CHAPTER

Statics, Quasistatics,
and Transmission Lines

In the preceding chapters, we learned that the phenomenon of wave propagation is
based upon the interaction between the time-varying or dynamic electric and mag-
netic fields. In this chapter, we shall use the thread of statics-quasistatics-waves to bring
out the frequency behavior of physical structures. Static fields are studied by setting
the time derivatives in Maxwell’s equations equal to zero. We will introduce the
lumped circuit elements familiar in circuit theory, through the different classifications
of static fields. For a nonzero frequency, the fields are dynamic. The exact solutions are
solutions to the complete Maxwell’s equations for time-varying fields. However, a class
of fields, known as quasistatic fields, can be studied as low-frequency extensions of sta-
tic fields. They are approximations to the exact solutions. We will learn that for quasi-
static fields, the circuit equivalent for the input behavior of a physical structure is
essentially same as the lumped circuit equivalent for the corresponding static case. As
the frequency is increased beyond the quasistatic approximation, the lumped circuit
equivalent is no longer valid and the distributed circuit equivalent comes into play,
leading to the transmission line.

We begin the chapter with electric potential, a scalar that is related to the static
electric field intensity through a vector operation known as the gradient. We shall
introduce the gradient and the electric potential and then consider two important dif-
ferential equations involving the potential, known as Poisson’s equation and Laplace’s
equation. Beginning with static field involving the solution of the Laplace’s equation,
we shall then embark on the study based on the thread of statics-quasistatics-waves.

6.1 GRADIENT AND ELECTRIC POTENTIAL
For static fields, 9/0t = 0, and Maxwell’s curl equations given for time-varying fields by

B
VXE=-— (6.1)
ot

oD

VXxH=J+ " (6.2)
Jat
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reduce to
VXE=0 (6.3)
VXH=1J (6.4)

respectively. Equation (6.3) states that the curl of the static electric field is equal to
zero. If the curl of a vector is zero, then that vector can be expressed as the gradient of
a scalar, since the curl of the gradient of a scalar is identically equal to zero. The gradi-
ent of a scalar, say @, denoted V& (del @) is given in Cartesian coordinates by

=——a +—_—a, + _—a, (6.5)
The curl of V@ is then given by
d d ad

ax ay oz
(VP), (YD), (Vo)

VX VD

a, a, a,

e 8 9
Clox ay ez
b 9D 9P
ox oy oz
=0 (6.6)

To discuss the physical interpretation of the gradient, we note that

0P P 0P
VO -dl = (6an +——a, + az)-(dxax + dya, + dza,)

dy 0z
P oD 9P
=—dx +—dy + —dz
ox dy 0z
=do (6.7)

Let us consider a surface on which ® is equal to a constant, say @, and a point P on
that surface, as shown in Figure 6.1(a). If we now consider another point Q; on the
same surface and an infinitesimal distance away from P, d® between these two points
is zero since ® is constant on the surface. Thus, for the vector dl; drawn from P to
01, [V®]p+dl; = 0 and hence [V®]p is perpendicular to dl;. Since this is true for all
points Oy, Q,, O3, . . . on the constant ® surface, it follows that [V®]p, must be normal
to all possible infinitesimal displacement vectors dly, dl,, dl;, . . . drawn at P and hence
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(a) (b)

FIGURE 6.1

For discussing the physical interpretation of the gradient of a scalar function.

is normal to the surface. Denoting a,, to be the unit normal vector to the surface at P,
we then have

[VO@]p = |Vq)|P a, (6.8)

Let us now consider two surfaces on which @ is constant, having values ®, and
®, + d®d, as shown in Figure 6.1(b). Let P and Q be points on the & = ®,and
® = &, + dd surfaces, respectively, and dl be the vector drawn from P to Q. Then
from (6.7) and (6.8),

dd = [VD]p-dl
= |V®|pa,-dl
= |V®|p dl cos a (6.9)
where « is the angle between a,, at P and dl. Thus,

do

|V(D|P - dl cos a

(6.10)
Since d! cos « is the distance between the two surfaces along a,, and hence is the short-
est distance between them, it follows that |V® | is the maximum rate of increase of ®
at the point P. Thus, the gradient of a scalar function ® at a point is a vector having
magnitude equal to the maximum rate of increase of @ at that point and is directed
along the direction of the maximum rate of increase, which is normal to the constant ®
surface passing through that point. This concept of the gradient of a scalar function is
often utilized to find a unit vector normal to a given surface. We shall illustrate this by
means of an example.
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Example 6.1

Let us find the unit vector normal to the surface y = x? at the point (2,4, 1) by using the concept
of the gradient of a scalar.
Writing the equation for the surface as

X=-y=0
we note that the scalar function that is constant on the surface is given by
Dx,y.2) = x =y
The gradient of the scalar function is then given by
VO = V(x* — y)

(x> — y) (x> — y) (x> — y)
ox a, + 3y a, + P a,

= 2xa, — a,

The value of the gradient at the point (2,4,1) is 2(2)a, — a, = 4a, — a,. Thus, the required unit
vector is
4a, — a,

4 1
=i7=i(7a'—7a)
|4ax_ay| \/ﬁ : \/ﬁ Y

a,

Returning to Maxwell’s curl equation for the static electric field given by (6.3),
we can now express E as the gradient of a scalar function, say, ®. The question then
arises as to what this scalar function is. To obtain the answer, let us consider a region of
static electric field. Then we can draw a set of surfaces orthogonal everywhere to the
field lines, as shown in Figure 6.2. These surfaces correspond to the constant @

Equipotential
Surfaces

FIGURE 6.2

A set of equipotential surfaces in a region of static electric field.
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surfaces. Since on any such surface E « dl = 0, no work is involved in the movement of
a test charge from one point to another on the surface. Such surfaces are known as the
equipotential surfaces. Since they are orthogonal to the field lines, they may physically
be occupied by conductors without affecting the field distribution.

Movement of a test charge from a point, say A, on one equipotential surface to
a point, say B, on another equipotential surface involves an amount of work per unit
charge equal to fABE°dl to be done by the field. This quantity is known as the
electric potential difference between the points A and B and is denoted by the sym-
bol [V]5. It has the units of volts. There is a potential drop from A to B if work is
done by the field and a potential rise if work is done against the field by an external
agent. The situation is similar to that in the earth’s gravitational field for which
there is a potential drop associated with the movement of a mass from a point of
higher elevation to a point of lower elevation and a potential rise for just the
opposite case.

It is convenient to define an electric potential associated with each point. The
potential at point A, denoted Vj, is simply the potential difference between point A
and a reference point, say O. It is the amount of work per unit charge done by the field
in connection with the movement of a test charge from A to O, or the amount of work
per unit charge done against the field by an external agent in moving the test charge

from O to A. Thus,
10) A
VA=/ E-dl=—/ E-dl (6.11)
A o)

B o B
Wﬁz/ﬁmm=/ﬁym+/Ewl
A A o
o o
=/lbm—/E%l
A B

=V, - Vy (6.12)

and

If we now consider points A and B to be separated by infinitesimal length dl from
A to B, then the incremental potential drop from A to B is E 4 « dl, or the incremental
potential rise dV along the length dl is given by

dv = —E,-dl (6.13)
Writing
dV = [VV],+dl (6.14)
in accordance with (6.7), we then have
[VV]sedl = —E, +dl (6.15)
Since (6.15) is true at any point A in the static electric field, it follows that

E=-VV (6.16)
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Thus, we have obtained the result that the static electric field is the negative of the gra-
dient of the electric potential.

Before proceeding further, we note that the potential difference we have defined
here has the same meaning as the voltage between two points, defined in Section 2.1.
We, however, recall that the voltage between two points A and B in a time- varymg field
is in general dependent on the path followed from A to B to evaluate fA «dl, since,

according to Faraday’s law,
d
}{E-dlz—/B-dS (6.17)
c dt Js

is not in general equal to zero. On the other hand, the potential difference (or voltage)
between two points A and B in a statlc electric field is independent of the path fol-
lowed from A to B to evaluate fA - dl, since, for static fields, 9/0t = 0, and (6.17)
reduces to

jq{ E-dl =0 (6.18)
C

Thus, the potential difference between two points in a static electric field has a unique
value. Fields for which the line integral around a closed path is zero are known as
conservative fields. The static electric field is a conservative field. The earth’s gravita-
tional field is another example of a conservative field, since the work done in moving a
mass around a closed path is equal to zero.

Returning now to the discussion of electric potential, let us consider the electric
field of a point charge and investigate the electric potential due to the point charge. To
do this, we recall from Section 1.5 that the electric field intensity due to a point charge
Q is directed radially away from the point charge and its magnitude is Q/4me R?,
where R is the radial distance from the point charge. Since the equipotential surfaces
are everywhere orthogonal to the field lines, it then follows that they are spherical sur-
faces centered at the point charge, as shown by the cross-sectional view in Figure 6.3. If
we now consider two equipotential surfaces of radii R and R + dR, the potential drop
from the surface of radius R to the surface of radius R + dR is (Q/4me,R?) dR, or, the
incremental potential rise dV is given by

av = — 0 5 dR
47T€0R
o)
=d +C 6.19
(47T€0R (6:19)
where C is a constant. Thus,
V(R) = 0 +C (6.20)

47menR
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FIGURE 6.3

Cross-sectional view of equipotential surfaces and
electric field lines for a point charge.

