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CHAPTER

4
Wave Propagation
in Free Space

In Chapters 2 and 3, we learned Maxwell’s equations in integral form and in differential
form. We now have the knowledge of the fundamental laws of electromagnetics that
enable us to embark upon the study of their applications. Many of these applications
are based on electromagnetic wave phenomena, and hence it is necessary to gain an
understanding of the basic principles of wave propagation, which is our goal in this
chapter. In particular, we shall consider wave propagation in free space. We shall then
in the next chapter consider the interaction of the wave fields with materials to extend
the application of Maxwell’s equations to material media and discuss wave propagation
in material media.

We shall employ an approach in this chapter that will enable us not only to learn
how the coupling between space-variations and time-variations of the electric and
magnetic fields, as indicated by Maxwell’s equations, results in wave motion, but also to
illustrate the basic principle of radiation of waves from an antenna, which will be treated
in detail in Chapter 9. In this process, we will also learn several techniques of analysis
pertinent to field problems. We shall augment our discussion of radiation and propagation
of waves by considering such examples as the principle of an antenna array and polar-
ization. Finally, we shall discuss power flow and energy storage associated with the
wave motion and introduce the Poynting vector.

4.1 THE INFINITE PLANE CURRENT SHEET

In Chapter 3, we learned that the space-variations of the electric and magnetic field
components are related to the time-variations of the magnetic and electric field com-
ponents, respectively, through Maxwell’s equations. This interdependence gives rise to
the phenomenon of electromagnetic wave propagation. In the general case, electro-
magnetic wave propagation involves electric and magnetic fields having more than one
component, each dependent on all three coordinates, in addition to time. However, a
simple and very useful type of wave that serves as a building block in the study of elec-
tromagnetic waves consists of electric and magnetic fields that are perpendicular to
each other and to the direction of propagation and are uniform in planes perpendicular
to the direction of propagation. These waves are known as uniform plane waves. By
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orienting the coordinate axes such that the electric field is in the -direction, the
magnetic field is in the -direction, and the direction of propagation is in the -direction,
as shown in Figure 4.1, we have

(4.1)
(4.2)

Uniform plane waves do not exist in practice because they cannot be produced
by finite-sized antennas.At large distances from physical antennas and ground, however,
the waves can be approximated as uniform plane waves. Furthermore, the principles
of guiding of electromagnetic waves along transmission lines and waveguides and
the principles of many other wave phenomena can be studied basically in terms of
uniform plane waves. Hence, it is very important that we understand the principles
of uniform plane wave propagation.

 H = Hy(z, t)ay

 E = Ex(z, t)ax

zy
x
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FIGURE 4.1

Directions of electric and magnetic fields and direction
of propagation for a simple case of uniform plane wave.

In order to illustrate the phenomenon of interaction of electric and magnetic
fields giving rise to uniform plane electromagnetic wave propagation, and the principle
of radiation of electromagnetic waves from an antenna, we shall consider a simple,
idealized, hypothetical source. This source consists of an infinite sheet lying in the

-plane, as shown in Figure 4.2. On this infinite plane sheet a uniformly distributed
current varying sinusoidally with time flows in the negative -direction. Since the cur-
rent is distributed on a surface, we talk of surface current density in order to express
the current distribution mathematically. The surface current density, denoted by the
symbol , is a vector quantity having the magnitude equal to the current per unit width
(A/m) crossing an infinitesimally long line, on the surface, oriented so as to maximize
the current. The direction of is then normal to the line and toward the side of the
current flow. In the present case, the surface current density is given by

(4.3)

where is a constant and is the radian frequency of the sinusoidal time-variation of
the current density.

Because of the uniformity of the surface current density on the infinite sheet, if
we consider any line of width w parallel to the -axis, as shown in Figure 4.2, they

vJS0

JS = -JS0 cos vt ax for z = 0 

JS

JS

x
xy
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108 Chapter 4 Wave Propagation in Free Space

current crossing that line is simply given by times the current density, that is,
. If the current density is nonuniform, we have to perform an integration

along the width of the line in order to find the current crossing the line. In view of the
sinusoidal time-variation of the current density, the current crossing the width w
actually alternates between negative - and positive -directions, that is, downward
and upward. The time history of the current flow for one period of the sinusoidal
variation is illustrated in Figure 4.3, with the lengths of the lines indicating the mag-
nitudes of the current.

xx

wJS0 cos vt
w

0 p 2p

wJS0 wJS0

vt vt

FIGURE 4.3

Time history of current flow across a line of width w parallel to the y-axis for
the current sheet of Figure 4.2.

4.2 MAGNETIC FIELD ADJACENT TO THE CURRENT SHEET

In the previous section, we introduced the infinite current sheet lying in the -plane
and upon which a surface current flows with density given by

(4.4)

Our goal is to find the electromagnetic field due to this time-varying current distribu-
tion. In order to do this, we have to solve Faraday’s and Ampere’s circuital laws simul-
taneously. Since we have here only an -component of the current density independentx

JS = -JS0 cos vt ax

xy

w

z

y

x

JS

FIGURE 4.2

Infinite plane sheet in the -plane carrying surface
current of uniform density.

xy
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4.2 Magnetic Field Adjacent to the Current Sheet 109

of x and y, the equations of interest are

(4.5)

(4.6)

The quantity on the right side of (4.6) represents volume current density, whereas we
now have a surface current density. Furthermore, in the free space on either side of the
current sheet the current density is zero and the differential equations reduce to

(4.7)

(4.8)

To obtain the solutions for and on either side of the current sheet, we therefore
have to solve these two differential equations simultaneously.

To obtain a start on the solution, however, we need to consider the surface cur-
rent distribution and find the magnetic field immediately adjacent to the current sheet.
This is done by making use of Ampere’s circuital law in integral form given by

(4.9)

and applying it to a rectangular closed path abcda, as shown in Figure 4.4, with the
sides and lying immediately adjacent to the current sheet, that is, touching the
current sheet, and on either side of it. This choice of the rectangular path is not arbi-
trary but is intentionally chosen to achieve the task of finding the required magnetic
field. First, we note from (4.6) that an -directed current density gives rise to ax

cdab
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FIGURE 4.4

Rectangular path enclosing a portion of the current
on the infinite plane current sheet.
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110 Chapter 4 Wave Propagation in Free Space

magnetic field in the -direction. At the source of the current, this magnetic field must
also have a differential in the third direction, namely, the -direction. In fact, from sym-
metry considerations, we can say that on and must be equal in magnitude and
opposite in direction.

If we now consider the line integral of H around the rectangular path abcda, we
have

(4.10)

The second and the fourth integrals on the right side of (4.10) are, however, equal to
zero, since H is normal to the sides bc and da and furthermore and are infinitesi-
mally small. The first and third integrals on the right side of (4.10) are given by

Thus,

(4.11)

since .
We have just evaluated the left side of (4.9) for the particular problem under

consideration here. To complete the task of finding the magnetic field adjacent to the
current sheet, we now evaluate the right side of (4.9), which consists of two terms. The
second term is, however, zero, since the area enclosed by the rectangular path is zero in
view of the infinitesimally small thickness of the current sheet. The first term is not
zero, since there is a current flowing on the sheet. Thus, the first term is simply equal to
the current enclosed by the path abcda in the right-hand sense, that is, the current
crossing the width ab toward the negative -direction. This is equal to the surface cur-
rent density multiplied by the width , that is, . Thus, substituting for the
quantities on either side of (4.9), we have

or

(4.12)

It then follows that

(4.13)[Hy]cd = -
JS0

2
 cos vt

[Hy]ab =
JS0

2
 cos vt

2[Hy]ab(ab) = JS0 cos vt (ab)

JS0 cos vt (ab)ab
x

[Hy]cd = -[Hy]ab

Cabcda

 H # dl = [Hy]ab(ab) - [Hy]cd(cd) = 2[Hy]ab(ab)

 L
d

c

H # dl = -[Hy]cd(cd)

 L
b

a

H # dl = [Hy]ab(ab)

dabc
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4.3 Successive Solution of Maxwell’s Equations 111

Thus, immediately adjacent to the current sheet the magnetic field intensity has a

magnitude and is directed in the positive -direction on the side and
in the negative -direction on the side . This is illustrated in Figure 4.5. It is cau-
tioned that this result is true only for points right next to the current sheet, since if we
consider points at some distance from the current sheet, the second term on the right
side of (4.9) will no longer be zero.

z 6 0y

z 7 0y
JS0

2
 cos vt

z

z ! 0 z " 0

y

HH

x

JS

FIGURE 4.5

Magnetic field adjacent to and on either side of the
infinite plane current sheet.

