
Wave Propagation
in Material Media

In Chapter 4, we introduced wave propagation in free space by considering the infinite
plane current sheet of uniform, sinusoidally time-varying current density. We learned
that the solution for the electromagnetic field due to the infinite plane current sheet
represents uniform plane electromagnetic waves propagating away from the sheet to
either side of it. With the knowledge of the principles of uniform plane wave propaga-
tion in free space, we are now ready to consider wave propagation in material media,
which is our goal in this chapter. Materials contain charged particles that respond to
applied electric and magnetic fields and give rise to currents, which modify the proper-
ties of wave propagation from those associated with free space.

We shall learn that there are three basic phenomena resulting from the interac-
tion of the charged particles with the electric and magnetic fields. These are conduc-
tion, polarization, and magnetization. Although a given material may exhibit all three
properties, it is classified as a conductor, a dielectric, or a magnetic material, depending
on whether conduction, polarization, or magnetization is the predominant phenomenon.
Thus, we shall introduce these three kinds of materials one at a time and develop a set
of relations known as the constitutive relations that enable us to avoid the necessity of
explicitly taking into account the interaction of the charged particles with the fields.We
shall then use these constitutive relations together with Maxwell’s equations to first
discuss uniform plane wave propagation in a general material medium and then con-
sider several special cases. Finally, we shall derive the boundary conditions and use
them to study reflection and transmission of uniform plane waves at plane boundaries.

5.1 CONDUCTORS AND DIELECTRICS

We recall that the classical model of an atom postulates a tightly bound, positively
charged nucleus surrounded by a diffuse cloud of electrons spinning and orbiting
around the nucleus. In the absence of an applied electromagnetic field, the force of
attraction between the positively charged nucleus and the negatively charged electrons
is balanced by the outward centrifugal force to maintain stable electronic orbits.
The electrons can be divided into bound electrons and free or conduction electrons.
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142 Chapter 5 Wave Propagation in Material Media

The bound electrons can be displaced but not removed from the influence of the nu-
cleus. The conduction electrons are constantly under thermal agitation, being released
from the parent atom at one point and recaptured by another atom at a different point.

In the absence of an applied field, the motion of the conduction electrons is
completely random; the average thermal velocity on a macroscopic scale, that is, over
volumes large compared with atomic dimensions, is zero so that there is no net current
and the electron cloud maintains a fixed position. With the application of an electro-
magnetic field, an additional velocity is superimposed on the random velocities,
predominantly due to the electric force. This causes drift of the average position of the
electrons in a direction opposite to that of the applied electric field. Due to the fric-
tional mechanism provided by collisions of the electrons with the atomic lattice, the
electrons, instead of accelerating under the influence of the electric field, drift with an
average drift velocity proportional in magnitude to the applied electric field. This
phenomenon is known as conduction, and the resulting current due to the electron
drift is known as the conduction current.

In certain materials a large number of electrons may take part in the conduction
process, but in certain other materials only a very few or negligible number of electrons
may participate in conduction. The former class of materials is known as conductors,
and the latter class is known as dielectrics or insulators. If the number of free electrons
participating in conduction is per cubic meter of the material, then the conduction
current density is given by

(5.1)

where e is the charge of an electron, and vd is the drift velocity of the electrons.
The drift velocity varies from one conductor to another, depending on the average
time between successive collisions of the electrons with the atomic lattice. It is related
to the applied electric field in the manner

(5.2)

where is known as the mobility of the electron. Substituting (5.2) into (5.1), we
obtain

(5.3)

Semiconductors are characterized by drift of holes, that is, vacancies created by
detachment of electrons from covalent bonds, in addition to the drift of electrons. If 
and are the number of electrons and holes, respectively, per cubic meter of the ma-
terial, and if and are the electron and hole mobilities, respectively, then the con-
duction current density in the semiconductor is given by

(5.4)

Defining a quantity , known as the conductivity of the material, as given by

(5.5)s = emeNe ƒ e ƒ for conductors
meNe ƒ e ƒ + mhNh ƒ e ƒ for semiconductors

s

Jc = (meNe ƒ e ƒ + mhNh ƒ e ƒ)E

mhme

Nh 
Ne

Jc = -meNeeE = meNe ƒ e ƒE

me

vd = -meE

Jc = Neevd

Ne
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5.1 Conductors and Dielectrics 143

we obtain the simple and important relationship

(5.6)

for the conduction current density in a material. Equation (5.6) is known as Ohm’s law
applicable at a point from which follows the familiar form of Ohm’s law used in circuit
theory. The units of are siemens/meter where a siemen (S) is an ampere per volt.
Values of for a few materials are listed in Table 5.1. In considering electromagnetic
wave propagation in conducting media, the conduction current density given by (5.6)
must be employed for the current density term on the right side of Ampere’s circuital
law. Thus, Maxwell’s curl equation for H for a conducting medium is given by

(5.7)¥ : H = Jc + 0D
0t

= sE + 0D
0t

 

s
s

Jc = sE

TABLE 5.1 Conductivities of Some Materials

Conductivity 
Material S/m

Silver
Copper
Gold
Aluminum
Tungsten
Brass
Solder
Lead
Constantin
Mercury 1.0 *  106

2.0 *  106
4.8 *  106
7.0 *  106
1.5 *  107
1.8 *  107
3.5 *  107
4.1 *  107
5.8 *  107
6.1 *  107

Conductivity 
Material S/m

Sea water 4
Intrinsic germanium 2.2
Intrinsic silicon
Fresh water
Distilled water
Dry earth
Bakelite
Glass
Mica
Fused quartz 0.4 *  10-17

10-11 - 10-15
10-10 - 10-14
10-9
10-5

2 *  10-4
10-3
1.6 *  10-3

While conductors are characterized by abundance of conduction or free electrons
that give rise to conduction current under the influence of an applied electric field, in
dielectric materials the bound electrons are predominant. Under the application of an
external electric field, the bound electrons of an atom are displaced such that the
centroid of the electron cloud is separated from the centroid of the nucleus. The atom
is then said to be polarized, thereby creating an electric dipole, as shown in
Figure 5.1(a). This kind of polarization is called electronic polarization. The schematic
representation of an electric dipole is shown in Figure 5.1(b).The strength of the dipole
is defined by the electric dipole moment p given by

(5.8)

where d is the vector displacement between the centroids of the positive and negative
charges, each of magnitude Q.

p = Qd
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144 Chapter 5 Wave Propagation in Material Media

(a) (b)

E d
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!QFIGURE 5.1

(a) An electric dipole. (b) Schematic
representation of an electric dipole.

Q

QE

!Q

!QE

E

FIGURE 5.2

Torque acting on an electric dipole in
an external electric field.

In certain dielectric materials, polarization may exist in the molecular structure
of the material even under the application of no external electric field.The polarization
of individual atoms and molecules, however, is randomly oriented, and hence the net
polarization on a macroscopic scale is zero. The application of an external field results
in torques acting on the microscopic dipoles, as shown in Figure 5.2, to convert the ini-
tially random polarization into a partially coherent one along the field, on a macro-
scopic scale. This kind of polarization is known as orientational polarization. A third
kind of polarization, known as ionic polarization, results from the separation of posi-
tive and negative ions in molecules formed by the transfer of electrons from one atom
to another in the molecule. Certain materials exhibit permanent polarization, that is,
polarization even in the absence of an applied electric field. Electrets, when allowed to
solidify in the applied electric field, become permanently polarized, and ferroelectric
materials exhibit spontaneous, permanent polarization.

On a macroscopic scale, we define a vector P, called the polarization vector, as
the electric dipole moment per unit volume.Thus, if N denotes the number of molecules
per unit volume of the material, then there are molecules in a volume and

(5.9)

where p is the average dipole moment per molecule. The units of P are coulomb-
meter/meter3 or coulombs per square meter. It is found that for many dielectric materials

P = 1
 ¢v

 a
N ¢v

 j = 1
 pj = Np

¢vN¢v
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5.1 Conductors and Dielectrics 145

the polarization vector is related to the electric field E in the dielectric in the simple
manner given by

(5.10)

where , a dimensionless parameter, is known as the electric susceptibility. The quantity
is a measure of the ability of the material to become polarized and differs from one

dielectric to another.
To discuss the influence of polarization in the dielectric upon electromagnetic

wave propagation in the dielectric medium, let us consider the case of the infinite plane
current sheet of Figure 4.8, radiating uniform plane waves, except that now the space
on either side of the current sheet is a dielectric medium instead of being free space.
The electric field in the medium induces polarization. The polarization in turn acts
together with other factors to govern the behavior of the electromagnetic field. For the
case under consideration, the electric field is entirely in the x-direction and uniform in
x and y. Thus, the induced electric dipoles are all oriented in the x-direction, on a
macroscopic scale, with the dipole moment per unit volume given by

(5.11)

where Ex is understood to be a function of z and t.
If we now consider an infinitesimal surface of area parallel to the yz-plane,

we can write associated with that infinitesimal area to be equal to cos where 
is a constant. The time history of the induced dipoles associated with that area can be
sketched for one complete period of the current source, as shown in Figure 5.3. In view
of the cosinusoidal variation of the electric field with time, the dipole moment of the
individual dipoles varies in a cosinusoidal manner with maximum strength in the posi-
tive x-direction at , decreasing sinusoidally to zero strength at and then
reversing to the negative x-direction, increasing to maximum strength in that direction
at , and so on.

The arrangement can be considered as two plane sheets of equal and opposite
time-varying charges displaced by the amount in the x-direction, as shown in 
Figure 5.4. To find the magnitude of either charge, we note that the dipole moment per
unit volume is

(5.12)

Since the total volume occupied by the dipoles is , the total dipole moment
associated with the dipoles is . The dipole moment associated
with two equal and opposite sheet charges is equal to the magnitude of either sheet
charge multiplied by the displacement between the two sheets. Hence, we obtain the
magnitude of either sheet charge to be .Thus, we have a situation
in which a sheet charge is above the surface and a sheet
charge is below the surface. This is equivalent to a
current flowing across the surface, since the charges are varying with time.

Q2 = -Q1 = -P0xeE0 cos vt ¢y ¢z
Q1 = P0xeE0 cos vt ¢y ¢z

ƒ P0xeE0 cos vt ¢y ¢z ƒ

P0xeE0 cos vt (d ¢y ¢z)
¢zd ¢y

Px = P0xeE0 cos vt

d

t = p /v

t = p /2vt = 0

E0vtE0Ex

¢z¢y

P = Pxax = P0xeExax

xe

xe

P = P0 xeE
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E

vt " 0

E

vt " p

vt " 2p

E

vt " p4

E

vt " 3p4

E

vt " 7p4vt " 3p2

vt " 5p4

vt " p2
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#y
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x
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y

E

FIGURE 5.3

Time history of induced electric dipoles in a dielectric material under the influence 
of a sinusoidally time-varying electric field.

d

#z

#y

Q2 " !Q1

Q1 " P0xeE0 cos vt #y#z

FIGURE 5.4

Two plane sheets of equal and opposite
time-varying charges equivalent to the
phenomenon depicted in Figure 5.3.
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5.1 Conductors and Dielectrics 147

We call this current the polarization current, since it results from the time varia-
tion of the electric dipole moments induced in the dielectric due to polarization. The
polarization current crossing the surface in the positive x-direction, that is, from below
to above, is

(5.13)

where the subscript p denotes polarization. By dividing by and letting the
area tend to zero, we obtain the polarization current density associated with the points
on the surface as

(5.14)

or

(5.15)

Although we have deduced this result by considering the special case of the infinite
plane current sheet, it is valid in general.

