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CHAPTER

2
Maxwell’s Equations
in Integral Form

In Chapter 1 we learned the simple rules of vector algebra and familiarized ourselves
with the basic concepts of fields, particularly those associated with electric and mag-
netic fields. We now have the necessary background to introduce the additional tools
required for the understanding of the various quantities associated with Maxwell’s
equations and then discuss Maxwell’s equations. In particular, our goal in this chapter
is to learn Maxwell’s equations in integral form as a prerequisite to the derivation of
their differential forms in the next chapter. Maxwell’s equations in integral form gov-
ern the interdependence of certain field and source quantities associated with regions
in space, that is, contours, surfaces, and volumes. The differential forms of Maxwell’s
equations, however, relate the characteristics of the field vectors at a given point to one
another and to the source densities at that point.

Maxwell’s equations in integral form are a set of four laws resulting from several
experimental findings and a purely mathematical contribution. We shall, however, con-
sider them as postulates and learn to understand their physical significance as well as
their mathematical formulation. The source quantities involved in their formulation are
charges and currents.The field quantities have to do with the line and surface integrals of
the electric and magnetic field vectors.We shall therefore first introduce line and surface
integrals and then consider successively the four Maxwell’s equations in integral form.

2.1 THE LINE INTEGRAL

Let us consider in a region of electric field E the movement of a test charge qfrom the
point A to the point B along the path C, as shown in Figure 2.1(a). At each and every
point along the path the electric field exerts a force on the test charge and, hence, does
a certain amount of work in moving the charge to another point an infinitesimal dis-
tance away.To find the total amount of work done from A to B, we divide the path into
a number of infinitesimal segments as shown in Figure 2.1(b),
find the infinitesimal amount of work done for each segment and then add up the con-
tributions from all the segments. Since the segments are infinitesimal in length, we can
consider each of them to be straight and the electric field at all points within a segment
to be the same and equal to its value at the start of the segment.

¢l1, ¢l2, ¢l3, . . . , ¢ln,
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2.1 The Line Integral 39

If we now consider one segment, say the jth segment, and take the component of
the electric field for that segment along the length of that segment, we obtain the result

where is the angle between the direction of the electric field vector at
the start of that segment and the direction of that segment. Since the electric field in-
tensity has the meaning of force per unit charge, the electric force along the direction
of the jth segment is then equal to where qis the value of the test charge.To
obtain the work done in carrying the test charge along the length of the jth segment,
we then multiply this electric force component by the length of that segment. Thus
for the jth segment, we obtain the result for the work done by the electric field as

(2.1)

If we do this for all the infinitesimal segments and add up all the contributions, we get
the total work done by the electric field in moving the test charge from A to B as

(2.2)

In vector notation we make use of the dot product operation between two vectors to
write this quantity as

(2.3)

Example 2.1

Let us consider the electric field given by

and determine the work done by the field in carrying of charge from the point A(0, 0, 0) to
the point B(1, 1, 0) along the parabolic path shown in Figure 2.2(a).y = x2, z = 0

3 mC

E = yay
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j = 1
Ej cos aj ¢lj
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FIGURE 2.1

For evaluating the total amount of work done in moving a test charge along a path C from
point A to point B in a region of electric field.
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40 Chapter 2 Maxwell’s Equations in Integral Form

For convenience, we shall divide the path into ten segments having equal widths along the
x direction, as shown in Figure 2.2(a). We shall number the segments 1, 2, 3, 10. The coordi-
nates of the starting and ending points of the jth segment are as shown in Figure 2.2(b).The elec-
tric field at the start of the jth segment is given by

The length vector corresponding to the jth segment, approximated as a straight line connecting
its starting and ending points, is

The required work is then given by

 = 3 * 10- 10 * 4335 = 1.3005 mJ

 + 1088 + 1539]

 = 3 * 10- 10[0 + 3 + 20 + 63 + 144 + 275 + 468 + 735

 = 3 * 10- 10
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j = 1
1j - 12212j - 12

 = 3 * 10- 6
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j = 1
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FIGURE 2.2

(a) Division of the path from A (0, 0, 0) to B (1, 1, 0) into ten segments. (b) The
length vector corresponding to the jth segment of part (a) approximated as a straight line.

y = x2
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2.1 The Line Integral 41

The result that we have obtained in Example 2.1, for is approximate since
we divided the path from A to B into a finite number of segments. By dividing it into
larger and larger numbers of segments, we can obtain more and more accurate results.
In fact, the problem can be conveniently formulated for a computer solution and by
varying the number of segments from a small value to a large value, the convergence of
the result can be verified. The value to which the result converges is that for which

The summation in (2.3) then becomes an integral, which represents exactly the
work done by the field and is given by

(2.4)

The integral on the right side of (2.4) is known as the line integral of E from A to B.

