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CHAPTER

7
Transmission-Line
Analysis

In the previous chapter, we introduced the transmission line and the transmission-line
equations. The transmission-line equations enable us to discuss the wave propagation
phenomena along an arrangement of two parallel conductors having uniform cross
section in terms of circuit quantities instead of in terms of field quantities. This chapter
is devoted to the analysis of lossless transmission-line systems first in frequency
domain, that is, for sinusoidal steady state, and then in time domain, that is, for arbi-
trary variation with time.

In the frequency domain, we shall study the standing wave phenomenon by con-
sidering the short-circuited line. From the frequency dependence of the input imped-
ance of the short-circuited line, we shall learn that the condition for the quasistatic
approximation for the input behavior of physical structures is that the physical length
of the structure must be a small fraction of the wavelength. We shall study reflection
and transmission at the junction between two lines in cascade and introduce the
Smith® Chart, a useful graphical aid in the solution of transmission-line problems.

In the time domain, we shall begin with a line terminated by a resistive load and
learn the bounce diagram technique of studying the transient bouncing of waves back
and forth on the line for a constant voltage source as well as for a pulse voltage source.
We shall apply the bounce diagram technique for an initially charged line. Finally, we
shall introduce the load-line technique of analysis of a line terminated by a nonlinear
element and apply it for the analysis of interconnections between logic gates.

A. FREQUENCY DOMAIN

In Chapter 6, we introduced transmission lines, and learned that the voltage and cur-
rent on a line are governed by the transmission-line equations

(7.1a)
0V
 0z

= -l0I
 0t

 

Smith® Chart is a registered trademark of Analog Instrument Co., P.O. Box 950, New Providence,
NJ 07974, USA.
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A. Frequency Domain 233

(7.1b)

For the sinusoidally time-varying case, the corresponding differential equations for the
phasor voltage and phasor current are given by

(7.2a)

(7.2b)

Combining (7.2a) and (7.2b) by eliminating , we obtain the wave equation for as

(7.3)

where

(7.4)

is the propagation constant associated with the wave propagation on the line. The solu-
tion for is given by

(7.5)

where and are arbitrary constants to be determined from the boundary condi-
tions. The corresponding solution for is then given by

(7.6)

where

(7.7)

is known as the characteristic impedance of the transmission line.
The solutions for the line voltage and line current given by (7.5) and (7.6), respec-

tively, represent the superposition of and waves, that is, waves propagating
in the positive z- and negative z-directions, respectively. They are completely analogous
to the solutions for the electric and magnetic fields in the medium between the
conductors of the line. In fact, the propagation constant given by (7.4) is the same as the
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234 Chapter 7 Transmission-Line Analysis

propagation constant , as it should be. The characteristic impedance of
the line is analogous to (but not equal to) the intrinsic impedance of the material medi-
um between the conductors of the line.

For a lossless line, that is, for a line consisting of a perfect dielectric medium
between the conductors, , and

(7.8)

Thus, the attenuation constant is equal to zero, which is to be expected, and the phase
constant is equal to We can then write the solutions for and as

(7.9a)

(7.9b)

where

(7.10)

is purely real and independent of frequency. Note also that

(7.11)

as it should be, and independent of frequency.
Thus, provided that l and c are independent of frequency, which is the case if 

and are independent of frequency and the transmission line is uniform, that is, its di-
mensions remain constant transverse to the direction of propagation of the waves, the
lossless line is characterized by no dispersion, a phenomenon discussed in Section 8.3.
We shall be concerned with such lines only in this book.

7.1 SHORT-CIRCUITED LINE AND FREQUENCY BEHAVIOR

Let us now consider a lossless line short-circuited at the far end as shown in
Figure 7.1(a), in which the double-ruled lines represent the conductors of the transmis-
sion line. Note that the line is characterized by and , which is equivalent to specify-
ing , , and . In actuality, the arrangement may consist, for example, of a perfectly
conducting rectangular sheet joining the two conductors of a parallel-plate line as in
Figure 7.1(b) or a perfectly conducting ring-shaped sheet joining the two conductors of
a coaxial cable as in Figure 7.1(c). We shall assume that the line is driven by a voltage
generator of frequency at the left end so that waves are set up on the line.
The short circuit at requires that the tangential electric field on the surface of the
conductor comprising the short circuit be zero. Since the voltage between the conduc-
tors of the line is proportional to this electric field, which is transverse to them, it fol-
lows that the voltage across the short circuit has to be zero. Thus, we have
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7.1 Short-Circuited Line and Frequency Behavior 235

Applying the boundary condition given by (7.12) to the general solution for 
given by (7.9a), we have

or

(7.13)

Thus, we find that the short circuit gives rise to a ( ) or reflected wave whose voltage
is exactly the negative of the or incident wave voltage, at the short circuit. Substi-
tuting this result in (7.9a) and (7.9b), we get the particular solutions for the complex
voltage and current on the short-circuited line to be

(7.14a)

(7.14b)

The real voltage and current are then given by
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FIGURE 7.1

Transmission line short-circuited at the far end.
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236 Chapter 7 Transmission-Line Analysis

where we have replaced by and by . The instantaneous power flow
down the line is given by

(7.15c)

These results for the voltage, current, and power flow on the short-circuited line
given by (7.15a), (7.15b), and (7.15c), respectively, are illustrated in Figure 7.2, which
shows the variation of each of these quantities with distance from the short circuit for
several values of time. The numbers 1, 2, 3, . . . , 9 beside the curves in Figure 7.2
represent the order of the curves corresponding to values of equal to 0,

. . . , . It can be seen that the phenomenon is one in which the voltage, current,
and power flow oscillate sinusoidally with time with different amplitudes at different
locations on the line, unlike in the case of traveling waves, in which a given point on the
waveform progresses in distance with time. These waves are therefore known as stand-
ing waves. In particular, they represent complete standing waves, in view of the zero am-
plitudes of the voltage, current, and power flow at certain locations on the line, as shown
by Figure 7.2.

The line voltage amplitude is zero for values of z given by sin or
, , . . . , or , , . . . , that is, at multiples of

from the short circuit. The line current amplitude is zero for values of z given by
cos or , , . . . , or ,

, . . . , that is, at odd multiples of from the short circuit. The power
flow amplitude is zero for values of z given by sin or , ,
. . . , or , , . . . , that is, at multiples of from the short circuit.
Proceeding further, we find that the time-average power flow down the line, that is,
power flow averaged over one period of the source voltage, is

Thus, the time average power flow down the line is zero at all points on the line. This is
characteristic of complete standing waves.

From (7.14a) and (7.14b) or (7.15a) and (7.15b), or from Figures 7.2(a) and
7.2(b), we find that the amplitudes of the sinusoidal time-variations of the line voltage
and line current as functions of distance along the line are
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7.1 Short-Circuited Line and Frequency Behavior 237
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FIGURE 7.2

Time variations of voltage, current, and power flow associated with standing waves on a
short-circuited transmission line.
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238 Chapter 7 Transmission-Line Analysis

Returning now to the solutions for and given by (7.14a) and (7.14b), re-
spectively, we can find the input impedance of the short-circuited line of length l by
taking the ratio of the complex line voltage to the complex line current at the input

. Thus,

(7.17)

We note from (7.17) that the input impedance of the short-circuited line is purely reactive.
As the frequency is varied from a low value upward, the input reactance changes from in-
ductive to capacitive and back to inductive,and so on,as illustrated in Figure 7.4. The input
reactance iszeroforvaluesof frequencyequal tomultiplesof . Thesearethefrequen-
cies for which l is equal to multiples of so that the line voltage is zero at the input and
hence the input sees a short circuit. The input reactance is infinity for values of frequency
equal to odd multiples of . These are the frequencies for which l is equal to odd multi-
plesof sothatthelinecurrentiszeroattheinputandhencetheinputseesanopencircuit.l>4 vp>4l
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FIGURE 7.3

Standing wave patterns for voltage and current on a short-circuited
line.

Sketches of these quantities versus z are shown in Figure 7.3. These are known as the
standing wave patterns. They are the patterns of line voltage and line current one
would obtain by connecting an a.c. voltmeter between the conductors of the line and
an a.c. ammeter in series with one of the conductors of the line and observing their
readings at various points along the line. Alternatively, one can sample the electric and
magnetic fields by means of probes.
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7.1 Short-Circuited Line and Frequency Behavior 239

Example 7.1

From the foregoing discussion of the input reactance of the short-circuited line, we note that as
the frequency of the generator is varied continuously upward, the current drawn from it under-
goes alternatively maxima and minima corresponding to zero input reactance and infinite input
reactance conditions, respectively. This behavior can be utilized for determining the location of a
short circuit in the line.

Since the difference between a pair of consecutive frequencies for which the input reac-
tance values are zero and infinity is , as can be seen from Figure 7.4, it follows that the differ-
ence between successive frequencies for which the currents drawn from the generator are maxima
and minima is .As a numerical example, if for an air dielectric line it is found that as the fre-
quency is varied from 50 MHz upward, the current reaches a minimum for 50.01 MHz and then a
maximum for 50.04 MHz, then the distance l of the short circuit from the generator is given by

Since , it follows that

Example 7.2

We found that the input impedance of a short-circuited line of length l is given by

Let us investigate the low-frequency behavior of this input impedance.
First, we note that for any arbitrary value of ,
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FIGURE 7.4

Variation of the input reactance
of a short-circuited transmission
line with frequency.
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240 Chapter 7 Transmission-Line Analysis

For , that is, or or ,

Thus, for frequencies , the short-circuited line as seen from its input behaves essen-
tially like a single inductor of value , the total inductance of the line, as shown in Figure 7.5(a).ll

f V vp>2pl

Z
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in L jZ0bl = jAlc v2lcl = jvll
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f V
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FIGURE 7.5

Equivalent circuits for the input behavior of a short-circuited
transmission line.

Proceeding further, we observe that if the frequency is slightly beyond the range for which
the above approximation is valid, then

Thus, for frequencies somewhat above those for which the approximation is valid,
the short-circuited line as seen from its input behaves like an inductor of value in parallel

with a capacitance of value , as shown in Figure 7.5(b).
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7.2 Transmission-Line Discontinuity 241

These findings illustrate that a physical structure that can be considered as an in-
ductor at low frequencies no longer behaves like an inductor, if the fre-
quency is increased beyond that range. In fact, it has a stray capacitance associated with it.
As the frequency is still increased, the equivalent circuit becomes further complicated.
With reference to the question posed in Section 6.5 as to the limit on the frequency be-
yond which the quasistatic approximation for the input behavior of a physical structure
is not valid, it can now be seen that the condition dictates the range of validity
for the quasistatic approximation. In terms of the frequency f of the source, this condi-
tion means that or in terms of the period it means that

Thus, quasistatic fields are low-frequency approximations of time-
varying fields that are complete solutions to Maxwell’s equations, which represent
wave propagation phenomena and can be approximated to the quasistatic character
only when the times of interest are much greater than the propagation time, cor-
responding to the length of the structure. In terms of space variations of the fields at a
fixed time, the wavelength must be such that thus, the physical
length of the structure must be a small fraction of the wavelength. In terms of the line
voltage and current amplitudes, what this means is that over the length of the structure,
these amplitudes are fractional portions of the first one-quarter sinusoidal variations
at the end in Figure 7.3, with the boundary conditions at the two ends of the struc-
ture always satisfied. Thus, because of the sin dependence of V on z, the line voltage
amplitude varies linearly with z, whereas because of the cos dependence of I on z,
the line current amplitude is essentially a constant. These are exactly the nature of the
variations of the zero-order electric field and the first-order magnetic field, as discussed
under magnetoquasistatic fields in Example 6.7.

7.2 TRANSMISSION-LINE DISCONTINUITY

Let us now consider the case of two transmission lines, l and 2, having different charac-
teristic impedances and , respectively, and phase constants and respec-
tively, connected in cascade and driven by a generator at the left end of line 1, as shown
in Figure 7.6(a). Physically, the arrangement may, for example, consist of two parallel-
plate lines or two coaxial cables of different dielectrics in cascade, as shown in
Figures 7.6(b) and 7.6(c), respectively. In view of the discontinuity at the junction z = 0

b2,b1Z02Z01
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l V l>2p;l(=   2p>b),
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$

FIGURE 7.6

Two transmission lines
connected in cascade.
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242 Chapter 7 Transmission-Line Analysis

between the two lines, the incident wave on the junction sets up a reflected 
wave in line 1 and a transmitted wave in line 2. We shall assume that line 2 is infi-
nitely long so that there is no wave in that line.