In considering electromagnetic wave propagation in a dielectric medium, the
polarization current density given by (5.15) must be included with the current density
term on the right side of Ampere’s circuital law. Thus, considering Ampere’s circuital
law in differential form for the general case given by (3.28), we have

(5.16)

Substituting (5.15) into (5.16), we get

(5.17)

In order to make (5.17) consistent with the corresponding equation for free space
given by (3.28), we now revise the definition of the displacement vector D to read as

(5.18)

Substituting for P by using (5.10), we obtain

(5.19)

where we define

(5.20)Pr = 1 + xe 

 = PE
 = P0PrE
 = P0(1 + xe)E

 D = P0E + P0xeE

D = P0E + P

 = J+ 0
0t

 (P0E + P)

 ¥ : H = J+ 0P
 0t

+ 0
0t

 (P0E)

¥ : H = J+ Jp + 0
0t

 (P0E)

Jp = 0P
0t

 = 0
0t

 (P0xeE0 cos vt) =
0Px

0t

 Jpx = Lim
¢y:0
¢z:0

Ipx

¢y ¢z
= -P0xeE0v sin vt

¢y ¢zIpx

Ipx =
dQ1

dt
= -P0xeE0v sin vt ¢y ¢z
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148 Chapter 5 Wave Propagation in Material Media

and

(5.21)

The quantity is known as the relative permittivity or dielectric constant of the di-
electric, and is the permittivity of the dielectric. The new definition for D permits the
use of the same Maxwell’s equations as for free space with replaced by and with-
out the need for explicitly considering the polarization current density.The permittivity

takes into account the effects of polarization, and there is no need to consider them
when we use for ! The relative permittivity is an experimentally measurable para-
meter and its values for several dielectric materials are listed in Table 5.2.

P0P
P

PP0

P
Pr

P = P0Pr

TABLE 5.2 Relative Permittivities of Some Materials

Material
Relative 

Permittivity

Air 1.0006
Paper 2.0–3.0
Teflon 2.1
Polystyrene 2.56
Plexiglass 2.6–3.5
Nylon 3.5
Fused quartz 3.8
Bakelite 4.9

Material
Relative 

Permittivity

Dry earth 5
Mica 6
Neoprene 6.7
Wet earth 10
Ethyl alcohol 24.3
Glycerol 42.5
Distilled water 81
Titanium dioxide 100

Equation (5.19) governs the relationship between D and E for dielectric materials.
Dielectrics for which is independent of the magnitude as well as the direction of E as
indicated by (5.19) are known as linear isotropic dielectrics. For certain dielectric mate-
rials, each component of the polarization vector can be dependent on all components
of the electric field intensity. For such materials, known as anisotropic dielectric materi-
als, D is not in general parallel to E, and the relationship between these two quantities
is expressed in the form of a matrix equation, as given by

(5.22)

The square matrix in (5.22) is known as the permittivity tensor of the anisotropic dielectric.

Example 5.1

An anisotropic dielectric material is characterized by the permittivity tensor

Let us find D for several cases of E.

[P] = C 7P0 2P0 0
2P0 4P0 0
0 0 3P0

S
C Dx

Dy

Dz

S = C Pxx Pxy Pxz

Pyx Pyy Pyz

Pzx Pzy Pzz

S C Ex

Ey

Ez

S
P
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5.2 Magnetic Materials 149

Substituting the given permittivity matrix in (5.22), we obtain

For , ; D is parallel to E.
For , ; D is not parallel to E.
For , ; D is not parallel to E.
For , ; D is not paral-

lel to E.
For , ; D is paral-

lel to E and the dielectric behaves effectively in the same manner as an isotropic dielectric having the
permittivity ; that is, the effective permittivity of the anisotropic dielectric for this case is .

Thus, we find that in general D is not parallel to E but for certain polarizations of E, D is
parallel to E. These polarizations are known as the characteristic polarizations.

5.2 MAGNETIC MATERIALS

The important characteristic of magnetic materials is magnetization. Magnetization is
the phenomenon by means of which the orbital and spin motions of electrons are in-
fluenced by an external magnetic field. An electronic orbit is equivalent to a current
loop, which is the magnetic analog of an electric dipole. The schematic representation
of a magnetic dipole as seen from along its axis and from a point in its plane are shown
in Figures 5.5(a) and 5.5(b), respectively. The strength of the dipole is defined by the
magnetic dipole moment m given by

(5.23)

where A is the area enclosed by the current loop and is the unit vector normal to the
plane of the loop and directed in the right-hand sense.

an

m = IAan

8P08P0

D = 16P0E0 cos vt ax + 8P0E0 cos vt ay = 8P0EE = E0 cos vt (2ax + ay)

D = 11P0E0 cos vt ax + 10P0E0 cos vt ayE = E0 cos vt (ax + 2ay)
D = 2P0E0 cos vt ax + 4P0E0 cos vt ayE = E0 cos vt ay

D = 7P0E0 cos vt ax + 2P0E0 cos vt ayE = E0 cos vt ax

D = 3P0E0 cos vt azE = E0 cos vt az

Dz = 3P0Ez 

Dy = 2P0Ex + 4P0Ey

Dx = 7P0Ex + 2P0Ey

(a)

an I

(b)

Iin Iout

FIGURE 5.5

Schematic representation of a magnetic dipole
as seen from (a) along its axis and (b) a point in
its plane.

In many materials, the net magnetic moment of each atom is zero, that is, on the
average, the magnetic dipole moments corresponding to the various electronic orbital
and spin motions add up to zero. An external magnetic field has the effect of inducing
a net dipole moment by changing the angular velocities of the electronic orbits, thereby
magnetizing the material.This kind of magnetization, known as diamagnetism, is in fact
prevalent in all materials. In certain materials known as paramagnetic materials, the
individual atoms possess net nonzero magnetic moments even in the absence of an
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150 Chapter 5 Wave Propagation in Material Media

external magnetic field. These permanent magnetic moments of the individual atoms
are, however, randomly oriented so that the net magnetization on a macroscopic scale
is zero. An applied magnetic field has the effect of exerting torques on the individual
permanent dipoles, as shown in Figure 5.6, to convert, on a macroscopic scale, the ini-
tially random alignment into a partially coherent one along the magnetic field, that is,
with the normal to the current loop directed along the magnetic field.This kind of mag-
netization is known as paramagnetism. Certain materials known as ferromagnetic,
antiferromagnetic, and ferrimagnetic materials exhibit permanent magnetization, that
is, magnetization even in the absence of an applied magnetic field.

I

I

I dl ! B

B

I dl ! B

FIGURE 5.6

Torque acting on a magnetic dipole
in an external magnetic field.

On a macroscopic scale, we define a vector M, called the magnetization vector, as
the magnetic dipole moment per unit volume. Thus, if N denotes the number of molecules
per unit volume of the material, then there are molecules in a volume and

(5.24)

where m is the average dipole moment per molecule. The units of M are ampere-meter2/
meter3 or amperes per meter. It is found that for many magnetic materials, the magnetiza-
tion vector is related to the magnetic field B in the material in the simple manner given by

(5.25)

where , a dimensionless parameter, is known as the magnetic susceptibility. The
quantity is a measure of the ability of the material to become magnetized and dif-
fers from one magnetic material to another.

To discuss the influence of magnetization in the material on electromagnetic
wave propagation in the magnetic material medium, let us consider the case of the in-
finite plane current sheet of Figure 4.8, radiating uniform plane waves, except that now
the space on either side of the current sheet possesses magnetic material properties in
addition to dielectric properties. The magnetic field in the medium induces magnetiza-
tion. The magnetization in turn acts together with other factors to govern the behavior
of the electromagnetic field. For the case under consideration, the magnetic field is
entirely in the y-direction and uniform in x and y. Thus, the induced dipoles are all
oriented with their axes in the y-direction,on a macroscopic scale,with the dipole moment
per unit volume given by

(5.26)

where is understood to be a function of z and t.By

M = Myay =
xm

1 + xm
 
By

m0
 ay

xm

xm

M =
xm

1 + xm
 
B
m0

M = 1
 ¢v

 a
N ¢v

 j = 1
mj = Nm

¢vN¢v
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5.2 Magnetic Materials 151

Let us now consider an infinitesimal surface of area parallel to the 
yz-plane and the magnetic dipoles associated with the two areas to the left and
to the right of the center of this area,as shown in Figure 5.7(a).Since By is a function of z,
we can assume the dipoles in the left area to have a different moment than the dipoles
in the right area for any given time. If the dimension of an individual dipole is in the
x-direction, then the total dipole moment associated with the dipoles in the left area is

and the total dipole moment associated with the dipoles in the right
area is .[My]z + ¢z/2 d ¢y ¢z
[My]z - ¢z/2 d ¢y ¢z

d

¢y ¢z
¢y ¢z

B B

dd

x

z

y

x

z

y

#z
2

z ! 

#z
2z ! #z

2
z $ z

#z
2

z $ z

d

#y

d

#y

#z #z

(a)

(b)

FIGURE 5.7

(a) Induced magnetic dipoles in a magnetic material. (b) Equivalent surface current loops.
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152 Chapter 5 Wave Propagation in Material Media

The arrangement of dipoles can be considered to be equivalent to two rectangu-
lar surface current loops, as shown in Figure 5.7(b), with the left side current loop
having a dipole moment and the right side current loop having a
dipole moment . Since the magnetic dipole moment of a rectangular
surface current loop is simply equal to the product of the surface current and the 
cross-sectional area of the loop, the surface current associated with the left loop is

and the surface current associated with the right loop is .
Thus, we have a situation in which a current equal to is crossing the area

in the positive x-direction, and a current equal to is crossing the
same area in the negative x-direction. This is equivalent to a net current flowing across
the surface.

We call this current the magnetization current since it results from the space varia-
tion of the magnetic dipole moments induced in the magnetic material due to magneti-
zation. The net magnetization current crossing the surface in the positive x-direction is

(5.27)

where the subscript m denotes magnetization. By dividing and letting
the area tend to zero, we obtain the magnetization current density associated with the
points on the surface as

(5.28)

or

or

(5.29)

Although we have deduced this result by considering the special case of the infinite
plane current sheet, it is valid in general.

In considering electromagnetic wave propagation in a magnetic material medium,
the magnetization current density given by (5.29) must be included with the current
density term on the right side of Ampere’s circuital law. Thus, considering Ampere’s
circuital law in differential form for the general case given by (3.28), we have

(5.30)

Substituting (5.29) into (5.30), we get

¥ : B
m0

= J+ ¥ : M + 0D
0t

¥ : B
m0

= J+ Jm + 0D
0t

Jm = ¥ : M

Jmxax = 4 ax ay az

0
0x

0
0y

0
0z

0 My 0

4
 = -

0My

0z

 Jmx = Lim
¢y:0
¢z:0

Imx

¢y ¢z
= Lim

¢z:0

[My]z - ¢z/2 - [My]z + ¢z/2 

 ¢z

Imx by ¢y ¢z

Imx = [My]z - ¢z/2 ¢y - [My]z + ¢z/2 ¢y

[My]z + ¢z/2 ¢y¢y ¢z
[My]z - ¢z/2 ¢y

[My]z + ¢z/2 ¢y[My]z - ¢z/2 ¢y

[My]z + ¢z/2 d ¢y ¢z
[My]z - ¢z/2 d ¢y ¢z
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5.2 Magnetic Materials 153

or

(5.31)

In order to make (5.31) consistent with the corresponding equation for free space
given by (3.28), we now revise the definition of the magnetic field intensity vector H to
read as

(5.32)

Substituting for M by using (5.25), we obtain

(5.33)

where we define

(5.34)

and

(5.35)

The quantity is known as the relative permeability of the magnetic material,
and is the permeability of the magnetic material. The new definition for H permits
the use of the same Maxwell’s equations as for free space with replaced by and
without the need for explicitly considering the magnetization current density. The per-
meability takes into account the effects of magnetization, and there is no need to
consider them when we use for ! For anisotropic magnetic materials, H is not in
general parallel to B and the relationship between the two quantities is expressed
in the form of a matrix equation, as given by

(5.36)

just as in the case of the relationship between D and E for anisotropic dielectric
materials.