We can conveniently set C equal to zero by noting that it is equal to V(o0) and by
choosing R = oo for the reference point. Thus, we obtain the electric potential due to
a point charge Q to be

o

V = 6.21
41enR ( )

We note that the potential drops off inversely with the radial distance away from the
point charge. Equation (6.21) is often the starting point for the computation of the
potential field due to static charge distributions and the subsequent determination of
the electric field by using (6.16).

6.2 POISSON’S AND LAPLACE’S EQUATIONS

In the previous section, we learned that for the static electric field, V X E is equal to
zero, and hence

E=-VV

Substituting this result into Maxwell’s divergence equation for D, and assuming € to be
uniform, we obtain

VeD =V:¢E = €V-E
=eV.(-VV)=0p

or

v.yy =-2
€

The quantity V+ VV is known as the Laplacian of V, denoted V2V (del squared V).

Thus, we have

V2V = —f (6.22)
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This equation is known as the Poisson’s equation. It governs the relationship between
the volume charge density p in a region and the potential in that region. In Cartesian
coordinates,
ViV =V.VV
( 0 .0 a> (av LWV )
a,—+a—+a_— || —a +_—a + _—a
Tox Yoy Yoz ax © oy Y a9z ¢

PV VPV

6.23
ax? ay2 az% ( )
and Poisson’s equation becomes
FVoV oV
LAALA SN A . . (6.24)

ax2 J y2 8z2 €

For the one-dimensional case in which V varies with x only, 8’V /ay* and §°V /az* are
both equal to zero, and (6.24) reduces to

vV dV p
o de e (6:25)

We shall illustrate the application of (6.25) by means of an example.

Example 6.2

Let us consider the space charge layer in a p-n junction semiconductor with zero bias, as shown
in Figure 6.4(a), in which the region x < 0 is doped p-type and the region x > 0 is doped n-type.
To review briefly the formation of the space charge layer, we note that since the density of the
holes on the p side is larger than that on the 7 side, there is a tendency for the holes to diffuse to
the n side and recombine with the electrons. Similarly, there is a tendency for the electrons on
the n side to diffuse to the p side and recombine with the holes. The diffusion of holes leaves
behind negatively charged acceptor atoms, and the diffusion of electrons leaves behind positively
charged donor atoms. Since these acceptor and donor atoms are immobile, a space charge layer,
also known as the depletion layer, is formed in the region of the junction, with negative charges
on the p side and positive charges on the 7 side. This space charge gives rise to an electric field
directed from the n side of the junction to the p side so that it opposes diffusion of the mobile
carriers across the junction, thereby resulting in an equilibrium. For simplicity, let us consider an
abrupt junction, that is, a junction in which the impurity concentration is constant on either side
of the junction. Let N4 and Np, be the acceptor and donor ion concentrations, respectively, and d,,
and d,, be the widths in the p and n regions, respectively, of the depletion layer. The space charge
density p is then given by

p:{kWAfm d, <x<0 (6.26)

e|Np for0 < x <d,
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FIGURE 6.4

For illustrating the application of Poisson’s equation for the determination of the
potential distribution for a p-n junction semiconductor.

as shown in Figure 6.4(b), where |e| is the magnitude of the electronic charge. Since the semicon-
ductor is electrically neutral, the total acceptor charge must be equal to the total donor charge;
that is,

le|Nad, = |e|Npd, (6.27)
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We wish to find the potential distribution in the depletion layer and the depletion layer width
in terms of the potential difference across the depletion layer and the acceptor and donor ion
concentrations.

Substituting (6.26) into (6.25), we obtain the equation governing the potential distribution
to be

|€|NA
2V c for fdp <x<0
=% v (6.28)
dx el < d,
€

To solve (6.28) for V, we integrate it once and obtain

le|Ny c
av . x +C for—d, < x <0
dx _|€|ND

x +C, for0 < x < d,

where C; and C, are constants of integration. To evaluate C; and C,, we note that since
E = —VV = —(aV/ox)a,, dV /ox is simply equal to —E,. Since the electric field lines begin on
the positive charges and end on the negative charges, and in view of (6.27), the field and, hence,

dV /ox must vanish at x = —d, and x = d,, giving us
le| Ny
(x +d,) for —d,< x <0
v_Q e 6.29
dx le|Np (6:29)

(x — d,) for0 < x < d,

The field intensity, that is, —dV/dx, may now be sketched as a function of x, as shown in
Figure 6.4(c).
Proceeding further, we integrate (6.29) and obtain

el
2e
|€|ND

 2e

(x+dp)2+C3 for —d, < x <0

(x — d,)? + Cy4 for0 < x <d,

where C; and C, are constants of integration. To evaluate C; and C,, we first set the potential at
x = —d, arbitrarily equal to zero to obtain C; equal to zero. Then we make use of the condition
that the potential be continuous at x = 0, since the discontinuity in dV/dx at x = 0 is finite, to
obtain

L
2¢ 7 "

or

(NAd2 + Npd?)

w \
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Substituting this value for C, and setting C; equal to zero in the expression for V, we get the
required solution

|e| Ny )
> (x +d,) for —d, < x <0
€
Y el el (630
- (x* — 2xd,) + 5 d; for0 < x < d,
€ €

The variation of potential with x as given by (6.30) is shown in Figure 6.4(d).

We can proceed further and find the width d = d,, + d, of the depletion layer by setting
V(d,) equal to the contact potential, V;, that is, the potential difference across the depletion
layer resulting from the electric field in the layer. Thus,
lelMp ,  lelNa s

2 " 2e °
B MND(NA + Np) MNA(NA + Np)
2e NA + ND " 2e NA + ND P
| | NN
26 NA + ND
| | - N4Np
26 NA + ND

Vo =V(d,) =

————(d + d’ + 2d,d,)

2

where we have made use of (6.27). Finally, we obtain the result that

o1, 1)
le] \Na Np
which tells us that the depletion layer width is smaller, the heavier the doping is. This property is

used in tunnel diodes to achieve layer widths on the order of 10~° cm by heavy doping as com-
pared to widths on the order of 107 ¢cm in ordinary p-n junctions.

We have just illustrated an example of the application of Poisson’s equation
involving the solution for the potential distribution for a given charge distribution.
Poisson’s equation is even more useful for the solution of problems in which the charge
distribution is the quantity to be determined, given the functional dependence of the
charge density on the potential. We shall, however, not pursue this topic any further.

If the charge density in a region is zero, then Poisson’s equation reduces to

VvV =0 (6.31)

This equation is known as Laplace’s equation. It governs the behavior of the potential
in a charge-free region. In Cartesian coordinates, it is given by

V.V 9V
724'724‘72:0 (632)
ox ay 0z

The problems for which Laplace’s equation is applicable consist of finding
the potential distribution in the region between two conductors given the charge
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distribution on the surfaces of the conductors or the potentials of the conductors or a
combination of the two. The procedure involves the solving of Laplace’s equation sub-
ject to the boundary conditions on the surfaces of the conductors. We shall do this in
the following section.

6.3 STATIC FIELDS AND CIRCUIT ELEMENTS

In the previous two sections, we considered static fields with reference to electric field
alone. In this section, we shall expand the treatment to all types of static fields, for the
purpose of introducing circuit elements. Thus, for static fields, /0t = 0. Maxwell’s
equations in integral form and the law of conservation of charge become

}é E-dl =0 (6.33a)
jéD-dS - /V pdv (6.330)
ﬁ B-dS = 0 (633d)
jg J-ds =0 (6:33¢)

whereas Maxwell’s equations in differential form and the continuity equation
reduce to

VXE=0 (6.34a)
VXxH=1J (6.34b)
V.-D=p (6.34c)
V-B=0 (6.34d)
V-I=0 (6.34¢)

Immediately, one can see that, unless J includes a component due to conduction
current, the equations involving the electric field are completely independent of those
involving the magnetic field. Thus, the fields can be subdivided into static electric fields,
or electrostatic fields, governed by (6.33a) and (6.33c), or (6.34a) and (6.34c), and static
magnetic fields, or magnetostatic fields, governed by (6.33b) and (6.33d), or (6.34b) and
(6.34d). The source of a static electric field is p, whereas the source of a static magnet-
ic field is J. One can also see from (6.33e) or (6.34¢) that no relationship exists between
J and p. If J includes a component due to conduction current, then, since J, = ¢E, a
coupling between the electric and magnetic fields exists for that part of the total field
associated with J.. However, the coupling is only one way, since the right side of (6.33a)
or (6.34a) is still zero. The field is then referred to as electromagnetostatic field. It can
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also be seen, then, that for consistency, the right sides of (6.33¢) and (6.34c) must be
zero, since the right sides of (6.33¢) and (6.34e) are zero. We shall now consider each of
the three types of static fields separately and discuss some fundamental aspects.

Electrostatic Fields and Capacitance

The equations of interest are (6.33a) and (6.33c), or (6.34a) and (6.34c). The first of
each pair of these equations simply tells us that the electrostatic field is a conservative
field, and the second of each pair of these equations enables us, in principle, to deter-
mine the electrostatic field for a given charge distribution. Alternatively, the Poisson’s
equation, equation (6.22), can be used to find the electric scalar potential, V, from
which the electrostatic field can be determined by using (6.16).

In a charge-free region, the Poisson’s equation reduces to the Laplace’s equation,
(6.31). The field is then due to charges outside the region, such as surface charge on
conductors bounding the region. The situation is then one of solving a boundary value
problem, as we shall illustrate by means of an example.