*This section may be omitted without loss of continuity.

The technique we have used here for finding the magnetic field adjacent to the
time-varying current sheet by using Ampere’s circuital law in integral form is a stan-
dard procedure for finding the static electric and magnetic fields due to static charge
and current distributions, possessing certain symmetries, by using Gauss’ law for the
electric field and Ampere’s circuital law in integral forms, respectively, as we have al-
ready demonstrated in Chapter 2. Since for the static field case the terms involving
time derivatives are zero, Ampere’s circuital law simplifies to

Hence, if the current distribution were not varying with time, then in order to compute
the magnetic field we can choose a rectangular path of any width bc and it would still
enclose the same current, namely, the current on the sheet. Thus, the magnetic field
would be independent of the distance away from the sheet on either side of it. There
are several problems in static fields that can be solved in this manner. We shall not dis-
cuss these here; instead, we shall include a few cases in the problems for the interested
reader and shall continue with the derivation of the electromagnetic field due to our
time-varying current sheet in the following section.

4.3 SUCCESSIVE SOLUTION OF MAXWELL’S EQUATIONS*

In the preceding section, we found the magnetic field adjacent to the infinite plane
sheet of current introduced in Section 4.1. Now, to find the solutions for the fields
everywhere on either side of the current sheet, let us first consider the region .z 7 0

CC

 H # dl = LS

 J# dS
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112 Chapter 4 Wave Propagation in Free Space

In this region, the fields simultaneously satisfy the two differential equations (4.7) and
(4.8) and with the constraint that the magnetic field at is given by (4.12). To find
the solutions for these differential equations, we have a choice of starting with the
solution for given by (4.12) and solving them successively and repeatedly in a step-
by-step manner until the solutions satisfy both differential equations or of combining
the two differential equations into one and then solving the single equation subject to
the constraint at . Although it is somewhat longer and tedious, we shall use the
first approach in this section in order to obtain a feeling for the mechanism of inter-
action between the electric and magnetic fields. We shall consider the second and more
conventional approach in the following section.

To simplify the task of the repetitive solution of the two differential equations
(4.7) and (4.8), we shall employ the phasor technique. Thus, by letting

(4.14)

(4.15)

where Re stands for real part of and and are the phasors corresponding to
the time functions and , respectively, and replacing the time functions in
(4.7) and (4.8) by the corresponding phasor functions and by , we obtain the dif-
ferential equations for the phasor functions as

(4.16)

(4.17)

We also note that since (4.12) can be written as

the solution for the phasor at is given by

(4.18)

We start with (4.18) and solve (4.16) and (4.17) successively and repeatedly, and after
obtaining the final solutions for and , we put them in (4.14) and (4.15), respec-
tively, to obtain the solutions for the real fields.

Thus, starting with (4.18) and substituting it in (4.16), we get

Integrating both sides of this equation with respect to z, we have
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4.3 Successive Solution of Maxwell’s Equations 113

where is the constant of integration. This constant of integration must, however, be
equal to since the first term on the right side tends to zero as Thus,

(4.19)

Now, substituting (4.19) into (4.17), we obtain

(4.20)

We have thus obtained a second-order solution for , which, however, does not
satisfy (4.16) together with the solution for given by (4.19). Hence, we must continue
the step-by-step solution by substituting (4.20) into (4.16) and finding a higher-order
solution for , and so on. Thus, by substituting (4.20) into (4.16), we get

(4.21)

From (4.17), we then have
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114 Chapter 4 Wave Propagation in Free Space

Continuing in this manner, we will get infinite series expressions for and as
follows:

(4.23)

(4.24)

where we have introduced the notations

(4.25)

(4.26)

It is left to the student to verify that the two expressions (4.23) and (4.24) simultane-
ously satisfy the two differential equations (4.16) and (4.17). Now, noting that

and substituting into (4.23) and (4.24), we have

(4.27)

(4.28)

We now obtain the expressions for the real fields by putting (4.27) and (4.28) into
(4.14) and (4.15), respectively. Thus,

(4.29) = cos bz (C cos vt + D sin vt) +
h0JS0

2
 sin bz sin vt
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+
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+
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+
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+
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+
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+
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4.4 Solution by Wave Equation 115

(4.30)

where we have replaced the quantity by , in
which C and D are arbitrary constants to be determined. Making use of trigonometric
identities and proceeding further, we write (4.29) and (4.30) as

(4.31)

(4.32)

Equation (4.32) is the solution for that together with the solution for given
by (4.31) satisfies the two differential equations (4.7) and (4.8) and that reduces to
(4.12) for . Likewise, we can obtain the solutions for and for the region

by starting with given by (4.13) and proceeding in a similar manner. We
shall, however, proceed with the evaluation of the constants C and D in (4.31) and
(4.32). In order to do this, we first have to understand the meanings of the functions

and . We shall do this in Section 4.5.

4.4 SOLUTION BY WAVE EQUATION

In Section 4.3, we found the solutions to the two simultaneous differential equations
(4.7) and (4.8) by solving them successively and repeatedly in a step-by-step manner.
In this section, we shall consider an alternative and more conventional method by com-
bining the two equations into a single equation and then solving it. We recall that the
two simultaneous differential equations to be satisfied in the free space on either side
of the current sheet are

(4.33)

(4.34)
0Hy

0z
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0Ex

0t

0Ex
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2h0
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 cos (vt - bz) -
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4h0
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 +  
D
2

 sin (vt - bz) + D
2

 sin (vt + bz)
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4
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4
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 = 1 
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JS0

2
 cos bz cos vt

 = 1 
h0
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JS0

2
 cos bz Re [ejvt]

 Hy(z, t) = Ree -j
1 
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 [E–x]z = 0 sin bz ejvt +
JS0

2
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116 Chapter 4 Wave Propagation in Free Space

Differentiating (4.33) with respect to z and then substituting for from (4.34), we
obtain

or

(4.35)

We have thus eliminated from (4.33) and (4.34) and obtained a single second-order
partial differential equation involving only.

Equation (4.35) is known as the wave equation. A technique of solving this equa-
tion is the separation of variables technique. Since it is a differential equation involving
two variables, z and t, the technique consists of assuming that the required solution is
the product of two functions, one of which is a function of z only and the second is a
function of t only. Denoting these functions to be Z and T, respectively, we have

(4.36)

Substituting (4.36) into (4.35) and dividing throughout by , we obtain

(4.37)

In (4.37), the left side is a function of z only and the right side is a function of t only. In
order for this to be satisfied, they both must be equal to a constant. Hence, setting them
equal to a constant, say , we have

(4.38a)

(4.38b)

We have thus obtained two ordinary differential equations involving separately the two
variables z and t ; hence, the technique is known as the separation of variables technique.