Example 2.2

We shall illustrate the evaluation of the line integral by computing the exact value of the work
done by the electric field in Example 2.1.

To do this, we note that at any arbitrary point (x, y, 0) on the curve the in-
finitesimal length vector tangential to the curve is given by

The value of at the point (x, y, 0) is

Thus, the required work is given by

Dividing both sides of (2.4) by q, we note that the line integral of E from A to B
has the physical meaning of work per unit charge done by the field in moving the test
charge from A to B. This quantity is known as the voltage between A and B and is
denoted by the symbol having the units of volts. Thus,

(2.5)[V ]B
A = L

B

A
 E # dl

[V ]B
A,

 = 3 * 10- 6
 c2x4

4
d
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B

A
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 dl = dx ax + dy ay
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42 Chapter 2 Maxwell’s Equations in Integral Form

When the path under consideration is a closed path, as shown in Figure 2.3, the line
integral is written with a circle associated with the integral sign in the manner 
The line integral of a vector around a closed path is known as the circulation of that vec-
tor. In particular, the line integral of E around a closed path is the work per unit charge
done by the field in moving a test charge around the closed path. It is the voltage around
the closed path and is also known as the electromotive force. We shall now consider an
example of evaluating the line integral of a vector around a closed path.

AC E # dl.

E

C

FIGURE 2.3

Closed path C in a region of electric field.

(1, 3)

x

y

D

C

BA

(3, 5)

(3, 1)(1, 1)FIGURE 2.4

For evaluating the line integral of a vector field around a closed path.

Example 2.3

Let us consider the force field

and evaluate where C is the closed path ABCDA shown in Figure 2.4.AC F # dl,

F = xay

Noting that

(2.6)

we simply evaluate each of the line integrals on the right side of (2.6) and add them up to obtain
the required quantity. Thus for the side AB,

L
B

A
 F # dl = 0

F # dl = 1xay2 # 1dx ax2 = 0

y = 1, dy = 0, dl = dx ax + 102ay = dx ax

CABCDA
F # dl = L

B

A
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C

B
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D

C
 F # dl + L

A

D
 F # dl
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2.2 The Surface Integral 43

For the side BC,

For the side CD,

For the side DA,

Finally,

2.2 THE SURFACE INTEGRAL

Let us consider a region of magnetic field and an infinitesimal surface at a point in that
region. Since the surface is infinitesimal, we can assume the magnetic flux density to be
uniform on the surface, although it may be nonuniform over a wider region. If the sur-
face is oriented normal to the magnetic field lines, as shown in Figure 2.5(a), then the
magnetic flux crossing the surface is simply given by the product of the surface area
and the magnetic flux density on the surface, that is, If, however, the surface is
oriented parallel to the magnetic field lines, as shown in Figure 2.5(b), there is no mag-
netic flux crossing the surface. If the surface is oriented in such a manner that the
normal to the surface makes an angle with the magnetic field lines, as shown in
Figure 2.5(c), then the amount of magnetic flux crossing the surface can be determined
by considering that the component of B normal to the surface is and the com-
ponent tangential to the surface is The component of B normal to the surface
results in a flux of crossing the surface, whereas the component tangential
to the surface does not contribute at all to the flux crossing the surface. Thus, the mag-
netic flux crossing the surface in this case is We can obtain this result1B cos a2 ¢S.

1B cos a2 ¢S
B sin a.

B cos a

a

B ¢S.

CABCDA
F # dl = 0 + 12 - 4 - 2 = 6

x = 1,  dx = 0,  dl = 102ax + dy ay

F # dl = 1ay2 # 1dy ay2 = dy

L
A

D
F # dl = L

1

3
dy = - 2

L
D

C
F # dl = L

1

3
x dx = - 4

F # dl = 1xay2 # 1dx ax + dx ay2 = x dx

y = 2 + x, dy = dx, dl = dx ax + dx ay

L
C

B
F # dl = L

5

1
3 dy = 12

F # dl = 13ay2 # 1dy ay2 = 3 dy

x = 3, dx = 0, dl = 102ax + dy ay = dy ay
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44 Chapter 2 Maxwell’s Equations in Integral Form

alternatively by noting that the projection of the surface onto the plane normal to the
magnetic field lines is 