We can now write the solutions for the complex voltage and complex current in
line 1 as

(7.18a)

(7.18b)

where are the and wave voltages and currents at 
in line 1, that is, just to the left of the junction. The solutions for the complex voltage
and complex current in line 2 are

(7.19a)

(7.19b)

where and are the wave voltage and current at in line 2, that is, just
to the right of the junction.

At the junction, the boundary conditions require that the components of E and H
tangential to the dielectric interface be continuous, as shown, for example, for the
parallel-plate arrangement in Figure 7.7(a). These are, in fact, the only components
present, since the transmission line fields are entirely transverse to the direction of
propagation. Now, since the line voltage and current are related to these electric and
magnetic fields, respectively, it then follows that the line voltage and line current be
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FIGURE 7.7

Application of boundary conditions at the junction between two
transmission lines.
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7.2 Transmission-Line Discontinuity 243

continuous at the junction, as shown in Figure 7.7(b). Thus, we obtain the boundary
conditions at the junction in terms of line voltage and line current as

(7.20a)

(7.20b)

Applying these boundary conditions to the solutions given by (7.18a) and (7.18b),
we obtain

(7.21a)

(7.21b)

Eliminating from (7.21a) and (7.21b), we get

or

(7.22)

We now define the voltage reflection coefficient at the junction, as the ratio of
the reflected wave voltage at the junction to the incident wave voltage at the
junction. Thus,

(7.23)

The current reflection coefficient at the junction, , which is the ratio of the reflected
wave current ( ) at the junction to the incident wave current ( ) at the junction is
then given by

(7.24)

We also define the voltage transmission coefficient at the junction, , as the ratio of
the transmitted wave voltage ( ) at the junction to the incident wave voltage ( ) at
the junction.Thus,
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mitted wave current at the junction to the incident wave current at the junc-
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244 Chapter 7 Transmission-Line Analysis

We note that for Thus, the incident
wave is entirely transmitted, as we may expect since there is no discontinuity at the
junction.

Example 7.3

Let us consider the junction of two lines having characteristic impedances and
, as shown in Figure 7.8, and compute the various quantities.Z02 = 75 Æ

Z01 = 50 Æ

Z02 = Z01, ≠V = 0, ≠I = 0, tV = 1, and tI = 1.

Line 1
Z01 ! 50 ohms

Line 2
Z02 ! 75 ohmsFIGURE 7.8

For the computation of several quantities pertinent
to reflection and transmission at the junction
between two transmission lines.

From (7.23)–(7.26), we have

The fact that the transmitted wave voltage is greater than the incident wave voltage should not
be of concern, since it is the power balance that must be satisfied at the junction. We can verify
this by noting that if the incident power on the junction is then

Recognizing that the minus sign for signifies power flow in the negative z-direction, we find
that power balance is indeed satisfied at the junction.

Returning now to the solutions for the voltage and current in line 1 given by
(7.18a) and (7.18b), respectively, we obtain, by replacing by 
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 ;  I
-+
2 = 4

5
 I
-+
1

 tV = 1 + ≠V = 1 + 1
5

= 6
5

 ;  V
– +

2 = 6
5

 V
– +

1

 ≠I = -≠V = - 1
5

 ;  I
--
1 = - 1

5
 I
-+
1

 ≠V = 75 - 50
75 + 50

= 25
125

= 1
5

 ;  V
– -

1 = 1
5

 V
– +

1
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7.2 Transmission-Line Discontinuity 245

(7.27b)

The amplitudes of the sinusoidal time-variations of the line voltage and line current as
functions of distance along the line are then given by

(7.28a)

(7.28b)

From (7.28a) and (7.28b), we note the following:

1. The line voltage amplitude undergoes alternate maxima and minima equal to
and respectively. The line voltage amplitude at

is a maximum on minimum depending on whether is positive or nega-
tive. The distance between a voltage maximum and the adjacent voltage mini-
mum is 

2. The line current amplitude undergoes alternate maxima and minima equal to
respectively. The line current ampli-

tude at is a minimum or maximum depending on whether is positive or
negative. The distance between a current maximum and the adjacent current
minimum is 

Knowing these properties of the line voltage and current amplitudes, we now sketch
the voltage and current standing wave patterns, as shown in Figure 7.9, assuming

Since these standing wave patterns do not contain perfect nulls, as in the case
of the short-circuited line of Section 7.1, these are said to correspond to partial stand-
ing waves.

We now define a quantity known as the standing wave ratio (SWR) as the ratio of
the maximum voltage, to the minimum voltage, of the standing wave pat-
tern. Thus, we find that

(7.29)SWR =
Vmax

Vmin
 =

ƒV– +
1 ƒ(1 + ƒ≠V ƒ)

ƒV– +
1 ƒ(1 - ƒ≠V ƒ)

=
1 + ƒ≠V ƒ
1 - ƒ≠V ƒ

 

Vmin,Vmax,

≠V 7 0.

p>2b1 or l1>4.

≠Vz = 0
(V

– +
1>Z01)(1 + ƒ≠V ƒ) and (V

– +
1>Z01)(1 - ƒ≠V ƒ),

p>2b1 or l1>4.

≠Vz = 0
ƒV– +

1 ƒ(1 - ƒ≠V ƒ),ƒV– +
1 ƒ(1 + ƒ≠V ƒ)

 =
ƒV– +

1 ƒ
Z01

 21 + ≠2
V - 2≠V cos 2b1z

 =
ƒV– +

1 ƒ
Z01

 ƒ1 - ≠V cos 2b1z - j≠V sin 2b1z ƒ

 ƒI-1(z) ƒ =
ƒV– +

1 ƒ
Z01

 ƒe-jb1z ƒ ƒ1 - ≠Vej2b1z ƒ

 = ƒV– +
1 ƒ 21 + ≠2

V + 2≠V cos 2b1z

 = ƒV– +
1 ƒ ƒ1 + ≠V cos 2b1z + j≠V sin 2b1z ƒ

 ƒV–1(z) ƒ = ƒV– +
1 ƒ ƒe-jb1z ƒ ƒ1 + ≠Vej2b1z ƒ

 =
V
– +

1

Z01
e-jb1z(1 - ≠Vej2b1z)

 I-1(z) = 1
Z01

(V
– +

1e-jb1z - ≠VV
– +

1ejb1z)
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246 Chapter 7 Transmission-Line Analysis

The SWR is an important parameter in transmission-line matching. It is an indicator
of the degree of the existence of standing waves on the line. We shall, however, not
pursue the topic here any further. Finally, we note that for the case of Example 7.3, the
SWR in line 1 is or 1.5. The SWR in line 2 is, of course, equal to 1 since
there is no reflected wave in that line.

7.3 THE SMITH CHART

In the previous section, we studied reflection and transmission at the junction of two
transmission lines, shown in Figure 7.10. In this section, we shall introduce the Smith
Chart, which is a useful graphical aid in the solution of transmission-line and many
other problems.

First we define the line impedance at a given value of z on the line as the
ratio of the complex line voltage to the complex line current at that value of z, that is,

(7.30)Z
–(z) =

V
–(z)
I
-(z)

 

Z
–(z)

11 + 1
52>11 - 1

52,

(1 # %v  ) V 1
#

(1 "  %v  ) V 1
#

7l1

4"
5l1

4"
3l1

4"
l1

4"
0

Voltage

 V#
1

 

Z01
(1 #  %v  )

 V#
1

 

Z01
(1 " %v  )

3l1

2"
l1

2"
"l1"2l1 0

Current

FIGURE 7.9

Standing wave patterns for voltage and current on a transmission line
terminated by another transmission line.

z
z ! 0

Z01, b1

Line 1
Z02, b2

Line 2
$

FIGURE 7.10

A transmission line terminated
by another infinitely long
transmission line.
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7.3 The Smith Chart 247

From the solutions for the line voltage and line current on line 2 given by (7.19a) and
(7.19b), respectively, the line impedance in line 2 is given by

Thus, the line impedance at all points on line 2 is simply equal to the characteristic im-
pedance of that line. This is because the line is infinitely long and hence there is only a 

wave on the line. From the solutions for the line voltage and line current in line 1
given by (7.18a) and (7.18b), respectively, the line impedance for that line is given by

(7.31)

where

(7.32)

(7.33)

The quantity is the voltage reflection coefficient at the junction and 
is the voltage reflection coefficient at any value of z.

To compute the line impedance at a particular value of z, we first compute 
from a knowledge of which is the terminating impedance to line 1. We then com-
pute which is a complex number having the same magnitude as
that of but a phase angle equal to plus the phase angle of . The com-
puted value of is then substituted in (7.31) to find All of this complex
algebra is eliminated through the use of the Smith Chart.

The Smith Chart is a mapping of the values of normalized line impedance onto
the reflection coefficient plane. The normalized line impedance is the ratio
of the line impedance to the characteristic impedance of the line. From (7.31), and
omitting the subscript 1 for the sake of generality, we have

(7.34)

Conversely,

(7.35)

Writing and substituting into (10.35), we find that

ƒ≠–V ƒ = ` r + jx - 1
r + jx + 1

` =
2(r - 1)2 + x22(r + 1)2 + x2

… 1 for r Ú 0

Z
–

n = r + jx

≠–V(z) =
Z
–

n(z) - 1
Z
–

n(z) + 1

Z
–

n(z) =
Z
–(z)
 Z0 

 =
1 + ≠–V(z)
1 - ≠V(z)

 

Z
–

n(z)(≠–V)

Z
–

1(z).≠–V(z)
≠–V(0)2b1z≠–V(0)

≠–V(z) = ≠–V(0)ej2b1z,
Z02 ,

≠–V(0)

≠–V(z)z = 0,≠–V(0)

≠–V(0) =
V
– -

1

V
– +

1
=

Z02 - Z01

Z02 + Z01

≠–V(z) =
V
– -

1ejb1z

V
– +

1e-jb1z
 = ≠–V(0)ej2b1z

 = Z01
1 + ≠–V(z)
 1 - ≠–V(z)

 

 Z–1(z) =
V
–

1(z)
I
-
1(z)

= Z01 
V
– +

1e-jb1z + V
– -

1ejb1z

V
– +

1e-jb1z - V
– +

1ejb1z

(+)

Z
–

2(z) =
V
–

2(z)
I
-
2(z)

= Z02 
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248 Chapter 7 Transmission-Line Analysis

Thus, we note that all passive values of normalized line impedances, that is, points in
the right half of the complex -plane shown in Figure 7.11(a) are mapped onto the re-
gion within the circle of radius unity in the complex -plane shown in Figure 7.11(b).≠–V

Z
–

n

0.5

1

1

a´b´

Re %v

%v Plane

Im %v

1

b

r

a

x

0

Zn Plane

1_
2

(a) (b)

FIGURE 7.11

For illustrating the development of the Smith Chart.

We can now assign values for compute the corresponding values of and
plot them on the -plane but indicating the values of instead of the values of .To
do this in a systematic manner, we consider contours in the -plane corresponding to
constant values of r, as shown for example by the line marked a for , and
corresponding to constant values of x, as shown for example by the line marked b for

in Figure 7.11(a).
By considering several points along line a, computing the corresponding values

of , plotting them on the -plane, and joining them, we obtain the contour marked
in Figure 7.11(b). Although it can be shown analytically that this contour is a circle

of radius and centered at , it is a simple task to write a computer program to
perform this operation, including the plotting. Similarly, by considering several points
along line b and following the same procedure, we obtain the contour marked in
Figure 7.11(b).Again, it can be shown analytically that this contour is a portion of a cir-
cle of radius 2 and centered at (1, 2). We can now identify the points on contour as
corresponding to by placing the number 1 beside it and the points on contour 
as corresponding to by placing the number 0.5 beside it. The point of intersec-
tion of contours and then corresponds to 

When the procedure discussed above is applied to many lines of constant r and
constant x covering the entire right half of the -plane, we obtain the Smith Chart. In
a commercially available form shown in Figure 7.12, the Smith Chart contains contours
of constant r and constant x at appropriate increments of r and x in the range

so that interpolation between the contours can be
carried out to a good degree of accuracy.

Let us now consider the transmission line system shown in Figure 7.13, which is
the same as that in Figure 7.10 except that a reactive element having susceptance (reci-
procal of reactance) B is connected in parallel with line 1 at a distance l from the junction.