The constant in (4.38a) and (4.38b) is not arbitrary, since for the case of the
sinusoidally time-varying current source the fields must also be sinusoidally time-
varying with the same frequency, although not necessarily in phase with the source.
Thus, the solution for T(t) must be of the form

(4.39)

where A and B are arbitrary constants to be determined. Substitution of (4.39) into
(4.38b) gives us . The solution for (4.38a) is then given by

(4.40) = A¿ cos bz + B¿ sin bz
 Z(z) = A¿ cos v1m0P0z + B¿ sin v1m0P0z

a2 = -v2

T(t) = A cos vt + B sin vt

a2

  
d2T

dt2 = a2T

  
d2Z
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1
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Hy
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02Ex
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a 0Hy
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0
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a 0Hy

0z
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0Ex

0t
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M04_RAO3333_1_SE_CHO4.QXD  4/9/08  1:18 PM  Page 116



4.4 Solution by Wave Equation 117

where and are arbitrary constants to be determined and we have defined

(4.41)

The solution for is then given by

(4.42)

The corresponding solution for can be obtained by substituting (4.42) into one of
the two equations (4.33) and (4.34). Thus, using (4.34), we get

Defining

(4.43)

we have

(4.44)

Equation (4.44) is the general solution for valid on both sides of the current
sheet. In order to deduce the arbitrary constants, we first recall that the magnetic field
adjacent to the current sheet is given by

(4.45)

Thus, for ,

or

C¿ = 0 and D¿ =
h0JS0

2

1
h0

 [-C¿ sin vt + D¿cos vt] =
JS0

2  cos vt

z 7 0

Hy = d JS0

2
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-
JS0

2
 cos vt for z = 0-

Hy

 - C¿ cos bz sin vt + D¿ cos bz cos vt] 

 Hy = 1
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b
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 Hy =
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Hy
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Ex
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118 Chapter 4 Wave Propagation in Free Space

giving us

(4.46)

(4.47)

Making use of trigonometric identities and proceeding further, we write (4.47) and
(4.46) as

(4.48)

(4.49)

Equation (4.49) is the solution for that together with the solution for given
by (4.48) satisfies the two differential equations (4.7) and (4.8) and that reduces to
(4.12) for . Similarly, we can obtain the solutions for and for the region

by using the value of to evaluate and in (4.44). We shall, however,
proceed with the evaluation of the constants C and D in (4.48) and (4.49). In order to
do this, we first have to understand the meanings of the functions and

. We shall do this in the following section.

4.5 UNIFORM PLANE WAVES

In the previous two sections, we derived the solutions for and , due to the infinite
plane sheet of sinusoidally time-varying uniform current density, for the region .
These solutions consist of the functions and , which are de-
pendent on both time and distance. Let us first consider the function . To
understand the behavior of this function, we note that for a fixed value of time it varies
in a cosinusoidal manner with the distance z. Let us therefore consider three values of
time, and , and examine the sketches of this function versus
z for these three times. By noting that

 for t = p

2v
,  cos (vt - bz) = cos ap

2
- bzb = sin bz

 for t = p

4v
,  cos (vt - bz) = cos ap

4
- bzb for t = 0,    cos (vt - bz) = cos (-bz) = cos bz

t = p>2vt = 0, t = p>4v,

cos (vt - bz)
sin (vt < bz)cos (vt < bz)

z 7 0
HyEx

sin (vt < bz)
cos (vt < bz)

D¿C¿[Hy]z = 0 -z 6 0
ExHyz = 0

ExHy

 +  
D

2h0
 sin (vt - bz) - D

2h0
 sin (vt + bz)

 Hy (z, t) =
2C + h0JS0

4h0
 cos (vt - bz) -

2C - h0JS0

4h0
 cos (vt + bz)

 +  
D
2

 sin (vt - bz) + D
2

 sin (vt + bz)

 Ex (z, t) =
2C + h0JS0

4
 cos (vt - bz) +

2C - h0JS0

4
 cos (vt + bz)

 Ex =
h0JS0

2
 sin bz sin vt + cos bz (C cos vt + D sin vt )

 Hy =
JS0

2
  cos bz cos vt + 1

h0
 sin bz (C sin vt - D cos vt )
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4.5 Uniform Plane Waves 119

we draw the sketches of the three functions as shown in Figure 4.6.

cos (vt # bz) 

b
pp

2b
3p
2b

5p
2b

2p
b

p

4vt $
p

2vt $t $ 0
1

0 z

FIGURE 4.6

Sketches of the function versus z for three values of .tcos (vt - bz)

It is evident from Figure 4.6 that the sketch of the function for is a
replica of the function for except that it is shifted by a distance of toward
the positive z-direction. Similarly, the sketch of the function for is a replica
of the function for except that it is shifted by a distance of toward the
positive z-direction. Thus as time progresses, the function shifts bodily to the right,
that is, toward increasing values of z. In fact, we can even find the velocity with which
the function is traveling by dividing the distance moved by the time elapsed. This
gives

which is the velocity of light in free space, denoted c. Thus, the function 
represents a traveling wave moving with a velocity toward the direction of
increasing z. The wave is also known as the positive going wave, or wave.

Similarly, by considering three values of time, , , and ,
for the function , we obtain the sketches shown in Figure 4.7. An
examination of these sketches reveals that represents a traveling wave
moving with a velocity toward the direction of decreasing values of z. The
wave is also known as the negative going wave, or wave. Since the sine functions
are cosine functions shifted in phase by , it follows that and

represent traveling waves moving in the positive and negative
z-directions, respectively.
sin (vt + bz)

sin (vt - bz)p>2 (-)
v>b cos (vt + bz)

cos (vt + bz)
t = p>2vt = p>4vt = 0

(+)
v>b cos (vt - bz)

 = 3 * 108
 m/s

 = 11m0P0
= 124p * 10- 7 * 10- 9>36p

 velocity =
p>b - p>2b
p>2v - 0

= v
b

= v

v1m0P0

p>2bt = 0
t = p>2vp>4bt = 0

t = p>4v
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120 Chapter 4 Wave Propagation in Free Space

Returning to the solutions for and given by (4.31) and (4.32) or (4.48) and
(4.49), we now know that these solutions consist of superpositions of traveling waves
propagating away from and toward the current sheet. In the region , however, we
have to rule out traveling waves propagating toward the current sheet, because such a
situation requires a source of waves to the right of the sheet or an object that reflects
the wave back toward the sheet. Thus, we have

which give us finally

(4.50)

Having found the solutions for the fields in the region , we can now consider
the solutions for the fields in the region . From our discussion of the functions

, we know that these solutions must be of the form , since
this function represents a traveling wave progressing in the negative z-direction, that is,
away from the sheet in the region . Recalling that the magnetic field adjacent to
the current sheet and to the left of it is given by

we get

(4.51a)Hy = -
JS0

2
 cos (vt + bz) for z 6 0

[Hy]z = 0 - = -  
JS0

2
 cos vt

z 6 0

cos (vt + bz)cos (vt < bz)
z 6 0

z 7 0

Ex =
h0JS0

2
 cos (vt - bz)

Hy =
JS0

2  cos (vt - bz)
s for z 7 0

2C - h0JS0 = 0 or C =
h0JS0

2

D = 0

z 7 0

HyEx

cos (vt % bz) 

b
pp

2b
3p
2b

5p
2b

2p
b

p

4vt $
p

2vt $
t $ 0

1

0 z

FIGURE 4.7

Sketches of the function cos versus z for three values of t.(vt + bz)
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4.5 Uniform Plane Waves 121

The corresponding can be obtained by simply substituting the result just obtained
for into one of the two differential equations (4.7) and (4.8). Thus using (4.7),
we obtain

(4.51b)

Combining (4.50) and (4.51), we find that the solution for the electromagnetic field due
to the infinite plane current sheet in the xy-plane characterized by

is given by

(4.52a)

(4.52b)

These results are illustrated in Figure 4.8, which shows sketches of the current density
on the sheet and the distance-variation of the electric and magnetic fields on either
side of the current sheet for a few values of t. It can be seen from these sketches that
the phenomenon is one of electromagnetic waves radiating away from the current
sheet to either side of it, in step with the time-variation of the current density on the
sheet.