For many materials for which the relationship between H and B is linear, the
relative permeability does not differ appreciably from unity, unlike the case of linear

C Bx

By

Bz

S = C mxx mxy mxz

myx myy myz

mzx mzy mzz

S C Hx

Hy

Hz

S
m0m

m

mm0

m
mr

 m = m0mr

 mr = 1 + xm

 = B
m

 = B
m0mr

 = B
m0(1 + xm)

 H = B
m0

-
xm

1 + xm
 
B
m0

H = B
m0

- M

¥ : a B
m0

- Mb = J+ 0D
0t
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154 Chapter 5 Wave Propagation in Material Media

dielectric materials, for which the relative permittivity can be very large, as shown in
Table 5.2. In fact, for diamagnetic materials, the magnetic susceptibility is a small
negative number of the order , whereas for paramagnetic materials,

is a small positive number of the order . Ferromagnetic materials, how-
ever, possess large values of relative permeability on the order of several hundreds,
thousands, or more.The relationship between B and H for these materials is nonlinear,
resulting in a nonunique value of for a given material. In fact, these materials are
characterized by hysteresis, that is, the relationship between B and H dependent on the
past history of the material.

A typical curve of B versus H, known as the B–H curve or the hysteresis curve for a
ferromagnetic material, is shown in Figure 5.8. If we start with an unmagnetized sample of
the material in which both B and H are initially zero, corresponding to point a in Figure 5.8,
and then magnetize the material, the manner in which magnetization is built up initially
to saturation is given by the portion ab of the curve. If the magnetization is now de-
creased gradually and then reversed in polarity, the curve does not retrace ab back-
ward but instead follows along bcd until saturation is reached in the opposite direction
at point e. A decrease in the magnetization back to zero followed by a reversal back to
the original polarity brings the point back to b along the curve through the points f and g,
thereby completing the loop. A continuous repetition of the process thereafter would
simply make the point trace the hysteresis loop bcdefgb repeatedly.

mr

10- 3 to 10- 7xm

-10- 4 to -10- 8
xm

b

c

a H

B

f

g

e

d

FIGURE 5.8

Hysteresis curve for a ferromagnetic material.

5.3 WAVE EQUATION AND SOLUTION

In the previous two sections, we introduced conductors, dielectrics, and magnetic mate-
rials.We found that conductors are characterized by conduction current, dielectrics are
characterized by polarization current, and magnetic materials are characterized by
magnetization current. The conduction current density is related to the electric field
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5.3 Wave Equation and Solution 155

intensity through the conductivity of the conductor. To take into account the effects
of polarization, we modified the relationship between D and E by introducing the per-
mittivity of the dielectric. Similarly, to take into account the effects of magnetization,
we modified the relationship between H and B by introducing the permeability 
of the magnetic material. The three pertinent relations, known as the constitutive
relations, are

(5.37a)

(5.37b)

(5.37c)

A given material may possess all three properties, although usually one of them is
predominant. Hence, in this section we shall consider a material medium characterized
by . The Maxwell’s curl equations for such a medium are

(5.38)

(5.39)

To discuss electromagnetic wave propagation in the material medium, let us consider
the infinite plane current sheet of Figure 4.8, except that now the medium on either
side of the sheet is a material instead of free space, as shown in Figure 5.9.

¥ : H = J+ 0D
0t

= Jc + 0D
0t

= sE + P0E
0t

¥ : E = - 0B
0t

= -m0H
0t

s, P, and m

 H = B
m

 D = PE

 Jc = sE

m
P

s

z

y

x

JS

s, P, m s, P, m

FIGURE 5.9

Infinite plane current sheet imbedded
in a material medium.

The electric and magnetic fields for the simple case of the infinite plane current
sheet in the plane and carrying uniformly distributed current in the negative 
x-direction, as given by

(5.40)JS = -JS0 cos vt ax

z = 0
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156 Chapter 5 Wave Propagation in Material Media

are of the form

(5.41a)

(5.41b)

The corresponding simplified forms of the Maxwell’s curl equations are

(5.42)

(5.43)

We shall make use of the phasor technique to solve these equations. Thus, letting

(5.44a)
(5.44b)

and replacing in (5.42) and (5.43) by their phasors and respectively,
and by , we obtain the corresponding differential equations for the phasors 

and as

(5.45)

(5.46)

Differentiating (5.45) with respect to z and using (5.46), we obtain

(5.47)

Defining

(5.48)

and substituting in (5.47), we have

(5.49)

Equation (5.49) is the wave equation for in the material medium and its solu-
tion is given by

(5.50)

where are arbitrary constants. Noting that is a complex number and hence
can be written as

(5.51)g– = a + jb

g––
A and –

B

–
Ex(z) = –

Ae-g–z + –
Be

–gz

–
Ex

02 –
Ex

0z2 = g– 2 –
Ex

g– = 2jvm(s + jvP)

02 –
Ex

0z2 = -jvm
0 –
Hy

0z
= jvm(s + jvP) –

Ex

0 –
Hy

0z
= -s –

Ex - jvP –
Ex = -(s + jvP) –

Ex

0E
–

x

0z
= -jv mH

–
y

H
–

yE
–

x

jv0>0t
H
–

y,E
–

xEx and Hy

Hy(z, t) = Re [H–y(z)ejvt]
Ex(z, t) = Re [E–x(z)ejvt]

0Hy

0z
= -sEx - P

0Ex

0t

0Ex

0z
= -m

0Hy

0t

H = Hy(z, t)ay

E = Ex(z, t)ax
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5.3 Wave Equation and Solution 157

and also writing in exponential form as , respectively, we have

or

(5.52)

We now recognize the two terms on the right side of (5.52) as representing uniform
plane waves propagating in the positive z- and negative z-directions, respectively, with
phase constant , in view of the factors cos and cos ,
respectively. They are, however, multiplied by the factors and , respectively.
Hence, the peak amplitude of the field differs from one constant phase surface to an-
other. Since there cannot be a positive going wave in the region , that is, to the left
of the current sheet, and since there cannot be a negative going wave in the region ,
that is, to the right of the current sheet, the solution for the electric field is given by

(5.53)

To discuss how the peak amplitude of varies with z on either side of the cur-
rent sheet, we note that since , , and are all positive, the phase angle of

lies between 90° and 180°, and hence the phase angle of lies between
45° and 90°, making and positive quantities. This means that decreases with
increasing value of z, that is, in the positive z-direction, and decreases with decreasing
value of z, that is, in the negative z-direction. Thus, the exponential factors and 
associated with the solutions for in (5.53) have the effect of reducing the amplitude of
the field, that is, attenuating it, as it propagates away from the sheet to either side of it.
For this reason, the quantity is known as the attenuation constant. The attenuation per
unit length is equal to . In terms of decibels, this is equal to The
units of are nepers per meter, abbreviated Np/m. The quantity is known as
the propagation constant, since its real and imaginary parts, and , together determine
the propagation characteristics, that is, attenuation and phase shift of the wave.

Returning now to the expression for given by (5.48), we can obtain the expres-
sions for and by squaring it on both sides and equating the real and imaginary parts
on both sides. Thus,

or

(5.54a)
(5.54b)

Now, squaring (5.54a) and (5.54b) and adding and then taking the square root, we obtain

(5.55)a2 + b2 = v2mPC1 + a s
vP b2

 2ab = vms
 a2 - b2 = -v2mP

g– 2 = (a + jb)2 = jvm(s + jvP)

ba
g–

ba
ga

20 log10 e
a, or 8.686a db.ea

a

Ex

eaze-az
eaz

e-azba
g–jvm(s + jvP)

mPs
Ex

Ex(z, t) = eAe-az cos (vt - bz + u) for z 7 0
Beaz cos (vt + bz + f) for z 6 0

z 7 0
z 6 0

eaze-az
(vt + bz + f)(vt - bz + u)b

 = Ae-az cos (vt - bz + u) + Beaz cos (vt + bz + f)
 = Re [Aejue-aze- jbzejvt + Bejfeazejbzejvt]

 Ex(z, t) = Re [ –
Ex(z)ejvt]

–
Ex(z) = Aejue-aze- jbz + Bejfeazejbz

Aeju and BejfA
– and B–
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158 Chapter 5 Wave Propagation in Material Media

From (5.54a) and (5.55), we then have

Since and are both positive, we finally get

(5.56)

(5.57)

We note from (5.56) and (5.57) that and are both dependent on through the fac-
tor .This factor, known as the loss tangent, is the ratio of the magnitude of the con-
duction current density to the magnitude of the displacement current density

in the material medium. In practice, the loss tangent is, however, not simply in-
versely proportional to , since both and are generally functions of frequency.

The phase velocity of the wave along the direction of propagation is given by

(5.58)

We note that the phase velocity is dependent on the frequency of the wave.Thus, waves
of different frequencies travel with different phase velocities, that is, they undergo dif-
ferent rates of change of phase with z at any fixed time. This characteristic of the ma-
terial medium gives rise to a phenomenon known as dispersion. The topic of dispersion
is discussed in Section 8.3. The wavelength in the medium is given by

(5.59)

Having found the solution for the electric field of the wave and discussed its
general properties, we now turn to the solution for the corresponding magnetic field by
substituting for in (5.45). Thus,

(5.60) = 1
h
1 –
Ae-gz - –

Begz2
 = As + jvP

jvm
1 –
Ae-gz - –

Begz2
 –Hy = - 1

jvm
 
0 –
Ex

0z
=
g

jvm
1 –
Ae-gz - –

Begz2
–
Ex

l = 2p
b

= 12
f1mP

B B1 + a s
vP b2

+ 1 R - 1>2

vp = v
b

= 221mP
B C1 + a s

vP b2

+ 1 R - 1>2
Psv

jvP –
Ex

s
–
Ex

s>vP
sba

 b =
v1mP22

B C1 + a s
vP b2

+ 1 R 1>2
 a =

v1mP22
B C1 + a s

vP b2

- 1 R 1>2ba

 b2 = 1
2
Bv2mP + v2mPC1 + a s

vP b2 R a2 = 1
 2
B -v2mP + v2mPC1 + a s

vP b2 R
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5.3 Wave Equation and Solution 159

where

(5.61)

is the intrinsic impedance of the medium. Writing

(5.62)

we obtain the solution for as

(5.63)

Remembering that the first and second terms on the right side of (5.63) correspond to
and waves, respectively, and hence represent the solutions for the magnetic

field in the regions and , respectively, and recalling that the solution for 
adjacent to the current sheet is given by

(5.64)

we obtain

(5.65a)

(5.65b)

Thus, the electromagnetic field due to the infinite plane current sheet in the 
xy-plane having

and with a material medium characterized by , , and on either side of it is given by

(5.66a)

(5.66b)

We note from (5.66a) and (5.66b) that wave propagation in the material medium is
characterized by phase difference between E and H in addition to attenuation. These
properties are illustrated in Figure 5.10, which shows sketches of the current density on
the sheet and the distance-variation of the electric and magnetic fields on either side of
the current sheet for a few values of t.

