AE435 Course Description sion Spring Semester, 2015

103 Talbot

rburton@illinois.edu

richar14@illinois.edu

AE 435 Electric Propulsion 29965 Lect.-Disc. 3:30

Lect.-Disc. 3:30 AM – 4:50 PM Tues-Thurs

Professor: Rodney L. Burton, 319A Talbot Lab, 217-621-2076 **TA:** Laura Richardson, 327E Talbot Lab, 314-662-2090

Office Hours and Location M 1-2:30 and W 11-12:30, 225A Talbot

Course Description Electric propulsion is now the preferred propulsion method for unmanned spacecraft. The course covers: elements of electrically-driven rocket propulsion for applications from low earth orbit to the outer planets; thruster system performance, power requirements and selection for space missions; physics of ionizing and heating propellants for electrothermal, electrostatic and electromagnetic acceleration; characteristics of Resistojet, Arcjet, Magnetoplasmadynamic, Pulsed Plasma, Hall, and Electrostatic thrusters.

Course	e Topics			
Topic	Title Le	ctures		
1.	Introduction, General Definition of EP; Design considerationsWhy EP?			
	Space Missions. Satellites (NSSK, maneuver, orbit transfer). Deep space.	1		
2.	Simple systems. Single string, propellants (liq.,gas,solid,gel), propellant			
	handling, system mass.			
3.	Propellant mass. Rocket equation, mission ΔV , Edelbaum eq., mission opt.	1		
4.	System mass optimization.	1		
5.	Thruster types. Seven types. Performance characteristics, main			
	advantages/disadvantages, usefulness, efficiency, sources of loss.	1		
6.	Acceleration mechanisms. 3 main types of thrusters and subcategories,			
	circuits, power, voltage, EM energy addition (electron heating)	2		
7.	Very basic Electromagnetic Theory, force eqs, charge conserv. \B/\t	2		
8.	Cold gas heating. Particle view, ionization mech., Saha Eq., enthalpy	3		
9.	Particle Collisions in an Ionized Gas	2		
10.	Electrical Conductivity, transport, Ohm's Law for plasma	2		
11.	Energy processes, electrons to heavy particles.	1		
12.	DC Electrothermal Acceleration; resistojets, arcjets	2		
	"CubeSat Propulsion", lecture by representative from industry	1		
13.	Electromagnetic Acceleration; MPD thruster and railgun	2		
14.	Pulsed Devices; Teflon PPT, 2-Stream Model, pulsed arcjet	2		
15.	Hall thrusters, the SPT, Hall effect, relation to ion thrusters	2		
16.	Electrostatic Acceleration; ion thrusters, NSTAR, NEXT 2			
17.	Summary: Tuesday, TBD	1		
	Hour exam, IBD	$\frac{1}{20}$		
		29		
	Grading [UG and Grad grades are on a separate scale; grad exams are longer]			
	Molinewolk [Hw is required] 55% [7-9 HWS; In Class-4 F	-w m		
	Imiliari 15% Imiliari A Final Exam 20% May 9.15, 1:20 DM			
	Filial Exam <u>30%</u> Widy 6-13, 1.30 FW			
	Extra Credit Paper [1 HW equiv] +7% April XX			
- 4				
lextbo	OK: R. G. Jahn , <u>Physics of Electric Propulsion</u> , McGraw Hill, 1968.			
Defens	(Available online as Dover paperback)			
Refere	nces: L.D. Jackson, Classical Flastradurancias, and ed. Jaka Wilay, 1075			
	J. D. Jackson, <u>Classical Electrodynamics</u> , 2nd ed., John Wiley, 1975.	4005		
Spitzer Physics of Fully Jonized Gases, 2nd ed. Interscience, 1962.				
Sutton & Sharman, Engineering Magnetehydrodynamics, McGrow Hill, 1065				
Anderson Modern Compressible Flow McGraw-Hill 1990				
Makeu				

AE 435 Homework Schedule--2013

Date	Handed out	Due
January 15	Class	
17	HW 1	1/25
22		
24	HW 2HW 1 due tomorrow	2/1
29	Extra Credit Start	4/22
31	Work on Extra CreditHW 2 due tomorrow	
February 5	Class	
7	HW 3	2/15
12	Class	
14	HW 4 ♥ HW 3 due tomorrow	2/22
19	Class	
21	Extra CreditHW 4 due tomorrow	
26	Class	
28	Study for exam	
March 4	MID TERM EXAM	
6	HW 5	3/14
11	Class	
13	HW 6HW 5 due tomorrow	3/28
18	Spring Break	
20	Spring Break	
25	Class	
27	HW 7HW 6 due tomorrow	4/4
April 1	Class	
3	ClassHW 7 due tomorrow	
8	Class	
10	HW 8	4/18
15	Class	
17	ClassHW 8 due tomorrow	
22	Extra Credit due today	
24	Class	
29	Course Summary	
May 9	FINAL EXAM	