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CHAPTER 

8
Waveguide Principles

In Chapter 6, we introduced transmission lines, and in Chapter 7, we studied their
analysis. We learned that transmission lines are made up of two (or more) parallel
conductors. In this chapter, we shall learn the principles of waveguides in which guiding
of waves is accomplished by the bouncing of waves obliquely within the guide, as com-
pared to the case of a transmission line in which the waves slide parallel to the conduc-
tors of the line.

We shall introduce waveguides by first considering a parallel-plate waveguide,
that is, a waveguide consisting of two parallel, plane conductors and then extend it to
the rectangular waveguide, which is a hollow metallic pipe of rectangular cross section,
a common form of waveguide. We shall learn that waveguides are characterized by cut-
off, which is the phenomenon of no propagation in a certain range of frequencies, and
dispersion, which is the phenomenon of propagating waves of different frequencies
possessing different phase velocities along the waveguide. In connection with the latter
characteristic, we shall introduce the concept of group velocity. We shall also discuss
the principles of cavity resonators, the microwave counterparts of resonant circuits,
and of optical waveguides.

We shall study the topic of reflection and refraction of plane waves at an inter-
face between two dielectrics, and finally introduce the dielectric slab waveguide, based
on the phenomenon of total internal reflection at the interface, when the angle of inci-
dence of the wave on the interface is greater than a certain critical value.

8.1 UNIFORM PLANE WAVE PROPAGATION IN AN ARBITRARY DIRECTION

In Chapter 4, we introduced the uniform plane wave propagating in the z-direction by
considering an infinite plane current sheet lying in the xy-plane. If the current sheet lies
in a plane making an angle to the xy-plane, the uniform plane wave would then propa-
gate in a direction different from the z-direction. Thus, let us consider a uniform plane
wave propagating in the -direction making an angle with the negative x-axis, as
shown in Figure 8.1. Let the electric field of the wave be entirely in the y-direction. The
magnetic field would then be directed as shown in the figure so that points in
the -direction.z¿

E : H

uz¿
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FIGURE 8.1

Uniform plane wave propagating in the -direction lying in the xz-plane and making 
an angle with the negative x-axis.u

z¿

We can write the expression for the electric field of the wave as

(8.1)

where is the phase constant, that is, the rate of change of phase with dis-
tance along the -direction for a fixed value of time. From the construction of
Figure 8.2(a), we, however, have

(8.2)

so that

(8.3) = E0 cos (vt - bxx - bzz) ay 

 = E0 cos [vt - (-b cos u)x - (b sin u)z] ay 

 E = E0 cos [vt - b(-x cos u + z sin u)] ay 

z¿ = -x cos u + z sin u

z¿
b = v1mP 

E = E0 cos (vt - bz¿) ay 

z

x
(a) (b)

z

z!
z sin u

(x, z)

" x cos u

u

u

u
u u

u
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FIGURE 8.2

Constructions pertinent to the formulation of the expressions for the fields of the uniform
plane wave of Figure 8.1.
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292 Chapter 8 Waveguide Principles

where and are the phase constants in the positive x- and
positive z-directions, respectively.

We note that and are less than , the phase constant along the direction
of propagation of the wave. This can also be seen from Figure 8.1, in which two con-
stant phase surfaces are shown by dashed lines passing through the points O and A
on the -axis. Since the distance along the x-direction between the two constant phase
surfaces, that is, the distance OB is equal to , the rate of change of phase with
distance along the x-direction is equal to

The minus sign for simply signifies the fact that insofar as the x-axis is concerned,
the wave is progressing in the negative x-direction. Similarly, since the distance along the
z-direction between the two constant phase surfaces, that is, the distance OC is equal to

, the rate of change of phase with distance along the z-direction is equal to

Since the wave is progressing along the positive z-direction, is positive. We further
note that

(8.4)

and that

(8.5)

where is the unit vector directed along -direction, as shown in Figure 8.2(b). Thus,
the vector

(8.6)

defines completely the direction of propagation and the phase constant along the
direction of propagation. Hence, the vector is known as the propagation vector.

The expression for the magnetic field of the wave can be written as

(8.7)

where

(8.8)

since the ratio of the electric field intensity to the magnetic field intensity of a uniform
plane wave is equal to the intrinsic impedance of the medium. From the construction in
Figure 8.2(b), we observe that

(8.9)H0 = H0(-sin u ax - cos u az)

ƒH0 ƒ =
E01m>P =

E0

h

H = H0 cos (vt - bz¿)

!

! = (-b cos u)ax + (b sin u)az = bxax + bzaz

z¿az¿

-cos u ax + sin u az = az¿

b2
x + b2

z = (-b cos u)2 + (b sin u)2 = b2

bz

b
OA
OC

 =
b(OA)

OA>sin u
 = b sin u

OA>sin u

bx

b
OA
OB

 =
b(OA)

OA>cos u
 = b cos u

OA>cos u
z¿

bƒbz ƒƒbx ƒ

bz = b sin ubx = -b cos u
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8.1 Uniform Plane Wave Propagation in an Arbitrary Direction 293

Thus, using (8.9) and substituting for from (8.2), we obtain

(8.10)

Generalizing the foregoing treatment to the case of a uniform plane wave propa-
gating in a completely arbitrary direction in three dimensions, as shown in Figure 8.3,
and characterized by phase constants , , and in the x-, y-, and z-directions,
respectively, we can write the expression for the electric field as

(8.11)

where

(8.12)

is the propagation vector,

(8.13)r = xax + yay + zaz

! = bxax + byay + bzaz

 = E0 cos (vt - ! # r + f0)

 = E0 cos [vt - (bxax + byay + bzaz) # (xax + yay + zaz) + f0]
 E = E0 cos (vt - bxx - byy - bzz + f0)

bzbybx

 = -
E0

h
 (sin u ax + cos u az) cos [vt - bxx - bzz]

 H = H0(-sin u ax - cos u az) cos [vt - b(-x cos u + z sin u)]

z¿

x

z

Constant Phase Surface
Phase # f

lx

lz

ly

l

y
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Phase # f "  2p

H
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!

FIGURE 8.3

The various quantities associated with a uniform plane wave propagating in an arbitrary
direction.
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294 Chapter 8 Waveguide Principles

is the position vector, and is the phase at the origin at . The position vector is
the vector drawn from the origin to the point (x, y, z) and hence has components x, y,
and z along the x-, y-, and z-axes, respectively. The expression for the magnetic field of
the wave is then given by

(8.14)

where

(8.15)

Since E, H, and the direction of propagation are mutually perpendicular to each other,
it follows that

(8.16a)

(8.16b)

(8.16c)

In particular, should be directed along the propagation vector as illustrated
in Figure 8.3, so that is directed along We can therefore combine the facts
(8.16) and (8.15) to obtain

(8.17)

where is the unit vector along . Thus,

(8.18)

Returning to Figure 8.3, we can define several quantities pertinent to the uniform
plane wave propagation in an arbitrary direction. The apparent wavelengths , ,
and along the coordinate axes x, y, and z, respectively, are the distances measured
along those respective axes between two consecutive constant phase surfaces between
which the phase difference is 2 , as shown in the figure, at a fixed time. From the inter-
pretations of , , and as being the phase constants along the x-, y-, and z-axes,
respectively, we have

(8.19a)

(8.19b)

(8.19c)lz = 2p
bz

ly = 2p
by

lx = 2p
bx

bzbybx

p

lz

lylx

H = 1
vm

! : E

!ab

 =
bab : E0

vm
=

! : E0

vm

 H0 =
ab : E0

h
=

ab : E01m>P =
v1mPab : E0

vm

H0.! : E0

!E : H

 E0 # H0 = 0

 H0 # ! = 0

 E0 # ! = 0

ƒH0 ƒ =
ƒE0 ƒ
h

H = H0 cos (vt - ! # r + f0)

t = 0f0
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8.1 Uniform Plane Wave Propagation in an Arbitrary Direction 295

We note that the wavelength along the direction of propagation is related to , ,
and in the manner

(8.20)

The apparent phase velocities , , and along the x-, y-, and z-axes, respectively,
are the velocities with which the phase of the wave progresses with time along the
respective axes. Thus,

(8.21a)

(8.21b)

(8.21c)

The phase velocity along the direction of propagation is related to , , and in
the manner

(8.22)

The apparent wavelengths and phase velocities along the coordinate axes are
greater than the actual wavelength and phase velocity, respectively, along the direction
of propagation of the wave. This fact can be understood physically by considering, for
example, water waves in an ocean striking the shore at an angle. The distance along the
shoreline between two successive crests is greater than the distance between the same
two crests measured along a line normal to the orientation of the crests. Also, an
observer has to run faster along the shoreline in order to keep pace with a particular
crest than he has to do in a direction normal to the orientation of the crests. We shall
now consider an example.

Example 8.1

Let us consider a 30-MHz uniform plane wave propagating in free space and given by the elec-
tric field vector

E = 5(ax + 13ay) cos [6p * 107t - 0.05p(3x - 13y + 2z)] V/m

 = 1
vpx

2 + 1
vpy

2 + 1
vpz

2

 
1
vp

2 = 1
(v>b)2 =

b2

v2 =
bx

2 + by
2 + b2

z

v2

vpzvpyvpxvp

 vpz = v
bz

 vpy = v
by

 vpx = v
bx

vpzvpyvpx

 = 1
l2

x
+ 1
l2

y
+ 1
l2

z

 
1
l2 = 1

(2p>b)2 =
b2

4p2 =
b2

x + b2
y + b2

z

4p2

lz

lylxl
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296 Chapter 8 Waveguide Principles

Then comparing with the general expression for E given by (8.11), we have

Hence, (8.16a) is satisfied; is perpendicular to .

This does correspond to a frequency of Hz or 30 MHz in free space. The direction
of propagation is along the unit vector

From (8.17),

Thus,

To verify the expression for H just derived, we note that

 = 0.05
48

(-313 - 13 + 413) = 0

 H0 # ! = c 1
48p

(- 13ax + ay + 213az) d # [0.05p(3ax - 13ay + 2az)]

H = 1
48p

(- 13ax + ay + 213az) cos [6p * 107t - 0.05p(3x - 13y + 2z)] A/m

 = 1
48p

(- 13ax + ay + 213az)

 = 1
96p †ax ay az

3 - 13 2
1 13 0

†
 = 0.05p * 5

6p * 107 * 4p * 10-7 (3ax - 13ay + 2az) : (ax + 13ay)

 H0 = 1
vm0

! : E0

ab =
!

