
Maxwell’s Equations
in Differential Form

In Chapter 2 we introduced Maxwell’s equations in integral form. We learned that the
quantities involved in the formulation of these equations are the scalar quantities, elec-
tromotive force, magnetomotive force, magnetic flux, displacement flux, charge, and
current, which are related to the field vectors and source densities through line, surface,
and volume integrals. Thus, the integral forms of Maxwell’s equations, while containing
all the information pertinent to the interdependence of the field and source quantities
over a given region in space, do not permit us to study directly the interaction between
the field vectors and their relationships with the source densities at individual points. It
is our goal in this chapter to derive the differential forms of Maxwell’s equations that
apply directly to the field vectors and source densities at a given point.

We shall derive Maxwell’s equations in differential form by applying Maxwell’s
equations in integral form to infinitesimal closed paths, surfaces, and volumes, in the
limit that they shrink to points. We will find that the differential equations relate the
spatial variations of the field vectors at a given point to their temporal variations and
to the charge and current densities at that point. In this process we shall also learn two
important operations in vector calculus, known as curl and divergence, and two related
theorems, known as Stokes’ and divergence theorems.

3.1 FARADAY’S LAW

We recall from the previous chapter that Faraday’s law is given in integral form by

(3.1)

where S is any surface bounded by the closed path C. In the most general case, the elec-
tric and magnetic fields have all three components (x, y, and z) and are dependent on
all three coordinates (x, y, and z) in addition to time (t). For simplicity, we shall, how-
ever, first consider the case in which the electric field has an x-component only, which
is dependent only on the z-coordinate, in addition to time. Thus,

(3.2)E = Ex(z, t)ax

CC
E # dl = -  

d
dtLS

B # dS
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72 Chapter 3 Maxwell’s Equations in Differential Form

To find the magnetic flux enclosed by C, let us consider the plane surface S
bounded by C. According to the right-hand screw rule, we must use the magnetic flux
crossing S toward the positive y-direction, that is, into the page, since the path C is tra-
versed in the clockwise sense. The only component of B normal to the area S is the
y-component.Also, since the area is infinitesimal in size, we can assume to be uniformBy

x

zy

!z

!x S C

(x, z) (x, z " !z)

(x " !x, z " !z)(x " !x, z)
FIGURE 3.1

Infinitesimal rectangular path lying in a plane parallel to the
xz-plane.

In other words, this simple form of time-varying electric field is everywhere directed in
the x-direction and it is uniform in planes parallel to the xy-plane.

Let us now consider a rectangular path C of infinitesimal size lying in a plane par-
allel to the xz-plane and defined by the points 
and as shown in Figure 3.1. According to Faraday’s law, the emf around
the closed path C is equal to the negative of the time rate of change of the magnetic
flux enclosed by C. The emf is given by the line integral of E around C. Thus, evaluat-
ing the line integrals of E along the four sides of the rectangular path, we obtain

(3.3a)

(3.3b)

(3.3c)

(3.3d)

Adding up (3.3a)–(3.3d), we obtain

(3.4)

In (3.3a)–(3.3d) and (3.4), and denote values of evaluated along the
sides of the path for which and respectively.z = z + ¢z,z = z

Ex[Ex]z + ¢z[Ex]z

 = 5[Ex]z + ¢z - [Ex]z6 ¢x

 CC
E # dl = [Ex]z + ¢z ¢x - [Ex]z ¢x

L
1x, z2
1x + ¢x, z2E # dl = - [Ex]z ¢x

L
(x + ¢x, z)

(x + ¢x, z + ¢z)
E # dl = 0 since Ez = 0

L
1x + ¢x, z + ¢z2
1x, z + ¢z2 E # dl = [Ex]z + ¢z ¢x

L
1x, z + ¢z2
1x, z2 E # dl = 0 since Ez = 0

1x + ¢x, z2, 1x + ¢x, z + ¢z2,1x, z2, 1x, z + ¢z2,
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3.1 Faraday’s Law 73

over the area and equal to its value at (x, z). The required magnetic flux is then
given by

(3.5)

Substituting (3.4) and (3.5) into (3.1) to apply Faraday’s law to the rectangular
path C under consideration, we get

or

(3.6)

If we now let the rectangular path shrink to the point (x, z) by letting and tend
to zero, we obtain

or

(3.7)

Equation (3.7) is Faraday’s law in differential form for the simple case of E given
by (3.2). It relates the variation of with z (space) at a point to the variation of 
with t (time) at that point. Since the above derivation can be carried out for any arbi-
trary point (x, y, z), it is valid for all points. It tells us in particular that a time-varying 
at a point results in an at that point having a differential in the z-direction. This is to
be expected since if this is not the case, around the infinitesimal rectangular
path would be zero.

Example 3.1

Given and it is known that E has an x-component only, let us find .
From (3.6), we have

We note that the uniform magnetic field gives rise to an electric field varying linearly with z.

Ex = vB0z sin vt

0Ex 
0z

 = -
0By 

0t
 = - 0

0t
 (B0 cos vt) = vB0 sin vt

ExB = B0 cos vt ay

AE # dl
Ex

By

ByEx

0Ex

0z
= -  

0By

0t

 Lim
¢x:0
¢z:0

[Ex]z + ¢z - [Ex]z

¢z
= - Lim

¢x:0
¢z:0

 

0[By]1x, z2
0t

¢z¢x

[Ex]z + ¢z - [Ex]z

¢z
= -  

0[By]1x, z2
0t

5[Ex]z + ¢z - [Ex]z6 ¢x = -  
d
dt

 5[By]1x, z2 ¢x ¢z6
LS

B # dS = [By]1x, z2 ¢x ¢z
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74 Chapter 3 Maxwell’s Equations in Differential Form

Proceeding further, we can verify this result by evaluating around the rectangular
path of Example 2.8.This rectangular path is reproduced in Figure 3.2.The required line integral
is given by

which agrees with the result of Example 2.8.

 = abB0v sin vt

 = 0 + [vB0b sin vt]a + 0 + 0

 +  L
0

 z = b
 [Ez]x = a dz + L

0

 x = a
 [Ex]z = 0 dx

 C C
 E # dl = L

b

 z = 0
 [Ez]x = 0 dz + L

a

 x = 0
 [Ex]z = b dx

A  E # dl

x

y
x = 0

x = a

z = 0
z = b

z

FIGURE 3.2

Rectangular path of Example 2.8.

We shall now proceed to generalize (3.7) for the arbitrary case of the electric
field having all three components (x, y, and z), each of them depending on all three
coordinates (x, y, and z), in addition to time (t), that is,

(3.8)

To do this, let us consider the three infinitesimal rectangular paths in planes parallel to
the three mutually orthogonal planes of the Cartesian coordinate system, as shown in
Figure 3.3. Evaluating around the closed paths abcda, adefa, and afgba, we get

(3.9a)

(3.9b) -  [Ez]1x + ¢x, y2 ¢z - [Ex]1y, z2 ¢x

 Cadefa
E # dl = [Ez]1x, y2 ¢z + [Ex]1y, z + ¢z2 ¢x

 -  [Ey]1x, z + ¢z2 ¢y - [Ez]1x, y2 ¢z

 Cabcda
E # dl = [Ey]1x, z2 ¢y + [Ez]1x, y + ¢y2 ¢z

AE # dl

E = Ex1x, y, z, t2ax + Ey1x, y, z, t2ay + Ez1x, y, z, t2az
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3.1 Faraday’s Law 75

In (3.9a)–(3.9c) the subscripts associated with the field components in the various
terms on the right sides of the equations denote the value of the coordinates that
remain constant along the sides of the closed paths corresponding to the terms. Now,
evaluating over the surfaces abcd, adef, and afgb, keeping in mind the right-
hand screw rule, we have

(3.10a)

(3.10b)

(3.10c)

Applying Faraday’s law to each of the three paths by making use of (3.9a)–(3.9c)
and (3.10a)–(3.10c) and simplifying, we obtain

(3.11a)

(3.11b) 
[Ex]1y, z + ¢z2 - [Ex]1y, z2

¢z
-

[Ez]1x + ¢x, y2 - [Ez]1x, y2
¢x

= -  

0[By]1x, y, z2
0t

 
[Ez]1x, y + ¢y2 - [Ez]1x, y2

¢y
-

[Ey]1x, z + ¢z2 - [Ey]1x, z2
¢z

= -  

0[Bx]1x, y, z2
0t

 Lafgb
B # dS = [Bz]1x, y, z2 ¢x ¢y

 Ladef
B # dS = [By]1x, y, z2 ¢z ¢x

 Labcd
B # dS = [Bx]1x, y, z2 ¢y ¢z

1B # dS

x

z

y

!z

!y

!x

d(x, y, z " !z)

a(x, y, z)

c(x, y " !y, z " !z)

g(x " !x, y " !y, z)

b(x, y " !y, z)

f(x " !x, y, z)

e(x " !x, y, z " !z)

FIGURE 3.3

Infinitesimal rectangular paths in three mutually orthogonal planes.