The solutions that we have just obtained for the fields due to the time-varying
infinite plane current sheet are said to correspond to uniform plane electromagnetic
waves propagating away from the current sheet to either side of it. The terminology
arises from the fact that the fields are uniform (i.e., they do not vary with position) over
the . Thus, the phase of the fields, that is, the quantity , as
well as the amplitudes of the fields, is uniform over the . The mag-
nitude of the rate of change of phase with distance z for any fixed time is . The quan-
tity is therefore known as the phase constant. Since the velocity of propagation of the
wave, that is, , is the velocity with which a given constant phase progresses along
the z-direction, that is, along the direction of propagation, it is known as the phase
velocity and is denoted by the symbol . Thus,

(4.53)vp = v
b

vp

v>bb
b

planes z = constant
(vt ; bz)planes z = constant

 H = ;
JS0

2
 cos (vt < bz) ay for z ! 0

 E =
h0JS0

2
 cos (vt < bz) ax for z ! 0

JS = -JS0 cos vt ax

 =
h0JS0

2
 cos (vt + bz) for z 6 0

 Ex =
m0JS0

2
 
v

b
 cos (vt + bz)

 
0Ex

0z
= -

0By

0t
= -
m0JS0

2
 v sin (vt + bz)

Hy

Ex
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z

y

x

JS

z

y

x

x

JS

z

y

H

E E

H
E

H

H

H

H

E E

E

JS  $ # JS0 cos vt ax t $ 0, JS  $ # JS0ax

JS  $ # ax
JS0t $       ,p

4v 2

JS  $ 0t $       ,p
2v

FIGURE 4.8

Time history of uniform plane electromagnetic wave radiating away from an infinite plane current sheet
in free space.
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4.5 Uniform Plane Waves 123

The distance in which the phase changes by radians for a fixed time is . This
quantity is known as the wavelength and is denoted by the symbol . Thus,

(4.54)

Substituting (4.53) into (4.54), we obtain

or

(4.55)

Equation (4.55) is a simple relationship between the wavelength , which is a parameter
governing the variation of the field with distance for a fixed time, and the frequency f,
which is a parameter governing the variation of the field with time for a fixed value of z.
Since for free space , we have

(4.56)

Other properties of uniform plane waves evident from (4.52) are that the electric
and magnetic fields have components lying in the planes of constant phase and per-
pendicular to each other and to the direction of propagation. In fact, the cross product
of E and H results in a vector that is directed along the direction of propagation, as can
be seen by noting that

(4.57)

Finally, we note that the ratio of to is given by

(4.58)

The quantity , which is equal to , is known as the intrinsic impedance of free
space. Its value is given by

(4.59) = 120p Æ = 377 Æ

 h0 = B14p * 10- 72 H/m110- 9>36p2 F/m
= 21144p2 * 1022 H/F

1m0>P0h0

Ex

Hy
= e h0 for z 7 0, that is, for the 1+2 wave

-h0 for z 6 0, that is, for the 1-2 wave

HyEx

 = ; 
h0J

2
S0

4
 cos2(vt < bz) az    for z ! 0

 E : H = Exax : Hyay

 l in meters * f in MHz = 300
 l in meters * f in Hz = 3 * 108

vp = 3 * 108 m/s

l

lf = vp

l = 2p
v>vp

=
vp

f

l = 2p
b

l
2p>b2p
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124 Chapter 4 Wave Propagation in Free Space

Example 4.1

The electric field of a uniform plane wave is given by . Let
us identify the various parameters associated with the uniform plane wave.

We recognize that

Also, . From (4.58), and since the given field represents
a ( ) wave,

Example 4.2

An antenna array consists of two or more antenna elements spaced appropriately and excited
with currents having the appropriate amplitudes and phases in order to obtain a desired radia-
tion characteristic. To illustrate the principle of an antenna array, let us consider two infinite
plane parallel current sheets, spaced apart and carrying currents of equal amplitudes but out
of phase by , as given by the densities

and find the electric field due to the array of the two current sheets.
We apply the result given by (4.52) to each current sheet separately and then use superpo-

sition to find the required total electric field due to the array of the two current sheets. Thus, for
the current sheet in the plane, we have

E1 = µ h0JS0

2
 cos 1vt - bz2 ax for z 7  0

h0JS0

2
 cos 1vt + bz2 ax for z 6  0

z = 0

JS2 = -JS0 sin vt ax    z = l
4

JS1 = -JS0 cos vt ax    z = 0

p>2 l>4

H =
Ex

h0
ay = 10

377
 cos 13p * 108

 t - pz2 ay A/m

+
lf = vp = 2 * 1.5 * 108 = 3 * 108 m/s

 vp = v
b

= 3p * 108

p
= 3 * 108 m/s

 l = 2p
b

= 2 m

 b = p rad/m

 f = v

2p
= 1.5 * 108 Hz = 150 MHz

 v = 3p * 108 rad/s

E = 10 cos 13p * 108t - pz2 ax V/m
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4.5 Uniform Plane Waves 125

For the current sheet in the plane, we have

Now, using superposition, we find the total electric field due to the two current sheets to be

Thus, the total field is zero in the region , and hence there is no radiation toward that
side of the array. In the region the total field is twice that of the field due to a single sheet.
The phenomenon is illustrated in Figure 4.9, which shows sketches of the individual fields and

and the total field for a few values of t. The result that we have obtained here
for the total field due to the array of two current sheets, spaced apart and fed with currents of
equal amplitudes but out of phase by , is said to correspond to an endfire radiation pattern.

In Section 1.4, we introduced polarization of sinusoidally time-varying fields, which
is of relevance here in wave propagation. To extend the discussion, in the case of circular
and elliptical polarizations, since the circle or the ellipse can be traversed in one of two
opposite senses relative to the direction of the wave propagation, we talk of right-handed
or clockwise polarization and left-handed or counterclockwise polarization. The conven-
tion is that if in a given constant phase plane, the tip of the field vector of a circularly
polarized wave rotates with time in the clockwise sense as seen looking along the direc-
tion of propagation of the wave, the wave is said to be right circularly polarized. If the tip
of the field vector rotates in the counterclockwise sense, the wave is said to be left circu-
larly polarized. Similar considerations hold for elliptically polarized waves, which arise
due to the superposition of two linearly polarized waves in the general case.