ƒ ! ƒ
=

3ax - 13ay + 2az19 + 3 + 4
= 3

4
ax - 13

4
ay + 1

2
az

(3 * 108)>10

l = 2p
b

= 2p
0.2p

= 10 m

b = ƒ ! ƒ = 0.05p ƒ3ax - 13ay + 2az ƒ = 0.05p19 + 3 + 4 = 0.2p

!E0

 = 0.25p(3 - 3) = 0

 ! # E0 = 0.05p(3ax - 13ay + 2az) # 5(ax + 13ay)

 ! = 0.05p(3ax - 13ay + 2az)

 = 0.05p(3ax - 13ay + 2az) # (xax + yay + zaz)

 ! # r = 0.05p(3x - 13y + 2z)

 E0 = 5(ax + 13ay)
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8.1 Uniform Plane Wave Propagation in an Arbitrary Direction 297

Hence, (8.16b), (8.16c), and (8.15) are satisfied.
Proceeding further, we find that

We then obtain

Finally, to verify (8.20) and (8.22), we note that

and

 = 1

9 * 1016
= 113 * 10822 = 1

v2
p

 = 1

16 * 1016
+ 1

48 * 1016
+ 1

36 * 1016

 
1

v2
px

+ 1
v2

py
+ 1

v2
pz

= 114 * 10822 + 11413 * 10822 + 116 * 10822
 = 9

1600
+ 3

1600
+ 4

1600
= 1

100
= 1

102 = 1
l2

 
1
l2

x
+ 1
l2

y
+ 1
l2

z
= 1140>322 + 1140>1322 + 1

202

vpz = v
bz

= 6p * 107

0.1p
= 6 * 108 m/s

vpy = v

ƒby ƒ
= 6p * 107

0.0513p
= 413 * 108 m/s = 6.928 * 108 m/s

vpx = v
bx

= 6p * 107

0.15p
= 4 * 108 m/s

lz = 2p
bz

= 2p
0.1p

= 20 m

ly = 2p

ƒby ƒ
= 2p

0.0513p
= 4013

 m = 23.094 m

lx = 2p
bx

= 2p
0.15p

= 40
3

 m = 13.333 m

bz = 0.05p * 2 = 0.1p

by = -0.05p * 13 = -0.0513p

bx = 0.05p * 3 = 0.15p

 = 10
1>12p

= 120p = h0

 
ƒ E0 ƒ
ƒ H0 ƒ

=
5 ƒax + 13ay ƒ

(1>48p) ƒ - 13ax + ay + 213az ƒ
= 511 + 3

(1>48p)13 + 1 + 12

 = 5
48p

(- 13 + 13) = 0

 E0 # H0 = 5(ax + 13ay) # 1
48p

(- 13ax + ay + 213az)
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298 Chapter 8 Waveguide Principles

8.2 TRANSVERSE ELECTRIC WAVES IN A PARALLEL-PLATE WAVEGUIDE

Let us now consider the superposition of two uniform plane waves propagating sym-
metrically with respect to the z-axis, as shown in Figure 8.4, and having the electric
fields

(8.23a)

(8.23b) = -E0 cos 1vt - bx cos u - bz sin u2 ay

 E2 = -E0 cos 1vt - !2 # r2 ay

 = E0 cos 1vt + bx cos u - bz sin u2 ay

 E1 = E0 cos 1vt - !1 # r2 ay

z

x

x

zy

uuH1

H2

E1

E2

B2

B1

FIGURE 8.4

Superposition of two uniform plane waves propagating symmetrically with respect to
the z-axis.

where with and being the permittivity and the permeability, respectively,
of the medium. The corresponding magnetic fields are given by

(8.24a)

(8.24b)

where The electric and magnetic fields of the superposition of the two
waves are given by

(8.25a) = -2E0 sin 1bx cos u2 sin 1vt - bz sin u2ay

 -  cos 1vt - bz sin u - bx cos u24ay

 = E03cos 1vt - bz sin u + bx cos u2 E = E1 + E2

h = 1m>P.

H2 =
E0

h
1sin u ax - cos u az2 cos1vt - bx cos u - bz sin u2

H1 =
E0

h
1-sin u ax - cos u az2 cos1vt + bx cos u - bz sin u2

mPb = v1mP,
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8.2 Transverse Electric Waves in a Parallel-Plate Waveguide 299

(8.25b)

In view of the factors sin ( ) and cos ( ) for the x-dependence and
the factors sin ( ) and cos ( ) for the z-dependence, the com-
posite fields have standing wave character in the x-direction and traveling wave char-
acter in the z-direction. Thus, we have standing waves in the x-direction moving bodily
in the z-direction, as illustrated in Figure 8.5, by considering the electric field for two
different times. In fact, we find that the Poynting vector is given by

(8.26)

The time-average Poynting vector is given by

(8.27)

Thus, the time-average power flow is entirely in the z-direction, thereby verifying our
interpretation of the field expressions. Since the composite electric field is directed
entirely transverse to the z-direction, that is, the direction of time-average power flow,
whereas the composite magnetic field is not, the composite wave is known as the
transverse electric, or TE wave.

 =
2E2

0

h
 sin u sin2 (bx cos u) az

 +  
E2

0

h
 cos u sin (2bx cos u) 8sin 2(vt - bz sin u)9ax

 8P9 =
4E2

0

h
 sin u sin2 (bx cos u) 8sin2 (vt - bz sin u)9az

 +  
E2

0

h
 cos u sin (2bx cos u) sin 2(vt - bz sin u) ax

 =
4E2

0

h
 sin u sin2 (bx cos u) sin2 (vt - bz sin u) az

 = -EyHxaz + EyHzax 

 P = E : H = Eyay : (Hxax + Hzaz)

vt - bz sin uvt - bz sin u
bx cos ubx cos u

 -  
2E0

h
 cos u cos 1bx cos u2 cos1vt - bz sin u2 az

 =
2E0

h
 sin u sin 1bx cos u2 sin1vt - bz sin u2 ax

 +  cos 1vt - bz sin u - bx cos u24az

 -  
E0

h
 cos u 3cos1vt - bz sin u + bx cos u2 -  cos 1vt - bz sin u - bx cos u24ax

 = -
E0

h
 sin u 3cos1vt - bz sin u + bx cos u2H = H1 + H2
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x # 2p
b cos u

p
4v

x # 3p
b cos u

x # 0

t # 

z

x

y
z 

#
p

b
 s

in
 u

z 
#

 0

z 
#

p
2b

 s
in

 u

z 
#

2p
b

 s
in

 u

z 
#

3p
2b

 s
in

 u

z 
#

p
b

 s
in

 u

z 
#

 0

z 
#

p
2b

 s
in

 u

z 
#

2p
b

 s
in

 u

z 
#

3p
2b

 s
in

 u

FIGURE 8.5

Standing waves in the x-direction moving bodily in the z-direction.
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8.2 Transverse Electric Waves in a Parallel-Plate Waveguide 301

From the expressions for the fields for the TE wave given by (8.25a) and (8.25b),
we note that the electric field is zero for sin ( ) equal to zero, or

(8.28)

where

Thus, if we place perfectly conducting sheets in these planes, the waves will propagate
undisturbed, that is, as though the sheets were not present, since the boundary condi-
tion that the tangential component of the electric field be zero on the surface of a per-
fect conductor is satisfied in these planes. The boundary condition that the normal
component of the magnetic field be zero on the surface of a perfect conductor is also
satisfied since is zero in these planes.

If we consider any two adjacent sheets, the situation is actually one of uniform
plane waves bouncing obliquely between the sheets, as illustrated in Figure 8.6 for two
sheets in the planes and , thereby guiding the wave and hence
the energy in the z-direction, parallel to the plates. Thus, we have a parallel-plate wave-
guide, as compared to the parallel-plate transmission line in which the uniform plane
wave slides parallel to the plates. We note from the constant phase surfaces of the
obliquely bouncing wave shown in Figure 8.6 that is simply one-half of
the apparent wavelength of that wave in the x-direction, that is, normal to the plates.
Thus, the fields have one-half apparent wavelength in the x-direction. If we place the
perfectly conducting sheets in the planes and , the fields will
then have m number of one-half apparent wavelengths in the x-direction between the
plates. The fields have no variations in the y-direction. Thus, the fields are said to
correspond to modes, where the subscript m refers to the x-direction, denoting
m number of one-half apparent wavelengths in that direction and the subscript 0 refers
to the y-direction, denoting zero number of one-half apparent wavelengths in that
direction.

TEm, 0

x = ml>(2 cos u)x = 0

l>(2 cos u)

x = l>(2 cos u)x = 0

Hx

l = 2p
b

= 2p
v1mP

= 1
f1mP

x = ; mp
b cos u

= ; ml
2 cos u

,    m = 0, 1, 2, 3, Á

bx cos u = ;mp,    m = 0, 1, 2, 3, Á
bx cos u

l

2 cos u
x =

x # 0

u u u u

x

z
y

u uu u

l

2

FIGURE 8.6

Uniform plane waves bouncing obliquely between two parallel plane perfectly
conducting sheets.
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302 Chapter 8 Waveguide Principles

(a)

x # 0

x # a

(c)

(e)

(b)

(d)

(f)

FIGURE 8.7

For illustrating the
phenomenon of cutoff
in a parallel-plate
waveguide.

Thus, waves of different wavelengths (or frequencies) bounce obliquely between the
plates at different values of the angle . For very small wavelengths (very high fre-
quencies), is small, , and the waves simply slide between the
plates as in the case of the transmission line, as shown in Figure 8.7(b). As increases
(f decreases), increases, decreases, and the waves bounce more and more
obliquely, as shown in Figure 8.7(c)–(e), until becomes equal to , for which

, and the waves simply bounce back and forth normally to the plates,
as shown in Figure 8.7(f), without any feeling of being guided parallel to the plates. For

and has no real solution, indicating that propaga-
tion does not occur for these wavelengths in the waveguide mode. This condition is
known as the cutoff condition.

The cutoff wavelength, denoted by the symbol is given by

(8.30)

This is simply the wavelength for which the spacing a is equal to m number of one-half
wavelengths. Propagation of a particular mode is possible only if is less than the value
of for that mode. The cutoff frequency is given by

(8.31)fc = m
2a1mP

lc

l

lc = 2a
m

lc,

ul 7 2a>m, ml>2a 7 1, cos u 7 1,

cos u = 1, u = 0°
2a>ml

uml>2a
l

cos u L 0, u L 90°ml>2a
u

Let us now consider a parallel-plate waveguide with perfectly conducting plates sit-
uated in the planes and , that is, having a fixed spacing a between them, as
shown in Figure 8.7(a). Then, for waves guided by the plates, we have from (8.28),

or

(8.29)cos u = ml
2a

= m
2a

 
1

f1mP

a = ml
2 cos u

TEm,0

x = ax = 0
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8.2 Transverse Electric Waves in a Parallel-Plate Waveguide 303

Propagation of a particular mode is possible only if f is greater than the value of for
that mode. Consequently, waves of a given frequency f can propagate in all modes for
which the cutoff wavelengths are greater than the wavelength or the cutoff frequencies
are less than the frequency.

Substituting for in (8.29), we have

(8.32a)

(8.32b)

(8.32c)

(8.32d)

We see from (8.32d) that the phase constant along the z-direction, that is, , is
real for and imaginary for , thereby explaining once again the cutoff
phenomenon. We now define the guide wavelength, , to be the wavelength in the 
z-direction, that is, along the guide. This is given by

(8.33)

This is simply the apparent wavelength, in the z-direction, of the obliquely bouncing uni-
form plane waves. The phase velocity along the guide axis, which is simply the apparent
phase velocity, in the z-direction, of the obliquely bouncing uniform plane waves, is

(8.34)

We note that the phase velocity along the guide axis is a function of frequency and
hence the propagation along the guide axis is characterized by dispersion. The topic of
dispersion is discussed in the next section.