(3.9c) -  [Ex]1y + ¢y, z2 ¢x - [Ey]1x, z2 ¢y

 Cafgba
E # dl = [Ex]1y, z2 ¢x + [Ey]1x + ¢x, z2 ¢y

M03_RAO3333_1_SE_CHO3.QXD  4/9/08  1:17 PM  Page 75



76 Chapter 3 Maxwell’s Equations in Differential Form

(3.11c)

If we now let all three paths shrink to the point a by letting and tend to
zero, (3.11a)–(3.11c) reduce to

(3.12a)

(3.12b)

(3.12c)

Equations (3.12a)–(3.12c) are the differential equations governing the relationships be-
tween the space variations of the electric field components and the time variations of the
magnetic field components at a point. An examination of one of the three equations is
sufficient to reveal the physical meaning of these relationships. For example, (3.12a) tells
us that a time-varying at a point results in an electric field at that point having y- and
z-components such that their net right-lateral differential normal to the x-direction is
nonzero. The right-lateral differential of normal to the x-direction is its derivative in 
the or that is, or The right-lateral differen-
tial of normal to the x-direction is its derivative in the or that
is, .Thus, the net right-lateral differential of the y- and z-components of the elec-
tric field normal to the x-direction is , or . An
example in which the net right-lateral differential is zero, although the individual
derivatives are nonzero, is shown in Figure 3.4(a), whereas Figure 3.4(b) shows an ex-
ample in which the net right-lateral differential is nonzero.

(0Ez>0y - 0Ey>0z)(-0Ey>0z) + (0Ez>0y)
0Ez>0y

ay-direction,az : ax,Ez

-0Ey>0z.0Ey>0(-z)-az-direction,ay : ax,
Ey

Bx

 
0Ey

0x
-

0Ex

0y
= -  

0Bz

0t

 
0Ex

0z
-

0Ez

0x
= -  

0By

0t

 
0Ez

0y
-

0Ey

0z
= -  

0Bx

0t

¢z¢x, ¢y,

 
[Ey]1x + ¢x, z2 - [Ey]1x, z2

¢x
-

[Ex]1y + ¢y, z2 - [Ex]1y, z2
¢y

= -  

0[Bz]1x, y, z2
0t

z

y

Ey

Ey

Ey

Ey

Ez EzEzEzx

(a) (b)

FIGURE 3.4

For illustrating (a) zero, and (b) nonzero net right-lateral differential of 
and normal to the x-direction.Ez

Ey
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3.1 Faraday’s Law 77

Equations (3.12a)–(3.12c) can be combined into a single vector equation as
given by

(3.13)

This can be expressed in determinant form as

(3.14)

or as

(3.15)

The left side of (3.14) or (3.15) is known as the curl of E, denoted as (del cross E),
where (del) is the vector operator given by

(3.16)

Thus, we have

(3.17)

Equation (3.17) is Maxwell’s equation in differential form corresponding to Faraday’s
law. We shall discuss curl further in Section 3.3.

Example 3.2

Given find 
From the determinant expansion for the curl of a vector, we have

 = -2az

 = axc-  
0
0z

 1-x2 d + ayc 0
0z

 1y2 d + azc 0
0x

 1-x2 - 0
0y

 1y2 d
 ¥ : A = 4 ax ay az

0
0x

0
0y

0
0z

y -x 0

4¥ : A.A = yax - xay,

¥ : E = -  
0B
0t

¥ = ax 
0

0x
+ ay 

0
0y

+ az 
0
0z

¥
¥ : E

aax 
0

0x
+ ay 

0
0y

+ az 
0
0z
b : 1Ex ax + Ey ay + Ez az2 = -  

0B
0t

4 ax ay az

0
0x

0
0y

0
0z

Ex Ey Ez

4 = -  
0B
0t

 = -  
0Bx

0t
 ax -

0By

0t
 ay -

0Bz

0t
 az

 a 0Ez

0y
-

0Ey

0z
bax + a 0Ex

0z
-

0Ez

0x
bay + a 0Ey

0x
-

0Ex

0y
baz
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78 Chapter 3 Maxwell’s Equations in Differential Form

3.2 AMPERE’S CIRCUITAL LAW

In the previous section we derived the differential form of Faraday’s law from its inte-
gral form. In this section we shall derive the differential form of Ampere’s circuital law
from its integral form in a completely analogous manner. We recall from Section 2.4
that Ampere’s circuital law in integral form is given by

(3.18)

where S is any surface bounded by the closed path C. For simplicity, we shall first con-
sider the case in which the magnetic field has a y-component only, which is dependent
only on the z-coordinate, in addition to time. Thus,

(3.19)

In other words, this simple form of the time-varying magnetic field is everywhere directed
in the y-direction and is uniform in planes parallel to the xy-plane.

Let us now consider a rectangular path C of infinitesimal size lying in a plane par-
allel to the yz-plane and defined by the points 
and as shown in Figure 3.5. According to Ampere’s circuital law, the mmf
around the closed path C is equal to the total current enclosed by C. The mmf is given
by the line integral of H around C. Thus, evaluating the line integrals of H along the
four sides of the rectangular path, we obtain

(3.20) = -5[Hy]z + ¢z - [Hy]z6 ¢z

 = [Hy]z ¢y + 0 - [Hy]z + ¢z  ¢y + 0

 + L
(y, z + ¢z)

 (y + ¢y, z + ¢z)
 H # dl + L

(y, z)

 (y, z + ¢z)
 H # dl

 C C
 H # dl = L

(y + ¢y, z)

 (y, z)
 H # dl + L

(y + ¢y, z + ¢z)

 (y + ¢y, z)
 H # dl

1y + ¢y, z2, 1y + ¢y, z + ¢z2,1y, z2, 1y, z + ¢z2,
H = Hy(z, t)ay

CC
H # dl = LS

J# dS + d
dtLS

D # dS

x z

y

!z

!y S C

(y, z) (y, z " !z)

(y " !y, z " !z)(y " !y, z)

FIGURE 3.5

Infinitesimal rectangular path lying in a plane parallel
to the yz-plane.
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3.2 Ampere’s Circuital Law 79

To find the total current enclosed by C, we consider the plane surface S bounded by C.
According to the right-hand screw rule, we must find the current crossing S toward the
positive x-direction, that is, into the page, since the path is traversed in the clockwise
sense. This current consists of two parts:

(3.21a)

(3.21b)

where we have assumed that since the area is infinitesimal in size, and are uni-
form over the area and equal to their values at (y, z).

Substituting (3.20), (3.21a), and (3.21b) into (3.18) to apply Ampere’s circuital
law to the rectangular path C under consideration, we get

or

(3.22)

If we now let the rectangular path shrink to the point (y, z) by letting and tend
to zero, we obtain

or

(3.23)

Equation (3.23) is Ampere’s circuital law in differential form for the simple case of H
given by (3.19). It relates the variation of with z (space) at a point to the current
density and to the variation of with t (time) at that point. Since the above
derivation can be carried out for any arbitrary point (x, y, z), it is valid at all points.
It tells us in particular that a current density or a time-varying or a nonzero com-
bination of the two quantities at a point results in an at that point having a differ-
ential in the z-direction. This is to be expected since if this is not the case,
around the infinitesimal rectangular path would be zero.