H(z, t) = ; 
JS0

2
e<az cos (vt < bz) ay  for z ! 0

E(z, t) =
ƒ  h ƒJS0

2
e<az cos (vt < bz + t) ax for z ! 0

mPs
JS = -JS0 cos vt ax

 B =
ƒ  h ƒJS0

2
, f = t

 A =
ƒ  h ƒJS0

2
, u = t

Hy = d JS0

2
 cos vt for z = 0+

-
JS0

2
 cos vt for z = 0-

Hyz 6 0z 7 0
(-)(+)

 = A

ƒ  h ƒ
e-az cos (vt - bz + u - t) - B

ƒ  h ƒ
eaz cos (vt + bz + f - t)

 = Re c 1
 ƒ  h ƒejtAejue-aze- jbzejvt - 1

ƒ  h ƒejtBejfeazejbzejvt d Hy(z, t) = Re [ –
Hy(z)ejvt]

Hy(z, t)

h = ƒh ƒ ejt

h = A jvm
s + jvP
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z

y

x

JS

H
E E

H

JS " ! JS0 cos vt ax t " 0, JS " ! JS0 ax

z

y

x

JS

H
E

H

E

JS = – ax
JS0t =       ,p

4v 2

x

z

y

H
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E E

JS = 0t =       ,p
2v

FIGURE 5.10

Time history of uniform plane electromagnetic wave radiating away from an infinite plane
current sheet imbedded in a material medium.
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5.4 Uniform Plane Waves in Dielectrics and Conductors 161

Since the fields are attenuated as they progress in their respective directions of prop-
agation, the medium is characterized by power dissipation. In fact,by evaluating the power
flow out of a rectangular box lying between z and and having dimensions and

in the x- and y-directions, respectively, as was done in Section 4.6, we obtain

(5.67)

The quantity is obviously the power dissipated in the volume due to atten-
uation, and the quantities and are the energies stored in the electric
and magnetic fields, respectively, in the volume . It then follows that the power dissi-
pation density, the stored energy density associated with the electric field, and the
stored energy density associated with the magnetic field are given by

(5.68)

(5.69)

and

(5.70)

respectively. Equation (5.67) is the generalization, to the material medium, of the
Poynting’s theorem given by (4.70) for free space.

5.4 UNIFORM PLANE WAVES IN DIELECTRICS AND CONDUCTORS

In the previous section, we discussed electromagnetic wave propagation for the general
case of a material medium characterized by conductivity , permittivity , and perme-
ability . We found general expressions for the attenuation constant , the phase con-
stant , the phase velocity , the wavelength , and the intrinsic impedance . These
are given by (5.56), (5.57), (5.58), (5.59), and (5.61), respectively. For , the medium
is a perfect dielectric, having the propagation characteristics

(5.71a)
(5.71b)

(5.71c) vp = 11mP

 b = v1mP
 a = 0

s = 0
h–lvpb

am
Ps

wm = 1
2
mH2

y

 we = 1
 2

 PE2
x

 Pd = sE2
x

¢v

1
2 mH2

y ¢v1
2 PE2

x ¢v
¢vsE2

x ¢v

 = -sE2
x ¢v - 0

 0t
a 1

2
PE2

x  ¢vb - 0
0t

 a 1
2

 mH2
y ¢vb

 = cEx a -sEx - P
0Ex

0t
b + Hy a -m

0Hy

0t
b d ¢v

 = a Ex

0Hy

0z
+ Hy

0Ex

0z
b¢v

 CS
P # dS =

0Pz

0z
 ¢x ¢y ¢z = 0

0z
(ExHy) ¢v

¢y
¢xz + ¢z
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162 Chapter 5 Wave Propagation in Material Media

(5.71d)

(5.71e)

Thus, the waves propagate without attenuation as in free space but with and 
replaced by and , respectively. For nonzero , there are two special cases: (a) im-
perfect dielectrics or poor conductors and (b) good conductors.The first case is charac-
terized by conduction current small in magnitude compared to the displacement
current; the second case is characterized by just the opposite.

Thus, considering the case of imperfect dielectrics, we have ,
or . We can then obtain approximate expressions for , , , , and as
follows:

(5.72a)

(5.72b)

(5.72c)

(5.72d) L 1
f1mP

a 1 - s2

8v2P2 b  

 l = 12
f1mP

B C1 + a s
vP b2

+ 1 R - 1>2 

 L 11mP
a 1 - s2

8v2P2 b  

 L 121mP
c2 + s2

2v2P2 d-1>2 

 vp = 121mP
B C1 + a s

vP b2

+ 1 R - 1>2 

 L v2mP a 1 + s2

8v2P2 b
 L
v1mP12

c2 + s2

2v2P2 d1>2
 b =

v1mP12
B C1 + a s

vP b2

+ 1 R 1>2 

 L s
2AmP a 1 - s2

8v2P2 b
 L
v1mP12

 
s12vP
c1 - s2

4v2P2 d1>2
 =
v1mP12

c1 + s2

2v2P2 - s4

8v4P4 + Á - 1 d1>2
 a =

v1mP12
B C1 + a s

vP b2

- 1 R 1>2
h–lvpbas>vP V 1

ƒs –
Ex ƒ V ƒjvP –

Ex ƒ

smP
m0P0

 h– = AmP l = 1
f1mP
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5.4 Uniform Plane Waves in Dielectrics and Conductors 163

(5.72e)

In (5.72a)–(5.72e), we have retained all terms up to and including the second power in
and have neglected all higher-order terms. For a value of equal to 0.1, the quan-

tities , , and are different from those for the corresponding perfect dielectric case by a
factor of only , or , whereas the intrinsic impedance has a real part differing from
the intrinsic impedance of the perfect dielectric medium by a factor of and an imagi-
nary part that is of the intrinsic impedance of the perfect dielectric medium. Thus, the
only significant feature different from the perfect dielectric case is the attenuation.

Example 5.2

Let us consider that a material can be classified as a dielectric for and compute the
values of the several propagation parameters for three materials: mica, dry earth, and sea water.

Denoting the frequency for which as , we have , assuming that 
and are independent of frequency. Values of , , and and approximate values of the several
propagation parameters for are listed in Table 5.3, in which c is the velocity of light in
free space and and are the phase constant and wavelength in free space for the frequency
of operation. It can be seen from Table 5.3 that mica behaves as a dielectric for almost any fre-
quency, but sea water can be classified as a dielectric only for frequencies above approximately
10 GHz. We also note that because of the low value of , mica is a good dielectric, but the high
value of for sea water makes it a poor dielectric.a

a

l0b0

f 7 10fq

fqPsP
sfq = s>2pPfqs>vP = 1

s>vP 6 0.1

1
 20

3
 800

1
 8000.01>8lvpb

s>vPs>vP

 L AmP c a 1 - 3
8

 
s2

v2P2 b + j 
s

2vP d  
 = AmP c1 + j 

s

2vP - 3
8

 
s2

v2P2 - Á d  
 h– = A jvm

s + jvP = A jvm
jvP a 1 - j 

s

vP b -1>2 

TABLE 5.3 Values of Several Propagation Parameters for Three Materials for the Dielectric Range 
of Frequencies

Turning now to the case of good conductors, we have , or
.We can then obtain approximate expressions for , , , , and , as follows:

(5.73a) = 1pfms

 L
v1mP12 A svP = Avms2

 a =
v1mP12

BC1 + a s
vP b 2

- 1R1>2 hlvpbas>vP W 1
ƒs –

Ex ƒ W ƒjvP –
Ex ƒ

Material S/m
s

Pr Hz
fq

Np/m
a

b>b0 vp>c l>l0 Æ
h–

Mica 6 2.45 0.408 0.408 153.9
Dry earth 5 2.24 0.447 0.447 168.6
Sea water 4 80 84.3 8.94 0.112 0.112 42.150.9 * 109

84 * 10-53.6 * 10410-5
77 * 10-113 * 10-210-11
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164 Chapter 5 Wave Propagation in Material Media

(5.73b)

(5.73c)

(5.73d)

(5.73e)

We note that , , , and are proportional to , provided that and are constants.
To discuss the propagation characteristics of a wave inside a good conductor, let us

consider the case of copper. The constants for copper are , ,
and . Hence, the frequency at which is equal to for copper is equal to

or .Thus, at frequencies of even several gigahertz, copper
behaves like an excellent conductor. To obtain an idea of the attenuation of the wave in-
side the conductor, we note that the attenuation undergone in a distance of one wave-
length is equal to or . In terms of decibels, this is equal to 20 log10 .
In fact, the field is attenuated by a factor , or 0.368 in a distance equal to . This dis-
tance is known as the skin depth and is denoted by the symbol . From (5.73a), we obtain

(5.74)

The skin depth for copper is equal to

Thus, in copper the fields are attenuated by a factor in a distance of 0.066 mm even
at the low frequency of 1 MHz, thereby resulting in the concentration of the fields near

e-1

12pf * 4p * 10-7 * 5.8 * 107
= 0.0661f

 m.

d = 1
 1pfms 

d
1>ae-1

e2p = 54.58 dbe-2pe-al

1.04 * 1018 Hz5.8 * 107>2pP0,
vPam = m0

P = P0s = 5.80 * 107 S/m

ms1fh–vpba

 = (1 + j)Apfm
s

 

 h– = A jvm
s + jvP L A jvm

s
 

 L A 4p
fms

 l = 12
f1mP

B C1 + a s
vP b2

+ 1 R -1>2
 

 = A4pf
ms

 L 121mPAvP
s

= A 2v
ms

 vp = 121mP
B C1 + a s

vP b2

+ 1 R -1>2 = 1pfms 

 L
v1mP12 A svP

 b =
v1mP12

B C1 + a s
vP b2

+ 1 R 1>2
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5.4 Uniform Plane Waves in Dielectrics and Conductors 165

to the skin of the conductor. This phenomenon is known as the skin effect. It also ex-
plains shielding by conductors. This topic is discussed in Section 10.3.

To discuss further the characteristics of wave propagation in a good conductor,
we note that the ratio of the wavelength in the conducting medium to the wavelength
in a dielectric medium having the same and as those of the conductor is given by

(5.75)

Since For example, for sea water,
and , so that the ratio of the two wavelengths for is equal

to 0.00745.Thus for , the wavelength in sea water is of the wavelength in
a dielectric having the same and as those of sea water and a still smaller fraction of
the wavelength in free space. Furthermore, the lower the frequency, the smaller is this
fraction. Since it is the electrical length, that is, the length in terms of the wavelength,
instead of the physical length that determines the radiation efficiency of an antenna,
this means that antennas of much shorter length can be used in sea water than in free
space. Together with the property that , this illustrates that low frequencies
are more suitable than high frequencies for communication under water, and with
underwater objects.