For example, for a uniform plane wave propagating in the z-direction and having
the electric field,

(4.60)E = 10 sin 13p * 108t - pz2 ax + 10 cos 13p * 108t - pz2 ay V/m

+

p>2 l>4Ex = Ex1 + Ex2Ex2

Ex1

z 7 l>4 z 6 0

 = e h0JS0 cos 1vt - bz2 ax for z 7 l
4

h0JS0 sin vt sin bz ax for 0 6 z 6 l
4

0 for z 6 0

 E = E1 + E2

 = µ h0JS0

2
 cos 1vt - bz2 ax   for z 7 l

4

-
h0JS0

2
 cos 1vt + bz2 ax   for z 6 l

4

 = µ h0JS0

2
 sin avt - bz + p

2
b  ax   for z 7 l

4
h0JS0

2
 sin avt + bz - p

2
b  ax   for z 6 l

4

 E2 = µ h0JS0

2
 sin cvt - b az - l

4
b d ax for z 7 l

4
h0JS0

2
 sin cvt + b az - l

4
b d ax for z 6 l

4

z = l>4
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z

z $ 0

t $ 0Ex1

Ex2
Ex

z $ l
4

p
4v

z

z $ 0

Ex1

Ex2

Ex

z $ l
4

z

t $ 

p
2v

t $ 

Ex1

Ex2

Ex

FIGURE 4.9

Time history of individual fields and the total field due to an array of two infinite plane
parallel current sheets.

the two components of E are equal in amplitude, perpendicular, and out of phase by
90°. Therefore, the wave is circularly polarized. To determine if the polarization is
right-handed or left-handed, we look at the electric field vectors in the plane for
two values of time, and . These are shown in
Figure 4.10. As time progresses, the tip of the vector rotates in the counterclockwise
sense, as seen looking in the z-direction. Hence, the wave is left circularly polarized.+

t = 1
6 * 10- 8 s 13p * 108t = p>22t = 0

z = 0
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4.5 Uniform Plane Waves 127

Thus far, we have considered a source of single frequency. We found that wave
propagation in free space is characterized by a phase velocity equal to c

and intrinsic impedance , independent of frequency.
Let us now consider a nonsinusoidal excitation for the current sheet. Then, since the
propagation characteristics are the same for each frequency component of the nonsinu-
soidal excitation, the resulting fields at any given value of z will have the same shape as
that of the source with time, that is, they propagate without change in shape with time.
Thus, for an infinite plane current sheet of surface current density given by

(4.61)

the solution for the electromagnetic field is given by

(4.62a)

(4.62b)

The time variation of the electric field component in a given constant plane is
the same as the current density variation delayed by the time and multiplied by

. The time variation of the magnetic field component in a given constant plane
is the same as the current density variation delayed by and multiplied by ,
depending on . Using these properties, one can construct plots of the field com-
ponents versus time for fixed values of z and versus z for fixed values of t.

Example 4.3

Let us consider the function in (4.61) to be that given in Figure 4.11. We wish to find and
sketch (a) versus t for , (b) versus t for , (c) versus z for ,
and (d) versus z for .t = 2.5 msHy

t = 1 msExz = -450 mHyz = 300 mEx

JS1t2
z ! 0

;1
2ƒz ƒ>vp

z =h0>2 ƒz ƒ>vp

z =Ex

H1z, t2 = ;1
2

JSa t < z
vp
bay for z ! 0

E1z, t2 =
h0

2
JSa t < z

vp
bax  for z ! 0

JS1t2 = -JS1t2ax for z = 0

h0 1=  377 Æ21= 3 * 108 m/s2 vp

y
z

x

[E]t $ 0

[E]t $     & 10–8 s
1
6

FIGURE 4.10

For the determination of the sense of circular polarization
for the field of equation (4.60).

10 2

0.1

t, ms

JS , A/m

A

B

C D E

FIGURE 4.11

Plot of versus t for Example 4.3.JS
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1
0

(a)

2 3 4 5

#18.85

t, ms

18.85

A

B

C D E

[Ex]z $ 300 m, V/m

1
0

(b)

2 3 4 5

#0.05

t, ms

0.05

A

B

C D E

[Hy]z $ #450 m, A/m

#900 #600 #300

(d)

0 300 600 900

#0.05

0.05

[Hy]t $ 2.5 ms, A/m

A
A

B

B

C D E

CDE

#900 #600 #300

(c)

0 300 600 900
z, m

z, m

18.85

[Ex]t $ 1 ms, V/m

AA
BB

C

FIGURE 4.12

Plots of field components versus t for fixed values of z and versus z for fixed values of t for
Example 4.3.
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4.6 Poynting Vector and Energy Storage 129

(a) Since , the time delay corresponding to 300 m is . Thus, the plot
of versus t for is the same as that of multiplied by , or 188.5, and
delayed by , as shown in Figure 4.12(a).

(b) The time delay corresponding to 450 m is . Thus, the plot of versus t for
is the same as that of multiplied by and delayed by , as

shown in Figure 4.12(b).
(c) To sketch versus z for a fixed value of t, say, , we use the argument that a given value

of existing at the source at an earlier value of time, say, , travels away from the source
by the distance equal to times . Thus, at , the values of correspond-
ing to points A and B in Figure 4.11 move to the locations and ,
respectively, and the value of corresponding to point C exists right at the source. Hence,
the plot of versus z for is as shown in Figure 4.12(c). Note that points beyond
C in Figure 4.11 correspond to , and therefore they do not appear in the plot of
Figure 4.12(c).

(d) Using arguments as in part (c), we see that at , the values of corresponding to
points A, B, C, D, and E in Figure 4.11 move to the locations ,

, and , respectively, as shown in Figure 4.12(d). Note that the plot is an odd
function of z, since the factor by which is multiplied to obtain is , depending on

.

4.6 POYNTING VECTOR AND ENERGY STORAGE

In the preceding section, we found the solution for the electromagnetic field due to
an infinite plane current sheet situated in the plane. For a surface current
flowing in the negative x-direction, we found the electric field on the sheet to be
directed in the positive x-direction. Since the current is flowing against the force
due to the electric field, a certain amount of work must be done by the source of the
current in order to maintain the current flow on the sheet. Let us consider a rectan-
gular area of length and width on the current sheet, as shown in Figure 4.13.
Since the current density is , the charge crossing the width in time is

. The force exerted on this charge by the electric field is
given by

(4.63)

The amount of work required to be done against the electric field in displacing this
charge by the distance is

(4.64)

Thus, the power supplied by the source of the current in maintaining the surface current
over the area is

(4.65)
dw
dt

= JS0 Ex cos vt ¢x ¢y

¢x ¢y

dw = Fx ¢x = JS0 Ex cos vt dt ¢x ¢y

¢x

F = dq E = JS0 ¢y cos vt dt Exax

dq = JS0 ¢y cos vt dt
dt¢yJS0 cos vt

¢y¢x

z = 0

z " 0
;1

2HyJS0

;150 m;300 m
;450 mz = ;750 m, ;600 m,

Hyt = 2.5 ms

t 7 1 ms
t = 1 msEx 

Ex

z = ;150 mz = ;300 m
Ext = 1 msvp1t1 - t22 t2Ex

t1Ex

1.5 ms-1>2JS1t2z = -450 m
Hy1.5 ms

1 ms
h0>2JS(t)z = 300 mEx

1 msvp = c = 3 * 108 m/s
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130 Chapter 4 Wave Propagation in Free Space

Recalling that on the sheet is , we obtain

(4.66)

We would expect the power given by (4.66) to be carried by the electromagnetic
wave, half of it to either side of the current sheet. To investigate this, we note that the
quantity has the units of

which represents power density. Let us then consider the rectangular box enclosing the
area on the current sheet and with its sides almost touching the current sheet on
either side of it, as shown in Figure 4.13. Recalling that is given by (4.57) and
evaluating the surface integral of over the surface of the rectangular box, we
obtain the power flow out of the box as

(4.67) = h0 
J2

S0

2
 cos2 vt ¢x ¢y

 +  a -h0 
J2

S0

4
 cos2 vt azb # (- ¢x ¢y az2

 CE : H # dS = h0 
J2

S0

4
 cos2 vt az # ¢x ¢y az

E : H
E : H

¢x ¢y

 = newton-meters
second

* 11meter22 = watts1meter22
 
newtons
coulomb

*
amperes

meter
= newtons

coulomb
* coulomb

second-meter
* meter

meter

E : H

dw
dt

= h0 
J2

S0

2
 cos2 vt ¢x ¢y

h0
JS0

2
 cos vtEx

y

x

'x

'y

z

FIGURE 4.13

For the determination of power flow density
associated with the electromagnetic field.