0 6 r 6 q  and - q 6 x 6 q

Z
–

n

Z
–

n = 1 + j0.5.b¿a¿
x = 1

2

b¿r = 1
a¿

b¿

(1>2, 0)1
2

a¿
≠–V≠–V

x = 1
2

r = 1
Z
–

n

≠–VZ
–

n≠–V

≠–V,Z
–

n,
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FIGURE 7.12

A commercially available form of the Smith Chart (reproduced with the courtesy of Analog
Instrument Co., P.O. Box 950, New Providence, NJ 07974, USA).

z ! 0
z ! "l

Z01

Line 1
Z01

Line 1
jB Z02

Line 2

Y2

Z1, Y1

FIGURE 7.13

A transmission-line system for illustrating
the computation of several quantities by
using the Smith Chart.
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250 Chapter 7 Transmission-Line Analysis

Let us assume where is
the wavelength in line 1 corresponding to the source frequency, and find the following
quantities by using the Smith Chart, as shown in Figure 7.14:

1. , line impedance just to the right of First we note that since line 2 is infinitely
long, the load for line 1 is simply 50 . Normalizing this with respect to the char-
acteristic impedance of line 1, we obtain the normalized load impedance for line
1 to be

Locating this on the Smith Chart at point A in Figure 7.14 amounts to computing
the reflection coefficient at the junction, that is, Now the reflection coeffi-
cient at being equal to can be
located on the Smith Chart by moving A such that the magnitude remains con-
stant but the phase angle decreases by . This is equivalent to moving it on a
circle with its center at the center of the Smith Chart and in the clockwise direc-
tion by so that point B is reached. Actually, it is not necessary
to compute this angle, since the Smith Chart contains a distance scale in terms
of along its periphery for movement from load toward generator and vice
versa, based on a complete revolution for one-half wavelength. The normalized
impedance at point B can now be read off the chart and multiplied by the charac-
teristic impedance of the line to obtain the required impedance value. Thus,

Z
–

1 = (0.6 - j0.8)150 = (90 - j120) Æ.

l

1.5p or 270°

1.5p

≠–V(0)e-j2b1l = ≠–V(0)e-j1.5p,z = - l = -0.375l1,
≠–V(0).

Z
–

n(0) = 50
150

= 1
3

Æ
jB:Z

–
1

l1Z01 = 150 Æ, Z02 = 50 Æ, B = -0.003 S, and l = 0.375l1,

Toward
Generator

0.25l

0.125l

0.375l

0.8

0.35

1.94 30.6
0

"0.8

CF

E

D

A

B

1_
3

FIGURE 7.14

For illustrating the use of the Smith
Chart in the computation of several
quantities for the transmission-line
system of Figure 7.13.
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7.3 The Smith Chart 251

2. SWR on line 1 to the right of jB: From (7.29)

(7.36)

Comparing the right side of (7.36) with the expression for given by (7.34), we
note that it is simply equal to corresponding to phase angle of equal
to zero. Thus, to find the SWR, we locate the point on the Smith Chart having the
same as that for but having a phase angle equal to zero, that is,
the point C in Figure 7.14, and then read off the normalized resistance value at
that point.Here, it is equal to 3 and hence the required SWR is equal to 3.In fact, the
circle passing through C and having its center at the center of the Smith Chart is
known as the constant SWR circle, since for any normalized load impedance
to line 1 lying on that circle, the SWR is the same (and equal to 3).

3. line admittance just to the right of To find this, we note that the normal-
ized line admittance at any value of z, that is, the line admittance normal-
ized with respect to the line characteristic admittance (reciprocal of ) is
given by

(7.37)

Thus, at a given value of z is equal to at a value of z located from it. On
the Smith Chart, this corresponds to the point on the constant SWR circle passing
through B and diametrically opposite to it, that is, the point D. Thus,

and

In fact, the Smith Chart can be used as an admittance chart instead of as an im-
pedance chart, that is, by knowing the line admittance at one point on the line,
the line admittance at another point on the line can be found by proceeding
in the same manner as for impedances. As an example, to find we can first
find the normalized line admittance at by locating the point C diametricallyz = 0

Y
–

1,

 = (0.004 + j0.0053) S

 Y
–

1 = Y01 Y
–
n1 = 1

150
(0.6 + j0.8)

Y
–

n1 = 0.6 + j0.8

l>4Z
–

nY
–

n

 = Z
–

n a z ; l
4
b

 =
1 + ≠–V(z)e;j2bl>4
1 - ≠–V(z)e;j2bl>4 =

1 + ≠–V(z ; l>4)

1 - ≠–V(z ; l>4)

 =
1 - ≠–V(z)
1 + ≠–V(z)

=
1 + ≠–V(z)e ;jp

1 - ≠–V(z)e;jp

 Y
–

n(z) =
Y
–

(z)
Y0

=
Z0

Z
–

(z)
= 1

Z
–

n(z)

Z0Y0

Y
–
n

jB:Y
–

1,

(=  3)

z = 0,ƒ≠–V ƒ

≠–V Z
–

n

Z
–

n

SWR =
1 + ƒ≠V ƒ
1 - ƒ≠V ƒ

 =
1 + ƒ≠–V ƒej0

1 - ƒ≠–V ƒej0
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252 Chapter 7 Transmission-Line Analysis

opposite to point A on the constant SWR circle. Then we find by simply going
on the constant SWR circle by the distance toward the generator.
This leads to point D, thereby giving us the same result for as found above.

4. SWR on line 1 to the left of jB:To find this, we first locate the normalized line ad-
mittance just to the left of jB, which then determines the constant SWR circle
corresponding to the portion of line 1 to the left of jB. Thus, noting that

and hence

(7.38a)

(7.38b)

we start at point D and go along the constant real part (conductance) circle to
reach point E for which the imaginary part differs from the imaginary part at D
by the amount that is, or . We then draw the con-
stant SWR circle passing through E and then read off the required SWR value at
point F. This value is equal to 1.94.

The steps outlined above in part 4 can be applied is reverse to determine the
location and the value of the susceptance required to achieve an SWR of unity to
the left of it, that is, a condition of no standing waves. This procedure is known as
transmission-line matching. It is important from the point of view of eliminating or
minimizing certain undesirable effects of standing waves in electromagnetic energy
transmission.

To illustrate the solution to the matching problem, we first recognize that an
SWR of unity is represented by the center point of the Smith Chart. Hence, matching is
achieved if falls at the center of the Smith Chart. Now since the difference between

and is only in the imaginary part as indicated by (7.38a) and (7.38b), must
lie on the constant conductance circle passing through the center of the Smith Chart
(this circle is known as the unit conductance circle, since it corresponds to normalized
real part equal to unity). must also lie on the constant SWR circle corresponding to
the portion of the line to the right of jB. Hence, it is given by the point(s) of intersec-
tion of this constant SWR circle and the unit conductance circle. There are two such
points, G and H, as shown in Figure 7.15, in which the points A and C are repeated
from Figure 7.14. There are thus two solutions to the matching problem. If we choose
G to correspond to , then, since the distance from C to G is 

jB must be located at To find the value of jB, we note that
the normalized susceptance value corresponding to G is and hence

If, however, we choose the point H to
correspond to then we find in a similar manner that jB must be located at

or and its value must be 
The reactive element jB used to achieve the matching is commonly realized by

means of a short-circuited section of line, known as a stub. This is based on the fact that
the input impedance of a short-circuited line is purely reactive, as shown in Section 7.1.

-j0.00773 S.0.417l1z = (0.250 + 0.167)l1

Y
–
n1,

or jB = j1.16 Y01 = j0.00773 S.B>Y01 = 1.16,
-1.16

z = -0.083l1.or 0.083l1,
(0.333 - 0.250)l1,Y

–
n1

Y
–
n1

Y
–
n1Y

–
n2Y

–
n1

Y
–
n2

-0.45-0.003>(1>150),B>Y01,

 Im[Y
–

n2] = Im[Y
–

n1] + B
Y01

 Re[Y
–
n2] = Re[Y

–
n1]

Y
–

2 = Y
–

1 + jB, or Y–n2 = Y
–
n1 + jB>Y01,

Y
–

1

l(=  0.375l1)
Y
–

n1
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7.3 The Smith Chart 253

The length of the stub for a required input susceptance can be found by considering
the short circuit as the load, as shown in Figure 7.16, and using the Smith Chart. The ad-
mittance corresponding to a short circuit is infinity, and hence the load admittance nor-
malized with respect to the characteristic admittance of the stub is also equal to
infinity. This is located on the Smith Chart at point I in Figure 7.15. We then go along
the constant SWR circle passing through I (the outermost circle) toward the generator
(input) until we reach the point corresponding to the required input susceptance of the
stub normalized with respect to the characteristic admittance of the stub.Assuming the
characteristic impedance of the stub to be the same as that of the line, this quantity is
here equal to j1.16 or depending on whether point G or point H is chosen for
the location of the stub. This leads us to point J or point K, and hence the stub length
is or for or for

The arrangement of the stub corresponding to the solution for which the
stub location is at and the stub length is is shown in Figure 7.17.0.386l1,z = -0.083l1,
jB = -j1.16.

0.114l1,jB = j1.16, and (0.364 - 0.25)l1,0.386 l1,(0.25 + 0.136)l1,

-j1.16,

Toward
Generator

0.136l

0.167l

0.25l0

1.16J

C

G

K

H

A I

0.364l

0.333l"1.16

FIGURE 7.15

Solution of transmission-line matching problem by using the Smith
Chart.

jB
Input

Toward Generator

Y ! 
Load

$

FIGURE 7.16

A short-circuited stub.
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254 Chapter 7 Transmission-Line Analysis

B. TIME DOMAIN

For a lossless line, the transmission-line equations (6.86a) and (6.86b) or (7.1a) and (7.1b)
reduce to

(7.39a)

(7.39b)

In time domain, the solutions are given by

(7.40a)

(7.40b)

which can be verified by substituting them into (7.39a) and (7.39b). These solutions
represent voltage and current traveling waves propagating with velocity

(7.41)

in view of the arguments for the functions f and g, and characteristic
impedance

(7.42)

They can also be inferred from the fact that and are independent of frequency.Z0vp

Z0 = Alc
(t < z1lc)

vp = 1
 1lc

 I(z, t) = 1
 1l>c 

[Af(t - z1lc) - Bg(t + z1lc)]

 V(z, t) = Af(t - z1lc) + Bg(t + z1lc)

0I
0z

= -c0V
0t

0V
0z

 = -l0I
0t

Line 2

Stub

Line 1
SWR ! 3Line 1

SWR ! 1

0.083l1

0.386l1

FIGURE 7.17

A solution to the matching problem for
the transmission-line system of Figure 7.10.
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B. Time Domain 255

We now rewrite (7.40a) and (7.40b) as

(7.43a)

(7.43b)

or, more concisely,

(7.44a)

(7.44b)

with the understanding that is a function of is a function of
In terms of wave currents, the solution for the current may also

be written as

(7.45)

Comparing (7.44b) and (7.45), we see that

(7.46a)

(7.46b)

The minus sign in (7.46b) can be understood if we recognize that in writing (7.44a) and
(7.45), we follow the notation that both and have the same polarities with one
conductor (say, a) positive with respect to the other conductor (say, b) and that both 
and flow in the positive z-direction along conductor a and return in the negative 
z-direction along conductor b, as shown in Figure 7.18. The power flow associated with
either wave, as given by the product of the corresponding voltage and current, is then
directed in the positive z-direction, as shown in Figure 7.18. Thus,

(7.47a)P+ = V+I+ = V+ a V+

Z0
b =

(V+)2

Z0

I-
I+

V-V+

I- = - V-

Z0

I+ = V+

Z0

I = I+ + I-

(+) and (-)(t + z>vp).
(t - z>vp) and V-V+

I = 1
Z0

 (V+ - V-)

V = V+ + V-

 I(z, t) = 1
Z0
cV+ a t - z

vp
b - V- a t + z

vp
b d

 V(z, t) = V+ a t - z
vp
b + V- a t + z

vp
b

#

"

V#, V"

I#, I"

I#, I"

P#, P"

Conductor a

Conductor b

FIGURE 7.18

Polarities for voltages and currents
associated with and waves.(-)(+)
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256 Chapter 7 Transmission-Line Analysis

Since is always positive, regardless of whether is numerically positive or neg-
ative, (7.47a) indicates that the wave power does actually flow in the positive 
z-direction, as it should. On the other hand,

(7.47b)

Since is always positive, regardless of whether is numerically positive or neg-
ative, the minus sign in (7.47b) indicates that is negative, and, hence, the wave
power actually flows in the negative z-direction, as it should.