A  H # dl
Hy

DxJx

DxJx

Hy

0Hy

0z
 = -Jx -

0Dx

0t

 Lim
¢y:0
¢z:0

 

[Hy]z + ¢z - [Hy]z

¢z
= - Lim

¢y:0
¢z:0

 cJx +
0Dx

0t
d

(y, z)

¢z¢y

[Hy]z + ¢z - [Hy]z

¢z
 = - cJx +

0Dx

0t
d

(y, z)

-5[Hy]z + ¢z - [Hy]z6 ¢y = cJx +
0 Dx

0 t
d

(y, z)
¢y ¢z

DxJx

d
dtLS

D # dS = d
dt

{[Dx](y, z)¢y ¢z} =
0[Dx](y, z)

0 t
 ¢y ¢z

LS
J# dS = [Jx](y, z)¢y ¢z
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80 Chapter 3 Maxwell’s Equations in Differential Form

Example 3.3

Given and it is known that Jis zero and B has a y-component only, let us find .
From (3.23), we have

We note that the electric field varying linearly with z gives rise to a magnetic field proportional
to . In Example 3.1, however, an electric field varying linearly with z was found to result from a
uniform magnetic field, according to Faraday’s law in differential form.The inconsistency of these
two results implies that neither the combination of and in Example 3.1 nor the combination
of and in this example simultaneously satisfies the two Maxwell’s equations in differential
form given by (3.7) and (3.23). The pair of and in Example 3.1 satisfies only (3.7), whereas
the pair of and in this example satisfies only (3.23). In the following chapter we shall find a
pair of solutions for and that simultaneously satisfies the two Maxwell’s equations.

Example 3.4

Let us consider the current distribution given by

as shown in Figure 3.6(a), where is a constant, and find the magnetic field everywhere.
Since the current density is independent of x and y, the field is also independent of x and y.

Also, since the current density is not a function of time, the field is static. Hence,
and we have

Integrating both sides with respect to z, we obtain

where C is the constant of integration.
The variation of with z is shown in Figure 3.6(b). Integrating with respect to z, that

is, finding the area under the curve of Figure 3.6(b) as a function of z, and taking its negative, we
obtain the result shown by the dashed curve in Figure 3.6(c) for From symmetry
considerations, the field must be equal and opposite on either side of the current region

Hence, we choose the constant of integration C to be equal to therebyJ0 a,-a 6 z 6 a.

-1z
- qJx dz.

-JxJx

Hy = -L
z

 - q
 Jx dz + C

0Hy

0z
= -Jx

10Dx>0t2 = 0,

J0

J = J0ax    for -a 6 z 6 a

ByEx

ByEx

ByEx

ByEx

ByEx

z2

 By = m0Hy = -vm0P0E0 
z2

2
 cos vt

 Hy = -vP0E0 
z2

2
 cos vt

 
0Hy

0z
= -Jx -

0Dx

0 t
= 0 - 0

0t
 (P0E0z sin vt) = -vP0E0z cos vt

ByE = E0z sin vt ax
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3.2 Ampere’s Circuital Law 81

obtaining the final result for as shown by the solid curve in Figure 3.6(c). Thus, the magnetic
field intensity due to the current distribution is given by

The magnetic flux density, B, is equal to m0 H.

H = c   J0 aay for z 6 -a
-J0 zay for -a 6 z 6 a
-J0 aay for z 7 a

Hy

z # $a z # az # 0

x

zy

Jx

J0

z
$a 0 a

J0a

z

J0ax

$J0a

$2J0a

$a a

(a) (c)

(b)

FIGURE 3.6

The determination of magnetic field due to a current distribution.

We now generalize (3.23) for the arbitrary case of a magnetic field having all
three components, each of them depending on all three coordinates, in addition to t,
that is,

(3.24)

We do this in exactly the same manner as for the case of Faraday’s law by considering
the three infinitesimal rectangular paths shown in Figure 3.3. Applying Ampere’s
circuital law to each of the three paths and simplifying, we obtain

(3.25a) 
[Hz]1x, y + ¢y2 - [Hz]1x, y2

¢y
-

[Hy]1x, z + ¢z2 - [Hy]1x, z2
¢z

= cJx +
0Dx

0t
d

(x, y, z)

H = Hx(x, y, z, t)ax + Hy(x, y, z, t)ay + Hz(x, y, z, t)az
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82 Chapter 3 Maxwell’s Equations in Differential Form

(3.25b)

(3.25c)

If we now let all three paths shrink to the point a by letting and tend to
zero, (3.25a)–(3.25c) reduce to

(3.26a)

(3.26b)

(3.26c)

Equations (3.26a)–(3.26c) are the differential equations governing the relationships
between the space variations of the magnetic field components, the components of the
current density and the time variations of the electric field components, at a point.
They can be interpreted physically in a manner analogous to the interpretation of
(3.12a)–(3.12c) in the case of Faraday’s law.

Equations (3.26a)–(3.26c) can be combined into a single vector equation in
determinant form as given by

(3.27)

or

(3.28)

Equation (3.28) is Maxwell’s equation in differential form corresponding to Ampere’s
circuital law. The quantity is known as the displacement current density. We shall
discuss curl further in the following section.

3.3 CURL AND STOKES’ THEOREM

In Sections 3.1 and 3.2 we derived the differential forms of Faraday’s and Ampere’s
circuital laws from their integral forms. These differential forms involve a new vector
quantity, namely, the curl of a vector. In this section we shall introduce the basic defin-
ition of curl and then present a physical interpretation of the curl. In order to do this,

0D>0t

¥ : H = J + 0D
0t

4 ax ay az

0
0x

0
0y

0
0z

Hx Hy Hz

4 = J + 0D
0t

0Hy

0x
-

0Hx

0y
= Jz +

0Dz

0t

0Hx

0z
-

0Hz

0x
= Jy +

0Dy

0t

0Hz

0y -
0Hy

0z
= Jx +

0Dx

0t

¢z¢x, ¢y,

 
[Hy]1x + ¢x, z2 - [Hy]1x, z2

¢x
-

[Hx]1y + ¢y, z2 - [Hx]1y, z2
¢y

= cJz +
0Dz

0t
d

(x, y, z)

 
[Hx]1y, z + ¢z2 - [Hx]1y, z2

¢z
-

[Hz]1x + ¢x, y2 - [Hz]1x, y2
¢x

= cJy +
0Dy

0t
d

(x, y, z)
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3.3 Curl and Stokes’ Theorem 83

let us, for simplicity, consider Ampere’s circuital law in differential form without the
displacement current density term, that is,

(3.29)

We wish to express at a point in the current region in terms of H at that point.
If we consider an infinitesimal surface at the point and take the dot product of both
sides of (3.29) with , we get

(3.30)

But is simply the current crossing the surface and according to Ampere’s
circuital law in integral form without the displacement current term,

(3.31)

where C is the closed path bounding Comparing (3.30) and (3.31), we have

or

(3.32)

where is the unit vector normal to and directed toward the side of advance of
a right-hand screw as it is turned around C. Dividing both sides of (3.32) by 
we obtain

(3.33)

The maximum value of and hence that of the right side of (3.33),
occurs when is oriented parallel to that is, when the surface is oriented
normal to the current density vector J. This maximum value is simply Thus,

(3.34)

Since the direction of is the direction of J, or that of the unit vector normal to
we can then write

(3.35)

Equation (3.35) is only approximate since (3.32) is exact only in the limit that tends
to zero. Thus,

(3.36)¥ : H = Lim
¢S:0

cAC H # dl

¢S
d

max
 an

¢S

¥ : H = cAC H # dl

¢S
d

max
 an

¢S,
¥ : H

ƒ ¥ : H ƒ = cAC H # dl

¢S
d

max

ƒ ¥ : H ƒ .
¢S¥ : H,an

1¥ : H2 # an,

1¥ : H2 # an = AC H # dl

¢S

¢S,
¢San

1¥ : H2 # ¢S an = CC
 H # dl

1¥ : H2 # ¢S = CC
 H # dl

¢S.

CC
 H # dl = J# ¢S

¢S,J# ¢S

(¥ : H) # ¢S = J# ¢S

¢S
¢S

¥ : H

¥ : H = J
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84 Chapter 3 Maxwell’s Equations in Differential Form

Equation (3.36) is the expression for at a point in terms of H at that point.
Although we have derived this for the H vector, it is a general result and, in fact, is
often the starting point for the introduction of curl.

Equation (3.36) tells us that in order to find the curl of a vector at a point in that
vector field, we first consider an infinitesimal surface at that point and compute the
closed line integral or circulation of the vector around the periphery of this surface by
orienting the surface such that the circulation is maximum. We then divide the circula-
tion by the area of the surface to obtain the maximum value of the circulation per unit
area. Since we need this maximum value of the circulation per unit area in the limit
that the area tends to zero, we do this by gradually shrinking the area and making sure
that each time we compute the circulation per unit area an orientation for the area that
maximizes this quantity is maintained. The limiting value to which the maximum circu-
lation per unit area approaches is the magnitude of the curl. The limiting direction to
which the normal vector to the surface approaches is the direction of the curl. The task
of computing the curl is simplified if we consider one component of the field at a time
and compute the curl corresponding to that component since then it is sufficient if we
always maintain the orientation of the surface normal to that component axis. In fact,
this is what we did in Sections 3.1 and 3.2, which led us to the determinant form of curl.