M04_RAO3333_1_SE_CHO4.QXD  4/9/08  1:18 PM  Page 130



4.6 Poynting Vector and Energy Storage 131

This result is exactly equal to the power supplied by the current source as given by
(4.66).

We now interpret the quantity as the power flow density vector associated
with the electromagnetic field. It is known as the Poynting vector, after J. H. Poynting,
and is denoted by the symbol P. Although we have here introduced the Poynting vec-
tor by considering the specific case of the electromagnetic field due to the infinite
plane current sheet, the interpretation that is equal to the power flow
out of the closed surface S is applicable in the general case.

Example 4.4

Far from a physical antenna, that is, at a distance of several wavelengths from the antenna, the
radiated electromagnetic waves are approximately uniform plane waves with their constant
phase surfaces lying normal to the radial directions away from the antenna, as shown for two
directions in Figure 4.14. We wish to show from the Poynting vector and physical considerations
that the electric and magnetic fields due to the antenna vary inversely proportional to the radial
distance away from the antenna.

AS E : H # dS

E : H

Constant Phase
Surfaces

Antenna
ra

ra

rb

rb

FIGURE 4.14

Radiation of electromagnetic waves far from a physical antenna.

From considerations of electric and magnetic fields of a uniform plane wave, the Poynting
vector is directed everywhere in the radial direction indicating power flow radially away from
the antenna and is proportional to the square of the magnitude of the electric field intensity. Let
us now consider two spherical surfaces of radii and and centered at the antenna and insert a
cone through these two surfaces such that the vertex is at the antenna, as shown in Figure 4.14.
Then the power crossing the portion of the spherical surface of radius inside the cone must be
the same as the power crossing the portion of the spherical surface of radius inside the cone.
Since these surface areas are proportional to the square of the radius and since the surface inte-
gral of the Poynting vector gives the power, the Poynting vector must be inversely proportional
to the square of the radius. This in turn means that the electric field intensity and hence the mag-
netic field intensity must be inversely proportional to the radius.

ra
rb

rbra
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132 Chapter 4 Wave Propagation in Free Space

Thus, from these simple considerations we have established that far from a radiating
antenna the electromagnetic field is inversely proportional to the radial distance away from the
antenna. This reduction of the field intensity inversely proportional to the distance is known as
the free space reduction. For example, let us consider communication from earth to the moon. The
distance from the earth to the moon is approximately , or . Hence, the
free space reduction factor for the field intensity is or, in terms of decibels, the reduction
is , or 171.6 db.

Returning to the electromagnetic field due to the infinite plane current sheet, let
us consider the region . The magnitude of the Poynting vector in this region is
given by

(4.68)

The variation of with z for is shown in Figure 4.15. If we now consider a rec-
tangluar box lying between and planes and having dimensions 
and in the x- and y-directions, respectively, we would in general obtain a nonzero
result for the power flowing out of the box, since is not everywhere zero. Thus,
there is some energy stored in the volume of the box. We then ask ourselves the ques-
tion, “Where does this energy reside?” A convenient way of interpretation is to at-
tribute the energy storage to the electric and magnetic fields.

0Pz>0z
¢y

¢xz = z + ¢zz = z
t = 0Pz

Pz = ExHy = h0 
J2

S0

4
 cos2 1vt - bz2

z 7 0

20 log10 38 * 107
10- 7>38

38 * 107 m38 * 104 km

z

0

[Pz]t $ 0

p
b

2p
b

z z % 'z

4
S0h0 J2

FIGURE 4.15

For the discussion of energy storage in electric
and magnetic fields.

To discuss the energy storage in the electric and magnetic fields further, we
evaluate the power flow out of the rectangular box. Thus,

(4.69) =
0Pz

0z
 ¢v

 =
[Pz]z + ¢z - [Pz]z

¢z
 ¢x ¢y ¢z

 CS
 P # dS = [Pz]z + ¢z ¢x ¢y - [Pz]z ¢x ¢y

M04_RAO3333_1_SE_CHO4.QXD  4/9/08  1:18 PM  Page 132



Summary 133

where is the volume of the box. Letting equal and using (4.7) and (4.8), we
obtain

(4.70)

Equation (4.70), which is known as Poynting’s theorem, tells us that the power flow out
of the box is equal to the sum of the time rates of decrease of the quantities 
and . These quantities are obviously the energies stored in the electric and
magnetic fields, respectively, in the volume of the box. It then follows that the energy
densities associated with the electric and magnetic fields are and , respec-
tively. It is left to the student to verify that the quantities and do indeed
have the units . Once again, although we have obtained these results by consider-
ing the particular case of the uniform plane wave, they hold in general.

Summarizing our discussion in this section, we have introduced the Poynting vec-
tor as the power flow density associated with the electromagnetic field
characterized by the electric and magnetic fields, E and H, respectively. The surface in-
tegral of P over a closed surface always gives the correct result for the power flow out
of that surface. There is energy storage associated with the electric and magnetic fields
with the energy densities given by

(4.71)

and

(4.72)

respectively.

SUMMARY

In this chapter, we studied the principles of uniform plane wave propagation in free
space. Uniform plane waves are a building block in the study of electromagnetic wave
propagation. They are the simplest type of solutions resulting from the coupling of
the electric and magnetic fields in Maxwell’s curl equations. We learned that uniform
plane waves have their electric and magnetic fields perpendicular to each other and to

wm = 1
2

 m0H
2

we = 1
2

 P0E
2

P = E : H
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y ¢vb - 0
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134 Chapter 4 Wave Propagation in Free Space

the direction of propagation. The fields are uniform in the planes perpendicular to the
direction of propagation.

We obtained the uniform plane wave solution to Maxwell’s equations by consider-
ing an infinite plane current sheet in the xy-plane with uniform surface current den-
sity given by

(4.73)

and deriving the electromagnetic field due to the current sheet to be given by

(4.74a)

(4.74b)

In (4.74a) and (4.74b), cos represents wave motion in the positive z-direction,
whereas cos represents wave motion in the negative z-direction. Thus,
(4.74a) and (4.74b) correspond to waves propagating away from the current sheet to
either side of it. Since the fields are independent of x and y, they represent uniform
plane waves.

The quantity is the phase constant, that is, the magnitude of the
rate of change of phase with distance along the direction of propagation, for a fixed
time. The phase velocity that is, the velocity with which a particular constant phase
progresses along the direction of propagation, is given by

(4.75)

The wavelength , that is, the distance along the direction of propagation in which the
phase changes by radians, for a fixed time, is given by

(4.76)

The wavelength is related to the frequency f in a simple manner as given by

(4.77)

which follows from (4.75) and (4.76). The quantity is the intrinsic impe-
dance of free space. It is the ratio of the magnitude of E to the magnitude of H and has
a value of .

In the process of deriving the electromagnetic field due to the infinite plane cur-
rent sheet, we used two approaches and learned several useful techniques. These are
discussed in the following:

1. The determination of the magnetic field adjacent to the current sheet by employing
Ampere’s circuital law in integral form: This is a common procedure used in the computa-
tion of static fields due to charge and current distributions possessing certain symmetries.
In Chapter 5 we shall derive the boundary conditions, that is, the relationships between the
fields on either side of an interface between two different media, by applying Maxwell’s
equations in integral form to closed paths and surfaces straddling the boundary as we have
done here in the case of the current sheet.