Equation (5.73e) tells us that the intrinsic impedance of a good conductor has a
phase angle of 45º. Hence, the electric and magnetic fields in the medium are out of
phase by 45º. The magnitude of the intrinsic impedance is given by

(5.76)

As a numerical example, for copper, this quantity is equal to

Thus, the intrinsic impedance of copper has as low a magnitude as 0.369 even at a
frequency of Hz. In fact, by recognizing that

(5.77)

we note that the magnitude of the intrinsic impedance of a good conductor medium is
a small fraction of the intrinsic impedance of a dielectric medium having the same 
and . It follows that for the same electric field, the magnetic field inside a good con-
ductor is much larger than the magnetic field inside a dielectric having the same and

as those of the conductor.
Finally, for , the medium is a perfect conductor, an idealization of the good

conductor. From (5.74), we note that the skin depth is then equal to zero and that there
is no penetration of the fields. Thus, no time-varying fields can exist inside a perfect
conductor.

s = q
m

P
m

P

ƒ  h ƒ = A2pfm
s

= AvP
s

 Am P 

1012
Æ

C2pf * 4p * 10-7
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ƒ  h ƒ = ` (1 + j)Apfm
s
` = A2pfm

s

a r 1f

mP
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134f = 25 kHz
f = 25 kHzm = m0P = 80P0,
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ldielectric
L

14p >fms
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166 Chapter 5 Wave Propagation in Material Media

5.5 BOUNDARY CONDITIONS

In our study of electromagnetics we will be considering problems involving more than
one medium. To solve a problem involving a boundary surface between different
media, we need to know the conditions satisfied by the field components at the boundary.
These are known as the boundary conditions. They are a set of relationships relating
the field components at a point adjacent to and on one side of the boundary, to the
field components at a corresponding point adjacent to and on the other side of the
boundary. These relationships arise from the fact that Maxwell’s equations in integral
form involve closed paths and surfaces and they must be satisfied for all possible closed
paths and surfaces, whether they lie entirely in one medium or encompass a portion of
the boundary between two different media. In the latter case, Maxwell’s equations in
integral form must be satisfied collectively by the fields on either side of the boundary,
thereby resulting in the boundary conditions.

We shall derive the boundary conditions by considering the Maxwell’s equations
in integral form

(5.78a)

(5.78b)

(5.78c)

(5.78d)

and applying them one at a time to a closed path or a closed surface encompassing
the boundary, and in the limit that the area enclosed by the closed path or the volume
bounded by the closed surface goes to zero. Thus, let us consider two semi-infinite
media separated by a plane boundary, as shown in Figure 5.11. Let us denote the
quantities pertinent to medium 1 by subscript 1 and the quantities pertinent to medium
2 by subscript 2. Let be the unit normal vector to the surface and directed into
medium 1, as shown in Figure 5.11, and let all normal components of fields at the
boundary in both media denoted by an additional subscript n be directed along .an

an

 CS
B # dS = 0

 CS
D # dS = LV

r dv

 CC
H # dl = LS

J# dS + d
dtLS

D # dS

 CC
E # dl = - d

dtLS
B # dS

a

d c

b

an
as

Medium 1

Medium 2

FIGURE 5.11

For deriving the boundary conditions
resulting from Faraday’s law and
Ampere’s circuital law.
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5.5 Boundary Conditions 167

Let the surface charge density and the surface current density on the
boundary be and , respectively. Note that, in general, the fields at the boundary in
both media and the surface charge and current densities are functions of position on
the boundary.

First, we consider a rectangular closed path abcda of infinitesimal area in the
plane normal to the boundary and with its sides ab and cd parallel to and on either side
of the boundary, as shown in Figure 5.11.Applying Faraday’s law (5.78a) to this path in
the limit that ad and by making the area abcd tend to zero, but with ab and cd
remaining on either side of the boundary, we have

(5.79)

In this limit, the contributions from ad and bc to the integral on the left side of (5.79)
approach zero. Since ab and cd are infinitesimal, the sum of the contributions from ab and
cd becomes , where and are the components of and 
along ab and cd, respectively.The right side of (5.79) is equal to zero, since the magnetic
flux crossing the area abcd approaches zero as the area abcd tends to zero. Thus, (5.79)
gives

or, since ab and cd are equal and ,

(5.80)

Let us now define to be the unit vector normal to the area abcd and in the direction
of advance of a right-hand screw as it is turned in the sense of the closed path abcda.
Noting then that is the unit vector along ab, we can write (5.80) as

Rearranging the order of the scalar triple product, we obtain

(5.81)

Since we can choose the rectangle abcd to be in any plane normal to the boundary,
(5.81) must be true for all orientations of . It then follows that

(5.82a)

or, in scalar form,

(5.82b)

where and are the components of and , respectively, tangential to the
boundary. In words, (5.82a) and (5.82b) state that at any point on the boundary,
the components of and tangential to the boundary are equal.E2E1

E2E1Et2Et1

Et1 - Et2 = 0

an : (E1 - E2) = 0

as

as # an : (E1 - E2) = 0

as : an # (E1 - E2) = 0

as : an

as

Eab - Edc = 0

Edc = -Ecd

Eab(ab) + Ecd(cd) = 0

E2E1EcdEab[Eab(ab) + Ecd(cd)]

Lim
ad:0
bc:0Cabcda

E # dl = - Lim
ad:0
bc:0

 
d
dt 3

area
abcd

B # dS

bc : 0

JSrS

(A/m)(C/m2)
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168 Chapter 5 Wave Propagation in Material Media

Similarly, applying Ampere’s circuital law (5.78a) to the closed path in the limit
that ad and , we have

(5.83)

Using the same argument as for the left side of (5.79), we obtain the quantity on the
left side of (5.83) to be equal to , where and are the com-
ponents of and along ab and cd, respectively. The second integral on the right
side of (5.83) is zero, since the displacement flux crossing the area abcd approaches
zero as the area abcd tends to zero. The first integral on the right side of (5.83) would
also be equal to zero but for a contribution from the surface current on the boundary,
because letting the area abcd tend to zero with ab and cd on either side of the boundary
reduces only the volume current, if any, enclosed by it to zero, keeping the surface cur-
rent still enclosed by it. This contribution is the surface current flowing normal to the
line that abcd approaches as it tends to zero, that is, . Thus, (5.83) gives

or, since ab and cd are equal and ,

(5.84)

In terms of and , we have

or

(5.85)

Since (5.85) must be true for all orientations of , that is, for a rectangle abcd in any
plane normal to the boundary, it follows that

(5.86a)

or, in scalar form,

(5.86b)

where and are the components of and , respectively, tangential to the
boundary. In words, (5.86a) and (5.86b) state that at any point on the boundary, the
components of and tangential to the boundary are discontinuous by the amount
equal to the surface current density at that point. It should be noted that the information
concerning the direction of relative to that of , which is contained in
(5.86a), is not present in (5.86b). Thus, in general, (5.86b) is not sufficient, and it is nec-
essary to use (5.86a).

(H1 - H2)JS

H2H1

H2H1Ht2Ht1

Ht1 - Ht2 = JS

an : (H1 - H2) = JS

as

as # an : (H1 - H2) = as # JS

as : an # (H1 - H2) = JS # as

H2H1

Hab - Hdc = JS # as

Hdc = -Hcd

Hab(ab) + Hcd(cd) = (JS # as)(ab)

[JS # as](ab)

H2H1

HcdHab[Hab(ab) + Hcd(cd)]

Lim
ad:0
bc:0 Cabcda

H # dl = Lim
ad:0
bc:0 3area

 abcd

J# dS + Lim
ad:0
bc:0

 
d
dt 3

area
 abcd

D # dS

bc : 0
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5.5 Boundary Conditions 169

Now, we consider a rectangular box abcdefgh of infinitesimal volume enclosing
an infinitesimal area of the boundary and parallel to it, as shown in Figure 5.12.Applying
Gauss’ law for the electric field (5.78d) to this box in the limit that the side surfaces
(abbreviated ss) tend to zero by making the volume of the box tend to zero but with
the sides abcd and efgh remaining on either side of the boundary, we have

(5.87)

In this limit, the contributions from the side surfaces to the integral on the left side of
(5.87) approach zero. The sum of the contributions from the top and bottom surfaces
becomes , since abcd and efgh are infinitesimal. The quantity
on the right side of (5.87) would be zero but for the surface charge on the boundary,
since letting the volume of the box tend to zero with the sides abcd and efgh on either
side of it reduces only the volume charge, if any, enclosed by it to zero, keeping the sur-
face charge still enclosed by it.This surface charge is equal to .Thus, (5.87) gives

or, since abcd and efgh are equal,

(5.88a)

In terms of and , (5.88a) is given by

(5.88b)

In words, (5.88a) and (5.88b) state that at any point on the boundary, the components of
and normal to the boundary are discontinuous by the amount of the surface

charge density at that point.
D2D1

an # (D1 - D2) = rS

D2D1

Dn1 - Dn2 = rS

Dn1(abcd) - Dn2(efgh) = rS(abcd)

rS(abcd)

[Dn1(abcd) - Dn2(efgh)]

Lim
ss:0 C

surface
of the box

D # dS = Lim
ss:0 3

volume
of the box

r dv

a

d c

g
b

an

Medium 1

Medium 2

h

e f FIGURE 5.12

For deriving the boundary conditions
resulting from the two Gauss’ laws.

Similarly, applying Gauss’ law for the magnetic field (5.78d) to the box abcdefgh
in the limit that the side surfaces tend to zero, we have

(5.89)Lim
ss:0 C

surface
of the box

B # dS = 0
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170 Chapter 5 Wave Propagation in Material Media

Using the same argument as for the left side of (5.87), we obtain the quantity on the
left side of (5.89) to be equal to . Thus, (5.89) gives

or, since abcd and efgh are equal,

(5.90a)

In terms of and , (5.90a) is given by

(5.90b)

In words, (5.90a) and (5.90b) state that at any point on the boundary, the components of
and normal to the boundary are equal.

Summarizing the boundary conditions, we have

(5.91a)
(5.91b)
(5.91c)
(5.91d)

or, in scalar form,

(5.92a)
(5.92b)
(5.92c)
(5.92d)

as illustrated in Figure 5.13. Although we have derived these boundary conditions by
considering a plane interface between the two media, it should be obvious that we can
consider any arbitrary-shaped boundary and obtain the same results by letting the
sides ab and cd of the rectangle and the top and bottom surfaces of the box tend to
zero, in addition to the limits that the sides ad and bc of the rectangle and the side sur-
faces of the box tend to zero.

 Bn1 - Bn2 = 0
 Dn1 - Dn2 = rS

 Ht1 - Ht2 = JS

 Et1 - Et2 = 0

 an # (B1 - B2) = 0
 an # (D1 - D2) = rS

 an : (H1 - H2) = JS

 an : (E1 - E2) = 0

B2B1

an # (B1 - B2) = 0

B2B1

Bn1 - Bn2 = 0

Bn1(abcd) - Bn2(efgh) = 0

[Bn1(abcd) - Bn2(efgh)]

an
Medium 1

Medium 2

$
Et1

Et2

Ht1

Dn1

Bn1

Bn2Dn2

Ht2

rSJS

FIGURE 5.13

For illustrating the boundary conditions at an interface between two different media.
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5.5 Boundary Conditions 171

The boundary conditions given by (5.91a)–(5.91d) are general.When they are ap-
plied to particular cases, the special properties of the pertinent media come into play.
Two such cases are important to be considered. They are as follows.