Example 6.3

Figure 6.5(a) is that of a parallel-plate arrangement in which two parallel, perfectly conducting
plates (¢ = 00, E = 0) of dimensions w along the y-direction and / along the z-direction lie in
the x = 0 and x = d planes. The region between the plates is a perfect dielectric (o = 0) of
material parameters € and u. The thickness of the plates is shown exaggerated for convenience
in illustration. A potential difference of V; is maintained between the plates by connecting a di-
rect voltage source at the end z = —/. If fringing of the field due to the finite dimensions of the
structure normal to the x-direction is neglected, or, if it is assumed that the structure is part of
one which is infinite in extent normal to the x-direction, then the problem can be treated as one-

dimensional with x as the variable, and (6.31) reduces to
d*V
— =0 6.35
P (6.35)

We wish to carry out the electrostatic field analysis for this arrangement.
The solution for the potential in the charge-free region between the plates is given by

V(x) = %(d ~X) (6.36)

which satisfies (6.35), as well as the boundary conditionsof V = Qatx = dand V = Vjat x = 0.
The electric field intensity between the plates is then given by

Vo
E=-W-"a (6.37)

as depicted in the cross-sectional view in Figure 6.5(b), and resulting in displacement flux density

%
D= %ax (6.38)
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FIGURE 6.5

Electrostatic field analysis for a parallel-plate arrangement.

Then, using the boundary condition for the normal component of D given by (5.94c), we obtain
the magnitude of the charge on either plate to be

eV ewl

0= (S ) - Ly, (639)

We can now find the familiar circuit parameter, the capacitance, C, of the parallel-plate
arrangement, which is defined as the ratio of the magnitude of the charge on either plate to the
potential difference V;. Thus,

Q _ ewl

C=—=

v (6.40)

Note that the units of C are the units of € times meter, that is, farads. The phenomenon associated
with the arrangement is that energy is stored in the capacitor in the form of electric field energy
between the plates, as given by

W, = (3 €2 Jowta)

_ 1wl
- 2( d )VO
1
= ECV% (6.41)

the familiar expression for energy stored in a capacitor.
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Magnetostatic Fields and Inductance

The equations of interest are (6.33b) and (6.33d), or (6.34b) and (6.34d). The second of each
pair of these equations simply tells us that the magnetostatic field is solenoidal, which as we
know holds for any magnetic field, and the first of each pair of these equations enables us, in
principle, to determine the magnetostatic field for a given current distribution.

In a current-free region, J = 0. The field is then due to currents outside the
region, such as surface currents on conductors bounding the region. The situation is
then one of solving a boundary value problem as in the case of (6.31). However, since
the boundary condition (5.94b) relates the magnetic field directly to the surface current
density, it is straightforward and more convenient to determine the magnetic field
directly by using (6.34b) and (6.34d). We shall illustrate by means of an example.

Example 6.4

Figure 6.6(a) is that of the parallel-plate arrangement of Figure 6.5(a) with the plates connected
by another conductor at the end z = 0 and driven by a source of direct current / at the end
z = —I. If fringing of the field due to the finite dimensions of the structure normal to the
x-direction is neglected, or, if it is assumed that the structure is part of one which is infinite in
extent normal to the x-direction, then the problem can be treated as one-dimensional with x as
the variable and we can write the current density on the plates to be

(Iy/w)a, on the plate x = 0
Js = 1y/w)a, on the plate z = 0 (6.42)
—(ly/w)a, ontheplatex =d

We wish to carry out the magnetostatic field analysis for this arrangement.
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FIGURE 6.6

Magnetostatic field analysis for a parallel-plate arrangement.
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In the current-free region between the plates, (6.34b) reduces to

a, a, a,
d
— 0 0]=0 6.43
P (6:43)
H, H, H,
and (6.34d) reduces to
B _y 6.44
o (6.44)

so that each component of the field, if it exists, has to be uniform. This automatically forces H,
and H, to be zero, since nonzero value of these components do not satisfy the boundary condi-
tions (5.94b) and (5.94d) on the plates, keeping in mind that the field is entirely in the region
between the conductors. Thus, as depicted in the cross-sectional view in Figure 6.6(b),

I
~a
w

H = (6.45)

y

which satisfies the boundary condition (5.94b) on all three plates, and results in magnetic flux
density

B=—a (6.46)

The magnetic flux, ¢, linking the current [, is then given by
uly udl)

=|\— )@l =|—]I 6.47

o = (A2 )an = (25 ), (647

We can now find the familiar circuit parameter, the inductance, L, of the parallel-plate

arrangement, which is defined as the ratio of the magnetic flux linking the current to the current.
Thus,

=== (6.48)

Note that the units of L are the units of u times meter, that is, henrys. The phenomenon associated
with the arrangement is that energy is stored in the inductor in the form of magnetic field energy
between the plates, as given by

W, = (S wtr? Joua

1 [ udl
-5

= %u% (6.49)

the familiar expression for energy stored in an inductor.
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Electromagnetostatic Fields and Conductance

The equations of interest are

%E-dl =0 (6.50a)

c
]{H-dl=7§Jc-dS=(r?§E-dS (6.50b)

c S S

j{D «dS=0 (6.50¢)

s
?{B «dS=0 (6.50d)

s

or, in differential form,

VXE=0 (6.51a)
VXH=1J.=0E (6.51b)
V-D =0 (6.51¢c)
V-B=0 (6.51d)

From (6.51a) and (6.51c), we note that Laplace’s equation for the electrostatic poten-
tial, (6.31), is satisfied, so that, for a given problem, the electric field can be found in the
same manner as in the case of the example of Figure 6.6. The magnetic field is then
found by using (6.51b), and making sure that (6.51d) is also satisfied. We shall illustrate
by means of an example.

Example 6.5

Figure 6.7(a) is that of the parallel-plate arrangement of Figure 6.5(a) but with an imperfect
dielectric material of parameters o, €, and u, between the plates. We wish to carry out the elec-
tromagnetostatic field analysis of the arrangement.

The electric field between the plates is the same as that given by (6.37), that is,

E = % (6.52)
= M .
resulting in a conduction current of density
4
J, = %ax (6.53)

from the top plate to the bottom plate, as depicted in the cross-sectional view of Figure 6.7(b).
Since dp/at = 0 at the boundaries between the plates and the slab, continuity of current is satis-
fied by the flow of surface current on the plates. At the input z = —/, this surface current, which
is the current drawn from the source, must be equal to the total current flowing from the top to
the bottom plate. It is given by

oV, o
= (70)(‘4/1) - TWZV(, (6.54)
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FIGURE 6.7

Electromagnetostatic field analysis for a parallel-plate arrangement.

We can now find the familiar circuit parameter, the conductance, G, of the parallel-plate
arrangement, which is defined as the ratio of the current drawn from the source to the source voltage
V,. Thus,

I owl
G=1 =" (6.55)

Note that the units of G are the units of o times meter, that is,siemens (S). The reciprocal quantity,
R, the resistance of the parallel-plate arrangement, is given by

The unit of R is ohms. The phenomenon associated with the arrangement is that power is dissi-
pated in the material between the plates, as given by

P; = (cE»)(wld)

owl
= — |v?
(d ) 0
=GV}

_ v

2 (6.57)

the familiar expression for power dissipated in a resistor.
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Proceeding further, we find the magnetic field between the plates by using (6.51b), and
noting that the geometry of the situation requires a y-component of H, dependent on z, to satisfy
the equation. Thus,

H = H/(z)a, (6.58a)
dH, aVy
PP (6.58b)
oV
H = LY (6.58¢)

where the constant of integration is set to zero, since the boundary condition at z = 0 requires
H, to be zero for z equal to zero. Note that the magnetic field is directed in the positive y-direction
(since z is negative) and increases linearly from z = 0 to z = —/, as depicted in Figure 6.7(b). It
also satisfies the boundary condition at z = —/ by being consistent with the current drawn from
the source to be w[H,].- ; = (¢Vp/d)(Wl) = I..

Because of the existence of the magnetic field, the arrangement is characterized by an in-
ductance, which can be found either by using the flux linkage concept or by the energy method.
To use the flux linkage concept, we recognize that a differential amount of magnetic flux
dy' = uH,d(dz') between z equal to (z' — dz’) and z equal to 7', where —/ < z' < 0, links only
that part of the current that flows from the top plate to the bottom plate between z = 7’ and
z = 0, thereby giving a value of (—z'/I) for the fraction, N, of the total current linked. Thus, the
inductance, familiarly known as the internal inductance, denoted L,, since it is due to magnetic
field internal to the current distribution, as compared to that in (6.48) for which the magnetic field
is external to the current distribution, is given by

1 0
L,‘ = *\/ N dlll/
Ic 7’=-1

1 pdl
=-— 6.59
3w (6.59)
or, 1/3 times the inductance of the structure if & = 0 and the plates are joined at z = 0, as in
Figure 6.6(b).
Alternatively, if the energy method is used by computing the energy stored in the magnetic
field and setting it equal to %Lil 2 then we have

0
1
L; = — (dw) / wH3 dz
IC z=-1

1 pndl
3w (6.60)
same as in (6.59).

Finally, recognizing that there is energy storage associated with the electric field between
the plates, we note that the arrangement has also associated with it a capacitance C, equal to
ewl/d. Thus, all three properties of conductance, capacitance, and inductance are associated
with the structure. Since for o = 0 the situation reduces to that of Figure 6.5, we can represent
the arrangement of Figure 6.7 to be equivalent to the circuit shown in Figure 6.8. Note that the
capacitor is charged to the voltage Vj and the current through it is zero (open circuit condition).
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Circuit equivalent for the arrangement
of Figure 6.7.