120p Æ

h0 1= 2m0>P02vp = lf

l = 2p
b

2p
l

vp = v
b

vp,

b  1=  v1m0P02
1vt + bz2 1vt - bz2 H = ; 

JS 0

2
 cos 1vt < bz2 ay  for z ! 0

 E =
h0JS0

2
 cos 1vt < bz2 ax  for z ! 0

JS = -JS 0 cos vt ax A/m
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Review Questions 135

2. The successive, step-by-step solution of the two Maxwell’s curl equations, to obtain the
final solution consistent with the two equations, starting with the solution obtained for the
field adjacent to the current sheet: This technique provided us a feel for the phenomenon
of radiation of electromagnetic waves resulting from the time-varying current distribution
and the interaction between the electric and magnetic fields. We shall use this kind of
approach and the knowledge gained on wave propagation to obtain in Chapter 9 the
complete electromagnetic field due to an elemental antenna, which forms the basis for the
study of physical antennas.

3. The solution of wave equation by the separation of variables technique: This is the stan-
dard technique employed in the solution of partial differential equations involving multiple
variables.

4. The application of phasor technique for the solution of the differential equations: The
phasor technique is a convenient tool for analyzing sinusoidal steady-state problems as we
learned in Chapter 1.

We discussed (a) polarization of sinusoidally time-varying fields, as it pertains to uni-
form plane wave propagation, and (b) nonsinusoidal excitation giving rise to nonsinu-
soidal waves propagating in free space without change in shape, in view of phase
velocity independent of frequency.

We also learned that there is power flow and energy storage associated with the
wave propagation that accounts for the work done in maintaining the current flow on
the sheet. The power flow density is given by the Poynting vector

and the energy densities associated with the electric and magnetic fields are given,
respectively, by

The surface integral of the Poynting vector over a given closed surface gives the total
power flow out of the volume bounded by that surface.

Finally, we have augmented our study of uniform plane wave propagation in free
space by illustrating (a) the principle of an antenna array, and (b) the inverse distance
dependence of the fields far from a physical antenna.

 wm = 1
2

 m0H
2

 we = 1
2

 P0E
2

P = E : H

REVIEW QUESTIONS

4.1. What is a uniform plane wave?
4.2. Why is the study of uniform plane waves important?
4.3. How is the surface current density vector defined? Distinguish it from the volume cur-

rent density vector.
4.4. How do you find the current crossing a given line on a sheet of surface current?
4.5. Why is it that Ampere’s circuital law in integral form is used to find the magnetic field

adjacent to the current sheet of Figure 4.2?
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136 Chapter 4 Wave Propagation in Free Space

4.6. Why is the path chosen to evaluate the magnetic field in Figure 4.4 rectangular?
4.7. Outline the application of Ampere’s circuital law in integral form to find the magnetic

field adjacent to the current sheet of Figure 4.2.
4.8. Why is the displacement current enclosed by the rectangular path abcda in Figure 4.4

equal to zero?
4.9. How would you use Ampere’s circuital law in differential form to find the magnetic

field adjacent to the current sheet?
4.10. If the current density on the infinite plane current sheet of Figure 4.2 were directed in

the positive y-direction, what would be the directions of the magnetic field adjacent to
the current sheet and on either side of it?

4.11. Why are the results given by (4.12) and (4.13) for the magnetic field not valid for points
at some distance from the current sheet?

4.12. Under what conditions would a result obtained for the magnetic field adjacent to the infi-
nite plane current sheet of Figure 4.2 be valid at points distant from the current sheet? 

4.13. Briefly outline the procedure involved in the successive solution of Maxwell’s equations.
4.14. How does the technique of successive solution of Maxwell’s equations reveal the inter-

action between the electric and magnetic fields giving rise to wave propagation?
4.15. State the wave equation for the case of How is it derived?
4.16. Briefly outline the separation of variables technique of solving the wave equation.
4.17. Discuss how the function represents a traveling wave propagating in the

positive z-direction.
4.18. Discuss how the function represents a traveling wave propagating in the

negative z-direction.
4.19. Discuss how the solution for the electromagnetic field given by (4.52) corresponds to

that of a uniform plane wave.
4.20. Why is the quantity in known as the phase constant?
4.21. What is phase velocity? How is it related to the radian frequency and the phase con-

stant of the wave?
4.22. Define wavelength. How is it related to the phase constant?
4.23. What is the relationship between frequency, wavelength, and phase velocity? What is

the wavelength in free space for a frequency of 15 MHz?
4.24. What is the direction of propagation for a uniform plane wave having its electric field in

the negative y-direction and its magnetic field in the positive z-direction?
4.25. What is the direction of the magnetic field for a uniform plane wave having its electric

field in the positive z-direction and propagating in the positive x-direction?
4.26. What is intrinsic impedance? What is its value for free space?
4.27. Discuss the principle of an antenna array.
4.28. What should be the spacing and the relative phase angle of the current densities for an

array of two infinite, plane, parallel current sheets of uniform densities, equal in magni-
tude, to confine their radiation to the region between the two sheets?

4.29. Discuss polarization of sinusoidally time-varying fields, as it is relevant to propagation
of uniform plane waves.

4.30. Discuss the propagation of uniform plane waves arising from an infinite plane current
sheet of nonsinusoidally time-varying surface current density.

4.31. Why is a certain amount of work involved in maintaining current flow on the sheet of
Figure 4.2? How is this work accounted for?

cos 1vt - bz2b

cos 1vt +  bz2cos 1vt - bz2
E = Ex1z, t2ax.

M04_RAO3333_1_SE_CHO4.QXD  4/9/08  1:18 PM  Page 136



Problems 137

4.32. What is a Poynting vector? What is its physical significance?
4.33. What is the physical interpretation of the surface integral of the Poynting vector over a

closed surface?
4.34. Discuss how the fields far from a physical antenna vary inversely proportional to the

distance from the antenna.
4.35. Discuss the interpretation of energy storage in the electric and magnetic fields of a uni-

form plane wave.
4.36. What are the energy densities associated with the electric and magnetic fields?

PROBLEMS

4.1. An infinite plane sheet lying in the plane carries a current of uniform density
A/m. Find the currents crossing the following straight lines: (a) from (0, 0, 0)

to (0, 2, 0); (b) from (0, 0, 0) to (2, 0, 0); (c) from (0, 0, 0) to (2, 2, 0).
4.2. An infinite plane sheet lying in the plane carries a current of nonuniform density

A/m. Find the currents crossing the following straight lines: (a) from
(0, 0, 0) to (0, 1, 0); (b) from (0, 0, 0) to (0, , 0); (c) from (0, 0, 0) to (1, 1, 0).

4.3. An infinite plane sheet lying in the plane carries a current of uniform density

Find the currents crossing the following straight lines: (a) from (0, 0, 0) to (0, 2, 0);
(b) from (0, 0, 0) to (2, 0, 0); (c) from (0, 0, 0) to (2, 2, 0).

4.4. An infinite plane sheet lying in the plane carries a current of uniform density

Find the magnetic field intensities adjacent to the sheet and on either side of it. What is
the polarization of the field?

4.5. An infinite plane sheet lying in the plane carries a current of nonuniform density
. Find the magnetic field intensities adjacent to the current

sheet and on either side of it at (a) the point (0, 1, 0) and (b) the point (2, 2, 0).
4.6. Current flows with uniform density in the region . Using Ampere’s

circuital law in integral form and symmetry considerations, find H everywhere.
4.7. Current flows with nonuniform density in the region 

where is a constant. Using Ampere’s circuital law in integral form and symmetry con-
siderations, find H everywhere.

4.8. For an infinite plane sheet of charge lying in the -plane with uniform surface charge
density , find the electric field intensity on both sides of the sheet by using
Gauss’ law for the electric field in integral form and symmetry considerations.

4.9. Charge is distributed with uniform density in the region Using
Gauss’ law for the electric field in integral form and symmetry considerations, find E
everywhere.