Interface between Two Perfect Dielectric Media

Since for a perfect dielectric, . Thus, there cannot be any conduc-
tion current in a perfect dielectric, which in turn rules out any accumulation of free
charge on the surface of a perfect dielectric. Hence, in applying the boundary condi-
tions (5.91a)–(5.91d) to an interface between two perfect dielectric media, we set 
and JS equal to zero, thereby obtaining

(5.93a)
(5.93b)
(5.93c)
(5.93d)

These boundary conditions tell us that the tangential components of E and H and the
normal components of D and B are continuous at the boundary.

Surface of a Perfect Conductor

No time-varying fields can exist in a perfect conductor. In view of this, the boundary
conditions on a perfect conductor surface are obtained by setting the fields with sub-
script 2 in (5.91a)–(5.91d) equal to zero. Thus, we obtain

(5.94a)
(5.94b)
(5.94c)
(5.94d)

where we have also omitted subscripts 1, so that E, H, D, and B are the fields on the per-
fect conductor surface.The boundary conditions (5.94a) and (5.94d) tell us that on a per-
fect conductor surface, the tangential component of the electric field intensity and the
normal component of the magnetic field intensity are zero. Hence, the electric field must
be completely normal, and the magnetic field must be completely tangential to the sur-
face.The remaining two boundary conditions (5.94c) and (5.94b) tell us that the (normal)
displacement flux density is equal to the surface charge density and the (tangential) mag-
netic field intensity is equal in magnitude to the surface current density.

Example 5.3

In Figure 5.14, the region is a perfect conductor, the region is a perfect dielec-
tric of and , and the region is free space.The electric and magnetic fields in
the region are given at a particular instant of time by

 H = H1 cos px sin 2p z ay

 E = E1 cos px sin 2p z ax + E2 sin px cos 2p z az

0 6 x 6 d
x 7 dm = m0P = 2P0

0 6 x 6 dx 6 0

 an # B = 0
 an # D = rS

 an : H = JS

 an : E = 0

 an # (B1 - B2) = 0
 an # (D1 - D2) = 0

 an : (H1 - H2) = 0
 an : (E1 - E2) = 0

rS

s = 0, Jc = sE = 0
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172 Chapter 5 Wave Propagation in Material Media

zy

x " d

x " 0

x

Free Space
P0, m0

Perfect Dielectric
2P0, m0

Perfect Conductor

FIGURE 5.14

For illustrating the application of boundary conditions.

We wish to find (a) and JS on the surface and (b) E and H for , that is, immedi-
ately adjacent to the plane and on the free-space side, at that instant of time.

(a) Denoting the perfect dielectric medium to be medium 1 and the perfect con-
ductor medium to be medium 2, we have , and all fields with subscript 2
are equal to zero. Then, from (5.91c) and (5.91b), we obtain

Note that the remaining two boundary conditions (5.91a) and (5.91b) are already satisfied
by the given fields, since and do not exist and for , .Also note that what
we have done here is equivalent to using (5.94a)–(5.94d), since the boundary is the surface
of a perfect conductor.

(b) Denoting the perfect dielectric medium to be medium 1 and the free-space
medium to be medium 2 and setting , we obtain from (5.91a) and (5.91c)

Thus,

Setting and using (5.91b) and (5.91d), we obtain

 [Bx]x = d + = [Bx]x = d - = 0

 [Hz]x = d + = [Hz]x = d - = 0

 [Hy]x = d + = [Hy]x = d - = H1 cos pd sin 2p z

JS = 0

[E]x = d + = 2E1 cos pd sin 2p z ax + E2 sin pd cos 2p z az

 = 2E1 cos pd sin 2p z

 [Ex]x = d + = 1
P0

[Dx]x = d +

 = 2P0E1 cos pd sin 2p z

 [Dx]x = d + = [Dx]x = d - = 2P0[Ex]x = d -

 [Ez]x = d + = [Ez]x = d - = E2 sin pd cos 2p z

 [Ey]x = d + = [Ey]x = d - = 0

rS = 0(x 7 d)
(0 6 x 6 d)

Ez = 0x = 0BxEy

 = H1 sin 2p z az

 [JS]x = 0 = an : [H1]x = 0 = ax : H1 sin 2p z ay

 = 2P0E1 sin 2p z
 [rS]x = 0 = an # [D1]x = 0 = ax # 2P0E1 sin 2p z ax

an = ax(x 6 0)
(0 6 x 6 d)

x = d
x = d+x = 0rS
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5.6 Reflection and Transmission of Uniform Plane Waves 173

Thus,

Note that what we have done here is equivalent to using (5.93a)–(5.93d), since the bound-
ary is the interface between two perfect dielectrics.

5.6 REFLECTION AND TRANSMISSION OF UNIFORM PLANE WAVES

Thus far, we have considered uniform plane wave propagation in unbounded media.
Practical situations are characterized by propagation involving several different media.
When a wave is incident on a boundary between two different media, a reflected wave
is produced. In addition, if the second medium is not a perfect conductor, a transmitted
wave is set up. Together, these waves satisfy the boundary conditions at the interface
between the two media. In this section, we shall consider these phenomena for waves
incident normally on plane boundaries.

To do this, let us consider the situation shown in Figure 5.15 in which steady-
state conditions are established by uniform plane waves of radian frequency pro-
pagating normal to the plane interface between two media characterized by
two different sets of values of and where We shall assume that a 
wave is incident from medium onto the interface, thereby setting up a re-
flected wave in that medium, and a transmitted wave in medium 
For convenience, we shall work with the phasor or complex field components. Thus,
considering the electric fields to be in the x-direction and the magnetic fields to be in
the y-direction, we can write the solution for the complex field components in
medium 1 to be

(5.95a)

(5.95b) = 1
h1
A –
E1

+e-g1 z - –
E1

-eg1 z B –H1y(z) = –
H1

+e-g1 z + –
H1

-eg1 z

 –E1x(z) = –
E1

+e-g1z + –
E1

-eg1z

2 (z 7 0).(+)(-)
1 (z 6 0)

(+)s Zq .m,s, P,
z = 0

v

[H]x = d + = H1 cos pd sin 2p z ay

z

x

y

Medium 1

($)
($)

(!)

z %  0 z &  0
z " 0

s1, P1, m1

Medium 2

s2, P2, m2

FIGURE 5.15

Normal incidence of uniform plane
waves on a plane interface between
two different media.
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174 Chapter 5 Wave Propagation in Material Media

where and are the incident and reflected wave electric and magnetic
field components, respectively, at in medium 1 and

(5.96a)

(5.96b)

Recall that the real field corresponding to a complex field component is obtained by
multiplying the complex field component by and taking the real part of the product.
The complex field components in medium 2 are given by

(5.97a)

(5.97b)

where and are the transmitted wave electric- and magnetic-field components at
in medium 2 and

(5.98a)

(5.98b)

To satisfy the boundary conditions at we note that (1) the components of
both electric and magnetic fields are entirely tangential to the interface and (2) in view
of the finite conductivities of the media, no surface current exists on the interface (cur-
rents flow in the volumes of the media). Hence, from the phasor forms of the boundary
conditions (5.92a) and (5.92b), we have

(5.99a)

(5.99b)

Applying these to the solution pairs given by (5.95a, b) and (5.97a, b), we have

(5.100a)

(5.100b)

We now define the reflection coefficient at the boundary, denoted by the symbol to
be the ratio of the reflected wave electric field at the boundary to the incident wave
electric field at the boundary. From (5.100a) and (5.100b), we obtain

(5.101)≠ =
–
E1

-

–
E1

+ =
h2 - h1

h2 + h1

≠,

 
1
h1
A –
E1

+ - –
E1

- B = 1
h2

–
E2

+

 –E1
+ + –

E1
- = –

E2
+

 [ –
H1y]z = 0 = [ –

H2y]z = 0

 [ –
E1x]z = 0 = [ –

E2x]z = 0

z = 0,

 h2 = A jvm2

s2 + jvP2

 g2 = 1jvm2(s2 + jvP2)

z = 0+

–
H2

+–
E2

+

 =
–
E2

+

h2
e-q
g2 z

 –H2y(z) = –
H2

+e-q
g2 z

 –E2x(z) = –
E2

+e-q
g2 z

ejvt

 h1 = A jvm1

s1 + jvP1

 g1 = 1jvm1(s1 + jvP1)

z = 0-

–
H1

-–
E1

+, –
E1

-, –
H1

+,
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5.6 Reflection and Transmission of Uniform Plane Waves 175

Note that the ratio of the reflected wave magnetic field at the boundary to the incident
wave magnetic field at the boundary is given by

(5.102)

The ratio of the transmitted wave electric field at the boundary to the incident wave
electric field at the boundary, known as the transmission coefficient and denoted by the
symbol is given by

(5.103)

where we have used (5.100a). The ratio of the transmitted wave magnetic field at the
boundary to the incident wave magnetic field at the boundary is given by

(5.104)

The reflection and transmission coefficients given by (5.101) and (5.103), respec-
tively, enable us to find the reflected and transmitted wave fields for a given incident
wave field. We observe the following properties of and 

1. For and The incident wave is entirely transmitted. The sit-
uation then corresponds to a matched condition. A trivial case occurs when the
two media have identical values of the material parameters.

2. For that is, when both media are perfect dielectrics, and are
real. Hence, and are real. In particular, if the two media have the same per-
meability but different permittivities and then

(5.105)

(5.106)

3. For and Thus, if medium 2 is a perfect conduc-
tor, the incident wave is entirely reflected, as it should be, since there cannot be
any time-varying fields inside a perfect conductor.The superposition of the reflected
and incident waves would then give rise to the so-called complete standing waves in
medium 1. Complete standing waves as well as partial standing waves are dis-
cussed in Chapter 7.

t: 0.s2 : q , h2 : 0, ≠ : -1,

 t = 2
1 + 1P2>P1

 =
1 - 1P2>P1

1 + 1P2>P1

 ≠ =
1m>P2 - 1m>P11m>P2 + 1m>P1

P2,P1m
t≠

h2h1s1 = s2 = 0,

t = 1.h2 = h1, ≠ = 0

t:≠

–
H2

+

–
H1

+ =
–

H1
+ + –

H1
-

–
H1

+ = 1 - ≠

t =
–
E2

+

–
E1

+ =
–
E1

+ + –
E1

-

–
E1

+ = 1 + ≠

t,

–
H1

-

–
H1

+ =
- –

E1
->h–1

–
E1

+>h–1
= -

–
E1

-

–
E1

+ = -≠
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176 Chapter 5 Wave Propagation in Material Media

Example 5.4

Region is free space, whereas region is a material medium characterized by
and For a uniform plane wave having the electric field

incident on the interface from region 1, we wish to obtain the expressions for the reflected
and transmitted wave electric and magnetic fields.