The voltage across the inductor is zero (short circuit condition) and the current through it is
Vy/R. Thus, the current drawn from the voltage source is V;/R and the voltage source views a
single resistor R, as far as the current drawn from it is concerned.

6.4 LOW-FREQUENCY BEHAVIOR VIA QUASISTATICS

In the preceding section, we introduced circuit elements via static fields. A class of
dynamic fields for which certain features can be analyzed as though the fields were sta-
tic are known as quasistatic fields. In terms of behavior in the frequency domain, they
are low-frequency extensions of static fields present in a physical structure, when the
frequency of the source driving the structure is zero, or low-frequency approximations
of time-varying fields in the structure that are complete solutions to Maxwell’s equa-
tions. In this section, we consider the approach of low-frequency extensions of static
fields. Thus, for a given structure, we begin with a time-varying field having the same
spatial characteristics as that of the static field solution for the structure, and obtain
field solutions containing terms up to and including the first power (which is the lowest
power) in w for their amplitudes. Depending on whether the predominant static field is
electric or magnetic, quasistatic fields are called electroquasistatic fields or magneto-
quasistatic fields. We shall now consider these separately.

Electroquasistatic Fields

For electroquasistatic fields, we begin with the electric field having the spatial depen-
dence of the static field solution for the given arrangement. We shall illustrate by
means of an example.

Example 6.6

Figure 6.9 shows the cross-sectional view of the arrangement of Figure 6.5(a) excited by a sinu-
soidally time-varying voltage source V;(¢) = V} cos wt instead of a direct voltage source. We wish
to carry out the electroquasistatic field analysis for the arrangement.

From (6.37), we write

1%
E, = go COS wf a, (6.61)
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FIGURE 6.9

Electroquasistatic field analysis for the parallel-plate structure of Figure 6.5.

where the subscript 0 denotes that the amplitude of the field is of the zeroth power in w. This
results in a magnetic field in accordance with Maxwell’s equation for the curl of H, given by
(3.28). Thus, noting that J = 0 in view of the perfect dielectric medium, we have for the geometry
of the arrangement,

aHyl ano wE‘/O

= = 1 t
5z Py g Sne
weVyz
H, = do sin wt a, (6.62)

where we have also satisfied the boundary condition at z = 0 by choosing the constant of inte-
gration such that [H,;].— is zero, and the subscript 1 denotes that the amplitude of the field is of
the first power in . Note that the amplitude of H,,varies linearly with z, from zeroatz = Oto a
maximum at z = —/.

We stop the solution here, because continuing the process by substituting (6.62) into
Maxwell’s curl equation for E, (3.17), to obtain the resulting electric field will yield a term hav-
ing amplitude proportional to the second power in w. This simply means that the fields given
as a pair by (6.61) and (6.62) do not satisfy (3.17), and hence are not complete solutions to
Maxwell’s equations. They are the quasistatic fields. The complete solutions are obtained by
solving Maxwell’s equations simultaneously and subject to the boundary conditions for the given
problem.

Proceeding further, we obtain the current drawn from the voltage source to be

L(t) = wlHy],-

= —w<E7WI>VO sin wt
dVy(r)
=C— (6.63a)
or,
I, = joCV, (6.63b)

where C = (ewl/d) is the capacitance of the arrangement obtained from static field considera-
tions. Thus, the input admittance of the structure is jwC, such that its low frequency input
behavior is essentially that of a single capacitor of value same as that found from static field
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analysis of the structure. Indeed, from considerations of power flow, using Poynting’s theorem,
we obtain the power flowing into the structure to be

Py = wd[EH, .=

ewl .
= 7<7)wV% sin wt cos wt

d (1
= (5 cv;) (6.64)

which is consistent with the electric energy stored in the structure for the static case, as given
by (6.41).

Magnetoquasistatic Fields

For magnetoquasistatic fields, we begin with the magnetic field having the spatial de-
pendence of the static field solution for the given arrangement. We shall illustrate by
means of an example.

Example 6.7

Figure 6.10 shows the cross-sectional view of the arrangement of Figure 6.6(a), excited by a sinu-
soidally time-varying current source L(t) = I, cos wt instead of a direct current source. We wish
to carry out the magnetoquasistatic field analysis for the arrangement.

From (6.45) we write

H—é t 6.65
0= coswta, (6.65)

where the subscript 0 again denotes that the amplitude of the field is of the zeroth power in w.
This results in an electric field in accordance with Maxwell’s curl equation for E, given by (3.17).
Thus, we have for the geometry of the arrangement,

IEy IByo  wul,

= = sin wt
0z Jat
wulyz
E, = Gl sinwt a, (6.66)
w
3 E
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FIGURE 6.10

Magnetoquasistatic field analysis for the parallel-plate structure of Figure 6.6.
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where we have also satisfied the boundary condition at z = 0 by choosing the constant of inte-
gration such that [E,],—( is equal to zero, and again the subscript 1 denotes that the amplitude of
the field is of the first power in w. Note that the amplitude of E,; varies linearly with z, from zero
at z = 0 to a maximum at z = —/.

As in the case of electroquasistatic fields, we stop the process here, because continuing it
by substituting (6.66) into Maxwell’s curl equation for H, (3.28), to obtain the resulting magnet-
ic field will yield a term having amplitude proportional to the second power in w. This simply
means that the fields given as a pair by (6.65) and (6.66) do not satisfy (3.28), and hence are not
complete solutions to Maxwell’s equations. They are the quasistatic fields. The complete solu-
tions are obtained by solving Maxwell’s equations simultaneously and subject to the boundary
conditions for the given problem.

Proceeding further, we obtain the voltage across the current source to be

Ve(t) = d[Ex].=—

dl
= —w(L>IO sin wt
w
= Ldlg(t) 6.67a)
= o (6.67a
or
V, = joLl, (6.67b)

where L = (udl/w) is the inductance of the arrangement obtained from static field considera-
tions. Thus, the input impedance of the structure is joL, such that its low frequency input be-
havior is essentially that of a single inductor of value same as that found from static field analysis
of the structure. Indeed, from considerations of power flow, using Poynting’s theorem, we obtain
the power flowing into the structure to be

Pin = Wd[EleyOJz=*l

dl
—<L) 13 sin wt cos wt
w

d (1
= (5 ng,) (6.68)

which is consistent with the magnetic energy stored in the structure for the static case, as given
by (6.49).

Quasistatic Fields in a Conductor

If the dielectricslab in an arrangement is conductive, then both electric and magnetic fields
exist in the static case, because of the conduction current, as discussed under electromag-
netostatic fields in Section 6.3. Furthermore, the electric field of amplitude proportional to
the first power in w contributes to the creation of magnetic field of amplitude proportion-
al to the first power in w, in addition to that from electric field of amplitude proportional to
the zeroth power in w. We shall illustrate by means of an example.
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Example 6.8

Let us consider that the dielectric slab in the arrangement of Figure 6.9 is conductive, as shown
in Figure 6.11(a), and carry out the quasistatic field analysis for the arrangement.

Using the results from the static field analysis from the arrangement of Figure 6.7, we have
for the arrangement of Figure 6.11(a),

|4

E, = go COS wf a, (6.69)
%
Joo=0Ey = %COS wt a, (6.70)
Vo

z
cos wt a, (6.71)

as depicted in the figure. Also, the variations with z of the amplitudes of E,, and H,, are shown
in Figure 6.11(b).

I EO?JCO I-I{)
g : L
x| x| x|\ | x x| =0 y .
Ve (1) = Vycos wt x| x| x x| o, |le,u] %
x| x| x x x
x=d X
z=—1 —> 2 z=
(a)
|Ex0‘
|HyO‘
7= —1 —Z z2=0
(b)

FIGURE 6.11

(a) Zero-order fields for the parallel-plate structure of Figure 6.7. (b) Variations of amplitudes
of the zero-order fields along the structure. (c) Variations of amplitdes of the first-order fields
along the structure.
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The magnetic field given by (6.69) gives rise to an electric field having amplitude pro-
portional to the first power in w, in accordance with Maxwell’s curl equation for E, (3.17). Thus,

IE, 9By wpoVpz

= — T = - g t
oz ot a me
wpoVy
Ey = —2E70 (2 _ Py sin (6.72)
2d
where we have also made sure that the boundary condition at z = —/ is satisfied. This boundary
condition requires that E, be equal to V,/d at z = —L. Since this is satisfied by E\ alone, it fol-
lows that £,; must be zero at z = —1.

The electric field given by (6.69) and that given by (6.72) together give rise to a magnetic
field having terms with amplitudes proportional to the first power in w, in accordance with
Maxwell’s curl equation for H, (3.28). Thus,

dH,, oE
Y = _UExl — € x0
0z ot
2
wuoV, eV
= u(z2 — %) sin ot + 270 Sin wr
2d
2 3 2
oo Vy(z> — 3zl weVjyz
Hy = K 0(6d )sin ot + 9% Sin wt (6.73)

where we have also made sure that the boundary condition at z = 0 is satisfied. This boundary
condition requires that H, be equal to zero at z = 0, which means that all of its terms must be
zero at z = 0. Note that the first term on the right side of (6.73) is the contribution from the con-
duction current in the material resulting from E,, and the second term is the contribution from
the displacement current resulting from E,,. Denoting these to be H,. and H,,, respectively,
we show the variations with z of the amplitudes of all the field components having amplitudes
proportional to the first power in w in Figure 6.11(c).