We are now ready to discuss the physical interpretation of the curl.We do this with
the aid of a simple device known as the curl meter.Although the curl meter may take sev-
eral forms, we shall consider one consisting of a circular disc that floats in water with a
paddle wheel attached to the bottom of the disc, as shown in Figure 3.7. A dot at the
periphery on top of the disc serves to indicate any rotational motion of the curl meter
about its axis, that is, the axis of the paddle wheel. Let us now consider a stream of rec-
tangular cross section carrying water in the z-direction, as shown in Figure 3.7(a). Let us
assume the velocity v of the water to be independent of height but increasing uniformly
from a value of zero at the banks to a maximum value at the center, as shown in Figure
3.7(b), and investigate the behavior of the curl meter when it is placed vertically at dif-
ferent points in the stream.We assume that the size of the curl meter is vanishingly small
so that it does not disturb the flow of water as we probe its behavior at different points.

Since exactly in midstream the blades of the paddle wheel lying on either side of
the center line are hit by the same velocities, the paddle wheel does not rotate.The curl
meter simply slides down the stream without any rotational motion, that is, with the
dot on top of the disc maintaining the same position relative to the center of the disc,
as shown in Figure 3.7(c). At a point to the left of the midstream the blades of the pad-
dle wheel are hit by a greater velocity on the right side than on the left side so that the
paddle wheel rotates in the counterclockwise sense.The curl meter rotates in the coun-
terclockwise direction about its axis as it slides down the stream, as indicated by the
changing position of the dot on top of the disc relative to the center of the disc, as
shown in Figure 3.7(d). At a point to the right of midstream, the blades of the paddle
wheel are hit by a greater velocity on the left side than on the right side so that the
paddle wheel rotates in the clockwise sense. The curl meter rotates in the clockwise di-
rection about its axis as it slides down the stream, as indicated by the changing position
of the dot on top of the disc relative to the center of the disc, as shown in Figure 3.7(e).

To relate the foregoing discussion of the behavior of the curl meter with the curl
of the velocity vector field of the water flow, we note that at a point in midstream, the

v0

¥ : H
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3.3 Curl and Stokes’ Theorem 85

circulation of the velocity vector per unit area in the plane normal to the axis of the
paddle wheel, that is, parallel to the surface of the stream, is zero and hence the com-
ponent of the curl along that axis, that is, in the x-direction, is zero. At points on either
side of midstream, however, the circulation per unit area is not zero in view of the ve-
locity differential along the y-direction. Hence, the x-component of the curl is nonzero
at these points. Furthermore, the x-component of the curl at points on the right side of
midstream is opposite in sign to that on the left side of midstream, since the velocity
differentials are opposite in sign. These properties are exactly similar to those of the
rotational motion of the curl meter.

If we now pick up the curl meter and insert it in the water with its axis parallel to
the surface of the stream, the curl meter does not rotate, because its blades are hit with
the same force on either side of its axis. This behavior of the curl meter is akin to the
property that the horizontal component of the curl of the velocity vector is zero, since
the velocity differential along the x-direction is zero.

x
z

y

(b)(a)

(c) (d) (e)

a/2 a0
y

vz

v0

a0

FIGURE 3.7

For explaining the physical interpretation of curl using the curl meter.
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86 Chapter 3 Maxwell’s Equations in Differential Form

The foregoing illustration of the physical interpretation of the curl of a vector
field can be used to visualize the behavior of electric and magnetic fields. Thus, for
example, from

we know that at a point in an electromagnetic field at which is nonzero, there
exists an electric field with nonzero circulation per unit area in the plane normal to the
vector . Similarly, from

we know that at a point in an electromagnetic field at which is nonzero,
there exists a magnetic field with nonzero circulation per unit area in the plane normal
to the vector .

We shall now derive a useful theorem in vector calculus, the Stokes’ theorem.
This relates the closed line integral of a vector field to the surface integral of the curl
of that vector field. To derive this theorem, let us consider an arbitrary surface S in a
magnetic field region and divide this surface into a number of infinitesimal surfaces

bounded by the contours respectively. Then, apply-
ing (3.32) to each one of these infinitesimal surfaces and adding up, we get

(3.37)

where are unit vectors normal to the surfaces chosen in accordance with the
right-hand screw rule. In the limit that the number of infinitesimal surfaces tends to
infinity, the left side of (3.37) approaches to the surface integral of over the sur-
face S.The right side of (3.37) is simply the closed line integral of H around the contour
C since the contributions to the line integrals from the portions of the contours interior
to C cancel, as shown in Figure 3.8. Thus, we get

(3.38)

Equation (3.38) is Stokes’ theorem. Although we have derived it by considering the H
field, it is general and is applicable for any vector field.

LS
1¥ : H2 # dS = CC

H # dl

¥ : H

¢Sjanj

a
j
1¥ : H2j # ¢Sj anj = CC1

H # dl + CC2

H # dl + Á

C1, C2, C3, Á ,¢S1, ¢S2, ¢S3, Á ,

J + 0D>0t

J + 0D>0t

¥ : H = J + 0D
0t

0B>0t

0B>0t

¥ : E = -  
0B
0t

C

FIGURE 3.8

For deriving Stokes’ theorem.
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3.3 Curl and Stokes’ Theorem 87

Example 3.5

Let us verify Stokes’ theorem by considering

and the closed path C shown in Figure 3.9.

A = yax - xay 

a

y

C

x2 + y2 = 1

O

b

c
x

FIGURE 3.9

A closed path for verifying Stokes’ theorem.

We first determine by evaluating the line integrals along the three segments of
the closed path. To do this, we first note that Then, from a to 

From b to 

From 

Thus,

Now, to evaluate by using Stokes’ theorem, we recall from Example 3.2 that

¥ : A = ¥ : (yax - xay) = -2az

AC A # dl

 = 0 + p
2

+ 0 = p
2

CC
A # dl = L

b

a
A # dl + L

c

b
A # dl + L

a

c
A # dl

L
a

c
A # dl = 0

c to a, y = 0, dy = 0, A # dl = 0

 L
c

 b 
 A # dl = L

1

 0
 

dx

 21 - x2  
= csin- 1 x d

0

1

= p
 2

  

 A # dl = 21 - x2  dx + x2 dx

 21 - x2  
= dx

 21 - x2  
 

2x dx + 2y dy = 0,    dy = - x dx
 y

= - x

 21 - x2  
 dx

c, x2 + y2 = 1, y = 21 - x2  

L
b

 a
 A # dl = 0

dx = 0, A # dl = 0
x = 0,b,A # dl = y dx - x dy.

AC A # dl
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88 Chapter 3 Maxwell’s Equations in Differential Form

For the plane surface S enclosed by C,

Thus,

thereby verifying Stokes’ theorem.

3.4 GAUSS’ LAW FOR THE ELECTRIC FIELD

Thus far we have derived Maxwell’s equations in differential form corresponding to
the two Maxwell’s equations in integral form involving the line integrals of E and H,
that is, Faraday’s law and Ampere’s circuital law, respectively. The remaining two
Maxwell’s equations in integral form, namely, Gauss’ law for the electric field and
Gauss’ law for the magnetic field, are concerned with the closed surface integrals of D
and B, respectively. We shall in this and the following sections derive the differential
forms of these two equations.

We recall from Section 2.5 that Gauss’ law for the electric field is given by

(3.39)

where V is the volume enclosed by the closed surface S. To derive the differential form
of this equation, let us consider a rectangular box of infinitesimal sides 
and defined by the six surfaces and

as shown in Figure 3.10, in a region of electric field

(3.40)D = Dx(x, y, z, t)ax + Dy(x, y, z, t)ay + Dz(x, y, z, t)az

z = z + ¢z,
y = y + ¢y, z = z,x = x, x = x + ¢x, y = y,

¢x, ¢y, and ¢z

CS
D # dS = LV

r dv

 = 2(area enclosed by C) = 2 * p
4

= p
2

 LS
(¥ : A) # dS = L

1

x = 0L
21-x2

y = 0
2 dx dy

(¥ : A) # dS = -2az # (-dx dy az) = 2 dx dy

dS = -dx dy az

x

z

y

!z

!y

!x

(x, y, z)

FIGURE 3.10

An infinitesimal rectangular box.
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3.4 Gauss’ Law for the Electric Field 89

and charge of density According to Gauss’ law for the electric field, the
displacement flux emanating from the box is equal to the charge enclosed by the box.
The displacement flux is given by the surface integral of D over the surface of the
box, which is comprised of six plane surfaces. Thus, evaluating the displacement flux
emanating out of the box over each of the six plane surfaces of the box, we have

(3.41a)

(3.41b)

(3.41c)

(3.41d)

(3.41e)

(3.41f)

Adding up (3.41a)–(3.41f), we obtain the total displacement flux emanating from the
box to be

(3.42)

Now the charge enclosed by the rectangular box is given by

(3.43)

where we have assumed to be uniform throughout the volume of the box and equal
to its value at (x, y, z), since the box is infinitesimal in volume.

