AE 522: Dynamic Response of Materials Spring 2013

Instructor: Prof. John Lambros

Class Hours: Monday and Wednesday 10 am-11:50 am, 104 Talbot Lab

Office:	310 Talbot Lab
	Ph: 333-2242
	Fx: 244-0720
	lambros@illinois.edu

Office Hours: None

Required Textbook: None

Recommended Textbooks:

J. D. Achenbach, "Wave propagation in elastic solids", North-Holland, Amsterdam, 1990. M. A. Meyers, "Dynamic behavior of Materials", Wiley, New York, NY, 1994 Zukas et al., "Impact dynamics", Krieger, Malabar, FL, 1992

References:

- H. Kolsky, "Stress waves in solids", Dover, New York, 1963
- B. A. Auld, "Acoustic fields and waves in solids", Wiley, New York, 1973
- A. H. Nayfeh, "Wave propagation in layered anisotropic media", North-Holland, Amsterdam, 1995
- L. Cagniard, "Reflection and refraction of progressive seismic waves", McGraw-Hill, New York, 1962.
- L. B. Freund, "Dynamic fracture mechanics", Cambridge University Press, Cambridge, 1990
- M. J. P. Musgrave, "Crystal acoustics; introduction to the study of elastic waves and vibrations
 - in crystals", Holden-day, San Francisco, 1970

Grading:	Homework	20%
_	Midterm	20%
	Lab report	20%
	Final (oral)	40%

Course Outline

Introduction:	Definition, applications and uses.
Uniaxial stress waves:	Equation of motion, x-t diagrams, Reflection at boundaries, Impedance mismatch.
Uniaxial strain waves:	Transverse stress, Method of characteristics.
Three dimensional waves:	Longitudinal and shear waves, Rayleigh, Stoneley waves Plane waves in 2D, Reflection and refraction.
Wave guides:	Dispersion, Phase and group velocities, Vibrating beams, Love waves, Plate problems, 3D bar problems (Pochhammer-Chree).
Spherical waves:	Impact of half spaces (Boussinesq and Lamb problems), Impact of quarter spaces (unloading waves).
Inelastic waves:	Elastic-plastic wave propagation, Hugoniot elastic limit, Wave propagation in rate dependent solids, One dimensional shock waves, Rankine-Hugoniot relations, Equation of State (EOS).
Dynamic testing techniques:	Split Hopkinson Bars, Plate impact technique, Recovery and pressure-shear tests, Other methods (Taylor test, Expanding ring etc.).
Strain rate dependence:	Metals vs. Polymers, Empirical relations, Physically based relations, Thermomechanical coupling.
Adiabatic shear bands:	Thermomechanical coupling, 1D models, Thermoelasticity, Thermoplasticity, Hyperbolic heat conduction.
Waves in anisotropic media:	Bulk waves in anisotropic solids, The Christofel equation, Material symmetry, Slowness and energy flow surfaces, Interaction with a boundary (Snell's law), Rayleigh waves, Reflection and refraction, Strain rate effects in composite materials.
Dynamic fracture:	Review of near tip fields, initiation and growth criteria, Equation of state, Crack branching, Terminal speed Plasticity.