Now, adding up the contributions to each field, we obtain the total electric and magnetic
fields up to and including the terms with amplitudes proportional to the first power in w to be

W wucVy .
E, = 7 cos wt 2d (z° = ) sin wt (6.74a)
oWz weVyz | wpo®Vy (2% — 3z .
= — + - + .
H, g o8 wt g Sin wt od sin wt (6.74b)
or
%
= g . Mo 2 N
=— +jo— (- :
E, g ties Gl )% (6.75a)
20,3 2
- oz . ex— . po(z =32 _

Finally, the current drawn from the voltage source is given by

I_g = w[I-_Iy]Z:,

(6.76)
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The input admittance of the structure is given by

_ Cewl  owl _ pol?
Yin = :f“7+7<1‘f‘° 3

WNl

ol

I 1
~ jo ¢ (6.77)

d d ,Lw'lz)
14
o-wl( @ 3

where we have used the approximation [1 + jo(uol?/3)]™! = [1 — jo(uo?/3)]. Proceeding
further, we have

— . ewl 1
Yin = Jjw d + d ] Ldl
owl @ 3w
1
= joC + —— 6.78
195 T R Y oL, (6.78)

where C = ewl/d is the capacitance of the structure if the material is a perfect dielectric,
R = d/owl is the resistance of the structure, and L; = udl/3w is the internal inductance of the
structure, all computed from static field analysis of the structure.

The equivalent circuit corresponding to (6.78) consists of capacitance C in parallel with
the series combination of resistance R and internal inductance L;, the same as in Figure 6.8.
Thus, the low-frequency input behavior of the structure is essentially the same as that of the
equivalent circuit of Figure 6.8, with the understanding that its input admittance must also be
approximated to first-order terms. Note that for o = 0, the input admittance of the structure is
purely capacitive. For nonzero o, a critical value of o equal to \/3e/ul? exists for which the input
admittance is purely conductive. For values of o smaller than the critical value, the input admit-
tance is complex and capacitive, and for values of o larger than the critical value, the input
admittance is complex and inductive.

6.5 THE DISTRIBUTED CIRCUIT CONCEPT AND THE PARALLEL-PLATE
TRANSMISSION LINE

In the preceding section, we have seen that, from the circuit point of view, the parallel-
plate structure of Figure 6.5 behaves like a capacitor for the static case and the capaci-
tive character is essentially retained for its input behavior for sinusoidally time-varying
excitation at frequencies low enough to be within the range of validity of the quasistatic
approximation. Likewise, we have seen that, from a circuit point of view, the parallel-plate
structure of Figure 6.6 behaves like an inductor for the static case and the inductive
character is essentially retained for its input behavior for sinusoidally time-varying
excitation at frequencies low enough to be within the range of validity of the quasistatic
approximation. For both structures, at an arbitrarily high enough frequency, the input
behavior can be obtained only by obtaining complete (wave) solutions to Maxwell’s
equations, subject to the appropriate boundary conditions.

Two questions to ask at this point are (1) whether there is a circuit equivalent for
the structure itself, independent of the termination, that is representative of the phe-
nomenon taking place along the structure and valid at any arbitrary frequency, to the
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extent that the material parameters themselves are independent of frequency, and
(2) what the limit on frequency is beyond which the quasistatic approximation is not
valid. The answer to the first question is, yes, under a certain condition, giving rise to
the concept of the distributed circuit, which we shall develop in this section by consid-
ering the parallel-plate structure, to be then known as the parallel-plate transmission
line. The condition is that the waves propagating along the structure be the so-called
transverse electromagnetic or TEM waves, meaning that the directions of the electric
and magnetic fields are entirely traverse to the direction of propagation of the waves.
The answer to the second question is that for the quasistatic approximation to hold, the
length of the physical structure along the direction of propagation of the waves must
be very small compared to the wavelength corresponding to the frequency of the
source, in the dielectric region between the plates. While this can be obtained by ex-
tending the solution for the quasistatic case beyond the terms of the first power in w by
successive solution of Maxwell’s equations (as in Section 4.3) and finding the condition
under which the term of the first power in w is predominant, it is more straightforward
to obtain the exact solution by resorting to simultaneous solution of Maxwell’s equa-
tions and finding the condition for which it approximates to the quasistatic solution.
We shall do this in Section 7.1 by considering the structure of Figure 6.10 as a short-
circuited transmission line and finding its input impedance.

Now, to develop and discuss the concept of the distributed circuit, we consider
the parallel-plate arrangement of Figure 6.7(a) excited by a sinusoidally time-varying
source of arbitrary frequency, as shown in Figure 6.12(a). Then, for an exact solution,
the equations to be solved are

B oH
VXxE=-2-_,22 6.79
a Mo (6.792)
oD OE
VXH=1J,+ 2" = oE + e— (6.79b)
ot ot

For the geometry of the arrangement, neglecting fringing of the fields at the edges or
assuming that the structure is part of a much larger-sized configuration, E = E(z, t)a,
and H = H,(z, t)a,, so that (6.79a) and (6.79b) simplify to

OE oH
R (6.80a)
0z at
oH OE
— = GE, —e—= (6.80b)
0z at

The situation is one of uniform plane electromagnetic waves propagating in the
z-direction as though the conductors are not present, being guided by them, since all
the boundary conditions are satisfied. We then have the simple case of a parallel-plate
transmission line. Now, since E, and H, are zero in a given constant-z plane, that is,
a plane transverse to the direction of propagation of the wave, as shown in Fig-
ure 6.12(b), we can uniquely define a voltage between the plates in terms of the electric
field intensity in that plane, and a current crossing that plane in one direction on the
top plate and in the opposite direction on the bottom plate in terms of the magnetic
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FIGURE 6.12

(a) Parallel-plate transmission line. (b) A transverse plane of the parallel-plate
transmission line.

field intensity in that plane. These are given by

d d
Wz, t) = /OEx(z, 1 dx = E.(z,1) /0 dx = dE(z,1) (6.81a)

I(z,t) = / Js(z,t)dy = Hy(z,t)dy = Hy(z,1) dy
y=0 y=0 y=0

= wH,(z, 1) (6.81b)

Proceeding further, we can find the power flow down the line by evaluating the
surface integral of the Poynting vector over a given transverse plane. Thus,

ngz/ (E X H)-dS
transverse plane

d w
= / / E(z,t)H/(z,t)a,+dx dya,
x=0 Jy

=0
d w
V(z, t) I(z,t
[ [ renieo,,
x=0 Jy=0 d w

= V(z,)I(z,t) (6.82)

which is the familiar relationship employed in circuit theory.
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From (6.81a) and (6.81b), we have
(6.83a)
(6.83b)

Substituting for E, and H, in (6.80a) and (6.80b) from (6.83a) and (6.83b), respectively,
we now obtain two differential equations for voltage and current along the line as

i(‘;) _ W;(i) (6.84)
)5 e

or
% _ _<f;d> % (6.852)

We now recognize the quantities in parentheses in (6.85a) and (6.85b) to be the
circuit parameters L, G, and C, divided by the length / of the structure in the z-direction.
Thus, these are the inductance per unit length, capacitance per unit length, and conduc-
tance per unit length, of the line, denoted to be £, 4, and €, respectively, and we can
write the equations in terms of these parameters as

14 al
A ¢

Py o (6.86a)
I _ gy — (6.86b)
0z at
where
nd
L =— 6.87
. (6872)
ew
€ =— 6.87b
; (657b)
G = % (6.87¢)

We note that &, 6, and ¢ are purely dependent on the dimensions of the line and

P = pe (6.88a)

4 o
e < (6.88b)
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Equations (6.86a) and (6.86b) are known as the transmission line equations. They char-
acterize the wave propagation along the line in terms of the circuit quantities instead of
in terms of the field quantities. It should, however, not be forgotten that the actual phe-
nomenon is one of electromagnetic waves guided by the conductors of the line.

It is customary to represent a transmission line by means of its circuit equivalent,
derived from the transmission-line equations (6.86a) and (6.86b). To do this, let us con-
sider a section of infinitesimal length Az along the line between z and z + Az. From
(6.86a), we then have
. Wz + Az, t) — V(z, 1) 0l(z, t)

m =-%

Li
Az—0 Az ot

or, for Az—0,

dl(z, 1)

Wz + Az, t) — V(z,t) = =% Az o

(6.89a)
This equation can be represented by the circuit equivalent shown in Figure 6.13(a),
since it satisfies Kirchhoff’s voltage law written around the loop abcda. Similarly, from
(6.86b), we have

I(z + Az, t) — I(z,t _ aV(z + Az, t
Lim (z 1) — 121 = Lim | —%9V(z + Az, t) — %M
Az—0 Az Az—0 at

or, for Az—0,
aV(z + Azt
Iz + Az, 1) — I(z,0) = —6 Az V(z + Az, 1) — CGAZ(ZTZ) (6.89b)

This equation can be represented by the circuit equivalent shown in Figure 6.13(b), since
it satisfies Kirchhoff’s current law written for node c. Combining the two equations, we
then obtain the equivalent circuit shown in Figure 6.13(c) for a section Az of the line. It

b £Az ¢ I(z,1) I(z + Az, 1) | ZAz |
—YY Y\ o o
t — + + i ?
| |
I(z,1) T T I I
~ = | |
. N 1 1
¥ 4 €Az g0 |
= 5 Lo :
< b : !
| | |
| |
_ _ 3 ! !
oO——————0
a 1 l I ]
‘ ‘ z z+ Az
(a) (b) (©)
FIGURE 6.13

Development of circuit equivalent for an infinitesimal length Az of a
transmission line.
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then follows that the circuit representation for a portion of length / of the line consists of
an infinite number of such sections in cascade, as shown in Figure 6.14. Such a circuit is
known as a distributed circuit as opposed to the lumped circuits that are familiar in circuit
theory. The distributed circuit notion arises from the fact that the inductance, capaci-
tance, and conductance are distributed uniformly and overlappingly along the line.