Substituting (3.42) and (3.43) into (3.39) to apply Gauss’ law for the electric field
to the surface of the box under consideration, we get

or

(3.44)
[Dx]x + ¢x - [Dx]x

¢x
+

[Dy]y + ¢y - [Dy]y

¢y
+

[Dz]z +  ¢z - [Dz]z

¢z
= r

 + {[Dz]z + ¢z - [Dz]z} ¢x ¢y = r ¢x ¢y ¢z

{[Dx]x +  ¢x - [Dx]x} ¢y ¢z + {[Dy]y + ¢y - [Dy]y} ¢z ¢x

r

LV
r dv = r(x, y, z, t) # ¢x ¢y ¢z = r ¢x ¢y ¢z

 + {[Dz]z + ¢z - [Dz]z} ¢x ¢y

 + {[Dy]y + ¢y - [Dy]y} ¢z ¢x

 CS
D # dS =  {[Dx]x + ¢x - [Dx]x} ¢y ¢z

LD # dS = [Dz]z + ¢z ¢x ¢y  for the surface z = z + ¢z

LD # dS = -[Dz]z ¢x ¢y  for the surface z = z

LD # dS = [Dy]y + ¢y ¢z ¢x       for the surface y = y + ¢y

LD # dS = -[Dy]y ¢z ¢x  for the surface y = y

LD # dS = [Dx]x + ¢x ¢y ¢z  for the surface x = x + ¢x

LD # dS = -[Dx]x ¢y ¢z  for the surface x = x

r(x, y, z, t).
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90 Chapter 3 Maxwell’s Equations in Differential Form

If we now let the box shrink to the point (x, y, z) by letting tend to zero,
we obtain

or

(3.45)

Equation (3.45) tells us that the net longitudinal differential of the components of D,
that is, the algebraic sum of the derivatives of the components of D along their respec-
tive directions is equal to the charge density at that point. Conversely, a charge density
at a point results in an electric field, having components of D such that their net longi-
tudinal differential is nonzero. An example in which the net longitudinal differential
is zero although some of the individual derivatives are nonzero is shown in Fig-
ure 3.11(a). Figure 3.11(b) shows an example in which the net longitudinal differential
is nonzero. Equation (3.45) can be written in vector notation as

(3.46)

The left side of (3.46) is known as the divergence of D, denoted as (del dot D).
Thus, we have

(3.47)

Equation (3.47) is Maxwell’s equation in differential form corresponding to Gauss’ law
for the electric field. We shall discuss divergence further in Section 3.6.

¥ # D = r

¥ # D

aax 
0

0x
+ ay 

0
0y

+ az 
0
0z
b # 1Dx ax + Dy ay + Dz az2 = r

0Dx

0x
+

0Dy

0y
+

0Dz

0z
= r

 + Lim
¢z:0

 

[Dz]z + ¢z - [Dz]z

¢z
= Lim

¢x : 0
¢y : 0
¢z : 0

r

 Lim
¢x:0

 
[Dx]x + ¢x - [Dx]x

¢x
+ Lim

¢y:0
 

[Dy]y + ¢y - [Dy]y

¢y

¢x, ¢y, and ¢z

x

Dy

Dy

Dz

Dz

DxDx

z

y

(a)

Dy

Dy

Dz

Dz

DxDx

(b)

FIGURE 3.11

For illustrating (a) zero, and (b) nonzero net longitudinal differential of the
components of D.
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3.4 Gauss’ Law for the Electric Field 91

Example 3.6

Given find .
From the expansion for the divergence of a vector, we have

Example 3.7

Let us consider the charge distribution given by

as shown in Figure 3.12(a), where is a constant, and find the electric field everywhere.
Since the charge density is independent of y and z, the field is also independent of y and z,

thereby giving us and reducing Gauss’ law for the electric field to

0Dx

0x
= r

0Dy>0y = 0Dz>0z = 0

r0

r = e -r0 for -a 6 x 6 0
  r0 for 0 6 x 6 a

 = 3 + 1 - 1 = 3

 = 0
0x

 (3x) + 0
0y

 (y - 3) + 0
0z

 (2 - z)

¥ # A = aax 
0

0x
+ ay 

0
0y

+ az 
0

0z
b # [3xax + (y - 3)ay + (2 - z)az]

¥ # AA = 3xax + (y - 3)ay + (2 - z)az,

r
r0

$r0

x
$a

0 a

(b)

$r0a

x
$a

0
a

(c)

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

$r0 r0

x # $a x # 0

(a)

x # a
x

FIGURE 3.12

The determination of electric field due to a charge distribution.
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92 Chapter 3 Maxwell’s Equations in Differential Form

Integrating both sides with respect to x, we obtain

where C is the constant of integration.
The variation of with x is shown in Figure 3.12(b). Integrating with respect to x, that is,

finding the area under the curve of Figure 3.12(b) as a function of x, we obtain the result shown
in Figure 3.12(c) for . The constant of integration C is zero since the symmetry of equal
and opposite fields on the two sides of the charge distribution, considered as a superposition of a
series of thin slabs of charge, is already satisfied by the plot of Figure 3.12(c). Thus, the displace-
ment flux density due to the charge distribution is given by

The electric field intensity, E, is equal to .

3.5 GAUSS’ LAW FOR THE MAGNETIC FIELD

In the previous section we derived the differential form of Gauss’ law for the electric
field from its integral form. In this section we shall derive the differential form of
Gauss’ law for the magnetic field from its integral form.We recall from Section 2.6 that
Gauss’ law for the magnetic field in integral form is given by 

(3.48)

where S is any closed surface. This equation states that the magnetic flux emanating
from a closed surface is zero. Thus, considering an infinitesimal rectangular box as
shown in Figure 3.10 in a region of magnetic field

(3.49)

and evaluating the magnetic flux emanating out of the box in a manner similar to that
of the evaluation of the displacement flux in the previous section, and substituting in
(3.48), we obtain

(3.50)

Dividing (3.50) on both sides by and letting and tend to zero,
thereby shrinking the box to the point (x, y, z), we obtain

Lim
¢x:0

[Bx]x+¢x - [Bx]x

¢x
+ Lim

¢y:0

[By]y+¢y - [By]y

¢y
+ Lim

¢z:0

[Bz]z+¢z - [Bz]z

¢z
= 0

¢z¢x, ¢y,¢x ¢y ¢z

 + {[Bz]z+¢z - [Bz]z} ¢x ¢y = 0
 {[Bx]x + ¢x - [Bx]x}¢y ¢z + {[By]y + ¢y - [By]y} ¢z ¢x

B = Bx(x, y, z, t)ax + By(x, y, z, t)ay + Bz(x, y, z, t)az

CS
B # dS = 0

D>P0

D = d 0 for x 6 -a
-r0(x + a)ax for -a 6 x 6 0
r0(x - a)ax for 0 6 x 6 a
0 for x 7 a

1x
- q  r dx

rr

Dx = L
x

- q
r dx + C
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3.6 Divergence and the Divergence Theorem 93

or

(3.51)

Equation (3.51) tells us that the net longitudinal differential of the components of B is
zero. In vector form it is given by

(3.52)

Equation (3.52) is Maxwell’s equation in differential form corresponding to Gauss’ law
for the magnetic field. We shall discuss divergence further in the following section.

Example 3.8

Determine if the vector can represent a magnetic field B.
From (3.52), we note that a given vector can be realized as a magnetic field B if its diver-

gence is zero. For 

Hence, the given vector can represent a magnetic field B.