Finally, substituting (8.32a)–(8.32d) in the field expressions (8.25a) and (8.25b),
we obtain

(8.35a)

(8.35b)

These expressions for the mode fields in the parallel-plate waveguide do not
contain the angle . They clearly indicate the standing wave character of the fields in
the x-direction, having m one-half sinusoidal variations between the plates. We shall
now consider an example.

u
TEm,0

 -
2E0

h
 
l

lc
 cos ampx

a
b  cos avt - 2p

lg
zb  az

 H =
2E0

h
 
l

lg
 sin a mpx

a
b  sin avt - 2p

lg
zb  ax

 E = -2E0 sin a mpx
a
b  sin avt - 2p

lg
zb  ay

vpz = v

b sin u
=

vp

sin u
=

vp21 - (l>lc)2
=

vp21 - (fc>f)2

lg = 2p
b sin u

= l21 - (l>lc)2
= l21 - (fc>f)2

lg

l 7 lcl 6 lc

b sin u

 b sin u = 2p
l B1 - a l

lc
b2

 b cos u = 2p
l

 
l

lc
= 2p
lc

= mp
a

 sin u = 21 - cos2 u = B1 - a l
lc
b2

= B1 - a fc

f
b2

 cos u = l
lc

=
fc

f

2a>mlc

fc
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304 Chapter 8 Waveguide Principles

Example 8.2

Let us assume the spacing a between the plates of a parallel-plate waveguide to be 5 cm and
investigate the propagating modes for 

From (8.30), the cutoff wavelengths for modes are given by

This result is independent of the dielectric between the plates. If the medium between the plates
is free space, then the cutoff frequencies for the modes are

For the propagating modes are 
and 

For each propagating mode, we can find and by using (8.32a), (8.33), and (8.34),
respectively. Values of these quantities are listed in the following:

vpzu, lg,
TE3,0(fc = 9 * 109 Hz).TE2, 0(fc = 6 * 109 Hz),

TE1,0(fc = 3 * 109 Hz),f = 10,000 MHz = 1010 Hz,

fc = 3 * 108

lc
= 3 * 108

0.1>m = 3m * 109 Hz

TEm,0

lc = 2a
m

= 10
m

 cm = 0.1
m

 m

TEm,0

f = 10,000 MHz.TEm,0

8.3 DISPERSION AND GROUP VELOCITY

In Section 8.2, we learned that for the propagating range of frequencies, the phase
velocity and the wavelength along the axis of the parallel-plate waveguide are given by

(8.36)

and

(8.37)

where and is the cutoff frequency. We note that
for a particular mode, the phase velocity of propagation along the guide axis varies
with the frequency. As a consequence of this characteristic of the guided wave propa-
gation, the field patterns of the different frequency components of a signal comprising
a band of frequencies do not maintain the same phase relationships as they propagate
down the guide. This phenomenon is known as dispersion, so termed after the phe-
nomenon of dispersion of colors by a prism.

To discuss dispersion, let us consider a simple example of two infinitely long
trains A and B traveling in parallel, one below the other, with each train made up of
boxcars of identical size and having wavy tops, as shown in Figure 8.8. Let the spacings
between the peaks (centers) of successive boxcars be 50 m and 90 m, and let the speeds

fcvp = 1>1mP, l = vp>f = 1>f1mP,

lg = l21 - (fc>f)2

vpz =
vp21 - (fc>f)2

Mode

10 3000 72.54 3.145
5 6000 53.13 3.75

3.33 9000 25.84 6.882 6.882 * 108TE3,0 
3.75 * 108TE2,0 
3.145 * 108TE1,0 

vpz, m/slg, cmu, degfc, MHzlc, cm
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FIGURE 8.8

For illustrating the concept of group velocity.

of the trains be 20 and 30 , for trains A and B, respectively. Let the peaks of the
cars numbered 0 for the two trains be aligned at time , as shown in Figure 8.8(a).
Now, as time progresses, the two peaks get out of alignment as shown, for example, for

s in Figure 8.8(b), since train B is traveling faster than train A. But at the same
time, the gap between the peaks of cars numbered decreases. This continues until at-1
t = 1

t = 0
m>sm>s
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306 Chapter 8 Waveguide Principles

s, the peak of car “ ” of train A having moved by a distance of 80 m aligns with
the peak of car “ ” of train B, which will have moved by a distance of 120 m, as shown
in Figure 8.8(c). For an observer following the movement of the two trains as a group,
the group appears to have moved by a distance of 30 m although the individual trains
will have moved by 80 m and 120 m, respectively. Thus, we can talk of a group velocity,
that is, the velocity with which the group as a whole is moving. In this case, the group
velocity is 30 s or 7.5 .

The situation in the case of the guided wave propagation of two different fre-
quencies in the parallel-plate waveguide is exactly similar to the two-train example just
discussed. The distance between the peaks of two successive cars is analogous to the
guide wavelength, and the speed of the train is analogous to the phase velocity along
the guide axis. Thus, let us consider the field patterns corresponding to two waves of
frequencies and propagating in the same mode, having guide wavelengths 
and and phase velocities along the guide axis and , respectively, as shown,
for example, for the electric field of the mode in Figure 8.9. Let the positive
peaks numbered 0 of the two patterns be aligned as shown in Figure 8.9(a). As
the individual waves travel with their respective phase velocities along the guide, these
two peaks get out of alignment but some time later, say the positive peaks num-
bered will align at some distance, say from the location of the alignment of the
“0” peaks, as shown in Figure 8.9(b). Since the “ ”th peak of wave A will have traveled
a distance with a phase velocity and the “ ”th peak of wave B will have
traveled a distance with a phase velocity in this time we have

(8.38a)

(8.38b)

Solving (8.38a) and (8.38b) for and we obtain

(8.39a)

and

(8.39b)

The group velocity, , is then given by

(8.40) =
fB - fA

1
lgB

- 1
lgA

=
vB - vA

bzB - bzA

 vg = ¢z
¢t

=
lgAvpzB - lgBvpzA

lgA - lgB
=
lgAlgBfB - lgBlgAfA

lgAlgBa 1
lgB

- 1
lgA
b

vg

¢z =
lgAvpzB - lgBvpzA

vpzA - vpzB

¢t =
lgA - lgB

vpzA - vpzB

¢z,¢t

 lgB + ¢z = vpzB ¢t

 lgA + ¢z = vpzA ¢t

¢t,vpzBlgB + ¢z
-1vpzAlgA + ¢z

-1
¢z,-1

¢t,

t = 0,
TE1, 0

vpzBvpzAlgB,
lgAfBfA

m>sm>4
-1

-1t = 4
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FIGURE 8.9

For illustrating the concept of group velocity for guided wave propagation.

where and are the phase constants along the guide axis, corresponding to 
and , respectively. Thus, the group velocity of a signal comprised of two frequencies
is the ratio of the difference between the two radian frequencies to the difference be-
tween the corresponding phase constants along the guide axis.

If we now have a signal comprised of a number of frequencies, then a value of
group velocity can be obtained for each pair of these frequencies in accordance with
(8.40). In general, these values of group velocity will all be different. In fact, this is the

fB

fAbzBbzA
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308 Chapter 8 Waveguide Principles

case for wave propagation in the parallel-plate guide, as can be seen from Figure 8.10,
which is a plot of versus corresponding to the parallel-plate guide for which

(8.41)

Such a plot is known as the diagram or the dispersion diagram.v–bz

bz = 2p
lg

= 2p
l

 A1 - a l
lc
b2

= v1mP A1 - a fc

f
b2

bzv

bz1 bz2 bz3
bz

v3

Slope # ypz

Slope # yg

v1

v2

v

vc

Slope #
mP
1

FIGURE 8.10

Dispersion diagram for the parallel-plate
waveguide.

The phase velocity, , for a particular frequency is given by the slope of the
line drawn from the origin to the point, on the dispersion curve, corresponding to that
frequency, as shown in the figure for the three frequencies , , and . The group
velocity for a particular pair of frequencies is given by the slope of the line joining
the two points, on the curve, corresponding to the two frequencies, as shown in the fig-
ure for the two pairs , and , . Since the curve is nonlinear, it can be seen that
the two group velocities are not equal. We cannot then attribute a particular value of
group velocity for the group of the three frequencies , , and .

If, however, the three frequencies are very close, as in the case of a narrow-band
signal, it is meaningful to assign a group velocity to the entire group having a value
equal to the slope of the tangent to the dispersion curve at the center frequency. Thus,
the group velocity corresponding to a narrow band of frequencies centered around a
predominant frequency is given by

(8.42)

For the parallel-plate waveguide under consideration, we have from (8.41),

 = 1mP a 1 -
fc

2

f2 b - 1>2
 = 1mP a 1 -

fc
2

f2 + v

2p
 
fc

2

f3 b a 1 -
fc

2

f2 b - 1>2
 
dbz

dv
= 1mP A1 - a fc

f
b2

+ v1mP #  
1
2
a 1 -

fc
2

f2 b - 1>2 fc
2

pf3

vg = dv
dbz

v

v3v2v1

v3v2v2v1

v3v2v1

v>bz
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8.3 Dispersion and Group Velocity 309

and

(8.43)

As a numerical example, for the case of Example 8.2, the group velocities for
for the three propagating modes , , and are

, , and , respectively. From (8.36) and
(8.43), we note that

(8.44)

An example of a narrow-band signal is an amplitude modulated signal, having a
carrier frequency modulated by a low frequency as given by

(8.45)

where m is the percentage modulation. Such a signal is actually equivalent to a super-
position of unmodulated signals of three frequencies , , and , as can
be seen by expanding the right side of (8.45). Thus

(8.46)

The frequencies and are the side frequencies. When the amplitude
modulated signal propagates in a dispersive channel such as the parallel-plate wave-
guide under consideration, the different frequency components undergo phase
changes in accordance with their respective phase constants. Thus, if , , and

are the phase constants corresponding to , , and , respec-
tively, assuming linearity of the dispersion curve within the narrow band, the amplitude
modulated wave is given by

(8.47)

This indicates that although the carrier frequency phase changes in accordance with the
phase constant , the modulation envelope and hence the information travels withbz

 = Ex0[1 + m cos (¢v # t - ¢bz
# z)] cos (vt - bzz)

 = Ex0 cos (vt - bzz) + mEx0 cos (vt - bzz) cos (¢v # t - ¢bz
# z)

 +  cos [(vt - bzz) + (¢v # t - ¢bz
# z)]} 

 +  
mEx0

2
 {cos [(vt - bzz) - (¢v # t - ¢bz

# z)]

 = Ex0 cos (vt - bzz)

 +  cos [(v + ¢v)t - (bz + ¢bz)z]}

 +  
mEx0

2
 {cos [(v - ¢v)t - (bz - ¢bz)z]

 Ex(z, t) = Ex0 cos (vt - bzz)

v + ¢vvv - ¢vbz + ¢bz

bzbz - ¢bz

v + ¢vv - ¢v

 = Ex0 cos vt +
mEx0

2
 [cos (v - ¢v)t + cos (v + ¢v)t]

 Ex(t) = Ex0 cos vt + mEx0 cos vt cos ¢v # t

v + ¢vvv - ¢v

Ex(t) = Ex0(1 + m cos ¢v # t) cos vt

¢v V v,v

vpzvg = v2
p

1.308 * 108 m/s2.40 * 108 m/s2.862 * 108 m/s
TE3,0TE2,0TE1,0f = 10,000 MHz

vg = dv
dbz

= 11mP
 A1 -

fc
2

f2 = vpA1 - a fc

f
b2
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$v
$bz

v
bz

FIGURE 8.11

For illustrating that the modulation envelope travels with the group velocity.

the group velocity , as shown in Figure 8.11. In view of this and since is less
than , the fact that is greater than is not a violation of the theory of relativity.
Since it is always necessary to use some modulation technique to convey information
from one point to another, the information always takes more time to reach from one
point to another in a dispersive channel than in the corresponding nondispersive medium.

vpvpzvp

vg¢v>¢bz

x # a y # 0

y = b

x # 0

Hx

Hz

Ey

x
z

y

FIGURE 8.12

A rectangular waveguide.