Substituting and in
(5.98a) and (5.98b), we obtain

Then, noting that ,

Thus, the reflected and transmitted wave electric and magnetic fields are given by

Note that at the boundary conditions of and are satisfied,
since

and

E0

377
- 1.678 * 10-3E0 cos 0.8976p = 4.277 * 10- 3E0 cos 1-0.0396p 2

E0 + 0.6325E0 cos 0.8976p = 0.4472E0 cos 0.1476p

Hi + Hr = HtEi + Er = Etz = 0,

   # cos 13p * 105t - 9.425 * 10-3z - 0.0396p 2 ay A/m

 = 4.277 * 10-3E0 e-
 

6.283 * 10-3z

   # cos 13p * 105t - 9.425 * 10-3z + 0.1476p - 0.1872p 2 ay A/m

 Ht =
0.4472E0

104.559
e-

 

6.283 * 10-3z

   # cos 13p * 105t - 9.425 * 10-3z + 0.1476p 2 ax V/m

 Et = 0.4472E0 e-
 

6.283 * 10-3z

 = -1.678 * 10-3E0 cos 13p * 105t + 10-3p z + 0.8976p 2 ay A/m

 Hr = -
0.6325E0

377
 cos 13p * 105t + 10-3p z + 0.8976p 2 ay A/m

 Er = 0.6325E0 cos 13p * 105t + 10-3p z + 0.8976p 2 ax V/m

 = 0.4472l26.565° = 0.4472l0.1476p

 t = 1 + ≠ = 1 + 0.6325l161.565°

 = 0.6325l161.565° = 0.6325l0.8976p

 ≠ =
h2 - h0

h2 + h0
=

104.559l33.69° - 377

104.559l33.69° + 377

h1 = h0

 h2 = 104.559l33.69° = 104.559l0.1872p

 g2 = 16.283 + j9.4252 * 10-3

2p = 1.5 * 105 Hz,f = 13p * 105 2>s = 10-4 S/m, P = 5P0, m = m0,

z = 0

Ei = E0 cos 13p * 105t - 10-3p z2 ax V/m

m = m0.s = 10-4 S/m, P = 5P0,
2 1z 7 021 1z 6 02
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Summary 177

SUMMARY

In this chapter, we studied the principles of uniform plane wave propagation in a ma-
terial medium. Material media can be classified as (a) conductors, (b) dielectrics, and
(c) magnetic materials, depending on the nature of the response of the charged parti-
cles in the materials to applied fields. Conductors are characterized by conduction
which is the phenomenon of steady drift of free electrons under the influence of an ap-
plied electric field. Dielectrics are characterized by polarization which is the phenome-
non of the creation and net alignment of electric dipoles, formed by the displacement
of the centroids of the electron clouds from the centroids of the nucleii of the atoms,
along the direction of an applied electric field. Magnetic materials are characterized by
magnetization which is the phenomenon of net alignment of the axes of the magnetic
dipoles, formed by the electron orbital and spin motion around the nucleii of the
atoms, along the direction of an applied magnetic field.

Under the influence of applied electromagnetic wave fields, all three phenomena
described above give rise to currents in the material which in turn influence the wave
propagation.These currents are known as the conduction, polarization, and magnetiza-
tion currents, respectively, for conductors, dielectrics, and magnetic materials. They
must be taken into account in the first term on the right side of Ampere’s circuital law,
that is, in the case of the integral form and Jin the case of the differential
form. The conduction current density is given by

(5.107)

where is the conductivity of the material. The conduction current is taken into ac-
count explicitly by replacing Jby . The polarization and magnetization currents are
taken into account implicitly by revising the definitions of the displacement flux density
vector and the magnetic field intensity vector to read as

(5.108)

(5.109)

where P and M are the polarization and magnetization vectors, respectively. For linear
isotropic materials, (5.108) and (5.109) simplify to

(5.110)

(5.111)

where

are the permittivity and the permeability, respectively, of the material.The quantities 
and are the relative permittivity and the relative permeability, respectively, of themr

Pr

m = m0mr

P = P0Pr

 H = B
m

 D = PE

 H = B
m0

- M

 D = P0 E + P

Jc

s

Jc = sE

1S J# dS
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178 Chapter 5 Wave Propagation in Material Media

material. The parameters and vary from one material to another and are in
general dependent on the frequency of the wave. Equations (5.107), (5.110), and
(5.111) are known as the constitutive relations. For anisotropic materials, these rela-
tions are expressed in the form of matrix equations with the material parameters rep-
resented by tensors.

Together with Maxwell’s equations, the constitutive relations govern the behav-
ior of the electromagnetic field in a material medium. Thus, Maxwell’s curl equations
for a material medium are given by

We made use of these equations for the simple case of and
to obtain the uniform plane wave solution by considering the infinite plane current
sheet in the xy-plane with uniform surface current density

and with a material medium on either side of it and finding the electromagnetic field
due to the current sheet to be given by

(5.112a)

(5.112b)

In (5.112a–b), are the attenuation and phase constants given, respectively, by
the real and imaginary parts of the propagation constant, Thus,

The quantities and are the magnitude and phase angle, respectively, of the intrinsic
impedance, of the medium. Thus,

The uniform plane wave solution given by (5.112a–b) tells us that the wave pro-
pagation in the material medium is characterized by attenuation, as indicated by ,
and phase difference between E and H by the amount . We learned that the attenua-
tion of the wave results from power dissipation due to conduction current flow in the
medium. The power dissipation density is given by

pd = sEx
2

t
e<az

h– = ƒ  h– ƒ  ejt = A jvm
s + jvP

h–,
tƒ  h– ƒ

g– = a + jb = 2jvm(s + jvP)

g.
a and b

H = ; 
JS0

2
e<az cos (vt < bz) ay  for z ! 0

E =
ƒ  h–  ƒJS0

2
e<az cos (vt < bz + t) ax for z ! 0

JS = -JS0 cos vt ax

H = Hy(z, t)ayE = Ex(z, t)ax

 ¥ : H = Jc + 0D
0t

= sE + P0E
0t

 ¥ : E = - 0B
0t

= -m0H
0t

mP,s,
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Summary 179

The stored energy densities associated with the electric and magnetic fields in the
medium are given by

Having discussed uniform plane wave propagation for the general case of a medi-
um characterized by and we then considered several special cases. These are
discussed in the following:

Perfect dielectrics. For these materials, Wave propagation occurs without at-
tenuation as in free space but with the propagation parameters governed by and in-
stead of and respectively.

Imperfect dielectrics. A material is classified as an imperfect dielectric for 
that is, conduction current density is small in magnitude compared to the displacement
current density.The only significant feature of wave propagation in an imperfect dielectric
as compared to that in a perfect dielectric is the attenuation undergone by the wave.

Good conductors. A material is classified as a good conductor for that is,
conduction current density is large in magnitude compared to the displacement cur-
rent density. Wave propagation in a good conductor medium is characterized by atten-
uation and phase constants both equal to Thus, for large values of f and/or 
the fields do not penetrate very deeply into the conductor. This phenomenon is known
as the skin effect. From considerations of the frequency dependence of the attenuation
and wavelength for a fixed we learned that low frequencies are more suitable for
communication with underwater objects. We also learned that the intrinsic impedance
of a good conductor medium is very low in magnitude compared to that of a dielectric
medium having the same and 

Perfect conductors. These are idealizations of good conductors in the limit 
For the skin depth, that is, the distance in which the fields inside a conductor
are attenuated by a factor is zero and hence there can be no penetration of fields
into a perfect conductor.

As a prelude to the consideration of problems involving more than one medium, we
derived the boundary conditions resulting from the application of Maxwell’s equations in
integral form to closed paths and closed surfaces encompassing the boundary between
two media, and in the limits that the areas enclosed by the closed paths and the volumes
bounded by the closed surfaces go to zero.These boundary conditions are given by

 an # (B1 - B2) = 0
 an # (D1 - D2) = rS

 an : (H1 - H2) = JS

 an : (E1 - E2) = 0

e- 1,
s = q,

s: q.

m.P

s,

s,1pfms.

s W vP,

s V vP,

m0,P0

mP
s = 0.

m,s, P,

 wm = 1
2
mH2

 we = 1
2

PE2
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180 Chapter 5 Wave Propagation in Material Media

where the subscripts 1 and 2 refer to media 1 and 2, respectively, and is unit vector
normal to the boundary at the point under consideration and directed into medium 1. In
words, the boundary conditions state that at a point on the boundary, the tangential
components of E and the normal components of B are continuous, whereas the tangen-
tial components of H are discontinuous by the amount equal to at that point, and the
normal components of D are discontinuous by the amount equal to at that point.

Two important special cases of boundary conditions are as follows: (a) At the
boundary between two perfect dielectrics, the tangential components of E and H and
the normal components of D and B are continuous. (b) On the surface of a perfect con-
ductor, the tangential component of E and the normal component of B are zero,
whereas the normal component of D is equal to the surface charge density, and the tan-
gential component of H is equal in magnitude to the surface current density.

Finally, we considered uniform plane waves incident normally onto a plane
boundary between two media, and we learned how to compute the reflected and trans-
mitted wave fields for a given incident wave field.

rS

JS

an

REVIEW QUESTIONS

5.1. Distinguish between bound electrons and free electrons in an atom.
5.2. Briefly describe the phenomenon of conduction.
5.3. State Ohms’ law applicable at a point. How is it taken into account in Maxwell’s equations?
5.4. Briefly describe the phenomenon of polarization in a dielectric material.
5.5. What is an electric dipole? How is its strength defined?
5.6. What are the different kinds of polarization in a dielectric?
5.7. What is the polarization vector? How is it related to the electric field intensity?
5.8. Discuss how polarization current arises in a dielectric material.
5.9. State the relationship between polarization current density and electric field intensity.

How is it taken into account in Maxwell’s equations?
5.10. What is the revised definition of D?
5.11. State the relationship between D and E in a dielectric material. How does it simplify the

solution of field problems involving dielectrics?
5.12. What is an anisotropic dielectric material?
5.13. When can an effective permittivity be defined for an anisotropic dielectric material?
5.14. Briefly describe the phenomenon of magnetization.
5.15. What is a magnetic dipole? How is its strength defined?
5.16. What are the different kinds of magnetic materials?
5.17. What is the magnetization vector? How is it related to the magnetic flux density?
5.18. Discuss how magnetization current arises in a magnetic material.
5.19. State the relationship between magnetization current density and magnetic flux density.

How is it taken into account in Maxwell’s equations?
5.20. What is the revised definition of H?
5.21. State the relationship between H and B for a magnetic material. How does it simplify

the solution of field problems involving magnetic materials?
5.22. What is an anisotropic magnetic material?
5.23. Discuss the relationship between B and H for a ferromagnetic material.
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5.24. Summarize the constitutive relations for a material medium.
5.25. What is the propagation constant for a material medium? Discuss the significance of its

real and imaginary parts.
5.26. Discuss the consequence of the frequency dependence of the phase velocity of a wave

in a material medium.
5.27. What is loss tangent? Discuss its significance.
5.28. What is the intrinsic impedance of a material medium? What is the consequence of its

complex nature?
5.29. How do you account for the attenuation undergone by the wave in a material medium?
5.30. What is the power dissipation density in a medium characterized by nonzero conductivity?
5.31. What are the stored energy densities associated with electric and magnetic fields in a

material medium?
5.32. What is the condition for a medium to be a perfect dielectric? How do the characteris-

tics of wave propagation in a perfect dielectric medium differ from those of wave pro-
pagation in free space?

5.33. What is the criterion for a material to be an imperfect dielectric? What is the significant
feature of wave propagation in an imperfect dielectric as compared to that in a perfect
dielectric?

5.34. Give two examples of materials that behave as good dielectrics for frequencies down to
almost zero.

5.35. What is the criterion for a material to be a good conductor?
5.36. Give two examples of materials that behave as good conductors for frequencies of up to

several gigahertz.
5.37. What is skin effect? Discuss skin depth, giving some numerical values.
5.38. Why are low-frequency waves more suitable than high-frequency waves for communi-

cation with underwater objects?
5.39. Discuss the consequence of the low intrinsic impedance of a good conductor as com-

pared to that of a dielectric medium having the same and 
5.40. Why can there be no fields inside a perfect conductor?
5.41. What is a boundary condition? How do boundary conditions arise and how are they

derived?
5.42. Summarize the boundary conditions for the general case of a boundary between two

arbitrary media, indicating correspondingly the Maxwell’s equations in integral form
from which they are derived.