3.6 DIVERGENCE AND THE DIVERGENCE THEOREM

In Sections 3.4 and 3.5 we derived the differential forms of Gauss’ laws for the electric
and magnetic fields from their integral forms. These differential forms involve a new
quantity, namely, the divergence of a vector. The divergence of a vector is a scalar as
compared to the vector nature of the curl of a vector. In this section we shall introduce
the basic definition of divergence and then present a physical interpretation for the
divergence. In order to do this, let us consider Gauss’ law for the electric field in differ-
ential form, that is,

(3.53)

We wish to express at a point in the charge region in terms of D at that point. If
we consider an infinitesimal volume at the point and multiply both sides of (3.53)
by we get

(3.54)

But is simply the charge contained in the volume and according to Gauss’ law
for the electric field in integral form,

(3.55)CS
D # dS = r ¢v

¢v,r ¢v

1¥ # D2 ¢v = r ¢v

¢v,
¢v

¥ # D

¥ # D = r

¥ # A = 0
0x

(y) + 0
0y

(-x) + 0
0z

(0) = 0

A = yax - xay,

A = yax - xay

§ # B = 0

0Bx

0x
+

0By

0y
+

0Bz

0z
= 0
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94 Chapter 3 Maxwell’s Equations in Differential Form

where S is the closed surface bounding Comparing (3.54) and (3.55), we have

(3.56)

Dividing both sides of (3.56) by we obtain

(3.57)

Equation (3.57) is only approximate since (3.56) is exact only in the limit that tends
to zero. Thus,

(3.58)

Equation (3.58) is the expression for at a point in terms of D at that point.Although
we have derived this for the D vector, it is a general result and, in fact, is often the starting
point for the introduction of divergence.

Equation (3.58) tells us that in order to find the divergence of a vector at a point
in that vector field, we first consider an infinitesimal volume at that point and compute
the surface integral of the vector over the surface bounding that volume, that is, the
outward flux of the vector field emanating from that volume. We then divide the flux
by the volume to obtain the flux per unit volume. Since we need this flux per unit
volume in the limit that the volume tends to zero, we do this by gradually shrinking the
volume.The limiting value to which the flux per unit volume approaches is the value of
the divergence of the vector field at the point to which the volume is shrunk.

We are now ready to discuss the physical interpretation of the divergence.To sim-
plify this task, we shall consider the differential form of the law of conservation of
charge given in integral form by (2.39), or

(3.59)

where S is the surface bounding the volume V. Applying (3.59) to an infinitesimal vol-
ume we have

or

(3.60)

Now taking the limit on both sides of (3.60) as tends to zero, we obtain

(3.61)Lim
¢v:0

AJ# dS
¢v

= Lim
¢v:0

-
0r
0t

¢v

AS J# dS

¢v
= -

0r
0t

CS
J# dS = - d

dt
(r ¢v) = -

0r
0t

¢v

¢v,

CS
J# dS = - d

dtLV
r dv

¥ # D

¥ # D = Lim
¢v:0

 
AS D # dS

¢v

¢v

¥ # D = AS D # dS

¢v

¢v,

1¥ # D2 ¢v = CS
D # dS

¢v.
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3.6 Divergence and the Divergence Theorem 95

or

(3.62)

or

(3.63)

Equation (3.63), which is the differential form of the law of conservation of charge, is
familiarly known as the continuity equation. It tells us that the divergence of the cur-
rent density vector at a point is equal to the time rate of decrease of the charge density
at that point.

Let us now investigate three different cases: (a) positive value, (b) negative value,
and (c) zero value of the time rate of decrease of the charge density at a point, that is,
the divergence of the current density vector at that point. We shall do this with the aid
of a simple device that we shall call the divergence meter. The divergence meter can be
imagined to be a tiny, elastic balloon enclosing the point and that expands when hit by
charges streaming outward from the point and contracts when acted upon by charges
streaming inward toward the point. For case (a), that is, when the time rate of decrease
of the charge density at the point is positive, there is a net amount of charge streaming
out of the point in a given time, resulting in a net current flow outward from the point
that will make the imaginary balloon expand. For case (b), that is, when the time rate of
decrease of the charge density at the point is negative or the time rate of increase of
the charge density is positive, there is a net amount of charge streaming toward the
point in a given time, resulting in a net current flow toward the point and the imaginary
balloon will contract. For case (c), that is, when the time rate of decrease of the charge
density at the point is zero, the balloon will remain unaffected since the charge is
streaming out of the point at exactly the same rate as it is streaming into the point.
These three cases are illustrated in Figures 3.13(a), (b), and (c), respectively.

¥ # J +  
0r
0t

= 0

¥ # J = -  
0r
0t

(b)(a) (c)

FIGURE 3.13

For explaining the physical interpretation of divergence using the
divergence meter.

Generalizing the foregoing discussion to the physical interpretation of the diver-
gence of any vector field at a point, we can imagine the vector field to be a velocity
field of streaming charges acting upon the divergence meter and obtain in most cases a
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96 Chapter 3 Maxwell’s Equations in Differential Form

qualitative picture of the divergence of the vector field. If the divergence meter ex-
pands, the divergence is positive and a source of the flux of the vector field exists at
that point. If the divergence meter contracts, the divergence is negative and a sink of
the flux of the vector field exists at that point. If the divergence meter remains unaf-
fected, the divergence is zero, and neither a source nor a sink of the flux of the vector
field exists at that point. Alternatively, there can exist at the point pairs of sources and
sinks of equal strengths.

We shall now derive a useful theorem in vector calculus, the divergence theorem.
This relates the closed surface integral of the vector field to the volume integral of the
divergence of that vector field. To derive this theorem, let us consider an arbitrary vol-
ume V in an electric field region and divide this volume into a number of infinitesimal
volumes bounded by the surfaces respectively. Then,
applying (3.56) to each one of these infinitesimal volumes and adding up, we get

(3.64)

In the limit that the number of the infinitesimal volumes tends to infinity, the left side
of (3.64) approaches to the volume integral of over the volume V. The right side of
(3.64) is simply the closed surface integral of D over S, since the contribution to the
surface integrals from the portions of the surfaces interior to S cancel, as shown in
Figure 3.14. Thus, we get

(3.65)

Equation (3.65) is the divergence theorem.Although we have derived it by considering
the D field, it is general and is applicable for any vector field.

LV
1¥ # D2 dv = CS

D # dS

¥ # D

a
j
1¥ # D2j ¢vj = CS1

D # dS + CS2

D # dS + Á

S1, S2, S3, Á ,¢v1, ¢v2, ¢v3, Á ,

S

FIGURE 3.14

For deriving the divergence theorem.
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3.6 Divergence and the Divergence Theorem 97

Example 3.9

Let us verify the divergence theorem by considering

and the closed surface of the box bounded by the planes and

We first determine by evaluating the surface integrals over the six surfaces of the
rectangular box. Thus for the surface 

For the surface 

For the surface 

For the surface 

For the surface 

For the surface 

LA # dS = L
2

y = 0L
1

x = 0
-dx dy = -2

A # dS = -dx dy

A = 3xax + (y - 3)ay - az, dS = dx dy az

z = 3,

LA # dS = L
2

y = 0L
1

x = 0
-2 dx dy = -4

A # dS = -2 dx dy

A = 3xax + (y - 3)ay + 2az, dS = -dx dy az

z = 0,

LA # dS = L
1

x = 0L
3

z = 0
-dz dx = -3

A # dS = -dz dx

A = 3xax - ay + (2 - z)az, dS = dz dx ay

y = 2,

LA # dS = L
1

x =  0L
3

z =  0
 3 dz dx = 9

A # dS = 3 dz dx

A = 3xax - 3ay + (2 - z)az, dS = -dz dx ay

y = 0,

LA # dS = L
3

z =  0L
2

y =  0
 3 dy dz = 18

A # dS = 3 dy dz

A = 3ax + (y - 3)ay + (2 - z)az, dS = dy dz ax

x = 1,

 LA # dS = 0

 A # dS = 0

A = (y - 3)ay + (2 - z)az, dS = -dy dz ax

x = 0,
AS A # dS

z = 3.
z = 0,y = 2,y = 0,x = 1,x = 0,

A = 3xax + (y - 3)ay + (2 - z)az
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98 Chapter 3 Maxwell’s Equations in Differential Form

Thus,

Now, to evaluate by using the divergence theorem, we recall from Example 3.6
that

For the volume enclosed by the rectangular box,

thereby verifying the divergence theorem.