F Az LAz LAz

O L L g ®-

FIGURE 6.14

Distributed circuit representation of a transmission line.

A more physical interpretation of the distributed circuit concept follows from
energy considerations. We know that the uniform plane wave propagation between the
conductors of the line is characterized by energy storage in the electric and magnetic
fields and power dissipation due to the conduction current flow. If we consider a sec-
tion Az of the line, the energy stored in the electric field in this section is given by

1 1
W, = 5 eE%(volume) = EeEi(dw Az)

_lew

1
=5 (E.d)* Az = 5 €Az V2 (6.90a)

The energy stored in the magnetic field in that section is given by

1
= ,u,Hi(dW Az)

1
w,, = *ngi (volume) = >

2

1 1
pd (HwYAz=_FAzP (6.90b)

The power dissipated due to conduction current flow in that section is given by
P, = cE2(volume) = cE2(dw Az)
% (Eyd)?Az = GAz V2 (6.90c)
Thus, &, €, and 4§ are elements associated with energy storage in the magnetic field,

energy storage in the electric field, and power dissipation due to the conduction current
flow in the dielectric, respectively, for a given infinitesimal section of the line. Since
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these phenomena occur continuously and since they overlap, the inductance, capaci-
tance, and conductance must be distributed uniformly and overlappingly along the
line. In actual practice, the conductors of the transmission line are imperfect, resulting
in slight penetration of the fields into the conductors, in accordance with the skin effect
phenomenon. This gives rise to power dissipation and magnetic field energy storage in
the conductors, which are taken into account by including a resistance and additional
inductance in the series branch of the transmission-line equivalent circuit.

6.6 TRANSMISSION LINE WITH AN ARBITRARY CROSS SECTION

In the previous section, we considered the parallel-plate transmission line made up of
perfectly conducting sheets lying in the planes x = 0 and x = d so that the boundary
conditions of zero tangential component of the electric field and zero normal component
of the magnetic field are satisfied by the uniform plane wave characterized by the fields

E = E.(z,)a,

thereby leading to the situation in which the uniform plane wave is guided by the con-
ductors of the transmission line. In the general case, however, the conductors of the
transmission line have arbitrary cross sections and the fields consist of both x- and
y-components and are dependent on x- and y-coordinates in addition to the z-coordinate.
Thus, the fields between the conductors are given by

E = Ex(x’ y? Z’ t)ax + Ey(x’ ys Z’ t)ay
H = H/(x,y,z,t)a, + H(x, y, z,1)a,

These fields are no longer uniform in x and y but are directed entirely transverse to the
direction of propagation, that is, the z-axis, which is the axis of the transmission line.
Hence, they are known as transverse electromagnetic waves, or TEM waves. The uni-
form plane waves are simply a special case of the transverse electromagnetic waves.
To extend the computation of the transmission line parameters &, ¢, and % to the
general case, let us consider a transmission line made up of parallel, perfect conductors
of arbitrary cross sections, as shown by the cross-sectional view in Figure 6.15(a). Let us
assume that the inner conductor is positive with respect to the outer conductor and
that the current flows along the positive z-direction (into the page) on the inner con-
ductor and along the negative z-direction (out of the page) on the outer conductor. We
can then draw a field map, that is, a graphical sketch of the direction lines of the fields
between the conductors, from the following considerations: (a) The electric field lines
must originate on the inner conductor and be normal to it and must terminate on the
outer conductor and be normal to it, since the tangential component of the electric
field on a perfect conductor surface must be zero. (b) The magnetic field lines must be
everywhere perpendicular to the electric field lines; although this can be shown by a
rigorous mathematical proof, it is intuitively obvious, since, first, the magnetic field
lines must be tangential near the conductor surfaces and, second, at any arbitrary point
the fields correspond to those of a locally uniform plane wave. Thus, suppose that we
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"

(a) (b)
‘ .
(c) (d)

(e)
FIGURE 6.15

Construction of a transmission line field map consisting of
curvilinear rectangles.

start with the inner conductor and draw several lines normal to it at several points on
the surface, as shown in Figure 6.15(b). We can then draw a curved line displaced from
the conductor surface and such that it is perpendicular everywhere to the electric field
lines of Figure 6.15(b), as shown in Figure 6.15(c). This contour represents a magnetic
field line and forms the basis for further extension of the electric field lines, as shown in
Figure 6.15(d). A second magnetic field line can then be drawn so that it is everywhere
perpendicular to the extended electric field lines, as shown in Figure 6.15(e). This
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procedure is continued until the entire cross section between the conductors is filled
with two sets of orthogonal contours, as shown in Figure 6.15(f), thereby resulting in a
field map made up of curvilinear rectangles.

By drawing the field lines with very small spacings, we can make the rectangles so
small that each of them can be considered to be the cross section of a parallel-plate
line. In fact, by choosing the spacings appropriately, we can even make them a set of
squares. If we now replace the magnetic field lines by perfect conductors, since it does
not violate any boundary condition, it can be seen that the arrangement can be viewed
as the parallel combination, in the angular direction, of m number of series combina-
tions of » number of parallel-plate lines in the radial direction, where m is the number
of squares in the angular direction, that is, along a magnetic field line, and # is the num-
ber of squares in the radial direction, that is, along an electric field line. We can then
find simple expressions for &£, €, and 4 of the line in the following manner.

Let us for simplicity consider the field map of Figure 6.16, consisting of eight seg-
ments 1,2, ..., 8 in the angular direction and two segments a and b in the radial direc-
tion. The arrangement is then a parallel combination, in the angular direction, of eight
series combinations of two lines in the radial direction, each having a curvilinear rec-
tangular cross section. Let I, I,, . .., Ig be the currents associated with the segments
1,2,..., 8, respectively, and let ¢, and ¢, be the magnetic fluxes per unit length in the
z-direction associated with the segments a and b, respectively. Then the inductance per

.o'%"'oo

FIGURE 6.16

For deriving the expressions for the transmission-line parameters from the
field map.
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unit length of the transmission line is given by

gVttt
I I, 41+ + Iy
1 N 1
1 1 I 1 Ji I
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1 1
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Let Q1’Q27""

segments 1,2, ...

Qg be the charges per unit length in the z-direction associated with the
, 8, respectively, and let V,, and V), be the voltages associated with the

segments a and b, respectively. Then the capacitance per unit length of the transmis-

sion line is given by

cg:g:Q1+Q2+ + Qs
Vv v, 4V,
11 L1
Vo V% Va E Vo W
0 O Qz ) Oy  0Og
1 1 1
= + e +
IE ST S S 1.1
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Let Ic17 1C2,...,
ated with the segments 1,2, ...,
of the transmission line is given by
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(6.91b)

I ¢ be the conduction currents per unit length in the z-direction associ-
8, respectively. Then the conductance per unit length

(6.91¢c)

Generalizing the expressions (6.91a), (6.91b), and (6.91c) to m segments in the

angular direction and n segments in the radial direction, we obtain

£ = m11
j= i
z=21$11
|
(6:
HET

M=

@

~.
I

i
<

(6.92a)

(6.92b)
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j=1

Mz

G = (6.92¢)

L
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=

where &, 6;;, and §;; are the inductance, capacitance, and conductance per unit length
corresponding to the rectangle 7. If the map consists of curvilinear squares, then &£;;, €;;,
and 9;; are equal to u, €, and o, respectively, according to (6.87a), (6.87b), and (6.87c),
respectively, since the width w of the plates is equal to the spacing d of the plates for
each square. Thus, we obtain simple expressions for &, 6, and 4 as given by

n

g = [.L; (6933)
m

€ = E; (693b)
m

G = 0'; (6.93C)

The computation of &£, €, and 9§ then consists of sketching a field map consisting of
curvilinear squares, counting the number of squares in each direction, and substituting
these values in (6.93a), (6.93b), and (6.93c). Note that once again

FC = ue (6.94a)
4 o
e < (6.94b)

We shall now consider an example of the application of the curvilinear squares technique.