5.43. Discuss the boundary conditions at the interface between two perfect dielectric media.
5.44. Discuss the boundary conditions on the surface of a perfect conductor.
5.45. Discuss the determination of the reflected and transitted wave fields from the fields of

a wave incident normally onto a plane boundary between two material media.
5.46. What is the consequence of a wave incident on a perfect conductor?

m.P

PROBLEMS

5.1. Find the electric field intensity required to produce a current of 0.1 A crossing an area
of 1 cm2 normal to the field for the following materials: (a) copper, (b) aluminum, and
(c) sea water.Then find the voltage drop along a length of 1 cm parallel to the field, and
find the ratio of the voltage drop to the current (resistance) for each material.
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182 Chapter 5 Wave Propagation in Material Media

5.2. The free electron density in silver is . (a) Find the mobility of the elec-
tron for silver. (b) Find the drift velocity of the electrons for an applied electric field of
intensity 

5.3. Use the continuity equation, Ohm’s law, and Gauss’ law for the electric field to show
that the time variation of the charge density at a point inside a conductor is governed by
the differential equation

Then show that the charge density inside the conductor decays exponentially with a
time constant . Compute the value of the time constant for copper.

5.4. Show that the torque acting on an electric dipole of moment p due to an applied electric
field E is .

5.5. For an applied electric field , find the polarization current
crossing an area of 1 cm2 normal to the field for the following materials: (a) polystyrene,
(b) mica, and (c) distilled water.

5.6. For the anisotropic dielectric material having the permittivity tensor given in Example 5.1,
find D for . Comment on your result.

5.7. An anisotropic dielectric material is characterized by the permittivity tensor

(a) Find D for (b) Find D for . (c) Find E, which pro-
duces 

5.8. An anisotropic dielectric material is characterized by the permittivity tensor

For cos , find the value(s) of for which D is parallel to E.
Find the effective permittivity for each case.

5.9. Find the magnetic dipole moment of an electron in circular orbit of radius a normal to a
uniform magnetic field of flux density B0. Compute its value for and

5.10. Show that the torque acting on a magnetic dipole of moment m due to an applied mag-
netic field B is For simplicity, consider a rectangular loop in the xy-plane and

5.11. For an applied magnetic field , find the magnetization current
crossing an area normal to the x-direction for a magnetic material having

5.12. An anisotropic magnetic material is characterized by the permeability tensor

Find the effective permeability for H = H0(3ax - 2ay) cos vt.

[m] = m0J7 6 0
6 12 0
0 0 3 K

xm = 10- 3.1 cm2
Wb/m2B = 10- 6 cos 2p z ay

B = Bxax + Byay + Bzaz.
m : B.

B0 = 5 * 10- 5 Wb/m2.
a = 10- 3 m

Ey>ExvtE = (Exax + Eyay)

[P] = J Pxx Pxy 0
Pyx Pyy 0
0 0 Pzz

K
D = 4P0E0ax.

E = E0(ax + ay + az)E = E0ax.

[P] = P0J4 2 2
2 4 2
2 2 4

 K
E = E0(cos vt ax + sin vt ay)

E = 0.1 cos 2p * 109t ax V/m
p : E

P0>s
0r
0t

+ sP0
 r = 0

0.1 V/m.

5.80 * 1028 m-3
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5.13. Obtain the wave equation for similar to that for given by (5.49).
5.14. Obtain the expression for the attenuation per wavelength undergone by a uniform

plane wave in a material medium characterized by , and . Using the logarithmic
scale for , plot the attenuation per wavelength in decibels versus .

5.15. For dry earth, and . Compute and for

5.16. Obtain the expressions for the real and imaginary parts of the intrinsic impedance of a
material medium given by (5.61).

5.17. An infinite plane sheet lying in the xy-plane carries current of uniform density

The medium on either side of the sheet is characterized by , and
. Find E and H on either side of the current sheet.

5.18. Repeat Problem 5.17 for

5.19. For an array of two infinite plane parallel current sheets of uniform densities situated in
a medium characterized by , and , find the spacing and
the relative amplitudes and phase angles of the current densities to obtain an endfire
radiation characteristic for 

5.20. Show that energy is not stored equally in the electric and magnetic fields in a material
medium for 

5.21. The electric field of a uniform plane wave propagating in a perfect dielectric medium
having is given by

Find (a) the frequency, (b) the wavelength, (c) the phase velocity, (d) the permittivity of
the medium, and (e) the associated magnetic field vector H.

5.22. The electric and magnetic fields of a uniform plane wave propagating in a perfect
dielectric medium are given by

Find the permittivity and the permeability of the medium.
5.23. Repeat Problem 4.29 for a perfect dielectric medium of and on either

side of the current sheet.
5.24. Compute for each of the following materials: (a) fused quartz, (b) Bakelite, and

(c) distilled water. Then compute for the imperfect dielectric range of frequencies the
values of and for each material.

5.25. For uniform plane wave propagation in fresh water ( ,
find , and for two frequencies: (a) 100 MHz, and (b) 10 kHz.

5.26. Show that for a given material, the ratio of the attenuation constant for the good con-
ductor range of frequencies to the attenuation constant for the imperfect dielectric

ha, b, vp, l
m = m0)P = 80P0,s = 10- 3 S/m,

ha, b, vp, l,

fq

m = m0P = 9P0

 H = 1
 6p

 cos (6p * 107t - 0.8p z) ay A/m

 E = 10 cos (6p * 107t - 0.8p z) axV/m

E = 10 cos (6p * 107t - 0.4p z) ax V/m

m = m0

s Z0.

f = 106 Hz.

m = m0s = 10- 3 S/m, P = 18P0

JS = -0.1(cos 2p * 106t ax + cos 4p * 106t ax) A/m

m = m0

P = 18P0s = 10- 3 S/m,

JS = -0.1 cos 2p * 106t ax A/m

f = 100 kHz.
ha, b, vp, l,m = m0s = 10- 5 S/m, P = 5P0,

s>vPs>vP
ms, P

–
Ex

–
Hy

M05_RAO3333_1_SE_CHO5.QXD  4/9/08  1:19 PM  Page 183



184 Chapter 5 Wave Propagation in Material Media

range of frequencies is equal to where is in the good conductor range of
frequencies.

5.27. In Figure 5.16, the points 1 and 2 lie adjacent to each other and on either side of the in-
terface between perfect dielectric media 1 and 2.The fields at point 1 are denoted by sub-
script 1 and the fields at point 2 are denoted by subscript 2. Assume that medium 1 is
characterized by and and that medium 2 is characterized by 
and If and , find and .H2E2H1 = H0(2ax - 3ay)E1 = E0(3ax + 2ay - 6az)m = m0.

P = 9P0m = 2m0P = 12P0

v22vP>s

z

x

y

Medium 1

x " 0
Medium 2

1
2

FIGURE 5.16

For Problems 5.27 and 5.28.

5.28. In Figure 5.16, assume that medium 1 is characterized by and and that
medium 2 is characterized by and . If and

, find and .
5.29. A boundary separates free space from a perfect dielectric medium. At a point on the

boundary, the electric field intensity on the free space side is 
whereas on the dielectric side, it is , where is a constant. Find the
permittivity of the dielectric medium.

5.30. The plane defines the surface of a perfect conductor. Find the possi-
ble direction(s) of the electric field intensity at a point on the conductor surface.

5.31. Given , determine if a perfect conductor can be placed in the surface
without disturbing the field.

5.32. A perfect conductor occupies the region . Find the surface current density
at a point on the conductor at which 

5.33. The displacement flux density at a point on the surface of a perfect conductor is given
by . Find the magnitude of the surface charge density at
that point.

5.34. It is known that at a point on the surface of a perfect conductor 
, and is positive. Find and at that

point.
5.35. Two infinite plane conducting sheets occupy the planes and . An electric

field given by

where is a constant, exists in the region between the plates, which is free space.
(a) Show that satisfies the boundary condition on the sheets. (b) Obtain associated
with the given . (c) Find the surface current densities on the two sheets.

5.36. Region is free space, whereas region is a material medium character-
ized by , , and . For a uniform plane wave having the elec-
tric field

incident on the interface from region 1, obtain the expression for the reflected
and transmitted wave electric and magnetic fields.

z = 0

Ei = E0 cos (3p * 106t - 0.01p z) ax V/m

m = m0P = 12P0s = 10- 3 S/m
2(z 7 0)1(z 6 0)

E
HE

E0

E = E0 sin 10px cos 3p * 109t az

x = 0.1 mx = 0

JSrSrSH = H0(2ax - 2ay + az),D0(ax + 2ay + 2az)
D =

D = D0(ax + 13ay + 213az)

H = H0az.
x + 2y … 2

xy = 2
E = yax + xay

x + 2y + 3z = 5

E0E2 = 3E0(ax + az)
E1 = E0(4ax + 2ay + 5az),

B2D2B1 = B0(ax + 2ay + 3az)
D1 = D0 (ax - 2ay + az)m = 9m0P = 16P0

m = 3m0P = 4P0
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5.37. The regions and are nonmagnetic perfect dielectrics of permit-
tivities and , respectively. For a uniform plane wave incident from the region 
normally onto the boundary , find for each of the following to hold at :
(a) the electric field of the reflected wave is times the electric field of the incident
wave; (b) the electric field of the transmitted wave is 0.4 times the electric field of the
incident wave; and (c) the electric field of the transmitted wave is six times the electric
field of the reflected wave.

5.38. A uniform plane wave propagating in the -direction and having the electric field
, where in the plane is as shown in Figure 5.17, is incident nor-

mally from free space onto a nonmagnetic , perfect dielectric 
of permittivity . Find and sketch the following: (a) versus for and
(b) versus for .t = 1 mszHy

t = 1 mszEx4P0

(z 7 0)(m = m0)(z 6 0)
z = 0Exi(t)Ei = Exi(t)ax

+z

-1>3 z = 0P2>P1z = 0
z 6 0P2P1

(m = m0)z 7 0z 6 0

z

x

y

Medium 1

($)

(!)

z " 0

m0, P0

Medium 2

($)

(!)

m0, 9P0

Medium 3

($)

m0, 4P0

z "      m1
3

FIGURE 5.18

For Problem 5.40.

t, !s0

[Exi]z " 0, V/m

E0

1 2

FIGURE 5.17

For Problem 5.38.

5.39. The region is a perfect dielectric, whereas the region is a perfect conductor.
For a uniform plane wave having the electric and magnetic fields

where and , obtain the expressions for the reflected wave electric
and magnetic fields and hence the expressions for the total elec-
tric and magnetic fields in the dielectric, and the current density on the surface of the
perfect conductor.

5.40. In Figure 5.18, medium 3 extends to infinity so that no reflected wave exists in that
medium. For a uniform plane wave having the electric field

incident from medium 1 onto the interface , obtain the expressions for the phasor
electric- and magnetic-field components in all three media.

z = 0

Ei = E0 cos (3 * 108p t - p z) ax V/m

(-)

(incident + reflected)
h = 1m>Pb = v1mP

 Hi =
E0

h
 cos (vt - bz) ay

 Ei = E0 cos (vt - bz) ax

z 7 0z 6 0
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