8.4 RECTANGULAR WAVEGUIDE AND CAVITY RESONATOR

Thus far, we have restricted our discussion to wave propagation in a parallel-
plate waveguide. From Section 8.2, we recall that the parallel-plate waveguide is made
up of two perfectly conducting sheets in the planes and and that the elec-
tric field of the mode has only a y-component with m number of one-half
sinusoidal variations in the x-direction and no variations in the y-direction. If we now
introduce two perfectly conducting sheets in two constant y-planes, say, and

, the field distribution will remain unaltered, since the electric field is entirely
normal to the plates, and hence the boundary condition of zero tangential electric field
is satisfied for both sheets. We then have a metallic pipe with rectangular cross section
in the xy-plane, as shown in Figure 8.12. Such a structure is known as the rectangular
waveguide and is, in fact, a common form of waveguide.

y = b
y = 0

TEm,0

x = ax = 0

TEm,0
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8.4 Rectangular Waveguide and Cavity Resonator 311

Since the mode field expressions derived for the parallel-plate waveguide
satisfy the boundary conditions for the rectangular waveguide, those expressions as
well as the entire discussion of the parallel-plate waveguide case hold also for 
mode propagation in the rectangular waveguide case. We learned that the 
modes can be interpreted as due to uniform plane waves having electric field in the
y-direction and bouncing obliquely between the conducting walls and ,
and with the associated cutoff condition characterized by bouncing of the waves back
and forth normally to these walls, as shown in Figure 8.13(a). For the cutoff condition,
the dimension a is equal to m number of one-half wavelengths such that

(8.48)[lc]TEm,0
= 2a

m

x = ax = 0

TEm,0

TEm,0

TEm,0

y
z

x

(a)

z
y

x

y
z

x

(b)

z
y

x

y

x

(c)

z
y

x
z

FIGURE 8.13

Propagation and cutoff of (a) , (b) , and (c) modes in a
rectangular waveguide.

TEm,nTE0,nTEm,0

In a similar manner, we can have uniform plane waves having electric field in the
x-direction and bouncing obliquely between the walls and , and with the
associated cutoff condition characterized by bouncing of the waves back and forth
normally to these walls, as shown in Figure 8.13(b), thereby resulting in modesTE0,n

y = by = 0

M08_RAO3333_1_SE_CHO8.QXD  4/9/08  2:39 PM  Page 311



312 Chapter 8 Waveguide Principles

having no variations in the x-direction and n number of one-half sinusoidal variations
in the y-direction. For the cutoff condition, the dimension bis equal to n number of
one-half wavelengths such that

(8.49)

We can even have modes having m number of one-half sinusoidal
variations in the x-direction and n number of one-half sinusoidal variations in the
y-direction due to uniform plane waves having both x- and y-components of the elec-
tric field and bouncing obliquely between all four walls of the guide and with the asso-
ciated cutoff condition characterized by bouncing of the waves back and forth
obliquely between the four walls as shown, for example, in Figure 8.13(c). For the cut-
off condition, the dimension a must be equal to m number of one-half apparent wave-
lengths in the x-direction and the dimension bmust be equal to n number of one-half
apparent wavelengths in the y-direction such that

(8.50)

or

(8.51)

The entire treatment of guided waves in Section 8.2 can be repeated starting with
the superposition of two uniform plane waves having their magnetic fields entirely in
the y-direction, thereby leading to transverse magnetic waves, or TM waves, so termed
because the magnetic field for these waves has no z-component, whereas the electric
field has. Insofar as the cutoff phenomenon is concerned, these modes are obviously
governed by the same condition as the corresponding TE modes. There cannot, however,
be any or modes in a rectangular waveguide, since the z-component of
the electric field, being tangential to all four walls of the guide, requires sinusoidal varia-
tions in both x- and y-directions in order that the boundary condition of zero tangential
component of electric field is satisfied on all four walls. Thus, for modes in a rec-
tangular waveguide, both m and n must be nonzero and the cutoff wavelengths are the
same as for the modes, that is,

(8.52)

The foregoing discussion of the modes of propagation in a rectangular waveguide
points out that a signal of given frequency can propagate in several modes, namely, all
modes for which the cutoff frequencies are less than the signal frequency or the cutoff
wavelengths are greater than the signal wavelength. Waveguides are, however,
designed so that only one mode, the mode with the lowest cutoff frequency (or the
largest cutoff wavelength), propagates. This is known as the dominant mode. From
(8.48), (8.49), (8.51), and (8.52), we can see that the dominant mode is the mode
or the mode, depending on whether the dimension a or the dimension bis the
larger of the two. By convention, the larger dimension is designated to be a, and hence
the mode is the dominant mode. We shall now consider an example.TE1,0

TE0,1

TE1,0

[lc]TMm,n
= 12(m>2a)2 + (n>2b)2

TEm,n

TMm,n

TM0,nTMm,0

[lc]TEm,n
= 12(m>2a)2 + (n>2b)2

1
[lc]2

TEm,n

= 1
(2a>m)2 + 1

(2b>n)2

TEm,n

[lc]TE0,n
= 2b

n
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8.4 Rectangular Waveguide and Cavity Resonator 313

Example 8.3

It is desired to determine the lowest four cutoff frequencies referred to the cutoff frequency
of the dominant mode for three cases of rectangular waveguide dimensions: (i) ,
(ii) , and (iii) . Given , it is then desired to find the propagating
mode(s) for for each of the three cases.

From (8.51) and (8.52), the expression for the cutoff wavelength for a mode where
and but not both m and n equal to zero and for a mode

where and is given by

The corresponding expression for the cutoff frequency is

The cutoff frequency of the dominant mode is . Hence,

By assigning different pairs of values for m and n, the lowest four values of can be
computed for each of the three specified values of . These computed values and the corre-
sponding modes are shown in Figure 8.14.

b>a fc>[fc]TE1,0

fc

[fc]TE1,0

= Am2 + a n 
a
b
b2

1>2a1mPTE1,0

 = 1
2a1mP

 Am2 + a n 
a
b
b2

 fc =
vp

lc
= 11mP

 A a m
2a
b2

+ a n
2b
b2

lc = 12(m>2a)2 + (n>2b)2

n = 1, 2, 3, Ám = 1, 2, 3, Á
TMm,nn = 0, 1, 2, 3, Ám = 0, 1, 2, 3, Á

TEm,n

f = 9000 MHz
a = 3 cmb>a = 1>3b>a = 1>2 b>a = 1

fc

[ fc]TE1,0

b
a 55 4321

 # 1

TE1,0
TE0,1

TM1,1
TE1,1

TE2,0
TE0,2

TM2,1
TM1,2
TE2,1
TE1,2

2

fc

[ fc]TE1,0

b
a

1
2 55 4321

 #

b
a

1
3

 #

TE1,0

TE1,0 TE2,0

TE0,1
TE2,0

TE3,0
TE0,1

TM1,1
TE1,1

TE1,1
TM1,1

8

TE2,1
TM2,1

fc

[ fc]TE1,0
510 4321

FIGURE 8.14

Lowest four cutoff frequencies referred to the cutoff frequency of the dominant mode
for three cases of rectangular waveguide dimensions.
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314 Chapter 8 Waveguide Principles

For , and assuming free space for the dielectric in the waveguide,

Hence, for a signal of frequency , all the modes for which is less than
1.8 propagate. From Figure 8.14, these are

It can be seen from Figure 8.14 that for , the second lowest cutoff frequency that cor-
responds to that of the mode is twice the cutoff frequency of the dominant mode 
For this reason, the dimension bof a rectangular waveguide is generally chosen to be less than or
equal to in order to achieve single-mode transmission over a complete octave (factor of two)
range of frequencies.

Let us now consider guided waves of equal magnitude propagating in the positive
z- and negative z-directions in a rectangular waveguide. This can be achieved by ter-
minating the guide by a perfectly conducting sheet in a constant-z plane, that is, a trans-
verse plane of the guide. Due to perfect reflection from the sheet, the fields will then be
characterized by standing wave nature along the guide axis, that is, in the z-direction, in
addition to the standing wave nature in the x- and y-directions. The standing wave pat-
tern along the guide axis will have nulls of transverse electric field on the terminating
sheet and in planes parallel to it at distances of integer multiples of from that
sheet. Placing of perfect conductors in these planes will not disturb the fields, since the
boundary condition of zero tangential electric field is satisfied in those planes.

Conversely, if we place two perfectly conducting sheets in two constant-z planes
separated by a distance d, then, in order for the boundary conditions to be satisfied,
d must be equal to an integer multiple of . We then have a rectangular box of di-
mensions a, b, and d in the x-, y-, and z-directions, respectively, as shown in Figure 8.15.
Such a structure is known as a cavity resonator and is the counterpart of the low-
frequency lumped parameter resonant circuit at microwave frequencies since it supports

lg>2
lg>2

a>2 TE1,0.TE2,0

b>a … 1>2
TE1,0, TE0,1, TM1,1, TE1,1   for b>a = 1
TE1,0   for b>a = 1>2
TE1,0   for b>a = 1>3

fc>[fc]TE1,0
f = 9000 MHz

[fc]TE1,0
= 1

2a1mP
= 3 * 108

2 * 0.03
= 5000 MHz

a = 3 cm

b

d

z

a
x

y
FIGURE 8.15

A rectangular cavity resonator.
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8.4 Rectangular Waveguide and Cavity Resonator 315

oscillations at frequencies for which the above condition, that is,

(8.53)

is satisfied. Recalling that is simply the apparent wavelength of the obliquely bounc-
ing uniform plane wave along the z-direction,we find that the wavelength corresponding
to the mode of oscillation for which the fields have m number of one-half sinusoidal varia-
tions in the x-direction, n number of one-half sinusoidal variations in the y-direction, and
l number of one-half sinusoidal variations in the z-direction is given by

(8.54)

or

(8.55)

The expression for the frequency of oscillation is then given by

(8.56)

The modes are designated by three subscripts in the manner and 
Since m, n, and l can assume combinations of integer values, an infinite number of fre-
quencies of oscillation are possible for a given set of dimensions for the cavity resonator.
We shall now consider an example.