4.10. Charge is distributed with nonuniform density in the region
where is a constant. Using Gauss’ law for the electric field in integral form

and symmetry considerations, find E everywhere.
4.11. Verify that expressions (4.23) and (4.24) simultaneously satisfy the differential equations

(4.16) and (4.17).

r0|x | 6 a,
r = r011 - |x |>a2 C/m3

|x | 6 a.r = r0 C/m3

rS0 C/m2
xy

J0

|z | 6 a,J= J0(1 - |z |>a2ax A/m2

|z | 6 aJ= J0ax A/m2

JS = -0.2e-|y| cos vt ax A/m
z = 0

JS = (-0.2 cos vt ax + 0.2 sin vt ay2 A/m

z = 0

JS = 1-0.1 cos vt ax + 0.1 sin vt ay2 A/m

z = 0
q

JS = -0.1e-|y| ax

z = 0

JS = -0.1 ax

z = 0
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138 Chapter 4 Wave Propagation in Free Space

4.12. For the infinite plane current sheet in the plane carrying surface current of density
where is a constant, find the magnetic field adjacent to the cur-

rent sheet. Then use the method of successive solution of Maxwell’s equations to show
that for ,

where C is a constant.
4.13. For the infinite plane current sheet in the plane carrying surface current of density

where is a constant, find the magnetic field adjacent to the cur-
rent sheet. Then use the method of successive solution of Maxwell’s equations to show
that for 

where C is a constant.
4.14. Verify that expressions (4.48) and (4.49) simultaneously satisfy the differential

equations (4.7) and (4.8), and that (4.49) reduces to (4.12) for .
4.15. Show that and are solutions of the wave equation. With

the aid of sketches, discuss the nature of these functions.
4.16. For arbitrary time-variation of the fields, show that the solutions for the differential

equations (4.33) and (4.34) are

where A and B are arbitrary constants. Discuss the nature of the functions 
.

4.17. In Problems 4.12 and 4.13, evaluate the constant C and obtain the solutions for and
in the region Then write the solutions for and in the region 

4.18. The electric field intensity of a uniform plane wave is given by

Find (a) the frequency, (b) the wavelength, (c) the phase velocity, (d) the direction of
propagation of the wave, and (e) the associated magnetic field intensity vector H.

4.19. An infinite plane sheet lying in the plane carries a surface current of density

Find the expressions for the electric and magnetic fields on either side of the sheet.

JS = 1-0.2 cos 6p * 108t ax - 0.1 cos 12p * 108t ax2 A/m

z = 0

E = 37.7 cos 16p * 108t + 2pz2 ay V/m.

z 6 0.HyExz 7 0.Hy
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 [Af1t - z1m0P02 - Bg1t +  z1m0P02] Ex = Af1t - z1m0P02 + Bg1t +  z1m0P02
1t + z1m0P0221t - z1m0P022 z = 0+

 Hy = a2C + h0JS0

4h0
b1t - z1m0P022 - a2C - h0JS0

4h0
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4
b1t - z1m0P022 + a2C - h0JS0

4
b1t + z1m0P022

z 7 0,

JS0JS = -JS0 t2 ax A/m,
z = 0

 Hy = a2C + h0JS0

4h0
b1t - z1m0P02 - a2C - h0JS0

4h0
b1t + z1m0P02

 Ex = a2C + h0JS0
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4
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4.20. An array is formed by two infinite plane parallel current sheets with the current densi-
ties given by

where is a constant. Find the electric field intensity in all three regions: (a) 
(b) (c) .

4.21. Determine the spacing, relative amplitudes, and phase angles of current densities for an
array of two infinite plane parallel current sheets required to obtain a radiation charac-
teristic such that the field radiated to one side of the array is twice that of the field radi-
ated to the other side of the array.

4.22. For two infinite plane parallel current sheets with the current densities given by

where is a constant, find the electric field in all three regions: (a) 
(b) (c) . Discuss the polarization of the field in all three regions.

4.23. For each of the following fields, determine if the polarization is right- or left-circular.
(a)
(b)

4.24. For each of the following fields, determine if the polarization is right- or left-elliptical.
(a)
(b)

4.25. Express the following uniform plane wave electric field as a superposition of right- and
left-circularly polarized fields:

4.26. Repeat Problem 4.25 for the following electric field:

4.27. Write the expression for the electric field intensity of a sinusoidally time-varying uni-
form plane wave propagating in free space and having the following characteristics:
(a) ; (b) direction of propagation is the -direction; and (c) polarization
is right circular with the electric field in the plane at having an -component
equal to and a -component equal to 

4.28. An infinite plane sheet lying in the plane carries a surface current of density
where is the periodic function shown in Figure 4.16. Find and

sketch (a) versus for (b) versus for and (c) versus for
t = 1 ms.

zExz = 150 m,tExz = 0+ ,tHy

JS1t2JS = -JS1t2ax,
z = 0

0.75E0.yE0

xt = 0z = 0
+zf = 100 MHz

E0ay cos 1vt - bz + p>62 E0ax cos 1vt - bz + p>32 -E0ax cos 1vt + bz2E0 cos 1vt - bx2 az - E0 sin 1vt - bx + p>42 ay

E0 cos 1vt + by2 ax - 2E0 sin 1vt + by2 az

E0 cos 1vt + bx2 ay + E0 sin 1vt + bx2 az

E0  cos 1vt - by2 az + E0 sin 1vt - by2 ax

z 7 l>20 6 z 6 l>2;
z 6 0;JS0

 JS2 = -JS0 cos vt ay  z = l
2

 JS1 = -JS0 cos vt ax  z = 0

z 7 l>20 6 z 6 l>2;
z 6 0;JS0

 JS2 = -JS0 cos vt ax  z = l
2

 JS1 = -JS0 cos vt ax  z = 0

FIGURE 4.16

For Problem 4.28.

t, ms

0.2

3210#1#2

JS , A/m
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140 Chapter 4 Wave Propagation in Free Space

4.29. The time-variation of the electric field intensity in the plane of a uniform
plane wave propagating away from an infinite plane current sheet lying in the 
plane is given by the periodic function shown in Figure 4.17. Find and sketch (a) 
versus for (b) versus for and (c) versus for t = 1

3 ms.zHyt = 0,zExz = 200 m,t
Ex

z = 0
z = 600 mEx

4.30. The time-variation of the electric field intensity in the plane of a uniform
plane wave propagating away from an infinite plane current sheet lying in the plane
is given by the aperiodic function shown in Figure 4.18. Find and sketch (a) versus for

(b) versus for and (c) versus for t = 2 ms.zHyt = 1 ms,zExz = 600 m,
tEx

z = 0
z = 300 mEx

FIGURE 4.17

For Problem 4.29.

FIGURE 4.18

For Problem 4.30.

Ex, V/m

75.4

#37.7
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#2 #1 0 1 25

3#
2
3#

1
3

4
3

7
3

4.31. Show that the time-average value of the magnitude of the Poynting vector given by
(4.68) is one-half its peak value. For an antenna radiating a time-average power of
150 kW, find the peak value of the electric field intensity at a distance of 100 km from
the antenna. Assume the antenna to be radiating equally in all directions.

4.32. The electric field of a uniform plane wave propagating in the positive -direction is
given by

where is a constant. (a) Find the corresponding magnetic field H. (b) Find the Poynting
vector.

4.33. Show that the quantities and have the units J/ .
4.34. Show that the energy is stored equally in the electric and magnetic fields of a traveling

wave.

m31
2 
m0H

21
2 
P0E

2

E0

E = E0 cos 1vt -  bz2 ax + E0 sin 1vt -  bz2 ay

z

Ex, V/m

t, ms

37.7

0 1 2 3
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