7.4 LINE TERMINATED BY RESISTIVE LOAD

Let us now consider a line of length l terminated by a load resistance and driven by a
constant voltage source in series with internal resistance , as shown in Figure 7.19.
Note again that the conductors of the transmission line are represented by double-ruled
lines, whereas the connections to the conductors are single-ruled lines, to be treated as
lumped circuits. We assume that no voltage and current exist on the line for and
the switch S is closed at We wish to discuss the transient wave phenomena on the
line for The characteristic impedance of the line and the velocity of propagation
are and respectively.vp,Z0

t 7 0.
t = 0.

t 6 0

RgV0

RL

(-)P-
V-(V-)2

P- = V-I- = V- a - V-

Z0
b = -

(V-)2

Z0

(+)
V+(V+)2

z ! 0

Z0, vp

t ! 0

z ! l

Rg

S

RL

V0

FIGURE 7.19

Transmission line terminated by a
load resistance and driven by
a constant voltage source in series
with an internal resistance .Rg

RL

When the switch S is closed at a wave originates at and travels
toward the load. Let the voltage and current of this wave be and respectively.
Then we have the situation at , as shown in Figure 7.20(a). Note that the load
resistor does not come into play here since the phenomenon is one of wave propagation;
hence, until the ( ) wave goes to the load, sets up a reflection, and the reflected wave
arrives back at the source, the source does not even know of the existence of . This is
a fundamental distinction between ordinary (lumped-) circuit theory and transmission-
line (distributed-circuit) theory. In ordinary circuit theory, no time delay is involved;
the effect of a transient in one part of the circuit is felt in all branches of the circuit in-
stantaneously. In a transmission-line system, the effect of a transient at one location on
the line is felt at a different location on the line only after an interval of time that the
wave takes to travel from the first location to the second. Returning now to the circuit

RL

+

z = 0
I+ ,V+(+)

z = 0(+)t = 0,
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7.4 Line Terminated by Resistive Load 257

in Figure 7.20(a), the various quantities must satisfy the boundary condition, that is,
Kirchhoff’s voltage law around the loop. Thus, we have

(7.48a)

We, however, know from (6.31a) that Hence, we get

(7.48b)

or

(7.49a)

(7.49b)

Thus, we note that the situation in Figure 7.20(a) is equivalent to the circuit shown in
Figure 7.20(b); that is, the voltage source views a resistance equal to the characteristic
impedance of the line, across . This is to be expected, since only a wave exists
at and the ratio of the voltage to current in the wave is equal to .

The wave travels toward the load and reaches the termination at It
does not, however, satisfy the boundary condition there, since this condition requires
the voltage across the load resistance to be equal to the current through it times its
value, . But the voltage-to-current ratio in the wave is equal to . To resolve this
inconsistency, there is only one possibility, which is the setting up of a wave, or a
reflected wave. Let the voltage and current in this reflected wave be and ,
respectively. Then the total voltage across is , and the total current through
it is , as shown in Figure 7.21(a). To satisfy the boundary condition, we have

(7.50a)V+ - V- = RL(I+ + I-)

I+ + I-
V+ + V-RL

I-V-
(-)

Z0(+)RL

t = l>vp.(+)
Z0(+)z = 0

(+)z = 0

 I+ = V+

Z0
=

V0

Rg + Z0

 V+ = V0
Z0

Rg + Z0

V0 - V+

Z0
Rg - V+ = 0

I+ = V+>Z0.

V0 - I+Rg - V+ = 0

"

#

V# V#

I#

I#

(a) (b)

z ! 0 z ! 0

Rg Rg

V0 V0

Z0

FIGURE 7.20

(a) For obtaining the wave voltage and current at for the
line of Figure 7.19. (b) Equivalent circuit for (a).

z = 0(+)
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258 Chapter 7 Transmission-Line Analysis

But from (7.46a) and (7.46b),we know that and respectively.
Hence,

(7.50b)

or

(7.51)

We now denote the voltage reflection coefficient, that is, the ratio of the reflected volt-
age to the incident voltage, by the symbol (previously ). Thus,

(7.52)

We then note that the current reflection coefficient is

(7.53)

Now, returning to the reflected wave, we observe that this wave travels back
toward the source and that it reaches there at Since the boundary condition
at , which was satisfied by the original wave alone, is then violated, a reflec-
tion of the reflection, or a re-reflection, will be set up and it travels toward the load. Let
us assume the voltage and current in this re-reflected wave, which is a wave, to be

and , respectively, with the superscripts denoting that the wave is a conse-
quence of the wave. Then the total line voltage and the line current at are

and respectively, as shown in Figure 7.21(b). To satis-
fy the boundary condition, we have

(7.54a)V+ + V- + V- + = V0 - Rg(I+ + I- + I- +)

I+ + I- + I- +,V+ + V- + V- +
z = 0(-)

(+)I- +V- +
(+)

(+)z = 0
t = 2l>vp.

I-

I+ =
-V->Z0

V+>Z0
= - V-

V+ = -≠

≠ = V-

V+ =
RL - Z0

RL + Z0

≠V≠

V- = V+
 
RL - Z0

RL + Z0

V+ - V- = RL a V+

Z0
- V-

Z0
b

I- = -V->Z0,I+ = V+>Z0

(a) (b)

V## V"# V"#V## V"

I## I"# I"#I## I"

z ! 0z ! l

RL

V0

#

"

#

"

Rg

FIGURE 7.21

For obtaining the voltages and currents associated with (a) the 
wave and (b) the wave, for the line of Figure 7.19.(- +)

(-)
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7.4 Line Terminated by Resistive Load 259

But we know that and Hence,

(7.54b)

Furthermore, substituting for from (7.49a), simplifying, and rearranging, we get

or

(7.55)

Comparing (7.55) with (7.51), we note that the reflected wave views the source
with internal resistance as the internal resistance alone; that is, the voltage source is
equivalent to a short circuit insofar as the wave is concerned. A moment’s thought
will reveal that superposition is at work here. The effect of the voltage source is taken
into account by the constant outflow of the original wave from the source. Hence,
for the reflection of the reflection, that is, for the wave, we need only consider the
internal resistance . Thus, the voltage reflection coefficient formula (7.52) is a general
formula and will be used repeatedly. In view of its importance, a brief discussion of the
values of for some special cases is in order, as follows:

1. or short-circuited line.

The reflected voltage is exactly the negative of the incident voltage, thereby
keeping the voltage across (short circuit) always zero.

2. or open-circuited line.

and the current reflection coefficient . Thus, the reflected current is
exactly the negative of the incident current, thereby keeping the current through

(open circuit) always zero.
3. or line terminated by its characteristic impedance.

This corresponds to no reflection, which is to be expected since is con-
sistent with the voltage-to-current ratio in the wave alone, and, hence, there
is no violation of boundary condition and no need for the setting up of a reflected
wave. Thus, a line terminated by its characteristic impedance is equivalent to an
infinitely long line insofar as the source is concerned.

(+)
RL( = Z0)

≠ =
Z0 - Z0

Z0 + Z0
= 0

RL = Z0,
RL

=  -≠ = -1

≠ =
q - Z0

q + Z0
= 1

RL = q ,
RL

≠ =
0 - Z0

0 + Z0
= -1

RL = 0,

≠

Rg

(- +)
(+)

(-)

V- + = V-
 

Rg - Z0

Rg + Z0

V- +
 a 1 +

Rg

Z0
b = V-

 a Rg

Z0
- 1bV+

V+ + V- + V- + = V0 -
Rg

Z0
(V+ - V- + V- +)

I- + = V- +>Z0.I+ = V+>Z0, I- = -V->Z0,
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260 Chapter 7 Transmission-Line Analysis

Returning to the discussion of the re-reflected wave, we note that this wave
reaches the load at time and sets up another reflected wave. This process of
bouncing back and forth of waves goes on indefinitely until the steady state is reached.
To keep track of this transient phenomenon, we make use of the bounce-diagram tech-
nique. Some other names given for this diagram are reflection diagram and space-time
diagram. We shall introduce the bounce diagram through a numerical example.

Example 7.4

Let us consider the system shown in Figure 7.22. Note that we have introduced a new quantity T,
which is the one-way travel time along the line from to that is, instead of specifying
two quantities and we specify Using the bounce-diagram technique, we wish to
obtain and plot line voltage and current versus t for fixed values z and line voltage and current
versus z for fixed values t.

T( = l>vp).vp,l
z = l;z = 0

t = 3l>vp

z ! 0

Z0 ! 60 '
 T ! 1 ms

t ! 0

z ! l

40 '
120 '

100 V

S

FIGURE 7.22

Transmission-line system for
illustrating the bounce-diagram
technique of keeping track of the
transient phenomenon.

Before we construct the bounce diagram, we need to compute the following quantities:

The bounce diagram is essentially a two-dimensional representation of the transient
waves bouncing back and forth on the line. Separate bounce diagrams are drawn for voltage and
current, as shown in Figure 7.23(a) and (b), respectively. Position (z) on the line is represented
horizontally and the time (t) vertically. Reflection coefficient values for the two ends are shown
at the top of the diagrams for quick reference. Note that current reflection coefficients are

and respectively, at the load and at the source. Crisscross lines are drawn as
shown in the figures to indicate the progress of the wave as a function of both z and t, with the
numerical value for each leg of travel shown beside the line corresponding to that leg and
approximately at the center of the line. The arrows indicate the directions of travel. Thus, for
example, the first line on the voltage bounce diagram indicates that the initial wave of 60 V
takes a time of 1 to reach the load end of the line. It sets up a reflected wave of 20 V, which
travels back to the source, reaching there at a time of 2 , which then gives rise to a wave of
voltage , and so on, with the process continuing indefinitely.-4 V

(+)ms
ms

(+)

-≠S = 1
5,-≠R = -1

3

 Voltage reflection coefficient at source, ≠S = 40 - 60
40 + 60

= - 1
5

 Voltage reflection coefficient at load, ≠R = 120-60
120 + 60

= 1
3

 Current carried by the initial (+) wave = 60
60

= 1 A

 Voltage carried by the initial (+) wave = 100 60
40 + 60

= 60 V
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7.4 Line Terminated by Resistive Load 261

Now, to sketch the line voltage and/or current versus time at any value of z, we note
that since the voltage source is a constant voltage source, each individual wave voltage and cur-
rent, once the wave is set up at that value of z, continues to exist there forever. Thus, at any par-
ticular time, the voltage (or current) at that value of z is a superposition of all the voltages (or
currents) corresponding to the crisscross lines preceding that value of time. These values are
marked on the bounce diagrams for and . Noting that each value corresponds to the
2-ms time interval between adjacent crisscross lines, we now sketch the time variations of line
voltage and current at and , as shown in Figures 7.24(a) and (b), respectively. Similar-
ly, by observing that the numbers written along the time axis for are actually valid for any
pair of z and t within the triangle ( ) inside which they lie and that the numbers written along
the time axis for are actually valid for any pair of z and t within the triangle ( ) inside
which they lie, we can draw the sketches of line voltage and current versus time for any other
value of z. This is done for in Figure 7.24(c).

It can be seen from the sketches of Figure 7.24 that as time progresses, the line voltage and
current tend to converge to certain values, which we can expect to be the steady-state values. In
the steady state, the situation consists of a single wave, which is actually a superposition of the
infinite number of transient waves, and a single wave, which is actually a superposition
of the infinite number of transient waves. Denoting the steady-state wave voltage and(+)(-)

(-)(+)
(+)

z = l>2 !z = l
"

z = 0
z = lz = 0

z = lz = 0

60 V

20

"4

"4/3

"4/225

"1/3

2
3

4/15

4/45

3376
45

224
3

80

0
00

2

4

6

1

3

5

7
16876

225

1124
15

76

60

zz ! 0 z ! l

(a)

t, ms

1
5

%S ! "
1
3

%R !

1 A

"1/675

"1/3375

"1/15

1
5

"%S !

9
15

28
45

1/45

0
00

2

4

6

1

3

5

7
2109
3375

141
225

1

422
675

1/225

zz ! 0 z ! l

(b)

" 
1
3

"%R !