SUMMARY

We have in this chapter derived the differential forms of Maxwell’s equations from
their integral forms, which we introduced in the previous chapter. For the general case
of electric and magnetic fields having all three components (x, y, z), each of them
dependent on all coordinates (x, y, z), and time (t), Maxwell’s equations in differential
form are given as follows in words and in mathematical form.

Faraday’s law. The curl of the electric field intensity is equal to the negative of the
time derivative of the magnetic flux density, that is,

(3.66)

Ampere’s circuital law. The curl of the magnetic field intensity is equal to the sum of
the current density due to flow of charges and the displacement current density, which
is the time derivative of the displacement flux density, that is,

(3.67)

Gauss’ law for the electric field. The divergence of the displacement flux density is
equal to the charge density, that is,

(3.68)

Gauss’ law for the magnetic field. The divergence of the magnetic flux density is
equal to zero, that is,

(3.69)¥ # B = 0

¥ # D = r

¥ : H = J + 0D
0t

¥ : E = - 0B
0t

L(¥ # A) dv = L
3

z = 0L
2

y = 0L
1

x = 0
 3 dx dy dz = 18

¥ # A = ¥ # [3xax + (y - 3)ay + (2 - z)az] = 3

AS A # dS

CS
A # dS = 0 + 18 + 9 - 3 - 4 - 2 = 18
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Auxiliary to (3.66)–(3.69), the continuity equation is given by

(3.70)

This equation, which is the differential form of the law of conservation of charge, states
that the sum of the divergence of the current density due to flow of charges and the time
derivative of the charge density is equal to zero. Also, we recall that

(3.71)

(3.72)

which relate D and H to E and B, respectively, for free space.
We have learned that the basic definitions of curl and divergence, which have en-

abled us to discuss their physical interpretations with the aid of the curl and divergence
meters, are

Thus, the curl of a vector field at a point is a vector whose magnitude is the circulation
of that vector field per unit area with the area oriented so as to maximize this quantity
and in the limit that the area shrinks to the point. The direction of the vector is normal
to the area in the aforementioned limit and in the right-hand sense. The divergence of
a vector field at a point is a scalar quantity equal to the net outward flux of that vector
field per unit volume in the limit that the volume shrinks to the point. In Cartesian
coordinates the expansions for curl and divergence are

Thus, Maxwell’s equations in differential form relate the spatial variations of the field
vectors at a point to their temporal variations and to the charge and current densities
at that point.

 ¥ # A =
0Ax

0x
+

0Ay

0y
+

0Az

0z

 = a 0Az

0y
-

0Ay

0z
bax + a 0Ax

0z
-

0Az

0x
bay + a 0Ay

0x
-

0Ax

0y
baz

 ¥ : A = 4 ax ay az

0
0x

0
0y

0
0z

Ax Ay Az

4

 ¥ # A = Lim
¢v:0

 
AS A # dS

¢v

 ¥ : A = Lim
¢S:0

cAC A # dl

¢S
d

max
 an

 H = B
m0

 D = P0 E

¥ # J +  
0r
0t

= 0
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100 Chapter 3 Maxwell’s Equations in Differential Form

We have also learned two theorems associated with curl and divergence. These
are the Stokes’ theorem and the divergence theorem given, respectively, by

and

Stokes’ theorem enables us to replace the line integral of a vector around a closed path
by the surface integral of the curl of that vector over any surface bounded by that
closed path, and vice versa. The divergence theorem enables us to replace the surface
integral of a vector over a closed surface by the volume integral of the divergence of
that vector over the volume bounded by the closed surface, and vice versa.

In Chapter 2 we learned that all Maxwell’s equations in integral form are not
independent. Since Maxwell’s equations in differential form are derived from their
integral forms, it follows that the same is true for these equations. In fact, by noting that
(see Problem 3.32),

(3.73)

and applying it to (3.66), we obtain

(3.74)

Similarly, applying (3.73) to (3.67), we obtain

Using (3.70), we then have

(3.75)¥ # D - r = constant with time

 
0
0t

 (¥ # D - r) = 0

-
0r
0t

+ 0
0t

 (¥ # D) = 0

¥ # J + 0
0t

(¥ # D) = 0

¥ # aJ + 0D
0t
b = ¥ # ¥ : H = 0

¥ # B = constant with time

0
0t

 (¥ # B) = 0

¥ # a- 0B
0t
b = ¥ # ¥ : E = 0

¥ # ¥ : A K 0

 CS
A # dS = LV

1¥ # A2 dv

 CC
A # dl = LS

1¥ : A2 # dS
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Since for any given point in space, the constants on the right sides of (3.74) and (3.75)
can be made equal to zero at some instant of time, it follows that they are zero forever,
giving us (3.69) and (3.68), respectively. Thus (3.69) follows from (3.66), whereas (3.68)
follows from (3.67) with the aid of (3.70).

Finally, for the simple, special case in which

the two Maxwell’s curl equations reduce to

(3.76)

(3.77)

In fact, we derived these equations first and then the general equations (3.66) and (3.67).
We will be using (3.76) and (3.77) in the following chapters to study the phenomenon of
electromagnetic wave propagation resulting from the interdependence between the
space-variations and time-variations of the electric and magnetic fields.

In fact, Maxwell’s equations in differential form lend themselves well for a quali-
tative discussion of the interdependence of time-varying electric and magnetic fields
giving rise to the phenomenon of electromagnetic wave propagation. Recognizing that
the operations of curl and divergence involve partial derivatives with respect to space
coordinates, we observe that time-varying electric and magnetic fields coexist in space,
with the spatial variation of the electric field governed by the temporal variation of the
magnetic field in accordance with (3.66), and the spatial variation of the magnetic field
governed by the temporal variation of the electric field in addition to the current den-
sity in accordance with (3.67). Thus, if in (3.67) we begin with a time-varying current
source represented by J, or a time-varying electric field represented by , or a
combination of the two, then one can visualize that a magnetic field is generated in
accordance with (3.67), which in turn generates an electric field in accordance with
(3.66), which in turn contributes to the generation of the magnetic field in accordance
with (3.67), and so on, as depicted in Figure 3.15. Note that Jand are coupled, since
they must satisfy (3.70). Also, the magnetic field automatically satisfies (3.69), since
(3.69) is not independent of (3.66).

r

0D>0t

 
0Hy

0z
= -Jx -

0Dx

0t

 
0Ex

0z
= -  

0By

0t

 H = Hy(z, t)ay

 E = Ex(z, t)ax

J
Eq. (3.67)"

H, B

D, Er

"

Eq. (3.66)

Eq. (3.68)

Eq. (3.70)

FIGURE 3.15

Generation of interdependent
electric and magnetic fields,
beginning with sources Jand .r
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102 Chapter 3 Maxwell’s Equations in Differential Form

The process depicted is exactly the phenomenon of electromagnetic waves prop-
agating with a velocity (and other characteristics) determined by the parameters of
the medium. In free space, the waves propagate unattenuated with the velocity

, familiarly represented by the symbol c, as we shall learn in Chapter 4. If
either the term in (3.66) or the term in (1.28) is not present, then wave
propagation would not occur. As already stated, it was through the addition of the
term in (3.67) that Maxwell predicted electromagnetic wave propagation
before it was confirmed experimentally.

0D>0t

0D>0t0B>0t
1>1m0 e0

REVIEW QUESTIONS

3.1. State Faraday’s law in differential form for the simple case of How is it
derived from Faraday’s law in integral form?

3.2. Discuss the physical interpretation of Faraday’s law in differential form for the simple
case of .

3.3. State Faraday’s law in differential form for the general case of an arbitrary electric field.
How is it derived from its integral form?

3.4. What is meant by the net right-lateral differential of the x- and y-components of a vec-
tor normal to the z-direction?

3.5. Give an example in which the net right-lateral differential of and normal to the 
x-direction is zero, although the individual derivatives are nonzero.

3.6. If at a point in space varies with time but and do not, what can we say about the
components of E at that point?

3.7. What is the determinant expansion for the curl of a vector?
3.8. What is the significance of the curl of a vector being equal to zero?
3.9. State Ampere’s circuital law in differential form for the simple case of 

How is it derived from Ampere’s circuital law in integral form?
3.10. Discuss the physical interpretation of Ampere’s circuital law in differential form for the

simple case of 
3.11. State Ampere’s circuital law in differential form for the general case of an arbitrary

magnetic field. How is it derived from its integral form?
3.12. What is the significance of a nonzero net right-lateral differential of and normal

to the z-direction at a point in space?
3.13. If a pair of E and B at a point satisfies Faraday’s law in differential form, does it neces-

sarily follow that it also satisfies Ampere’s circuital law in differential form, and vice
versa?