Example 8.4

The dimensions of a rectangular cavity resonator with air dielectric are , , and
. It is desired to determine the three lowest frequencies of oscillation and specify the

mode(s) of oscillation, transverse with respect to the z-direction, for each frequency.
By substituting , , and the given dimensions for a, b, and d in (8.56), we

obtain

By assigning combinations of integer values for m, n, and l and recalling that both m and n must
be nonzero for TM modes, we obtain the three lowest frequencies of oscillation to be

 3750 * 16 = 9186 MHz for TE1,1,1  and TM1,1,1 modes

 3750 * 15 = 8385 MHz for TE0,1,1, TE2,0,1, and TE1,0,2 modes

 3750 * 12 = 5303 MHz for TE1,0,1 mode

 = 37502m2 + 4n2 + l2 MHz

 fosc = 3 * 108A a m
0.08
b2

+ a n
0.04
b2

+ a l
0.08
b2

P = P0m = m0

d = 4 cm
b = 2 cma = 4 cm

TMm,n,l.TEm,n,l

fosc =
vp

losc
= 11mP

 A a m
2a
b2

+ a n
2b
b2

+ a l
2d
b2

losc = 12(m>2a)2 + (n>2b)2 + (l>2d)2

1
l2

osc
= 1

(2a>m)2 + 1
(2b>n)2 + 1

(2d>l)2

lg

d = l
lg

2
,    l = 1, 2, 3, Á
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316 Chapter 8 Waveguide Principles

8.5 REFLECTION AND REFRACTION OF PLANE WAVES

Let us now consider a uniform plane wave that is incident obliquely on a plane bound-
ary between two different perfect dielectric media at an angle of incidence to the
normal to the boundary, as shown in Figure 8.16. To satisfy the boundary conditions at
the interface between the two media, a reflected wave and a transmitted wave will be
set up. Let be the angle of reflection and be the angle of transmission.Then without
writing the expressions for the fields, we can find the relationship among , , and by
noting that for the incident, reflected, and transmitted waves to be in step at the bound-
ary, their apparent phase velocities parallel to the boundary must be equal; that is,

(8.57)

where and are the phase velocities along the direc-
tions of propagation of the waves in medium 1 and medium 2, respectively.

From (8.57), we have

(8.58)

(8.59)

or
(8.60)

(8.61)ut =  sin-1aAm1P1

m2P2
 sin uib

ur = ui

sin ut =
vp2

vp1
 sin ui = Am1P1

m2P2
 sin ui

sin ur = sin ui

vp2(=  1>1m2P2)vp1(=  1>1m1P1)

vp1

sin ui
=

vp1

sin ur
=

vp2

sin ut

uturui

utur

ui

ui ur

ut

Incident
Wave

Transmitted
Wave

Reflective
Wave

Medium 1
P1, m1

Medium 2
P2, m2

FIGURE 8.16

Reflection and transmission of an obliquely
incident uniform plane wave on a plane
boundary between two different perfect
dielectric media.

Equation (8.60) is known as the law of reflection and (8.61) is known as the law of
refraction, or Snell’s law. Snell’s law is commonly cast in terms of the refractive index,
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8.5 Reflection and Refraction of Plane Waves 317

denoted by the symbol n and defined as the ratio of the velocity of light in free space to
the phase velocity in the medium. Thus, if and are the (phase)
refractive indices for media 1 and 2, respectively, then

(8.62)

For two dielectrics having , which is usually the case, (8.62) reduces to

(8.63)

We shall now consider the derivation of the expressions for the reflection and
transmission coefficients at the boundary. To do this, we distinguish between two cases:
(1) the electric field vector of the wave linearly polarized parallel to the interface and
(2) the magnetic field vector of the wave linearly polarized parallel to the interface.
The law of reflection and Snell’s law hold for both cases, since they result from the fact
that the apparent phase velocities of the incident, reflected, and transmitted waves par-
allel to the boundary must be equal.

The geometry pertinent to the case of the electric field vector parallel to the in-
terface is shown in Figure 8.17, in which the interface is assumed to be in the 
plane and the subscripts i, r, and t associated with the field symbols denote incident, re-
flected, and transmitted waves, respectively. The plane of incidence, that is, the plane
containing the normal to the interface and the propagation vectors, is assumed to be in
the xz-plane, so that the electric field vectors are entirely in the y-direction. The corre-
sponding magnetic field vectors are then as shown in the figure so as to be consistent

x = 0

ut = sin- 1aAP1

P2
 sin uib

m1 = m2 = m0

ut = sin- 1a n1

n2
 sin uib

n2(=  c>vp2)n1(=  c>vp1)

u1 u1

u2

x # 0

Ei

Hi
Hr

Ht

Et

Er

Medium 1
P1, m1

Medium 2
P2, m2

y

x

z

!r

!i

!t

FIGURE 8.17

For obtaining the reflection and transmission coefficients for an obliquely
incident uniform plane wave on a dielectric interface with its electric field
perpendicular to the plane of incidence.
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318 Chapter 8 Waveguide Principles

with the condition that E, H, and form a right-handed mutually orthogonal set of
vectors. Since the electric field vectors are perpendicular to the plane of incidence,
this case is also said to correspond to perpendicular polarization. The angle of inci-
dence is assumed to be From the law of reflection (8.60), the angle of reflection is
then also The angle of transmission, assumed to be , is related to by Snell’s law,
given by (8.61).

The boundary conditions to be satisfied at the interface are that (1) the
tangential component of the electric field intensity be continuous and (2) the tangen-
tial component of the magnetic field intensity be continuous. Thus, we have at the
interface 

(8.64a)
(8.64b)

Expressing the quantities in (8.64a) and (8.64b) in terms of the total fields, we obtain

(8.65a)
(8.65b)

We also know from one of the properties of uniform plane waves that

(8.66a)

(8.66b)

Substituting (8.66a) and (8.66b) into (8.65b) and rearranging, we get

(8.67)

Solving (8.65a) and (8.67) for Ei and Er, we have

(8.68a)

(8.68b)

We now define the reflection coefficient and the transmission coefficient as

(8.69a)

(8.69b) t! =
Et

Ei
=

Eyt

Eyi

 ≠! =
Er

Ei
=

Eyr

Eyi

t!≠!

 Er =
Et

2
a 1 -

h1

h2
 
cos u2

cos u1
b

 Ei =
Et

2
a 1 +

h1

h2
 
cos u2

cos u1
b

Ei - Er = Et
h1

h2
 
cos u2

cos u1

 
Et

Ht
= h2 = Am2

P2

 
Ei

Hi
=

Er

Hr
= h1 = Am1

P1

Hi cos u1 - Hr cos u1 = Ht cos u2

Ei + Er = Et

Hzi + Hzr = Hzt

Eyi + Eyr = Eyt

x = 0

x = 0

u1u2u1.
u1.

!
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8.5 Reflection and Refraction of Plane Waves 319

where the subscript refers to perpendicular polarization. From (8.68a) and (8.68b),
we then obtain

(8.70a)

(8.70b)

Equations (8.70a) and (8.70b) are known as the Fresnel reflection and transmission
coefficients for perpendicular polarization.

Before we discuss the result given by (8.70a) and (8.70b), we shall derive the cor-
responding expressions for the case in which the magnetic field of the wave is parallel to
the interface. The geometry pertinent to this case is shown in Figure 8.18. Here again
the plane of incidence is chosen to be the xz-plane, so that the magnetic field vectors are
entirely in the y-direction. The corresponding electric field vectors are then as shown in
the figure so as to be consistent with the condition that E, H, and form a right-handed
mutually orthogonal set of vectors. Since the electric field vectors are parallel to the
plane of incidence, this case is also said to correspond to parallel polarization.

!

 t! =
2h2 cos u1

h2 cos u1 + h1 cos u2

 ≠! =
h2 cos u1 - h1 cos u2

h2 cos u1 + h1 cos u2

!

u1 u1

u2

x # 0

Ei

Hi
Hr

Ht

Et

Er

Medium 1
P1, m1

Medium 2
P2, m2

y

x

z

!r

!i

!t

FIGURE 8.18

For obtaining the reflection and transmission coefficients for an obliquely
incident uniform plane wave on a dielectric interface with its electric field
parallel to the plane of incidence.

Once again the boundary conditions to be satisfied at the interface are that
(1) the tangential component of the electric field intensity be continuous and (2) the
tangential component of the magnetic field intensity be continuous. Thus, we have at
the interface ,

(8.71a)
(8.71b) Hyi + Hyr = Hyt

 Ezi + Ezr = Ezt

x = 0

x = 0
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320 Chapter 8 Waveguide Principles

Expressing the quantities in (8.71a) and (8.71b) in terms of the total fields and also
using (8.66a) and (8.66b), we obtain

(8.72a)

(8.72b)

Solving (8.72a) and (8.72b) for and , we have

(8.73a)

(8.73b)

We now define the reflection coefficient and the transmission coefficient as

(8.74a)

(8.74b)

where the subscript refers to parallel polarization. From (8.73a) and (8.73b), we then
obtain

(8.75a)

(8.75b)

Note from (8.74a) and (8.74b) that

(8.76a)

(8.76b)

Equations (8.75a) and (8.75b) are known as the Fresnel reflection and transmission
coefficients for parallel polarization.

We shall now discuss the results given by (8.70a), (8.70b), (8.75a), and (8.75b) for
the reflection and transmission coefficients for the two cases:

1. For that is, for the case of normal incidence of the uniform plane wave
upon the interface, and

 t! =
2h2

h2 + h1
,  t|| =

2h2

h2 + h1

 ≠! =
h2 - h1

h2 + h1
,  ≠|| =

h2 - h1

h2 + h1

u2 = 0
u1 = 0,

 
Ezt

Ezi
=

-Et cos u2

-Ei cos u1
= t|| 

cos u2

cos u1

 
Ezr

Ezi
=

Er cos u1

-Ei cos u1
= -

Er

Ei
= ≠||

 t|| =
2h2 cos u1

h2 cos u2 + h1 cos u1

 ≠|| =
h2 cos u2 - h1 cos u1

h2 cos u2 + h1 cos u1

||

 t|| =
Et

Ei

 ≠|| = -
Er

Ei

t||≠||

 Er =
Et

2
a h1

h2
-

cos u2

cos u1
b

 Ei =
Et

2
a h1

h2
+

cos u2

cos u1
bErEi

 Ei + Er = Et 
h1

h2

 Ei - Er = Et 
cos u2

cos u1
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8.5 Reflection and Refraction of Plane Waves 321

Thus, the reflection coefficients as well as the transmission coefficients for the two
cases become equal as they should, since for normal incidence there is no difference
between the two polarizations except for rotation by 90° parallel to the interface.

2.

or

(8.77)

where we have used Snell’s law, given by (8.61), to express sin in terms of sin 
If we assume , as is usually the case, (8.77) has real solutions for 
for . Thus, for , that is, for transmission from a dielectric medium
of higher permittivity into a dielectric medium of lower permittivity, there is a
critical angle of incidence given by

(8.78)

for which is equal to 90° and and . For , sin becomes
greater than 1, cos becomes imaginary, and and become complex, but with
their magnitudes equal to unity, and total internal reflection occurs; that is, the
time-average power of incident wave is entirely reflected, the boundary condition
being satisfied by an evanescent field in medium 2. To explain the evanescent na-
ture, we note with reference to the geometry of Figure 8.17 or Figure 8.18 that

or

For and Therefore, for 
and Thus, should be

replaced by corresponding to exponential decay of the field in the x-direc-
tion without a propagating wave character. The phenomenon of total internal re-
flection is the fundamental principle of optical waveguides, since if we have a
dielectric slab of permittivity sandwiched between two dielectric media of per-
mittivity then by launching waves at an angle of incidence greater than the
critical angle, it is possible to achieve guided wave propagation within the slab, as
we shall learn in the next section.