FIGURE 7.23

(a) Voltage and (b) current bounce diagrams, depicting the bouncing back and forth of the
transient waves for the system of Figure 7.22.
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262 Chapter 7 Transmission-Line Analysis

current to be and , respectively, and the steady-state wave voltage and current to be
and , respectively, we obtain from the bounce diagrams

 I-
SS = - 1

3
+ 1

45
- 1

675
+ Á = - 1

3
a 1 - 1

15
+ 1

152 - Áb = -0.3125 A

 V-
SS = 20 - 4

3
+ 4

45
- Á = 20 a 1 - 1

 15
+ 1

 152 - Áb = 18.75 V

 I+
SS = 1 - 1

15
+ 1

225
- Á = 1 - 1

15
+ 1

152 - Á = 0.9375 A

 V+
SS = 60 - 4 + 4

 15
- Á = 60 a 1 - 1

15
+ 1

 152 - Áb = 56.25 V

I-
SSV-

SS

(-)I+
SSV+

SS

3376
45

224
3

16876
22576

60 1124
15

(a)

t, ms

9
15

2109
3375

141
225

2
3

28
45

422
675

2

100

0 4 6 8

[V]z ! 0, V

t, ms
20 4 6 8

[I]z ! 0, A

[V]z ! l, V [I]z ! l, A

[V]z ! l/2, V [I]z ! l/2, A

1
1

80

(b)

t, ms
1

100

0 3 5 7 9 9
t, ms

1

1

0 3 5 7

80

60
224

3

(c)

t, ms
0.5

100

0 2.5 4.5 6.5 8.5 8.5
t, ms

1

0

76

1
28
45

9
15

2
3

0.5 2.5 4.5 6.5

FIGURE 7.24

Time variations of line voltage and line current at (a) , (b) , and (c) for the
system of Figure 7.22.

z = l>2z = lz = 0
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7.4 Line Terminated by Resistive Load 263

Note that and as they should be. The steady-state line voltage
and current can now be obtained to be

These are the same as the voltage across and current through if the source and its internal
resistance were connected directly to , as shown in Figure 7.25. This is to be expected since the
series inductors and shunt capacitors of the distributed equivalent circuit behave like short cir-
cuits and open circuits, respectively, for the constant voltage source in the steady state.

RL

RLRL

 ISS = I+
SS + I-

SS = 0.625 A

 VSS = V+
SS + V-

SS = 75 V

I-
SS = -V-

SS>Z0,I+
SS = V+

SS>Z0

40 '
120 '

100 V "

#

z ! 0 z ! l

0.625 A

75 V

FIGURE 7.25

Steady-state equivalent for
the system of Figure 7.22.

(a)

z

100
76

0 l/2 l

[V]t ! 2.5 ms, V

80

(b)

z

1
1

0 2l/3 l

[I]t ! 1"1/3 ms, A

2
3

FIGURE 7.26

Variations with z of (a) line voltage for and (b) line current for for the
system of Figure 7.22.

t = 1 
1
3  ms,t = 2.5 ms

In Example 7.4, we introduced the bounce-diagram technique for a constant-
voltage source. The technique can also be applied if the voltage source is a pulse. In the
case of a rectangular pulse, this can be done by representing the pulse as the superposi-
tion of two step functions, as shown in Figure 7.27, and superimposing the bounce
diagrams for the two sources one on another. In doing so, we should note that the bounce
diagram for one source begins at a value of time greater than zero.Alternatively, the time

Sketches of line voltage and current as functions of distance (z) along the line for any par-
ticular time can also be drawn from considerations similar to those employed for the sketches of
Figure 7.24. For example, suppose we wish to draw the sketch of line voltage versus z for

Then we note from the voltage bounce diagram that for the line voltage is
76 V from to and 80 V from to This is shown in Figure 7.26(a).
Similarly, Figure 7.26(b) shows the variation of line current versus z for t = 1 

1
3 ms.

z = l.z = l>2z = l>2z = 0
t = 2.5 ms,t = 2.5 ms.
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264 Chapter 7 Transmission-Line Analysis

variation for each wave can be drawn alongside the time axes beginning at the time of
start of the wave. These can then be used to plot the required sketches.An example is in
order, to illustrate this technique, which can also be used for a pulse of arbitrary shape.

V V

(+)

(#)

0

1

2

320 "4

"4
4

0

1
20 60

6060

2

3

4

(")

(")

("#"#) ("#")
("#")

("#)

("#)

z ! 0 z ! lz

" 3
4

t, ms

1
5"%S !

1
3%R !

FIGURE 7.28

Voltage bounce diagram for the system of Figure 7.22 except that the voltage source is a
rectangular pulse of 1- duration from to t = 1 ms.t = 0ms

#!

t
0

Vg

V0

t0

t0
t t

0
0

V0 V0

"V0

FIGURE 7.27

Representation of a rectangular pulse as the superposition of two step functions.

Example 7.5

Let us assume that the voltage source in the system of Figure 7.22 is a 100-V rectangular pulse
extending from to and extend the bounce-diagram technique.

Considering, for example, the voltage bounce diagram, we reproduce in Figure 7.28 part of
the voltage bounce diagram of Figure 7.23(a) and draw the time variations of the individual pulses
alongside the time axes, as shown in the figure. Note that voltage axes are chosen such that posi-
tive values are to the left at the left end of the diagram, but to the right at the right end

of the diagram.1z = l2 1z = 02
t = 1 mst = 0
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7.4 Line Terminated by Resistive Load 265

From the voltage bounce diagram, sketches of line voltage versus time at and 
can be drawn, as shown in Figures 7.29(a) and (b), respectively. To draw the sketch of line volt-
age versus time for any other value of z, we note that as time progresses, the wave pulses slide
down the crisscross lines from left to right, whereas the wave pulses slide down from right to1-2 1+2 z = lz = 0

(a)

16

1

60

0 2 3 "16/15

4 5

[V]z ! 0, V

(b)

80

1

80

0 2 5 6

43

[V]z ! l, V

(c)

20

1.50.5

60

0

3.52.5 4.5 4/15

[V]z ! l/2, V

"16/3

16/45

60

"4 "4/3 5.5

t, ms

t, ms

t, ms

FIGURE 7.29

Time variations of line voltage 
at (a) (b) and 
(c) for the system of
Figure 7.22, except that the
voltage source is a rectangular
pulse of duration from 

to t = 1 ms.t = 0
1-ms

z = l>2 z = l,z = 0,
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266 Chapter 7 Transmission-Line Analysis

left. Thus, to draw the sketch for we displace the time plots of the waves at 
and of the waves at forward in time by that is, delay them by and add
them to obtain the plot shown in Figure 7.29(c).

Sketches of line voltage versus distance (z) along the line for fixed values of time can also
be drawn from the bounce diagram, based on the phenomenon of the individual pulses sliding
down the crisscross lines. Thus, if we wish to sketch V(z) for then we take the portion
from back to (since the one-way travel time on the line is

) of all the wave pulses at and lay them on the line from to and we
take the portion from back to of all the wave pulses at

and lay them on the line from back to In this case, we have only one wave
pulse, that of the wave, and only one wave pulse, that of the wave, as shown in
Figures 7.30(a) and (b). The line voltage is then the superposition of these two waveforms, as
shown in Figure 7.30(c).

Similar considerations apply for the current bounce diagram and plots of line current
versus t for fixed values of z and line current versus z for fixed values of t.

1-21-21- +2 1+2z = 0.z = lz = l
1-2t = 2.25 - 1 = 1.25 mst = 2.25 ms

z = l,z = 0z = 01+21 ms
t = 2.25 - 1 = 1.25 mst = 2.25 ms

t = 2.25 ms,

0.5 ms,0.5 ms,z = l1-2 z = 01+2z = l>2,

(b)

z

20

0 l/2 l

V", V

(a)

z0
"4 l/2 l

V"#, V

(c)

z

16
20

0 l/2 l

V, V

FIGURE 7.30

Variations with z of (a) the wave voltage,
(b) the wave voltage, and (c) the total line
voltage, at for the system of Figure 7.22,
except that the voltage source is a rectangular
pulse of duration from to t = 1 ms.t = 01-ms

t = 2.25 ms
1-2 1- +2

7.5 LINES WITH INITIAL CONDITIONS

Thus far, we have considered lines with quiescent initial conditions, that is, with no ini-
tial voltages and currents on them. As a prelude to the discussion of analysis of inter-
connections between logic gates, we shall now consider lines with nonzero initial
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7.5 Lines with Initial Conditions 267

conditions. We discuss first the general case of arbitrary initial voltage and current
distributions by decomposing them into and wave voltages and currents. To
do this, we consider the example shown in Figure 7.31, in which a line open-circuited at
both ends is charged initially, say, at to the voltage and current distributions
shown in the figure.

t = 0,

1-21+2

l/2

50

0
z

V(z, 0), V

I(z, 0)

l

l/2

1

0
z

I(z, 0), A

l

#

"

#

"

#

"

#

"

#

"

#

"

#

"

#

"

Z0 ! 50 '
T ! 1 ms

z ! 0 z ! l

V(z, 0)

FIGURE 7.31

Line open-circuited at both ends and initially charged to the voltage and current distributions V(z, 0)
and I(z, 0), respectively.

Writing the line voltage and current distributions as sums of and wave
voltages and currents, we have

(7.56a)

(7.56b)

But we know that and Substituting these into (7.56b) and
multiplying by we get

(7.57)

Solving (7.56a) and (7.57), we obtain

(7.58a)

(7.58b)

Thus, for the distributions V(z, 0) and I(z, 0) given in Figure 7.31, we obtain the distrib-
utions of and as shown by Figure 7.32(a), and hence of and

as shown by Figure 7.32(b).
Suppose that we wish to find the voltage and current distributions at some later

value of time, say, Then, we note that as the and waves propagate1-21+2t = 0.5 ms.

I-1z, 02, I+1z, 02V-1z, 02,V+1z, 02
 V-1z, 02 = 1

2 [V1z, 02 - Z0I1z, 02] V+1z, 02 = 1
2 [V1z, 02 + Z0I1z, 02]

V+1z, 02 - V-1z, 02 = Z0I1z, 02Z0,
I- = -V->Z0.I+ = V+>Z0

 I+1z, 02 + I-1z, 02 = I1z, 02 V+1z, 02 + V-1z, 02 = V1z, 02
1-21+2
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l/2

50

0
z

V#(z, 0), V

l

A

B

C

l/2

50

0

(a) (b)

z

V"(z, 0), V

l

D
C

l/2

1

0
z

I#(z, 0), A

l

l/2

–1

0
z

I"(z, 0), A

l

FIGURE 7.32

Distributions of (a) voltage and (b) current in the and waves obtained by decomposing the voltage
and current distributions of Figure 7.31.

1-21+2
and impinge on the open circuits at and respectively, they produce the 
and waves, respectively, consistent with a voltage reflection coefficient of 1 and
current reflection coefficient of at both ends. Hence, at the and 
wave voltage and current distributions and their sum distributions are as shown in
Figure 7.33, in which the points A, B, C, and D correspond to the points A, B, C, and D,
respectively, in Figure 7.32. Proceeding in this manner, one can obtain the voltage and
current distributions for any value of time.

Suppose that we connect a resistor of value at the end at instead of
keeping it open-circuited. Then the reflection coefficient at that end becomes zero
thereafter, and the wave, as it impinges on the resistor, gets absorbed in it instead
of producing the wave. The line therefore completely discharges into the resistor
by the time with the resulting time variation of voltage across as shown
in Figure 7.34, where the points A, B, C, and D correspond to the points A, B, C, and D,
respectively, in Figure 7.32.

For a line with uniform initial voltage and current distributions, the analysis
can be performed in the same manner as for arbitrary initial voltage and current
distributions. Alternatively, and more conveniently, the analysis can be carried out
with the aid of superposition and bounce diagrams. The basis behind this method
lies in the fact that the uniform distribution corresponds to a situation in which the
line voltage and current remain constant with time at all points on the line until a
change is made at some point on the line. The boundary condition is then violated at
that point, and a transient wave of constant voltage and current is set up, to be
superimposed on the initial distribution. We shall illustrate this technique of analysis
by means of an example.

