 km
broadside to the dipole.

L
p>2
u = 0

  
cos2 [(p>2) cos u]

sin u
 du

0 6 u 6 p>2r = 1
r = 1-L>2 6 z¿ 6 L>2 pr¿>Lr¿L = 2 m

f(u, f) = e csc2 u  for p>6 … u … p>2
0  otherwise

 

u

sin4 uu

Rrad 2Rrad 1

D2D1

x = y, z = 0.

I2 = I0 sin vt.
I1 = I0 cos vt.

10 cos 4p * 106t

1>r21>r3

u

v: 0,
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9.18. Compare the correct value of the radiation resistance of the half-wave dipole with the
incorrect value that would result from using the expression for the radiation resistance
of the Hertzian dipole.

9.19. A short dipole is a center-fed straight wire antenna having a length that is small com-
pared to a wavelength. The amplitude of the current distribution can then be approxi-
mated as decreasing linearly from a maximum at the center to zero at the ends. Thus, for
a short dipole of length L lying along the z-axis between and , the
current distribution is given by

(a) Obtain the radiation fields of the short dipole. (b) Find the radiation resistance and
the directivity of the short dipole.

9.20. For the array of two antennas of Example 9.2, find and sketch the group patterns for
(a) and (b) 

9.21. For the array of two antennas of Example 9.2, having , find the value of for
which the maxima of the group pattern are directed along , and then sketch
the group pattern.

9.22. Obtain the resultant pattern for a linear array of eight isotropic antennas, spaced 
apart, carrying equal currents, and fed in phase.

9.23. Obtain the resultant pattern for a linear array of three isotropic antennas, spaced 
apart, carrying unequal currents in the ratio 1 : 2 : 1, and fed in phase.

9.24. For the array of two Hertzian dipoles of Figure 9.9, find and sketch the resultant pattern
in the xz-plane for and 

9.25. For the array of two Hertzian dipoles of Figure 9.9, find and sketch the resultant pattern
in the xz-plane for and 

9.26. For a horizontal Hertzian dipole at a height above a plane, perfect-conductor sur-
face, find and sketch the radiation pattern in (a) the vertical plane perpendicular to the
axis of the antenna and (b) the vertical plane containing the axis of the antenna.

9.27. For a vertical antenna of length above a plane, perfect-conductor surface, find
(a) the radiation pattern in the vertical plane and (b) the directivity.

9.28. A Hertzian dipole is situated parallel to a corner reflector, which is an arrangement of
two plane, perfect conductors at right angles to each other, as shown by the cross-
sectional view in Figure 9.19. (a) Locate the image antennas required to satisfy the
boundary conditions on the corner reflector surface. (b) Find and sketch the radiation
pattern in the cross-sectional plane.

l>4
l>4a = -p>2.d = l>4 a = p.d = l>2

l>2l>2
c = ;60°

ad = l>4d = 2l, a = 0.d = l>4, a = p>2

I(z) = d I0a1 + 2z
 L
b  cos vt  for  - L

 2
 6 z 6 0

 I0a1 - 2z
 L
b  cos vt  for  0 6 z 6 L

 2
 

z = L>2z = -L>2

l_
4

l_
4

Hertzian
Dipole

FIGURE 9.19

For Problem 9.28.
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9.29. If the Hertzian dipole in Figure 9.19 is situated at a distance from the corner and
equidistant from the two planes, find the ratio of the radiation field at a point broadside
to the dipole and away from the corner to the radiation field in the absence of the corner
reflector.

9.30. An arrangement of two identical Hertzian dipoles situated at the origin and oriented
along the x- and y-axes, known as the turnstile antenna, is used for receiving circularly
polarized signals arriving along the z-axis. Determine how you would combine the volt-
ages induced in the two dipoles so that the turnstile antenna is responsive to circular
polarization rotating in the clockwise sense as viewed by the antenna but not to that of
the counterclockwise sense of rotation.

9.31. A vertical loop antenna of area is situated at a distance of 10 km from a vertical
wire antenna of length above a perfectly conducting ground see
Problem 9.27) radiating at 2 MHz. The loop antenna is oriented so as to maximize the
signal induced in it. For a time-average radiated power of 10 kW, find the amplitude of
the voltage induced in the loop antenna.

9.32. An interferometer consists of an array of two identical antennas with spacing d.Show that
for a uniform plane wave incident on the array at an angle to the axis of the array, as
shown in Figure 9.20, the phase difference between the voltage induced in antenna 1
and the voltage induced in antenna 2 is where is the wavelength of the
incident wave. For and for find all possible values of . Take into
account the fact that the phase measurement is ambiguous by the amount where n
is an integer.

;2np,
c¢f = 30°,d = 2l

l(2pd>l) cos c,
¢f

c

(directivity = 3.28;l>4 1 m2

l>2

2 1
d

cFIGURE 9.20

For Problem 9.32.

9.33. A communication link at a frequency of 30 MHz uses a half-wave dipole for the trans-
mitting antenna and a small loop (directivity equal to 1.5) for the receiving antenna,
involving a distance of 100 km. The antennas are oriented so as to receive maximum sig-
nal and the receiving antenna is matched to its load. If the received time-average power
is to be , find the minimum required value of the maximum amplitude of the
current with which the transmitting antenna has to be excited. Assume the antennas to
be lossless.

I01 mW
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