3. for that is, for

h221 - sin2 u1 = h1 A1 -
m1P1

m2P2
  sin2 u1

h2 cos u1 = h1 cos u2;≠! = 0

P2 6 P1,
P1

-jax2,
bx2bx2

2 6 0.u1 7 uc, bz2 = bz1 = v2m1P1 sin2u1 7 v2m2P2,
bx2

2 = 0.u1 = uc, bz2 = bz1 = v2m1P1 sin2 uc = v2m2P2,

b2
x2 = v2m2P2 - b2

z2

b2
x2 + b2

z2 = b2
t = v2m2P2

≠||≠!u2

u2u1 7 ucƒ≠|| ƒ = 1ƒ≠! ƒu2

uc = sin-1AP2

P1

uc

P2 6 P1P2 6 P1

u1m2 = m1 = m0

u1.u2

sin u1 = Am2P2

m1P1

21 - sin2 u2 = A1 -
m1P1

m2P2
 sin2 u1 = 0

≠! = 1 and ≠|| = -1 if cos u2 = 0; that is,
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322 Chapter 8 Waveguide Principles

or

(8.79)

For the usual case of transmission between two dielectric materials, that is, for
and this equation has no real solution for and hence there is

no angle of incidence for which the reflection coefficient is zero for the case of
perpendicular polarization.

4. for that is, for

or

(8.80)

If we assume this equation reduces to

which then gives

and

Thus, there exists a value of the angle of incidence given by

(8.81)

for which the reflection coefficient is zero, and hence there is complete transmis-
sion for the case of parallel polarization.

5. In view of cases 3 and 4, for an elliptically polarized wave incident on the inter-
face at the angle the reflected wave will be linearly polarized perpendicular to
the plane of incidence. For this reason, the angle is known as the polarizing
angle. It is also known as the Brewster angle. The phenomenon associated with
the Brewster angle has several applications. An example is in gas lasers in which
the discharge tube lying between the mirrors of a Fabry–Perot resonator is sealed

up

up,

up = tan-1 AP2

P1

up,

tan u1 = AP2

P1

cos2 u1 = 1 - sin2 u1 =
P1

P1 + P2

sin2 u1 =
P2

P1 + P2

m2 = m1,

sin2 u1 =
h2

2 - h1
2

h2
2(m1P1>m2P2) - h1

2 = P2 

(m2>m1)P1 - P2

P1
2 - P2

2

h2 A1 -
m1P1

m2P2
  sin2 u1 = h121 - sin2 u1

h2 cos u2 = h1 cos u1;≠|| = 0

u1,P2 Z P1,m2 = m1

sin2 u1 =
h2

2 - h1
2

h2
2 - h1

2(m1P1>m2P2)
= m2 

m2 - m1(P2>P1)

m2
2 - m1

2
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Gas Discharge Tube

MirrorMirror

Glass Window Glass Window

FIGURE 8.19

For illustrating the application of the Brewster angle effect in gas lasers.

by glass windows placed at the Brewster angle, as shown in Figure 8.19, to mini-
mize reflections from the ends of the tube so that the laser behavior is governed
by the mirrors external to the tube.

We shall now consider an example.

x # 0

Ei

Medium 1
P0, m0

Medium 2
1.5P0, m0

y

x

z

!i

60

FIGURE 8.20

For Example 8.5.

Example 8.5

A uniform plane wave having the electric field

is incident on the interface between free space and a dielectric medium of and 
as shown in Figure 8.20. We wish to obtain the expressions for the electric fields of the reflected
and transmitted waves.

First, we note from the given that the propagation vector of the incident wave is
given by

!i = 10p1ax + 13az2 = 20p a 1
2

 ax + 13
2

 azb
Ei

m = m0,P = 1.5P0

Ei = E0 a 13
2

  ax - 1
2

  azb
 
cos [6p * 109t - 10p1x + 13z2]
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324 Chapter 8 Waveguide Principles

the direction of which is consistent with the angle of incidence of 60°. We also note that the elec-
tric field vector (which is perpendicular to ) is entirely in the plane of incidence. Thus, the situ-
ation corresponds to one of parallel polarization, as in Figure 8.18.

To obtain the required fields, we first find, by using (8.63) and with reference to the nota-
tion of Figure 8.18, that

or Then from (8.75a)–(8.75b) and (8.76a)–(8.76b), we have

Finally, noting with the aid of Figure 8.21 that

!r = 20p a -  
1
2

 ax + 13
2

 azb = 10p1-ax + 13az2
 
Et

Ei
= 0.758

 
Er

Ei
= -0.072

 = 212
2 + 13

= 0.758

 t|| =
21h0>11.52 cos 60°1h0>11.52 cos 45° + h0 cos 60°

 = 2 - 13
2 + 13

= 0.072

 ≠|| =
1h0>11.52 cos 45° - h0 cos 60°1h0>11.52 cos 45° + h0 cos 60°

u2 = 45°.

sin u2 = A P0

1.5P0
  sin 60° = 112

!i

x # 0

Ei

Er

Et

1.5P0, m0

P0, m0

y

x

z

!i

!t

!r

60 60

45

FIGURE 8.21

For writing the expressions for the reflected and transmitted wave electric
fields for Example 8.5.
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and

we write the expressions for the reflected and transmitted wave fields to be

and

Note that for and so that the fields do indeed satisfy
the boundary conditions.

8.6 DIELECTRIC SLAB GUIDE

In the preceding section, we learned that for a wave that is incident obliquely from a
dielectric medium of permittivity onto another dielectric medium of permittivity

total internal reflection occurs for angles of incidence exceeding the critical
angle given by

(8.82)

where it is assumed that everywhere. In this section, we shall consider the di-
electric slab waveguide, which forms the basis for thin-film waveguides, used exten-
sively in integrated optics.

The dielectric slab waveguide consists of a dielectric slab of permittivity sand-
wiched between two dielectric media of permittivities less than For simplicity, we
shall consider the symmetric waveguide, that is, one for which the permittivities of the
dielectrics on either side of the slab are the same and equal to as shown in
Figure 8.22. Then by launching waves at an angle of incidence where is given
by (8.82), it is possible to achieve guided wave propagation within the slab, as shown in
the figure. For a given thickness d of the slab and for a given frequency of the waves,
there are only discrete values of for which the guiding can take place. In other words,
guiding of a wave of a given frequency is not ensured simply because the condition for
total internal reflection is met.

The allowed values of are dictated by the self-consistency condition, which can
be explained with the aid of the construction in Figure 8.23, as follows. If we consider a
point A on a given wavefront designated 1 and follow that wavefront as it moves to
position passing through point B, reflects at the interface giving rise tox = d>21¿

ui

ui

ucui 7 uc,
P2,

P1.
P1,

m = m0

uc = sin-1AP2

P1

uc

uiP2 6 P1,
P1

Exi + Exr = 1.5Ext,x = 0, Ezi + Ezr = Ezt

Et = 0.758E0 a 112
 ax - 112

 azb  cos [6p * 109t - 1013p1x + z2]
Er = -0.072E0 a 13

2
 ax + 1

2
 azb

 
cos [6p * 109t + 10p1x - 13z2]

!t = 20p11.5 a 112
 ax + 112

 azb = 1013p1ax + az2

M08_RAO3333_1_SE_CHO8.QXD  4/9/08  2:39 PM  Page 325



326 Chapter 8 Waveguide Principles

wavefront designated 2, then moves to position passing through point C, reflects at
the interface giving rise to wavefront designated 3, and finally moves to po-
sition passing through A, then we see that the total phase shift undergone must be
equal to an integer multiple of If is the wavelength in free space corresponding
to the wave frequency, the self-consistency condition is given by

(8.83)+ l≠–A + 2p1Pr1

l0
 1CA cos ui2 = 2mp, m = 0, 1, 2, Á

2p1Pr1

l0
 (AB cos ui2 + l≠–B +

2p1Pr1

l0
 1BC cos ui2

l02p.
3¿

x = -d>2 2¿

ui %  uc

m0, P2 &  P1

m0, P2 &  P1

m0, P1

FIGURE 8.22

Total internal reflection in a dielectric slab waveguide.

ui ui

uiui

1 1! 2 2!

3!3

C

A

B

P2

P1

P2

x # d/2

x # " d/2

x

y z

FIGURE 8.23

For explaining the self-consistency condition for waveguiding in a dielectric slab
guide.
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8.6 Dielectric Slab Guide 327

where and are the reflection coefficients at the interfaces and
respectively, and We recall that under conditions of total internal

reflection, the reflection coefficients (8.70a) and (8.75a) become complex with their
magnitudes equal to unity. For the symmetric waveguide, Thus, substituting 
for and and 2d for we write (8.83) as

or

(8.84)

To proceed further, we need to distinguish between the cases of perpendicular and
parallel polarizations as defined in the preceding section, since the reflection coefficients
for the two cases are different. We shall here consider only the case of perpendicular
polarization. The situation then corresponds to TE modes, since the electric field has no
longitudinal or z-component. Thus, substituting

and

in (8.70a), we obtain

(8.85)

so that

(8.86) = -2 tan-1
  

2sin2 ui - 1P2>P12
cos ui

 l≠– ! = -2 tan-1
  

h121P1>P22  sin2 ui - 1

h2 cos ui

≠–! =
h2 cos ui - jh121P1>P22 sin2 ui - 1

h2 cos ui + jh121P1>P22 sin2 ui - 1

 = jAP1

P2
 sin2 ui - 1

 = j2sin2 u2 - 1

 cos u2 = 21 - sin2 u2

cos u1 = cos ui

2pd1Pr1

l0
  cos ui + l≠– = mp, m = 0, 1, 2, Á

4pd1Pr1

l0
  cos ui + 2l≠– = 2mp, m = 0, 1, 2, Á

1AB + BC + CA2,≠–B≠–A

≠–≠–A = ≠–B.

Pr1 = P1>P0.x = d>2,
x = -d>2≠–B≠–A
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Substituting (8.86) into (8.84), we then obtain

or

or

(8.87)

where

(8.88a)

(8.88b)

Equation (8.87) is the characteristic equation for the guiding of TE waves in the
dielectric slab. For given values of d, and the solutions for can be obtained
by plotting the two sides of (8.87) versus and finding the points of intersection. The
nature of this construction is shown in Figure 8.24. Each solution corresponds to one

ui

uil0,P2,P1,

 g1ui2 =
2sin2 ui - 1P2>P12

cos ui

 f1ui2 =
pd1Pr1

l0
  cos ui

tan [f1ui2] = c g1ui2, m = 0, 2, 4, Á

- 1
g1ui2, m = 1, 3, 5, Á

tan a pd1Pr1

l0
 cos ui - mp

2
b =

2sin2 ui - 1P2>P12
cos ui

, m = 0, 1, 2, Á

2pd1Pr1

l0
 cos ui - 2 tan-1

  

2sin2 ui - 1P2>P12
cos ui

= mp, m = 0, 1, 2, Á

tan [ f(ui)]

m # 0

m # 1 m # 3

m # 2
m # 4

g(ui)
1

" m # 5

g(ui)

p'2

ui uc

FIGURE 8.24

Graphical construction pertinent to the solution of equation (8.87).
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TABLE 8.1 Allowed Values of for Dielectric Slab Guide Example

m

0 83.42783
1 76.77756
2 69.96263
3 62.87805
4 55.38428
5 47.28283
6 38.30225

ui 1deg2ui 

mode. It can be seen from (8.88a) and Figure 8.24 that for a given set of values of and
fewer solutions are obtained for as the ratio becomes smaller, since the

number of branches of the plot of between and become
fewer. It can also be seen that there is always one solution for a given d, even for arbi-
trarily low values of —that is, for large values of or low frequencies.