RL,t = 1.5 ms,
1-21+2

t = 0z = lZ0

1-21+2t = 0.5 ms,-1
1+2 1-2z = 0,z = l

M07_RAO3333_1_SE_CHO7.QXD  4/9/08  2:37 PM  Page 268



7.5 Lines with Initial Conditions 269

0.5 1.0 1.5 2.0

50

0
t, ms

[V]RL, V

A

B

C
D

FIGURE 7.34

Voltage across 
resulting from connecting it at to
the end of the line of Figure 7.31.z = l

t = 0
RL1=  Z0 = 50 Æ2

Example 7.6

Let us consider a line of and initially charged to uniform voltage
and zero current. A resistor is connected at to the end of the line, as
shown in Figure 7.35(a). We wish to obtain the time variation of the voltage across for 

Since the change is made at by connecting to the line, a wave originates at
so that the total line voltage at that point is and the total line currentV0 + V+z = 0,

(+)RLz = 0
t 7 0.RL

z = 0t = 0RL = 150 Æ
V0 = 100 VT = 1 msZ0 = 50 Æ

l/2

50

0
z

V#, V

l

D

B
C

l/2

50

0
z

V", V

l

A

B

l/2

1

0
z

I#, A

l

l/2

50

0
z

V, V

100

l l/2

1

0
z

I, A

2

l

l/2

1

0 z

I", A

–1

l

(a) (b)

FIGURE 7.33

Distributions of (a) voltage and (b) current in the and waves and their sum for for the
initially charged line of Figure 7.31.

t = 0.5 ms1-21+2
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270 Chapter 7 Transmission-Line Analysis

is as shown in Figure 7.35(b). To satisfy the boundary condition at we then
write

(7.59)

But we know that Hence, we have

(7.60)

or

(7.61a)

(7.61b)

We may now draw the voltage and current bounce diagrams, as shown in Figure 7.36. We
note that in these bounce diagrams, the initial conditions are accounted for by the horizontal
lines drawn at the top, with the numerical values of voltage and current indicated on them.
Sketches of line voltage and current versus z for fixed values of t can be drawn from these
bounce diagrams in the usual manner. Sketches of line voltage and current versus t for any fixed
value of z also can be drawn from the bounce diagrams in the usual manner. Of particular inter-
est is the voltage across which illustrates how the line discharges into the resistor. The time
variation of this voltage is shown in Figure 7.37.

It is also instructive to check the energy balance, that is, to verify that the energy dissipated in
the resistor for is indeed equal to the energy stored in the line at since the line
is lossless. To do this, we note that, in general, energy is stored in both electric and magnetic fields in
the line, with energy densities and respectively. Thus, for a line charged uniformly to
voltage and current the total electric and magnetic stored energies are given by

(7.62a) = 1
2

 cV0
2

 
12lc  T = 1

2
  
V0

2

Z0
 T

 We = 1
2

 cV0
2 l = 1

2
 cV0

2vpT

I0,V0

1
2 lI2,1

2 cV2

t = 0- ,t 7 0150-Æ

RL,

For V0 = 100 V, Z0 = 50 Æ, and RL = 150 Æ, we obtain V+ = -25 V and I+ = -0.5 A.

 I+ = -V0 
1

RL + Z0

 V+ = -V0 
Z0

RL + Z0

V0 + V+ = -  
RL

Z0
 V+

I+ = V+>Z0.

V0 + V+ = -RLI+

z = 0,0 + I+ , or I+ ,

z ! 0

Z0, T V0

t ! 0 #

"

#

"

#

(a)

"

#

"

#

"

#

"

#

"

#

"

z ! l

S

z = 0

V0 + V#RLRL

+

–

(b)

I#

FIGURE 7.35

(a) Transmission line charged initially to uniform voltage (b) For obtaining the voltage and
current associated with the transient wave resulting from the closure of the switch in (a).1+2 V0.
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0 0

1

3

5

2

4

6

t, ms

% ! 1/2 % ! 1

100 V

75

37.5

18.75

"6.25

"6.25

"25

"25

"12.5

"12.5

100

50

25

12.5

z ! 0 z ! l

0 0

1

3

5

2

4

6

"% ! "1/2 "% ! "1

0 A

"0.5

–0.25

"0.125

"0.125

0.125

0.5

"0.5

"0.25

0.25

0

0

0

0

z ! 0 z ! l

FIGURE 7.36

Voltage and current bounce diagrams depicting the transient phenomenon for for the line
of Figure 7.35(a), for and T = 1 ms.V0 = 100 V, Z0 = 50 Æ, RL = 150 Æ,

t 7 0

2 4 6

75

0
t, ms

[V]RL
, V

37.5
18.75 9.375

FIGURE 7.37

Time variation of voltage across 
for in Figure 7.35(a) for

and T = 1 ms.RL = 150 Æ,
Z0 = 50 Æ,V0 = 100 V,

t 7 0
RL

(7.62b)

Since, for the example under consideration, and and
Thus, the total initial stored energy in the line is Now, denoting the power dissi-

pated in the resistor to be we obtain the energy dissipated in the resistor to be

 = 2 * 10-6

150
* 752

 a 1 + 1
4

+ 1
16

+ Áb = 10-4 J

 = L
2 * 10-6 

 0
 
752

150
 dt + L

4 * 10-6

2 * 10-6
 
37.52

150
 dt + L

6 * 10-6

4 * 10-6
 
18.752

150
 dt + Á

 Wd = L
q

t = 0
Pd dt

Pd,
10-4 J.Wm = 0.

We = 10-4 JT = 1 ms,V0 = 100 V, I0 = 0,

 = 1
2

 lI0
2

 
12lc  T = 1

2
 I0

2Z0T

 Wm = 1
2

 lI0
2 l = 1

2
 lI0

2vpT
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z ! 0 z ! l

Z0 ! 50 '
T ! 1 ms

t ! 0

200 ' #

#

50 V

S

"

"

#

"

VL ! 50IL  IL
Passive Nonlinear

VLVS

IS IL

FIGURE 7.38

Line terminated by a passive nonlinear element and driven by a constant-voltage source
in series with internal resistance.

which is exactly the same as the initial stored energy in the line, thereby satisfying the energy
balance.

7.6 INTERCONNECTIONS BETWEEN LOGIC GATES

Thus far, we have been concerned with time-domain analysis for lines with termina-
tions and discontinuities made up of linear circuit elements. Logic gates present nonlin-
ear resistive terminations to the interconnecting transmission lines in digital circuits.
The analysis is then made convenient by a graphical technique known as the load-line
technique. We shall first introduce this technique by means of an example.

Example 7.7

Let us consider the transmission-line system shown in Figure 7.38, in which the line is terminated
by a passive nonlinear element having the indicated V-I relationship. We wish to obtain the time
variations of the voltages and at the source and load ends, respectively, following the clo-
sure of the switch S at using the load-line technique.t = 0,

VLVS

With reference to the notation shown in Figure 7.38, we can write the following equations
pertinent to at 

(7.63a)

(7.63b)

where and are the voltage and current, respectively, of the wave set up immediately
after closure of the switch. The two equations (7.63a) and (7.63b) can be solved graphically by
constructing the straight lines representing them, as shown in Figure 7.39, and obtaining the
point of intersection A, which gives the values of and Note in particular that (7.63b) is a
straight line of slope 1>50 and passing through the origin.

IS.VS

1+2I+V+

 IS = I+ = V+

Z0
=

VS

50

 VS = V+

 50 = 200IS + VS

z = 0:t = 0+
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20

0.1

0.2

0.3

0.4

V

I

SS

IS !

4 6 8 10 12

"2V" # VS

50

C

D
E

B

A

IL !
2V# " VL

50

IS !
VS

50

VL ! 50IL  IL 

50 ! 200IS + VS

FIGURE 7.39

Graphical solution for obtaining time variations of and for in the
transmission-line system of Figure 7.38.

t 7 0VLVS

When the wave reaches the load end at a wave is set up. We can then
write the following equations pertinent to at 

(7.64a)

(7.64b)

where and are the wave voltage and current, respectively. The solution for and 
is then given by the intersection of the nonlinear curve representing (7.64a) and the straight line
of slope corresponding to (7.64b). Noting from (7.64b) that for we
see that the straight line passes through point A. Thus, the solution of (7.64a) and (7.64b) is given
by point B in Figure 7.39.

When the wave reaches the source end at it sets up a reflection. Denot-
ing this to be the wave, we can then write the following equations pertinent to at

(7.65a)

(7.65b) =
V+ - V- + 1VS - V+ - V-2

50
=

-2V- + VS

50
 

 IS = I+ + I- + I-
 
+ = V+ - V- + V-

 
+

Z0

 VS = V+ + V- + V-
 
+

 50 = 200IS + VS

z = 0:
t = 2T+1- +2 t = 2T,z = 01-2

IL = V+>50,VL = V+,-1>50

IL VL 1-2I- V- 

 =
V+ - 1VL - V+2

50
=

2V+ - VL

50

 IL = I+ + I- = V+ - V-

Z0

 VL = V+ + V-

 VL = 50IL ƒIL ƒ

z = l:t = T+
1-2t = T,z = l1+2
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(a)

0 2 6

10

t, ms

VS

A

C
E

4

(b)

0 1 5

5

t, ms

VL

B
D

3

FIGURE 7.40

Time variations of (a) and (b) 
for the transmission-line system of
Figure 7.38. The voltage levels A, B,
C, correspond to those in
Figure 7.39.

Á

VL,VS

where and are the wave voltage and current, respectively. Noting from (7.65a)
that for we see that (7.65b) represents a straight line of
slope passing through B. Thus, the solution of (7.65a) and (7.65b) is given by point C in
Figure 7.39.

Continuing in this manner, we observe that the solution consists of obtaining the points of
intersection on the source and load V-I characteristics by drawing successively straight lines of
slope and beginning at the origin (the initial state) and with each straight line orig-
inating at the previous point of intersection, as shown in Figure 7.39. The points A, C, E, give
the voltage and current at the source end for 
whereas the points B, D, give the voltage and current at the load end for

Thus, for example, the time variations of and are shown in
Figures 7.40(a) and (b), respectively. Finally, it can be seen from Figure 7.39 that the steady-state
values of line voltage and current are reached at the point of intersection (denoted SS) of the
source and load V-I characteristics.

VLVST 6 t 6 3T, 3T 6 t 6 5T, Á .
Á ,

0 6 t 6 2T, 2T 6 t 6 4T, 4T 6 t 6 6T, Á ,
Á ,

-1>Z0 ,1>Z0 

1>50
VS = V+ + V-, IS = 1V+ - V-2>50,

1- +2I- +V- +

Now, going back to Example 7.6, the behavior of the system for the uniformly
charged line can be analyzed by using the load-line technique, as an alternative to the
solution using the bounce-diagram technique. Thus, noting that the terminal voltage-
current characteristics at the ends and of the system in Figure 7.35 are
given by and respectively, and that the characteristic im-
pedance of the line is we can carry out the load-line construction, as shown in
Figure 7.41, beginning at the point A (100 V, 0 A), and drawing alternately straight lines
of slope 1>50 and to obtain the points of intersection B, C, D, The points B,
D, F, give the line voltage and current values at the end for intervals of 
beginning at whereas the points C, E, give the line voltage
and current values at the end for intervals of beginning at 
For example, the time variation of the line voltage at provided by the load-line
construction is the same as in Figure 7.37.

z = 0
Á .3 ms,t = 1 ms,2 msz = l

ÁÁ ,4 ms,2 ms,t = 0 ms,
2 msz = 0Á

Á .-1>50

50 Æ,
I = 0,V = -IRL = -150I

z = lz = 0
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0
50 Input 100

I, A

V, V

F

E

C

D

B

A

Output

Slope ! " 1
50

" 1
3

" 2
3

Slope ! 1
50

FIGURE 7.41

Load-line construction for the analysis of the system of Figure 7.35(a).

We shall now apply the procedure for the use of the load-line technique for a
line with uniform initial distribution, just illustrated, to the analysis of the system in
Figure 7.42(a) in which two transistor-transistor logic (TTL) inverters are intercon-
nected by using a transmission line of characteristic impedance and one-way travel
time T. As the name inverter implies, the gate has an output that is the inverse of the
input. Thus, if the input is in the HIGH (logic 1) range, the output will be in the LOW
(logic 0) range, and vice versa. Typical V-I characteristics for a TTL inverter are shown
in Figure 7.42(b). As shown in this figure, when the system is in the steady state with
the output of the first inverter in the 0 state, the voltage and current along the line are
given by the intersection of the output 0 characteristic and the input characteristic;
when the system is in the steady state with the output of the first inverter in the 1 state,
the voltage and current along the line are given by the intersection of the output 1
characteristic and the input characteristic. Thus, the line is charged to 0.2 V for the
steady-state 0 condition and to 4 V for the steady-state 1 condition. We wish to study
the transient phenomena corresponding to the transition when the output of the first
gate switches from the 0 to the 1 state, and vice versa, assuming of the line to be

.
Considering first the transition from the 0 state to the 1 state, and following the

line of argument in Example 7.7, we carry out the construction shown in Figure 7.43(a).
This construction consists of beginning at the point corresponding to the steady-
state 0 (the initial state) and drawing a straight line of slope 1>30 to intersect with
the output 1 characteristic at point A, then drawing from point A a straight line of
slope to intersect the input characteristic at point B, and so on. From this con-
struction, the variation of the voltage at the input of the second gate can be
sketched as shown in Figure 7.43(b), in which the voltage levels correspond to the

Vi

-1>30

30 Æ
Z0

Z0

M07_RAO3333_1_SE_CHO7.QXD  4/9/08  2:37 PM  Page 275



276 Chapter 7 Transmission-Line Analysis

points 0, in Figure 7.43(a). The effect of the transients on the performance
of the system may now be seen by noting from Figure 7.43(b) that depending on the
value of the minimum gate voltage that will reliably be recognized as logic 1, a time
delay in excess of T may be involved in the transition from 0 to 1. Thus, if this mini-
mum voltage is 2 V, the interconnecting line will result in an extra time delay of 2T
for the input of the second gate to switch from 0 to 1, since does not exceed 2 V
until .