Example 6.9

The coaxial cable is a transmission line made up of parallel, coaxial, cylindrical conductors. Let
the radius of the inner conductor be a and that of the outer conductor be b. We wish to find
expressions for &£, €, and ¢ of the coaxial cable by using the curvilinear squares technique.
Figure 6.17 shows the cross-sectional view of the coaxial cable and the field map. In view of
the symmetry associated with the conductor configuration, the construction of the field map is
simplified in this case. The electric field lines are radial lines from one conductor to the other, and
the magnetic field lines are circles concentric with the conductors, as shown in the figure. Let the
number of curvilinear squares in the angular direction be m. Then to find the number of curvilin-
ear squares in the radial direction, we note that the angle subtended at the center of the conduc-
tors by adjacent pairs of electric field lines is equal to 27/m. Hence, at any arbitrary radius r
between the two conductors, the side of the curvilinear square is equal to r(27/m). The number of
dr m dr
— 0o ——.
rQQmw/m)’ 2w r
The total number of squares in the radial direction from the inner to the outer conductor is given by
b

squares in an infinitesimal distance dr in the radial direction is then equal to

mdr_m, b

n= =_—
=g 27 T 2 a

The required expressions for £, 6, and % are then given by

L
& = il lna (6.95a)
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FIGURE 6.17

Field map consisting of curvilinear squares for a
coaxial cable.

m 2me

6 = E; = m (6951))
m 270

G = O'; = m (6950)

These expressions are exact. We have been able to obtain exact expressions in this case because
of the geometry involved. When the geometry is not so simple, we can only obtain approximate
values for &, 6, and 9.

We have just discussed an example of the determination of the transmission-line
parameters &£, €, and 4 for a coaxial cable. There are other configurations having dif-
ferent cross sections for which one can obtain the parameters either by the curvilinear
squares technique or by other analytical or experimental techniques. The parameters
for some cases for which exact expressions are available are listed in Table 6.1, along
with those for the parallel-plate line and coaxial cable.

TABLE 6.1 Conductance, Capacitance, and Inductance per Unit Length for Some Structures Consisting
of Infinitely Long Conductors Having the Cross Sections Shown in Figure 6.18

Capacitance Conductance Inductance
Description per unit length, € per unit length, ¢ per unit length, &
d
Parallel-plane e o2 w—
d d w
conductors,
Figure 6.18(a)
2me 270 14 b
Coaxial cylindrical — —In—
In (b, In (b 2
conductors, n (b/a) n (b/a) T a
Figure 6.18(b)
S e o 14 o d
Parallel cylindrical — — 2 cosh 1 &
wires, Figure 6.18(c) cosh™ (d/a) cosh™ (d/a) m a
Eccentric inner 2me 2o m i 2+ b+ 42
conductor, B 2+ b= 2 . 2L Z_WCOSh Sy a—
Figure 6.18(d) cosh™ | —— —— cosh™! | =—————
Shielded parallel e o w o dB® — d?/4)
i i 1 2 2 2 2 - -~ 7
cylindrical wires, d(b® — d%/4) db* — d*/4) p— alb? + d¥/4)

. n n
Figure 6.18(e) ab? + d?/4) a(b® + d¥/4)
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FIGURE 6.18

Cross sections of some common configurations of parallel, infinitely long conductors.

SUMMARY

In this chapter, we first introduced the electric potential from the fact that for the static
case,

VXE=0 (6.96)

and, since the curl of the gradient of a scalar function is identically zero, E can be ex-
pressed as the gradient of a scalar function. The gradient of a scalar function @ is given
in Cartesian coordinates by

od oD od
= — + —

Vo a, oy a, + —a,

0x 9z

The magnitude of V& at a given point is the maximum rate of increase of ® at that
point, and its direction is the direction in which the maximum rate of increase occurs,
that is, normal to the constant @ surface passing through that point.

From considerations of work associated with the movement of a test charge in
the static electric field, we found that for the case of the static electric field, the scalar
function is —V/, so that

E=-VV (6.97)

where V is the electric potential. The electric potential V4 at a point A is the amount of
work per unit charge done by the field in the movement of a test charge from the point A
to a reference point O. It is the potential difference between A and O. Thus,

o A
VA=[V]‘/§:/E'dl=—/ E-dl
A o
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The potential difference between two points has the same physical meaning as the
voltage between the two points. The voltage in a time-varying field is, however, not a
unique quantity, since it depends on the path employed for evaluating it, whereas the
potential difference in a static field, being independent of the path, has a unique value.

We considered the potential field of a point charge and found that for the point
charge

Y
V= 47eR

where R is the radial distance away from the point charge. The equipotential surfaces
for the point charge are thus spherical surfaces centered at the point charge.

Substituting (6.97) into Maxwell’s divergence equation for D, we derived the
Poisson’s equation

vy =-£ (6.98)
€
which states that the Laplacian of the electric potential at a point is equal to —1/e times
the volume charge density at that point. In Cartesian coordinates,
’?V PV PV
VV =St St S
0x ay 0z
For the one-dimensional case in which the charge density is a function of x only, (6.98)
reduces to
PV _#V_ p

ax? B ax? €

We illustrated the solution of this equation by considering the example of a p—n junc-
tion diode.
If p = 0, Poisson’s equation reduces to Laplace’s equation

VZV =0 (6.99)
This equation is applicable for a charge-free dielectric region as well as for a conduct-
ing medium.
To introduce circuit elements, we next began with Maxwell’s equations in differ-
ential form and the continuity equation for static fields, given by

VXE=0 (6.100a)
VXH=J (6.100b)
V.D=0p (6.100c)
V-B=0 (6.100d)
VeI=0 (6.100e)

and considered three cases of static fields: (a) electrostatic fields, (b) magnetostatic
fields, and (c) electromagnetostatic fields. From these three cases, we introduced the



Summary 225

circuit elements, capacitance (C), inductance (L) and conductance (G), respectively, by
considering a parallel-plate arrangement.

We then turned to the quasistatic extension of the static field solution as a means
of obtaining the low-frequency behavior of a physical structure. The quasistatic field
approach involves starting with a time-varying field having the same spatial character-
istics as the static field in the physical structure and then obtaining field solutions con-
taining terms up to and including the first power in frequency by using Maxwell’s curl
equations for time-varying fields. We applied this approach for the same three cases as
for the static fields, and found that the input behavior of the structure remains essen-
tially the same as for the corresponding static case.

The quasistatic approximation holds for frequencies for which the wavelength
corresponding to the frequency of the source is large compared to the length of the
structure along the direction of propagation of the waves, which is to be derived in
Section 7.1. Beyond the range of validity of the quasistatic approximation, the input
behavior can be obtained only by obtaining complete solutions to Maxwell’s equations,
subject to the boundary conditions, which led us to the concept of the distributed cir-
cuit and the parallel-plate structure becoming a parallel-plate transmission line. We
derived the transmission-line equations,

d ol
l = -$— (6.101a)
0z ot
ol 1%
— = -4V - 6— (6.101b)
0z Jat

These equations are applicable to all transmission lines, characterized by transverse
electromagnetic wave propagation. They govern the wave propagation along the line
in terms of circuit quantities instead of in terms of field quantities.

The parameters &, €, and % in (6.101a) and (6.101b) are the inductance, capaci-
tance, and conductance per unit length of line, which differ from one line to another.
For the parellel-plate line having width w of the plates and spacing d between the
plates, they are given by

d
gz’u’i
w

EWw

¢ ="
d

ow

G ="
d

where u, €, and o are the material parameters of the medium between the plates and
fringing of the fields is neglected. We learned how to compute £, €, and 4 for a line of
arbitrary cross section by constructing a field map of the transverse electromagnetic
wave fields, consisting of curvilinear squares in the cross-sectional plane of the line.
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If m is the number of squares tangential to the conductors and » is the number of
squares normal to the conductors, then

&

I

=
BERIE

S
Il
m

&

Il

q
3|3z =

By applying this technique to the coaxial cable, we found that for a cable of inner
radius a and outer radius b,

_ M+ D
¥ = o In p
2me
i (b/a)
2o
Y (b/a)

REVIEW QUESTIONS

6.1. State Maxwell’s curl equations for static fields.

6.2. What is the expansion for the gradient of a scalar in Cartesian coordinates? When can a
vector be expressed as the gradient of a scalar?

6.3. Discuss the physical interpretation for the gradient of a scalar function.

6.4. Discuss the application of the gradient concept for the determination of unit vector
normal to a surface.

6.5. How would you find the rate of increase of a scalar function along a specified direction
by using the gradient concept?

6.6. Define electric potential. What is its relationship to the static electric field intensity?
6.7. Distinguish between voltage, as applied to time-varying fields, and potential difference.
6.8. What is a conservative field? Give two examples of conservative fields.

6.9. Describe the equipotential surfaces for a point charge.

6.10. Discuss the determination of the electric field intensity due to a charge distribution by
using the potential concept.

6.11. What is the Laplacian of a scalar? What is its expansion in Cartesian coordinates?
6.12. State Poisson’s equation.

6.13. Outline the solution of Poisson’s equation for the potential in a region of known charge
density varying in one dimension.

6.14. State Laplace’s equation. In what regions is it valid?
6.15. State Maxwell’s equations for static fields in (a) integral form, and (b) differential form.

6.16. Discuss the classification of static fields with reference to subsets of Maxwell’s
equations.
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Outline the steps involved in the electrostatic field analysis of a parallel plate structure
and the determination of its capacitance.

Outline the steps involved in the magnetostatic field analysis of a parallel plate struc-
ture and the determination of its inductance.

Outline the steps involved in the electromagnetostatic field analysis of a parallel plate
structure and the determination of its circuit equivalent.

Explain the term internal inductance.

What is meant by the quasistatic extension of the static field in a physical structure?
Outline the steps involved in the electroquasistatic field analysis of a parallel plate
structure and the determination of its input behavior. Compare the input behavior with
the electrostatic case.

Outline the steps involved in the magnetoquasistatic field analysis of a parallel plate
structure and the determination of its input behavior. Compare the input behavior with
the magnetostatic case.

Outline the steps involved in the quasistatic field analysis of a parallel plate structure
with a conducting slab between the plates and the determination of its input behavior.
Compare the input behavior with the electromagnetostatic case.