Alternative to the graphical solution, we can use a computer to solve (8.87) for
the allowed values of for specified values of d, and Computed values of 
for values of and are listed in Table 8.1.l0 = 5 mmd = 10 mm,Pr2 = 1,Pr1 = 4,

uil0.Pr2,Pr1,ui

l01d>l02 ui = ucui = p>2tan [f1ui2] 1d>l02uiP2,
P1

Returning now to Figure 8.24, we designate the modes associated with the solu-
tions as modes, where correspond to the values of m on the plot.
We note from the plot that the solution for a given mode for does not exist
if Therefore, the cutoff condition is given by

(8.89)

where we have used (8.82). The cutoff frequency is given by

The fundamental mode, has no cutoff frequency. Thus,

(8.90)fc = mc
2d1Pr1 - Pr2

, m = 0, 1, 2, Á

TE0,

fc = c
l0

= mc
2d1Pr1 - Pr2

l0 7
2d1Pr1 - Pr2

m

pd1Pr1

l0
  A1 -

P2

P1
6 mp

2

pd1Pr1

l0
 cos uc 6 mp

2

f1uc2 6 mp>2.
m 7 1TEm

m = 0, 1, 2, ÁTEm
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(b)

Cladding P2 &  P1

Core

Cladding

Core P1

Cladding P2 &  P1

(a)

FIGURE 8.25

(a) Transverse and 
(b) longitudinal cross
sections of an optical
fiber.

Example 8.6

For the symmetric dielectric slab waveguide of Figure 8.23, let and
We wish to find the number of TE modes that can propagate by guidance in the slab.

From (8.90),

Thus, for and the modes are cut off. Therefore, the number of propagating TE
modes is 25, corresponding to 

The entire discussion for guided waves in the dielectric slab guide can be repeated
for TM modes by using in the place of in (8.84) to derive the characteristic equa-
tion for guidance. We shall include the derivation as Problem 8.32, and conclude this
section with a brief description of an optical fiber, which is a common form of optical
waveguide.

An optical fiber, so termed because of its filamentary appearance, consists typi-
cally of a core and a cladding, having cylindrical cross sections as shown in Fig-
ure 8.25(a). The core is made up of a material of permittivity greater than that of the
cladding so that a critical angle exists for waves inside the core incident on the inter-
face between the core and the cladding, and hence waveguiding is made possible in the
core by total internal reflection. The phenomenon may be visualized by considering a
longitudinal cross section of the fiber through its axis, shown in Figure 8.25(b), and
comparing it with that of the slab waveguide, shown in Figure 8.22. Although the
cladding is not essential for the purpose of waveguiding in the core, since the permit-
tivity of the core material is greater than that of free space, it serves two useful purposes:
(a) It avoids scattering and field distortion by the supporting structure of the fiber,
since the field decays exponentially outside the core, and hence is negligible outside
the cladding. (b) It allows single-mode propagation for a larger value of the radius of
the core than permitted in the absence of the cladding.

≠–!≠–||

m = 0, 1, 2, Á , 24.
fc 7 fm 7 24,

 =
mf

24.98
, m = 0, 1, 2, Á

 fc = mc
20l012.56 - 1

d = 10l0.
P2 = P0,P1 = 2.56P0,
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SUMMARY

In this chapter, we studied the principles of waveguides. To introduce the waveguiding
phenomenon, we first learned how to write the expressions for the electric and mag-
netic fields of a uniform plane wave propagating in an arbitrary direction with respect
to the coordinate axes. These expressions are given by

where and r are the propagation and position vectors given by

and is the phase of the wave at the origin at The magnitude of is equal to
the phase constant along the direction of propagation of the wave. The direc-

tion of is the direction of propagation of the wave. We learned that

that is, and are mutually perpendicular, and that

Also, since should be directed along the propagation vector it then follows
that

The quantities and are the phase constants along the x-, y-, and z-axes, re-
spectively. The apparent wavelengths and the apparent phase velocities along the co-
ordinate axes are given, respectively, by

By considering the superposition of two uniform plane waves propagating at an
angle to each other and placing two perfect conductors in appropriate planes such
that the boundary condition of zero tangential electric field is satisfied, we introduced
the parallel-plate waveguide. We learned that the composite wave is a transverse elec-
tric wave, or TE wave, since the electric field is entirely transverse to the direction of

 vpi = v
bi

, i = x, y, z

 li = 2p
bi

, i = x, y, z

bzbx, by,

H = 1
vm

 ! : E

!,E : H

ƒ E0 ƒ
ƒ H0 ƒ

= h = AmP!E0, H0,

 E0 # H0 = 0

 H0 # ! = 0

 E0 # ! = 0

!
v1mP,

!t = 0.f0

 r = xax + yay + zaz

 ! = bxax + byay + bzaz

!

 H = H0 cos 1vt - ! # r + f02 E = E0 cos 1vt - ! # r + f02
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332 Chapter 8 Waveguide Principles

time-average power flow, that is, the guide axis, but the magnetic field is not. In terms of
the uniform plane wave propagation, the phenomenon is one of waves bouncing
obliquely between the conductors as they progress down the guide. For a fixed spacing
a between the conductors of the guide, waves of different frequencies bounce obliquely
at different angles such that the spacing a is equal to an integer, say, m number of one-
half apparent wavelengths normal to the plates and hence the fields have m number of
one-half-sinusoidal variations normal to the plates. These are said to correspond to

modes, where the subscript 0 implies no variations of the fields in the direction
parallel to the plates and transverse to the guide axis. When the frequency is such that
the spacing a is equal to m one-half wavelengths, the waves bounce normally to the
plates without the feeling of being guided along the axis, thereby leading to the cutoff
condition. Thus, the cutoff wavelengths corresponding to modes are given by

and the cutoff frequencies are given by

A given frequency signal can propagate in all modes for which or For the
propagating range of frequencies, the wavelength along the guide axis, that is, the guide
wavelength, and the phase velocity along the guide axis are given, respectively, by

We discussed the phenomenon of dispersion arising from the frequency depen-
dence of the phase velocity along the guide axis, and we introduced the concept of
group velocity. Group velocity is the velocity with which the envelope of a narrow-
band modulated signal travels in the dispersive channel, and hence it is the velocity
with which the information is transmitted. It is given by

where is the phase constant along the guide axis.
We extended the treatment of the parallel-plate waveguide to the rectangular

waveguide, which is a metallic pipe of rectangular cross section. By considering a rec-
tangular waveguide of cross-sectional dimensions a and b, we discussed transverse elec-
tric or TE modes as well as transverse magnetic or TM modes, and learned that while

modes can include values of m or n equal to zero, modes require that 
both m and n be nonzero, where m and n refer to the number of one-half sinusoidal

TMm,nTEm,n

bz

vg = dv
dbz

= vp A1 - a fc

f
b2

 vpz =
vp21 - 1l>lc22 =

vp21 - 1fc>f22
 lg = l21 - 1l>lc22 = l21 - 1fc>f22

f 7 fc.l 6 lc

fc =
vp

lc
= m

2a1mP

lc = 2a
m

TEm,0

TEm,0
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variations of the fields along the dimensions a and b, respectively. The cutoff wave-
lengths for the  or  modes are given by

The mode that has the largest cutoff wavelength or the lowest cutoff frequency is the
dominant mode, which here is the TE1, 0 mode. Waveguides are generally designed to
transmit only the dominant mode.

By placing perfect conductors in two transverse planes of a rectangular wave-
guide separated by an integer multiple of one-half the guide wavelength, we intro-
duced the cavity resonator, which is the microwave counterpart of the lumped
parameter resonant circuit encountered in low-frequency circuit theory. For a rectan-
gular cavity resonator having dimensions a, b, and d, the frequencies of oscillation for
the or modes are given by

where l refers to the number of one-half sinusoidal variations of the fields along the
dimension d.

We then considered oblique incidence of a uniform plane wave on the boundary
between two perfect dielectric media. We derived the laws of reflection and refraction,
given, respectively, by

where and are the angles of incidence, reflection, and transmission, respectively,
of a uniform plane wave incident from medium 1 onto medium 2 The
law of refraction is also known as Snell’s law. We then derived the expressions for the
reflection and transmission coefficients for the cases of perpendicular and parallel po-
larizations. An examination of these expressions revealed the following, under the as-
sumption of (1) for incidence from a medium of higher permittivity onto one
of lower permittivity, there is a critical angle of incidence given by

beyond which total internal reflection occurs, and (2) for the case of parallel polariza-
tion, there is an angle of incidence, known as the Brewster angle and given by

for which the reflection coefficient is zero.
Next, we introduced the dielectric slab waveguide, consisting of a dielectric slab

of permittivity sandwiched between two dielectric media of permittivities P2 6 P1.P1

up = tan-1 AP2

P1

uc = sin-1 AP2

P1

m1 = m2:

1P2, m22.1P1, m12utui, ur,

 ut = sin-1aAm1P1

m2P2
  sin uib ur = ui

fosc = 11mP
 A a m

2a
b2

+ a n
2b
b2

+ a l
2d
b2

TMm,n,lTEm,n,l

lc = 12(m>2a)2 + (n>2b)2

TMm,nTEm,n
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334 Chapter 8 Waveguide Principles

We learned that by launching waves at an angle of incidence greater than the critical
angle for total internal reflection, it is possible to achieve guided wave propagation
within the slab. For a given frequency, several modes are possible corresponding to val-
ues of that satisfy the self-consistency condition associated with the bouncing waves.
We derived the characteristic equation for computing these values of for the TE case
and discussed its solution. The modes are designated modes and their cutoff fre-
quencies are given by

where d is the thickness of the slab. The fundamental mode, has no cutoff fre-
quency. We concluded the discussion with a description of the optical fiber.

TE0,

fc = mc
2d1Pr1 - Pr2

, m = 0, 1, 2, Á

TEm

ui

ui

ui

REVIEW QUESTIONS

8.1. What is the propagation vector? Interpret the significance of its magnitude and direction.
8.2. Discuss how the phase constants along the coordinate axes are less than the phase con-

stant along the direction of propagation of a uniform plane wave propagating in an
arbitrary direction.

8.3. Write the expressions for the electric and magnetic fields of a uniform plane wave prop-
agating in an arbitrary direction and list all the conditions to be satisfied by the electric
field, magnetic field, and propagation vectors.

8.4. What are apparent wavelengths? Why are they longer than the wavelength along the
direction of propagation?

8.5. What are apparent phase velocities? Why are they greater than the phase velocity along
the direction of propagation?

8.6. Discuss how the superposition of two uniform plane waves propagating at an angle to
each other gives rise to a composite wave consisting of standing waves traveling bodily
transverse to the standing waves.

8.7. What is a transverse electric wave? Discuss the reasoning behind the nomenclature
modes.

8.8. How would you characterize a transverse magnetic wave?
8.9. Compare the phenomenon of guiding of uniform plane waves in a parallel-plate wave-

guide with that in a parallel-plate transmission line.
8.10. Discuss how the cutoff condition arises in a waveguide.
8.11. Explain the relationship between the cutoff wavelength and the spacing between the

plates of a parallel-plate waveguide based on the phenomenon at cutoff.
8.12. Is the cutoff wavelength dependent on the dielectric in the waveguide? Is the cutoff fre-

quency dependent on the dielectric in the waveguide?
8.13. What is guide wavelength?
8.14. Provide a physical explanation for the frequency dependence of the phase velocity

along the guide axis.
8.15. Discuss the phenomenon of dispersion.
8.16. Discuss the concept of group velocity with the aid of an example.
8.17. What is a dispersion diagram? Explain how the phase and group velocities can be

determined from a dispersion diagram.