Considering next the transition from the 1 state to the 0 state, we carry out the
construction shown in Figure 7.44(a), with the crisscross lines beginning at the point

t = 3T+
Vi

B, D, Á ,

Z0, T

(a)

(b)

Vo

#

Vi

"

#

"

Io Ii

I, mA

V, V

10

"1

20

30

"10

"30

"20

"2 1 2 3 4 5

Input

Output 0 State

Output 1 State

Steady-State 1

Steady-State 0

FIGURE 7.42

(a) Transmission-line interconnection between two logic gates. (b) Typical
V-I characteristics for the logic gates.
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(a)

(b)

I, mA

V, V

10

"1

20

30

"10

"30

"20

"2 1 2 3 4 5

Input

Output 0 State

Output 1 State

Steady-State 0

Z0 ! 30 '
A

C

E

B D

T 3T

1

2

0
t

Vi, V

5T

1.55

3

4

0.2

2.6
2.95

FIGURE 7.43

(a) Construction based on the load-line technique for analysis of the 
0-to-1 transition for the system of Figure 7.42(a). (b) Plot of versus t
obtained from the construction in (a).

Vi

corresponding to the steady-state 1. From this construction, we obtain the plot of 
versus t, as shown in Figure 7.44(b), in which the voltage levels correspond to the points
1, B, D, . . . , in Figure 7.44(a). If we assume a maximum gate input voltage that can be
readily recognized as logic 0 to be 1 V, it can once again be seen that an extra time
delay of 2T is involved in the switching of the input of the second gate from 1 to 0, since

does not drop below 1 V until .t = 3T+Vi

Vi
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SUMMARY

In this chapter, we first studied frequency domain analysis of transmission lines. The
general solutions to the transmission-line equations, expressed in phasor form, that is,

(7.66a)

(7.66b)
0I

-

0z
= -gV

– - jvcV
–

0V
–

0z
 = -jvlI

-

(b)

Output 1 State

(a)

I, mA

V, V

10

"1

20

30

"10

"30

"20

"2 1

2

3 4 5

Input

Output 0 State

Steady-State 1

Z0 ! 30 '

A

C

BD

T 3T

1

2

0
t

Vi, V

5T

2

3

4

0.4
0.1

FIGURE 7.44

(a) Construction based on 
the load-line technique for
analysis of the 1-to-0
transition for the system of
Figure 7.42(a). (b) Plot of 
versus t obtained from the
construction in (a).

Vi

M07_RAO3333_1_SE_CHO7.QXD  4/9/08  2:37 PM  Page 278



Summary 279

are given by

(7.67a)

(7.67b)

where

are the propagation constant and the characteristic impedance, respectively, of the line.
For a lossless line ( ), these reduce to

so that for a lossless line,

(7.68a)

(7.68b)

The solutions given by (7.67a) and (7.67b) or (7.68a) and (7.68b) represent the
superposition of and waves propagating in the medium between the conduc-
tors of the line, expressed in terms of the line voltage and current instead of in terms of
the electric and magnetic fields.

By applying these general solutions to the case of a lossless line short circuited at
the far end and obtaining the particular solutions for that case, we discussed the stand-
ing wave phenomenon and the standing wave patterns resulting from the complete
reflection of waves by the short circuit. We also examined the frequency behavior of
the input impedance of a short-circuited line of length l, given by

and (a) illustrated its application in a technique for the location of short circuit in a
line, and (b) learned that for a circuit element to behave as assumed by conventional
(lumped) circuit theory, its dimensions must be a small fraction of the wavelength cor-
responding to the frequency of operation.

Next, we studied reflection and transmission of waves at a junction between two
lossless lines. By applying them to the general solutions for the line voltage and current
on either side of the junction, we deduced the ratio of the reflected wave voltage to the
incident wave voltage, that is, the voltage reflection coefficient, to be

≠V =
Z02 - Z01

Z02 + Z01

Z
–

in = jZ0 tan bl

(-)(+)

 I-(z) = 1
Z0

(A
–

e-jbz - B
–
ejbz)

 V– (z) = A
–

e- jbz + B
–

ejbz

 Z–0 = Z0 = Alc (Z1m>P)

 g – = jb = jv1lc (=jv1mP)

g = 0

Z
–

0 = A jvl
g + jvc

 cZA jvm
s + jvP d

g – = 2jvl(g + jvc) [= 2jvm(s + jvP)]

 I-(z) = 1
Z –0

(A
–

e-g-z - B
–

eg
-z)

 V– (z) = A
–

e-g-z + B
–

eg
-z
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280 Chapter 7 Transmission-Line Analysis

where is the characteristic impedance of the line from which the wave is incident
and is the characteristic impedance of the line on which the wave is incident. The
ratio of the transmitted wave voltage to the incident wave voltage, that is, the voltage
transmission coefficient, is given by

The current reflection and transmission coefficients are given by

We discussed the standing wave pattern resulting from the partial reflection of the
wave at the junction and defined a quantity known as the standing wave ratio (SWR),
which is a measure of the reflection phenomenon. In terms of , it is given by

We then introduced the Smith Chart, which is a graphical aid in the solution of
transmission-line problems. After first discussing the basis behind the construction of
the Smith Chart, we illustrated its use by considering a transmission-line system and
computing several quantities of interest. We concluded the section on Smith Chart
with the solution of a transmission-line matching problem.

We devoted the remainder of the chapter to time-domain analysis of transmission
lines. For a lossless line, the transmission-line equations in time domain are given by

(7.69a)

(7.69b)

The solutions to these equations are

(7.70a)

(7.70b)

where is the characteristic impedance of the line, and is
the velocity of propagation on the line.

We then discussed time-domain analysis of a transmission line terminated by a
load resistance and excited by a constant voltage source in series with internal re-
sistance . Writing the general solutions (7.70a) and (7.70b) concisely in the manner

 I = I+ + I-
 V = V+ + V-

Rg

V0RL

vp = 1>2lcZ0 = 2l>c I(z, t) = 1
Z0
cAf a t - z

vp
b - Bg a t + z

vp
b d

V(z, t) = Af a t - z
vp
b + Bg a t + z

vp
b

 
0I
0z

 = -c0V
0t

 
0V
0z

 = -l0I
0t

 

SWR =
1 + ƒ≠V ƒ
1 - ƒ≠V ƒ

≠V

tI = 1 - ≠V

≠I = -≠V

tV = 1 + ≠V

Z02

Z01
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where

we found that the situation consists of the bouncing back and forth of transient 
and waves between the two ends of the line. The initial wave voltage is

. All other waves are governed by the reflection coefficients at the
two ends of the line, given for the voltage by

and

for the load and source ends, respectively. In the steady state, the situation is the super-
position of all the transient waves, equivalent to the sum of a single wave and a
single wave. We discussed the bounce-diagram technique of keeping track of the
transient phenomenon and extended it to a pulse voltage source.

As a prelude to the consideration of interconnections between logic gates, we dis-
cussed time-domain analysis of lines with nonzero initial conditions. For the general
case, the initial voltage and current distributions and are decomposed
into and wave voltages and currents as given by

The voltage and current distributions for are then obtained by keeping track of
the bouncing of these waves at the two ends of the line. For the special case of uniform
distribution, the analysis can be performed more conveniently by considering the situa-
tion as one in which a transient wave is superimposed on the initial distribution and
using the bounce-diagram technique. We then introduced the load-line technique of
time-domain analysis, and applied it to the analysis of transmission-line interconnec-
tion between logic gates.

t 7 0

 I-(z, 0) = - 1
Z0

V-(z, 0)

 I+(z, 0) = 1
Z0

V+(z, 0)

 V-(z, 0) = 1
2

[V(z, 0) - Z0I(z, 0)]

 V+(z, 0) = 1
2

[V(z, 0) + Z0I(z, 0)]

(-)(+)
I(z, 0)V(z, 0)

(-)
(+)

≠S =
Rg - Z0

Rg + Z0

≠R =
RL - Z0

RL + Z0

V+Z0>(Rg + Z0)
(+)(-)

(+)

I- = - V-

Z0

I+ = V+

Z0

M07_RAO3333_1_SE_CHO7.QXD  4/9/08  2:37 PM  Page 281



282 Chapter 7 Transmission-Line Analysis

REVIEW QUESTIONS

7.1. Discuss the solutions for the transmission-line equations in frequency domain.
7.2. Discuss the propagation constant and characteristic impedance associated with wave

propagation on transmission lines.
7.3. What is the boundary condition to be satisfied at a short circuit on a line?
7.4. For an open-circuited line, what would be the boundary condition to be satisfied at the

open circuit?
7.5. What is a standing wave? How do complete standing waves arise? Discuss their charac-

teristics and give an example in mechanics.
7.6. What is a standing wave pattern? Discuss the voltage and current standing wave pat-

terns for the short-circuited line.
7.7. What would be the voltage and current standing wave patterns for an open-circuited

line?
7.8. Discuss the variation with frequency of the input reactance of a short-circuited line and

its application in the determination of the location of a short circuit.
7.9. Can you suggest an alternative procedure to that described in Example 7.1 to locate a

short circuit in a transmission line?
7.10. Discuss the condition for the validity of the quasistatic approximation for the input be-

havior of a physical structure.
7.11. Discuss the input behavior of a short-circuited line for frequencies slightly beyond

those for which the quasistatic approximation is valid.
7.12. What are the boundary conditions for the voltage and current at the junction between

two transmission lines?
7.13. What is the voltage reflection coefficient at the junction between two transmission

lines? How are the current reflection coefficient and the voltage and current transmis-
sion coefficients related to the voltage reflection coefficient?

7.14. What is the voltage reflection coefficient at the short circuit for a short-circuited line?
7.15. Can the transmitted wave current at the junction between two transmission lines be

greater than the incident wave current? Explain.
7.16. What is a partial standing wave? Discuss the standing wave patterns corresponding to

partial standing waves.
7.17. Define standing wave ratio (SWR). What are the standing wave ratios for (a) an infi-

nitely long line, (b) a short-circuited line, (c) an open-circuited line, and (d) a line termi-
nated by its characteristic impedance?

7.18. Define line impedance. What is its value for an infinitely long line?
7.19. What is the basis behind the construction of the Smith Chart? How does the Smith

Chart simplify the solution of transmission-line problems?
7.20. Briefly discuss the mapping of the normalized line impedances from the complex 

-plane onto the Smith Chart.
7.21. Why is a circle with its center at the center of the Smith Chart known as a constant

SWR circle? Where on the circle is the corresponding SWR value marked?
7.22. Using the Smith Chart, how do you find the normalized line admittance at a point on

the line given the normalized line impedance at that point?
7.23. Briefly discuss the solution of the transmission-line matching problem.

Z
–

n
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PROBLEMS

7.1. For a transmission line of arbitrary cross section and with the medium between the con-
ductors characterized by and it is known that

(a) Find and . (b) Find for 
7.2. For the coaxial cable of Example 6.9 employing air dielectric, find the ratio of the outer

to the inner radii for which the characteristic impedance of the cable is 
7.3. Using the general solutions for the complex line voltage and current on a lossless line

given by (7.9a) and (7.9b), respectively, obtain the particular solutions for the complex
voltage and current on an open-circuited line. Then find the input impedance of an
open-circuited line of length l.

7.4. Solve Example 7.1 by considering the standing wave patterns between the short circuit
and the generator for the two frequencies of interest and by deducing the number of
wavelengths at one of the two frequencies.