Discuss the phenomenon taking place along a parallel-plate structure at any arbitrary
frequency and the need for the concept of the distributed circuit.

What is the limit on the frequency beyond which the quasistatic approximation for the
input behavior of a physical structure is not valid?

How is the voltage between the two conductors in a given cross-sectional plane of a
parallel-plate transmission line related to the electric field in that plane?

How is the current flowing on the plates across a given cross-sectional plane of a
parallel-plate transmission line related to the magnetic field in that plane?

What are transmission-line equations? How are they obtained from Maxwell’s equations?
What are the expressions for &, the inductance per unit length, 6, the capacitance per
unit length, and 9, the conductance per unit length, for a parallel-plate transmission line?
Are the three quantities &, 6, and ¢ independent? If not, how are they dependent on
each other?

Draw the transmission-line equivalent circuit. How is it derived from the transmission-
line equations?

Discuss the concept of the distributed circuit and compare it to a lumped circuit.
Discuss the physical phenomena associated with each of the elements in the transmission-
line equivalent circuit.

What is a transverse electromagnetic wave?

What is a field map? Describe the procedure for drawing the field map for a transmis-
sion line of arbitrary cross section.

Draw a rough sketch of the field map for a line made up of two identical parallel cylin-
drical conductors with their axes separated by four times their radii.

Describe the procedure for computing the transmission line parameters &, 6, and %
from the field map.

How does a field map consisting of curvilinear squares simplify the computation of the
line parameters?

Discuss the determination of &£, 6, and 4 for a coaxial cable by using the curvilinear
squares technique.
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PROBLEMS

6.1. Find the gradients of the following scalar functions: (a) Vx> + y? + 7% (b) xyz.

6.2. Determine which of the following vectors can be expressed as the gradient of a scalar
function: (a) ya, — xa,; (b) xa, + ya, + za; (c) 2xy’za, + 3x2yzzay + x*y’a,.

6.3. Find the unit vector normal to the plane surface 5x + 2y + 4z = 20.

6.4. Find the unit vector normal to the surface x> — y?> = 5 at the point (3,2, 1).

6.5. Find the rate of increase of the scalar function xy at the point (1,2, 1) in the direction
of the vector a, — a,.

6.6. For the static electric field given by E = ya, + xa,, find the potential difference
between points A(1,1,1) and B(2,2,2).

6.7. For a point charge Q situated at the point (1,2,0), find the potential difference between
the point A(3,4,1) and the point B(5,5,0).

6.8. For the arrangement of a linear electric dipole consisting of point charges Q and —Q at
the points (0,0, d/2) and (0, 0, —d/2), respectively, obtain the expression for the electric
potential and hence for the electric field intensity at distances from the dipole large
compared to d.

6.9. For a line charge of uniform density 10™° C/m situated along the z-axis between (0,0, —1)
and (0, 0, 1), obtain the series expression for the electric potential at the point (0, y, 0)
by dividing the line charge into 100 equal segments and considering the charge in each
segment to be a point charge located at the center of the segment. Then find the series
expression for the electric field intensity at the point (0, 1,0).

6.10. Repeat Problem 6.9, assuming the line charge density to be 1073|z| C/m.

6.11. The potential distribution in a simplified model of a vacuum diode consisting of
cathode in the plane x = 0 and anode in the plane x = d and held at a potential V;,
relative to the cathode is given by

x \43
V:Vo(g) for0 < x <d
(a) Find the space charge density distribution in the region 0 < x < d.
(b) Find the surface charge densities on the cathode and the anode.

6.12. Show that for the p—n junction diode of Figure 6.4(a), the boundary condition of the
continuity of the normal component of displacement flux density at x = 0 is automati-
cally satisfied by equation (6.29).

6.13. Assume that the impurity concentration for the p-n junction diode of Figure 6.4(a) is a
linear function of distance across the junction. The space charge density distribution is
then given by

p=kx for —d/2 < x < dJ2
where d is the width of the space charge region and k is the proportionality constant.
Find the solution for the potential in the space charge region.
6.14. A space-charge density distribution is given by

_{posinx for—m < x <
P 0 otherwise
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where p, is a constant. Find the sketch the potential V' versus x for all x. Assume
V =0forx = 0.

The region between the two plates of Figure 6.5 is filled with two perfect dielectric
media having permittivities €; for 0 < x < tand €, for¢ < x < d. (a) Find the solu-
tions for the potentials in the two regions 0 < x < ¢ and r < x < d. (b) Find the
potential at the interface x = ¢. (c) Find the capacitance of the arrangement.

For a dielectric medium of nonuniform permittivity, show that the Poisson’s equation is
given by

eVV + Ve-VV = —p

Assume that the region between the two plates of Figure 6.5 is filled with a perfect
dielectric of nonuniform permittivity

€0

€T 1= (x/2d)

Find the solution for the potential between the plates and obtain the expression for the
capacitance per unit area of the plates.

The region between the plates of Figure 6.6 is divided into half in the y-direction.
Assume that one half is filled with a material of permeability u,; and the other half with
a material of permeability u,. Find the inductance of the arrangement.

The region between the two plates of Figure 6.7 is filled with two imperfect dielectric
media having conductivities o; for 0 < x < tand o, fort < x < d.(a) Find the solu-
tions for the potentials in the two regions 0 < x < ¢ and ¢t < x < d. (b) Find the
potential at the interface x = ¢.

For the structure of Figure 6.9, continue the analysis beyond the quasistatic extension
and obtain the input admittance correct to the third power in w. Determine the equiva-
lent circuit.

For the structure of Figure 6.10, continue the analysis beyond the quasistatic extension
to obtain the input impedance correct to the third power in w. Determine the equiva-
lent circuit.

For the structure of Figure 6.10, assume that the medium between the plates is an im-
perfect dielectric of conductivity o. (a) Show that the input impedance correct to the
first power in w is the same as if o were zero. (b) Obtain the input impedance correct to
the second power in w and determine the equivalent circuit.

Find the condition(s) under which the quasistatic input behavior of the structure of
Figure 6.11 is essentially equivalent to (a) a capacitor in parallel with a resistor and
(b) a resistor in series with an inductor.

A parallel-plate transmission line is made up of perfect conductors of width w = 0.1 m
and lying in the planes x = 0 and x = 0.02 m. The medium between the conductors is a
perfect dielectric of w = w,. For a uniform plane wave having the electric field

E = 1007 cos (27 X 10% — 0.027rz) a, V/m

propagating between the conductors, find (a) the voltage between the conductors,
(b) the current along the conductors, and (c) the power flow along the line.
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A parallel-plate transmission line made up of perfect conductors has & equal to
1077 H/m. If the medium between the plates is characterized by o = 107! S/m,
€ = b€y, and u = g, find € and 4 of the line.

If the conductors of a transmission line are imperfect, then the transmission-line equi-
valent circuit contains a resistance and additional inductance in the series branch.
Assuming that the thickness of the (imperfect) conductors of a parallel-plate line is
several skin depths at the frequency of interest, show from considerations of skin effect
phenomenon in a good conductor medium that the resistance and inductance per unit
length along the conductors are 2/0,.8w and 2/wo 8w, respectively, where o is the con-
ductivity of the (imperfect) conductors, w is the width, and § is the skin depth. The fac-
tor 2 arises because of two conductors.

Show that two alternative representations of the circuit equivalent of the transmission-
line equations (6.86a) and (6.86b) are as shown in Figures 6.19(a) and (b).
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FIGURE 6.19
For Problem 6.26.

Show that for a transverse electromagnetic wave, the voltage between the conductors
and the current along the conductors in a given transverse plane are uniquely defined in
terms of the electric and magnetic fields, respectively, in that plane.

By constructing a field map consisting of curvilinear squares for a coaxial cable having
b/a = 3.5, obtain the approximate values of the line parameters £, 6, and ¢ in terms of
u, €, and o of the dielectric. Compare the approximate values with the exact values
given by expressions derived in Example 6.9.

For d/a = 2 for the parallel-wire line [see Figure 6.18(c)], construct a field map consist-
ing of curvilinear squares and obtain approximate values for the line parameters &£, €,
and 9. Compare approximate values with the exact values given by the expressions in
Table 6.1.

The shielded strip line, employed in microwave integrated circuits, consists of a center
conductor photoetched on the inner faces of two substrates sandwiched between two
conductors, as shown by the cross-sectional view in Figure 6.20. For the dimensions
shown in the figure, construct a field map consisting of curvilinear squares and compute
& and %, considering the substrate to be a perfect dielectric having € = 9¢;and . = .
Assume for simplicity that the field is confined to the substrate region.
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Substrate, € = ¢,

0.04 in.

— 0.021in. <

FIGURE 6.20

0.1 in.

For Problem 6.30.

The cross section of an eccentric coaxial cable [see Figure 6.18(d)] consists of an outer
circle of radius @ = 5 cm and an inner circle of radius b = 2 cm, with their centers sep-
arated by d = 2 cm. By constructing a field map consisting of curvilinear squares,
obtain the approximate values of the line parameters &, €, and ¢ in terms of u, €, and o

of the dielectric.

Consider a transmission line having the cross section shown in Figure 6.21. The inner
conductor is a circle of radius a and the outer conductor is a square of sides 2a. Find the
approximate values of £, €, and %, by using the method of curvilinear squares.

€0

FIGURE 6.21
For Problem 6.32.