TEm,0
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8.18. When is it meaningful to attribute a group velocity to a signal comprised of more than
two frequencies? Why?

8.19. Discuss the propagation of a narrow-band amplitude modulated signal in a dispersive
channel.

8.20. Discuss the nomenclature associated with the modes of propagation in a rectangular
waveguide.

8.21. Explain the relationship between the cutoff wavelength and the dimensions of a rectan-
gular waveguide based on the phenomenon at cutoff.

8.22. Why can there be no transverse magnetic modes having no variations for the fields
along one of the dimensions of a rectangular waveguide?

8.23. What is meant by the dominant mode? Why are waveguides designed so that they prop-
agate only the dominant mode?

8.24. Why is the dimension bof a rectangular waveguide generally chosen to be less than or
equal to one-half the dimension a?

8.25. What is a cavity resonator?
8.26. How do the dimensions of a rectangular cavity resonator determine the frequencies of

oscillation of the resonator?
8.27. Discuss the condition required to be satisfied by the incident, reflected, and transmitted

waves at the interface between two dielectric media.
8.28. What is Snell’s law?
8.29. What is meant by the plane of incidence? Distinguish between the two different linear

polarizations pertinent to the derivation of the reflection and transmission coefficients
for oblique incidence on a dielectric interface.

8.30. Briefly discuss the determination of the Fresnel reflection and transmission coefficients
for an obliquely incident wave on a dielectric interface.

8.31. What is total internal reflection? Discuss the nature of the reflection coefficient and the
manner in which the boundary condition is satisfied for an angle of incidence greater
than the critical angle for total internal reflection.

8.32. What is the Brewster angle? What is the polarization of the reflected wave for an ellip-
tically polarized wave incident on a dielectric interface at the Brewster angle? Discuss
an application of the Brewster angle effect.

8.33. Discuss the principle of optical waveguides by considering the dielectric slab wave-
guide.

8.34. Explain the self-consistency condition for waveguiding in a dielectric slab waveguide.
8.35. Discuss the dependence of the number of propagating modes in a dielectric slab wave-

guide on the ratio of the thickness d of the dielectric slab to the wavelength 
8.36. Considering TE modes in a dielectric slab guide, specify the fundamental mode and dis-

cuss the associated cutoff condition.
8.37. Compare the phenomenon at cutoff in a metallic waveguide with that at cutoff in an

optical waveguide.
8.38. Provide a brief description of an optical fiber.

l0.

PROBLEMS

8.1. Assuming the x- and y-axes to be directed eastward and northward, respectively, find
the expression for the propagation vector of a uniform plane wave of frequency
15 MHz in free space propagating in the direction 30° north of east.
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336 Chapter 8 Waveguide Principles

8.2. The propagation vector of a uniform plane wave in a perfect dielectric medium having
is given by

Find (a) the apparent wavelengths and (b) the apparent phase velocities, along the
coordinate axes.

8.3. For a uniform plane wave propagating in free space, the apparent phase velocities along
the x- and y-directions are found to be and , respectively.
Find the direction of propagation of the wave.

8.4. The electric field vector of a uniform plane wave propagating in a perfect dielectric
medium having and is given by

Find (a) the frequency, (b) the direction of propagation, (c) the wavelength along the
direction of propagation, (d) the apparent wavelengths along the x-, y-, and z-axes, and
(e) the apparent phase velocities along the x-, y-, and z-axes.

8.5. Given

(a) Determine if the given E represents the electric field of a uniform plane wave prop-
agating in free space. (b) If the answer to part (a) is yes, find the corresponding mag-
netic field vector H.

8.6. Given

(a) Perform all the necessary tests and determine if these fields represent a uniform
plane wave propagating in a perfect dielectric medium. (b) Find the permittivity and the
permeability of the medium.

8.7. Two equal-amplitude uniform plane waves of frequency 25 MHz and having their elec-
tric fields along the y-direction propagate along the directions and in
free space. (a) Find the direction of propagation of the composite wave. (b) Find the
wavelength along the direction of propagation and the wavelength transverse to the
direction of propagation of the composite wave.

8.8. Show that and are equal to and zero,
respectively.

8.9. Find the spacing a for a parallel-plate waveguide having a dielectric of and
such that 6000 MHz is 20 percent above the cutoff frequency of the dominant

mode, that is, the mode with the lowest cutoff frequency.
8.10. The dimension a of a parallel-plate waveguide filled with a dielectric having 

and is 4 cm. Determine the propagating modes for a wave of frequency
6000 MHz. For each propagating mode, find 

8.11. The spacing a between the plates of a parallel-plate waveguide is equal to 5 cm. The
dielectric between the plates is free space. If a generator of fundamental frequency

fc, u, and lg.
TEm,0m = m0

P = 4P0

m = m0

P = 9P0

1>28sin 2(vt - bz sin u)98sin2 (vt - bz sin u)9
1
2(13ax + az)az

H = 1
60p

 (ax + 2ay - 13az) cos [15p * 106t - 0.05p(13x + z)]

E = (ax - 2ay - 13az) cos [15p * 106t - 0.05p(13x + z)]

E = 10ax cos [6p * 107t - 0.1p(y + 13z)]

E = 10(-ax - 213ay + 13az) cos [16p * 106t - 0.04p(13x - 2y - 3z)]

m = m0P = 9P0

213 * 108 m/s612 * 108 m/s

! = 2p(3ax + 4ay + 5az)

P = 4.5P0 and m = m0
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1800 MHz and rich in harmonics excites the waveguide, find all frequencies that propa-
gate in TE1,0 mode only.

8.12. The electric and magnetic fields of the composite wave resulting from the superposition
of two uniform plane waves are given by

(a) Find the time-average Poynting vector. (b) Discuss the nature of the composite wave.
8.13. Transverse electric modes are excited in an air dielectric parallel-plate waveguide of

dimension cm by setting up at its mouth a field distribution having

Determine the propagating mode(s) and obtain the expression for the electric field of
the propagating wave.

8.14. For the two-train example of Figure 8.8, find the group velocity if the speed of train
numbered B is (a) 36 m/s and (b) 40 m/s, instead of 30 m/s. Discuss your results with the
aid of sketches.

8.15. Find the velocity with which the group of two frequencies 2400 MHz and 2500 MHz
travels in a parallel-plate waveguide of dimension cm and having a perfect
dielectric of 

8.16. For a narrow-band amplitude modulated signal having the carrier frequency 5000 MHz
propagating in an air dielectric parallel-plate waveguide of dimension cm, find
the velocity with which the modulation envelope travels.

8.17. For an relationship given by

where and kare positive constants, find the phase and group velocities for (a)
(b) (c) 

8.18. By considering the parallel-plate waveguide, show that a point on the obliquely bounc-
ing wavefront, traveling with the phase velocity along the oblique direction, progresses
parallel to the guide axis with the group velocity.

8.19. For an air dielectric rectangular waveguide of dimensions cm and cm,
find all propagating modes for MHz.

8.20. For a rectangular waveguide of dimensions cm and cm, and having a
dielectric of and find all propagating modes for MHz.

8.21. For MHz, find the dimensions a and bof an air dielectric rectangular wave-
guide such that mode propagates with a 30 percent safety factor but
also such that the frequency is 30 percent below the cutoff frequency of the next higher
order mode.

8.22. For an air dielectric rectangular cavity resonator having the dimensions cm,
cm, and cm, find the five lowest frequencies of oscillation. Identify the

mode(s) for each frequency.
8.23. For a rectangular cavity resonator having the dimensions cm, and filled

with a dielectric of and find the three lowest frequencies of oscillation.
Identify the mode(s) for each frequency.

m = m0,P = 9P0

a = b = d = 2

d = 5b = 2
a = 2.5

(f = 1.30fc)TE1,0

f = 3000
f = 2500m = m0,P = 9P0

b = 5>3a = 5
f = 12,000

b = 1.5a = 3

v = 3v0.v = 2v0, and
v = 1.5v0,v0

v = v0 + kb2
z

v - bz

a = 5

P = 9P0 and m = m0.
a = 2.5

E = 10 (sin 20px + 0.5 sin 60px) sin 1010pt ay

a = 5

 H = Hy 0 cos bxx cos (vt - bzz) ay

 + Ez0 sin bx x sin (vt - bzz) az

 E = Ex 0 cos bxx cos (vt - bzz) ax
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8.24. In Figure 8.16, let and (a) For find (b) Is
there a critical angle of incidence for which 

8.25. In Figure 8.16, let and (a) For find 
(b) Find the value of the critical angle of incidence for which 

8.26. In Example 8.5, assume that

and the angle of incidence is 45°. Obtain the expressions for the electric fields of the
reflected and transmitted waves.

8.27. Repeat Problem 8.26 for

8.28. In Example 8.5, assume that the permittivity of medium 2 is unknown and that

(a) Find the value of for which the reflected wave is linearly polarized.
(b) For the value of found in (a), find the expressions for the reflected and transmit-
ted wave electric fields.

8.29. A thin-film waveguide employed in integrated optics consists of a substrate on which a
thin film of refractive index greater than that of the substrate is deposited. The
medium above the film is air. For relative permittivities of the substrate and the film
equal to 2.25 and 2.4, respectively, find the minimum bouncing angle of total internally
reflected waves in the film. Assume for both substrate and film.

8.30. For a symmetric dielectric slab waveguide, (a) Find the num-
ber of propagating TE modes for (b) Find the maximum value of for
which the waveguide supports only one TE mode.

8.31. Design a symmetric dielectric slab waveguide, with by finding
the value of such that the TE1 mode operates at 20% above its cutoff frequency.

8.32. Consider the derivation of the characteristic equation for guiding of waves in the sym-
metric dielectric slab waveguide for the case of parallel polarization, which corresponds
to TM modes. Noting that in Figure 8.18, where is given by
(8.75a), show that the characteristic equation is given by

where

g(ui) =
2sin2 ui - (P2>P1)

(P2>P1) cos ui

f(ui) =
pd1Pr1

l0
 cos ui

tan [f(ui)] = L g(ui),   m = 0, 2, 4, Á

- 1
g(ui)

,   m = 1, 3, 5, Á

≠||Er>Ei = -≠||,Hr>Hi =

d>l0

Pr1 = 2.25 and Pr2 = 2.13,

d>l0d>l0 = 10.
P1 = 2.25P0 and P2 = P0.

m = m0

(c>vp)

P2

P2

 +  E0 ay sin [6p * 109t - 10p(x + 13z)]

 Ei = E0a 13
2

 ax - 1
2

 azb
 
cos [6p * 109t - 10p(x + 13z)]

P2

Ei = E0 ay cos [6p * 108t - 12p(x + z)]

Ei = E0(ax - az) cos [6p * 108t - 12p(x + z)]

ut = 90°.uc,
ut.ut = 30°,m1 = m2 = m0.P1 = 4P0, P2 = 2.25P0,

ut = 90°?
ut.ut = 30°,m1 = m2 = m0.P1 = 4P0, P2 = 9P0,
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