3.14. State and briefly discuss the basic definition of the curl of a vector.
3.15. What is a curl meter? How does it help visualize the behavior of the curl of a vector field?
3.16. Provide two examples of physical phenomena in which the curl of a vector field is

nonzero.
3.17. State Stokes’ theorem and discuss its application.
3.18. State Gauss’ law for the electric field in differential form. How is it derived from its

integral form?

HyHx

H = Hy1z, t2ay.

H = Hy1z, t2ay.

BzBxBy

EzEy

E = Ex1z, t2ax

E = Ex1z, t2ax.
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PROBLEMS

3.1. Given and it is known that E has only an x-component, find E by
using Faraday’s law in differential form. Then verify your result by applying Faraday’s
law in integral form to the rectangular closed path, in the xz-plane, defined by

and .
3.2. Assuming and considering a rectangular closed path in the yz-plane, carry

out the derivation of Faraday’s law in differential form similar to that in the text.
3.3. Find the curls of the following vector fields:

(a) ; (b) .
3.4. For , (a) find the net right-lateral differential of and normal to

the z-direction at the point (2, 1, 0), and (b) find the locus of the points at which the net
right-lateral differential of and normal to the z-direction is zero.

3.5. Given V/m, find B by using Faraday’s law in differen-
tial form.

3.6. Show that the curl of , that is, , where f is any scalar function

of x, y, and z, is zero. Then find the scalar function for which .
3.7. Given and it is known that Jis zero and B has only a y-component,

find B by using Ampere’s circuital law in differential form. Then find E from B by using
Faraday’s law in differential form. Comment on your result.

E = E0z
2 sin vt ax

¥f = yax + xay

¥faax
0

0x
+ ay

0
0y

+ az
0

0z
bf

E = 10 cos (6p * 108 t - 2pz) ax

AyAx

AyAxA = xy2ax + x2ay

ye- xax - e- xayzxax + xyay + yzaz

E = Ey(z, t)ay

z = bx = 0, x = a, z = 0,

B = B0 z cos vt ay

3.19. What is meant by the net longitudinal differential of the components of a vector
field?

3.20. Give an example in which the net longitudinal differential of the components of a vec-
tor is zero, although the individual derivatives are nonzero.

3.21. What is the expansion for the divergence of a vector?
3.22. State Gauss’ law for the magnetic field in differential form. How is it derived from its

integral form?
3.23. How can you determine if a given vector can represent a magnetic field?
3.24. State and briefly discuss the basic definition of the divergence of a vector.
3.25. What is a divergence meter? How does it help visualize the behavior of the divergence

of a vector field?
3.26. Provide two examples of physical phenomena in which the divergence of a vector field

is nonzero.
3.27. State the continuity equation and discuss its physical interpretation.
3.28. Distinguish between the physical interpretations of the divergence and the curl of a vec-

tor field by means of examples.
3.29. State the divergence theorem and discuss its application.
3.30. What is the divergence of the curl of a vector?
3.31. Summarize Maxwell’s equations in differential form.
3.32. Are all Maxwell’s equations in differential form independent? If not, which of them are

independent?
3.33. Provide a qualitative explanation of the phenomenon of electromagnetic wave propa-

gation based on Maxwell’s equations in differential form.
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104 Chapter 3 Maxwell’s Equations in Differential Form

3.8. Assuming and considering a rectangular closed path in the xz-plane,
carry out the derivation of Ampere’s circuital law in differential form similar to that in
the text.

3.9. Given Wb/m2 and it is known that , find  
E by using Ampere’s circuital law in differential form. Then find B from E by using
Faraday’s law in differential form. Comment on your result.

3.10. Assuming , determine which of the following pairs of and simultaneously
satisfy the two Maxwell’s equations in differential form given by (3.7) and (3.23):

(a)

(b)

(c)

3.11. A current distribution is given by

where is a constant. Using Ampere’s circuital law in differential form and symmetry
considerations, find the magnetic field everywhere.

3.12. A current distribution is given by

where is a constant. Using Ampere’s circuital law in differential form and symmetry
considerations, find the magnetic field everywhere.

3.13. Assume that the velocity of water in the stream of Figure 3.7(a) decreases linearly from
a maximum at the top surface to zero at the bottom surface, with the velocity at the top
surface given by Figure 3.7(b). Discuss the curl of the velocity vector field with the aid
of the curl meter.

3.14. For the vector field , discuss the behavior of the curl meter and
verify your reasoning by evaluating the curl of r.

3.15. Discuss the curl of the vector field with the aid of the curl meter.
3.16. Verify Stokes’ theorem for the vector field and the closed path

comprising the straight lines from (1, 0, 0) to (0, 1, 0), from (0, 1, 0) to (0, 0, 1), and from
(0, 0, 1) to (1, 0, 0).

3.17. Verify Stokes’ theorem for the vector field and any closed path of
your choice.

3.18. For the vector , use Stokes’ theorem to show that is
zero for any closed path . Then evaluate from the origin to the point (1, 1, 2)
along the curve 

3.19. Find the divergences of the following vector fields:
(a) ; (b) .

3.20. For (a) find the net longitudinal differential of the compo-
nents of A at the point (1, 1, 1), and (b) find the locus of the points at which the net lon-
gitudinal differential of the components of A is zero.

A = xyax + yzay + zxaz,
2xyax - y2ay3xy2ax + 3x2yay + z3az

x = 12 sin t, y = 12 sin t, z = (8>p)t.
1A # dlC

AC A # dlA = yzax + zxay + xyaz

A = e- yax - xe- yay

A = yax + zay + xaz

yax - xay

r = xax + yay + zaz

J0

J = J0a1 -
| z |
a
bax  for -a 6 z 6 a

J0

J = e -J0 ax

J0 ax
 
  for -a 6 z 6 0
  for 0 6 z 6 a

Ex = z2 sin vt Hy = -
vP0

3
 z3 cos vt

Ex = (t - z1m0P0 ) Hy = A P0

m0
 (t - z1m0P0 )

Ex = 10 cos 2pz cos 6p * 10 
8 t Hy = 1

12p
 sin 2pz sin 6p * 10 

8 t

HyExJ = 0

J = 0B = 10- 7

3
 cos (6p * 10 

8 t - 2pz) ay

H = Hx(z, t) ax
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3.21. For each of the following vectors, find the curl and the divergence and discuss your
results: (a) ; (b) ; (c) ; (d) .

3.22. A charge distribution is given by

where is a constant. Using Gauss’ law for the electric field in differential form and
symmetry considerations, find the electric field everywhere.

3.23. A charge distribution is given by

where is a constant. Using Gauss’ law for the electric field in differential form and
symmetry considerations, find the electric field everywhere.

3.24. Given , find the charge density at (a) the point (2, 1, 0) and (b) the
point (3, 2, 0).

3.25. Determine which of the following vectors can represent a magnetic flux density vector B:
(a) ; (b) ; (c) .

3.26. Given , find the time rate of decrease of the charge density at (a) the point 
(0, 0, 0) and (b) the point (1, 0, 0).

3.27. For the vector field , discuss the behavior of the divergence meter,
and verify your reasoning by evaluating the divergence of r.

3.28. Discuss the divergence of the vector field with the aid of the divergence
meter.

3.29. Verify the divergence theorem for the vector field and the
closed surface bounding the volume within the hemisphere of radius unity above the
xy-plane and centered at the origin.

3.30. Verify the divergence theorem for the vector field and the
closed surface of the volume bounded by the planes 
and .

3.31. For the vector , use the divergence theorem to show that 
is zero for any closed surface S. Then evaluate over the surface

.
3.32. Show that for any A in two ways: (a) by evaluating in Cartesian

coordinates, and (b) by using Stokes’ and divergence theorems.
¥ # ¥ : A¥ # ¥ : A = 0

x + y + z = 1, x 7 0, y 7 0, z 7 0
1A # dS

AS A # dSA = y2ay - 2yzaz

z = 1
x = 0, x = 1, y = 0, y = 1, z = 0,
A = xyax + yzay + zxaz

A = xax + yay + zaz

yax - xay

r = xax + yay + zaz

J = e- x2
ax

z3 cos vt ayxax + yayyax - xay

D = x2yax - y3ay

r0

r = r0 
x
a

  for -a 6 x 6 a

r0

r = r0a1 -
| x |
a
b   for -a 6 x 6 a

yax + xayxaxyaxxyax
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