75 Æ.

f = 106 Hz.Z
–

0glc = 10- 10 F/m.
m = m0,s = 10- 16 S/m, P = 2.5P0,

7.24. How is the length of a short-circuited stub for a required input susceptance determined
by using the Smith Chart?

7.25. Discuss the general solutions for the line voltage and current in time-domain and the
notation associated with their representation in concise form.

7.26. What is the fundamental distinction between the occurrence of the response in one
branch of a lumped circuit to the application of an excitation in a different branch of the
circuit and the occurrence of the response at one location on a transmission line to the
application of an excitation at a different location on the line?

7.27. Describe the phenomenon of the bouncing back and forth of transient waves on a trans-
mission line excited by a constant voltage source in series with internal resistance and
terminated by a resistance.

7.28. Discuss the values of the voltage reflection coefficient for some special cases.
7.29. What is the steady-state equivalent of a line excited by a constant voltage source? What

is the actual situation in the steady state?
7.30. Discuss the bounce-diagram technique of keeping track of the bouncing back and forth

of the transient waves on a transmission line for a constant voltage source.
7.31. Discuss the bounce-diagram technique of keeping track of the bouncing back and forth

of the transient waves on a transmission line for a pulse voltage source.
7.32. Discuss the determination of the voltage and current distributions on an initially

charged line for any given time from the knowledge of the initial voltage and current
distributions.

7.33. Discuss with the aid of an example the discharging of an initially charged line into a
resistor.

7.34. Discuss the bounce-diagram technique of transient analysis of a line with uniform initial
voltage and current distributions.

7.35. Discuss the load-line technique of obtaining the time variations of the voltages and
currents at the source and load ends of a line from a knowledge of the terminal V-I
characteristics.

7.36. Discuss the analysis of transmission-line interconnection between two logic gates.
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284 Chapter 7 Transmission-Line Analysis

7.5. For an air dielectric short-circuited line of characteristic impedance find the
minimum values of the length for which its input impedance is equivalent to that of
(a) an inductor of value at 100 MHz and (b) a capacitor of value 
at 100 MHz.

7.6. A transmission line of length 2 m having a nonmagnetic perfect dielectric is
short-circuited at the far end. A variable-frequency generator is connected at its input
and the current drawn is monitored. It is found that the current reaches a maximum
for and then a minimum for Find the permittivity of the
dielectric.

7.7. A voltage generator is connected to the input of a lossless line short-circuited at the far
end. The frequency of the generator is varied and the line voltage and line current at
the input terminals are monitored. It is found that the voltage reaches a maximum
value of 10 V at 405 MHz and the current reaches a maximum value of 0.2 A at 410 MHz.
(a) Find the characteristic impedance of the line. (b) Find the voltage and current values
at 407 MHz.

7.8. Assuming that the criterion is satisfied for frequencies less than 
compute the maximum length of an air dielectric short-circuited line for which the input
impedance is approximately that of an inductor of value equal to the total inductance of
the line for 

7.9. A lossless transmission line of length 2 m and having and is
short circuited at the far end. (a) Find the phase velocity, (b)Find the wavelength,
the length of the line in terms of the number of wavelengths, and the input imped-
ance of the line for each of the following frequencies: 100 Hz; 100 MHz; and
12.5 MHz.

7.10. Repeat Example 7.3 with the values of and interchanged.
7.11. In the transmission-line system shown in Figure 7.45, a power is incident on the junc-

tion from line 1. Find (a) the power reflected into line 1, (b) the power transmitted into
line 2, and (c) the power transmitted into line 3.

Pi

Z0 2Z01

vp.
c = 18P0l = 0.5m0

f = 100 MHz.

0.1vp>2pl,f V vp>2pl

f = 525 MHz.f = 500 MHz

(m = m0)

10- 10 F0.25 * 10- 6 H

50 Æ,

Line 2

Z 02 !
 50 '

Line 3
Z

03 ! 75 '

Line 1
Z01 ! 50 ' Pi

FIGURE 7.45

For Problem 7.11.

7.12. Show that the voltage minima of the standing wave pattern of Figure 7.9 are sharper
than the voltage maxima by computing the voltage amplitude halfway between the
locations of voltage maxima and minima.
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z ! "300 m z = 300 mz ! 0" z ! 0#z

Z0 ! 120 '
vp ! 2 ( 108 m/s

Z0 = 60 '
vp ! 3 ( 108  m/s

Vg

t ! 0

120 '
60 '

60 '

S

#
"

z

FIGURE 7.46

For Problem 7.21.

7.13. A line assumed to be infinitely long and of unknown characteristic impedance is con-
nected to a line of characteristic impedance on which standing wave measure-
ments are made. It is found that the standing wave ratio is 3 and that two consecutive
voltage minima exist at 15 cm and 25 cm from the junction of the two lines. Find the un-
known characteristic impedance.

7.14. A line assumed to be infinitely long and of unknown characteristic impedance when
connected to a line of characteristic impedance produces a standing wave ratio of
value 2 in the line. The same line when connected to a line of characteristic imped-
ance produces a standing wave ratio of value 1.5 in the line. Find the un-
known characteristic impedance.

7.15. Compute values of corresponding to several points along line a in Figure 7.11(a)
and show that the contour in Figure 7.11(b) is a circle of radius and centered at

7.16. Compute values of corresponding to several points along line b in Figure 7.11(a) and
show that the contour in Figure 7.11(b) is a portion of a circle of radius 2 and cen-
tered at (1, 2).

7.17. For the transmission-line system of Figure 7.13, and for the values of and l
specified in the text, find the value of B that minimizes the SWR to the left of jB. What
is the minimum value of SWR?

7.18. In Figure 7.13, assume and and
find (a) (b) SWR on line 1 to the right of jB, (c) and (d) SWR on line 1 to the left
of jB.

7.19. A transmission line of characteristic impedance is terminated by a load im-
pedance of Find the location and the length of a short-circuited stub
of characteristic impedance for achieving a match between the line and the
load.

7.20. Show that (7.40a) and (7.40b) satisfy the transmission-line equations (7.39a) and
(7.39b).

7.21. In the system shown in Figure 7.46, assume that is a constant voltage source of 100 V
and the switch S is closed at Find and sketch: (a) the line voltage versus z for

; (b) the line current versus z for ; (c) the line voltage versus t for
and (d) the line current versus t for z = -40 m.z = 30 m;

t = 0.4 mst = 0.2 ms
t = 0.

Vg

50 Æ
(73 + j0) Æ.

50 Æ

Y
–

1,Z
–

1,
l = 0.145l1,Z01 = 300 Æ, Z02 = 75 Æ, B = 0.002 S,

Z01, Z02,

b¿
≠–V

(1>2, 0).

1
2a¿

≠–V

150-Æ150 Æ
50-Æ

50 Æ

50 Æ
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Z0 ! 75 '
T ! 1 ms

z ! 0 z ! l

40 '
60 '

100 V

FIGURE 7.48

For Problem 7.23.

7.22. In the system shown in Figure 7.47(a), the switch S is closed at The line voltage
variations with time at and for the first are observed to be as shown in
Figure 7.47(b) and (c), respectively. Find the values of V0, Rg, RL, and T.

5 msz = lz = 0
t = 0.

(a)

(b)

Z0 ! 100 '
T ! l/vp

z ! 0

t ! 0

z ! l

Rg

S

RL

V0

90

t, ms
2

100

0 4 6

[V]z ! 0, V [V]z ! l, V

(c)

75

t, ms
2

100

0 4 6

FIGURE 7.47

For Problem 7.22.

7.23. The system shown in Figure 7.48 is in steady state. Find (a) the line voltage and current,
(b) the wave voltage and current, and (c) the wave voltage and current.(-)(+)

7.24. In the system shown in Figure 7.49, the switch S is closed at Assume to be a
direct voltage of 90 V and draw the voltage and current bounce diagrams. From these
bounce diagrams, sketch: (a) the line voltage and line current versus t (up to )
at and and (b) the line voltage and line current versus z for

and t = 3.5 ms.t = 1.2 ms
z = l>2;z = 0, z = l,

t = 7.25 ms

Vg(t)t = 0.
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z ! 0

t ! 0

z ! l

S

Vg(t)

Z0 ! 60 '
T ! 1 ms 180 '

90 '

#
"

FIGURE 7.49

For Problem 7.24.

z ! 0

t ! 0

z ! l

S

Vg(t)

Z0 ! 60 '
T ! 1 ms 20 '

30 '

t, ms
0.5

90

0 1.0 1.5 2.0

Vg(t), V

#
"

FIGURE 7.51

For Problem 7.27.

7.25. Repeat Problem 7.21 assuming to be a triangular pulse, as shown in Figure 7.50.Vg

t, ms
0.1

100

0 0.2 0.3

Vg, V

FIGURE 7.50

For Problem 7.25.

7.26. For the system of Problem 7.24, assume that the voltage source is of duration in-
stead of being of infinite duration. Find and sketch the line voltage and line current ver-
sus z for and 

7.27. In the system shown in Figure 7.51, the switch S is closed at Find and sketch:
(a) the line voltage versus z for (b) the line current versus z for 
and (c) the line voltage at versus t up to t = 4 ms.z = l

t = 21
 2 ms;t = 21

 2 ms;
t = 0.

t = 3.5 ms.t = 1.2 ms

0.3-ms
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z ! 0

Z0 ! 50 ' V ! 50 I I

t ! 0#

"

#

"

#

"

#

"

#

"

#

"

#

"

#

"

#

"

#

"

z ! l

S

I

10 V

FIGURE 7.53

For Problem 7.29.

Z0 ! 50 '
T ! 1 ms

z ! 0

t ! 0

z ! l

50 '
150 '

100 V

S

FIGURE 7.54

For Problem 7.30.

z ! 0

t ! 0

z ! l

S

Z0 ! 50 '
T ! 1 ms

50 '

#
" 10 sin 106pt V

FIGURE 7.52

For Problem 7.28.

7.28. In the system shown in Figure 7.52, the switch S is closed at Draw the voltage and
current-bounce diagrams and sketch (a) the line voltage and line current versus t for

and and (b) the line voltage and line current versus z for
and Note that the period of the source voltage is which

is equal to the two-way travel time on the line.
2 ms,3 ms.t = 2, 9>4, 5>2, 11>4,

z = lz = 0

t = 0.

7.29. In the system shown in Figure 7.53, a passive nonlinear element having the indicated
volt-ampere characteristic is connected to an initially charged line at Find the
voltage across the nonlinear element immediately after closure of the switch.

t = 0.

7.30. In the system shown in Figure 7.54, steady-state conditions are established with the
switch S closed.At the switch is opened. (a) Find the sketch the voltage across the

resistor for with the aid of a bounce diagram. (b) Show that the total energy
dissipated in the resistor after opening the switch is exactly the same as the energy
stored in the line before opening the switch.

150-Æ
t Ú 0,150-Æ
t = 0,
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z ! "l z ! lz ! 0

t ! 0

60 ' 100 V

60 '

120 '

S

Z0 ! 60 '
T ! 1 ms

Z0 ! 60 '
T ! 1 ms

FIGURE 7.55

For Problem 7.31.

7.31. In the system shown in Figure 7.55, steady-state conditions are established with the
switch S closed.At the switch is opened. (a) Sketch the voltage and current along
the system for (b) Find the total energy stored in the lines for (c) Find
and sketch the voltages across the two resistors for (d) From your sketches of part
(c), find the total energy dissipated in the resistors for t 7 0.

t 7 0.
t = 0- .t = 0- .

t = 0,

7.32. For the system of Problem 7.24, use the load-line technique to obtain and plot line
voltage and line current versus t (up to ) at and Also obtain the
steady-state values of line voltage and current from the load-line construction.

7.33. For the system of Problem 7.29, use the load-line technique to obtain and plot line
voltage versus t from up to at and 

7.34. For the example of interconnection between logic gates of Figure 7.42(a), repeat the
load-line constructions for and draw graphs of versus t for both 0-to-1 and
1-to-0 transitions.

7.35. For the example of interconnection between logic gates of Figure 7.42(a), find (a) the
minimum value of such that for the transition form 0 to 1, the voltage reaches 2V
at and (b) the minimum value of such that for the transition from 1 to 0, the
voltage reaches 1 V at t = T+ .Vi

Z0t = T+
ViZ0 

ViZ0 = 50 Æ

z = l.z = 0t = 7l>vpt = 0

z = l.z = 0t = 5.25 ms
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