Let us now consider a large surface Sin the magnetic field region, as shown in
Figure 2.6. The magnetic flux crossing this surface can be found by dividing the surface
into a number of infinitesimal surfaces and applying the result
obtained above for each infinitesimal surface and adding up the contributions from all
the surfaces. To obtain the contribution from the jth surface, we draw the normal vec-
tor to that surface and find the angle between the normal vector and the magnetic
flux density vector associated with that surface. Since the surface is infinitesimal, we
can assume to be the value of B at the centroid of the surface and we can also erect
the normal vector at that point.The contribution to the total magnetic flux from the jth
infinitesimal surface is then given by

(2.7)¢cj = Bj cos aj ¢Sj

Bj

Bj

aj

¢S1, ¢S2, ¢S3, . . . , ¢Sn

¢S cos a.

B B BNormal

!S
!S

!S

(b) (c)(a)

a

Bj

aj

Normal

!Sj

S

FIGURE 2.5

An infinitesimal surface in a magnetic field B oriented (a) normal to the field, (b) parallel
to the field, and (c) with its normal making an angle to the field.a

¢S

FIGURE 2.6

Division of a large surface Sin a magnetic field
region into a number of infinitesimal surfaces.
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2.2 The Surface Integral 45

where the symbol represents magnetic flux. The total magnetic flux crossing the
surface Sis then given by

(2.8)

In vector notation we make use of the dot product operation between two vectors to
write this quantity as

(2.9)

where is the unit vector normal to the surface In fact, by recalling that the in-
finitesimal surface can be considered as a vector quantity having magnitude equal to
the area of the surface and direction normal to the surface, that is,

(2.10)

we can write (2.9) as

(2.11)

Example 2.4

Let us consider the magnetic field given by

and determine the magnetic flux crossing the portion of the xy-plane lying between 
and 

For convenience, we shall divide the surface into 25 equal areas, as shown in Figure 2.7(a).
We shall designate the squares as where the first digit represents
the number of the square in the x-direction and the second digit represents the number of the
square in the y-direction. The x- and y-coordinates of the midpoint of the ijth square are

and respectively, as shown in Figure 2.7(b). The magnetic field at the
center of the ijth square is then given by

Since we have divided the surface into equal areas and since all areas are in the xy-plane,

¢Sij = 0.04 az for all i and j

Bij = 312i - 1212j - 122 0.001az

12j - 120.1,12i - 120.1

11, 12, Á , 15, 21, 22, Á , 55,

y = 1.x = 1, y = 0,
x = 0,

B = 3xy2az Wb/m2

[c]S = a
n

j = 1
Bj # ¢Sj

¢Sj = ¢Sj anj

¢Sj.anj

[c]S = a
n

j = 1
Bj # ¢Sj anj

 = a
n

j = 1
Bj cos aj ¢Sj

 + Á + Bn cos an ¢Sn

 = B1 cos a1 ¢S1 + B2 cos a2 ¢S2 + B3 cos a3 ¢S3

 [c]S = ¢c1 + ¢c2 + ¢c3 + Á + ¢cn

c
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46 Chapter 2 Maxwell’s Equations in Integral Form

The required magnetic flux is then given by

The result that we have obtained for in Example 2.4 is approximate since we
have divided the surface Sinto a finite number of areas. By dividing it into larger and
larger numbers of squares, we can obtain more and more accurate results. In fact, the
problem can be conveniently formulated for a computer solution, and by varying the
number of squares from a small value to a large value, the convergence of the result
can be verified.The value to which the result converges is that for which the number of
squares in each direction is infinity. The summation in (2.11) then becomes an integral
that represents exactly the magnetic flux crossing the surface and is given by

(2.12)

where the symbol Sassociated with the integral sign denotes that the integration is per-
formed over the surface S. The integral on the right side of (2.12) is known as the
surface integral of B over S.The surface integral is a double integral since dSis equal to

[c]S = LS
B # dS

[c]S

 = 0.495 Wb

 = 0.0001211 + 3 + 5 + 7 + 9211 + 9 + 25 + 49 + 812 = 0.00012a
5

i = 1
a

5

j = 1
12i - 1212j - 122

 = a
5

i = 1
a

5

j = 1
312i - 1212j - 1220.001az # 0.04az

 [c]S = a
5

i = 1
a

5

j = 1
Bij # ¢Sij

(b)(a)

0 y

x

z

1

(2i " 1)0.1

(2j " 1)0.1

11 12
21

1 55
(1, 1, 0)

ij

i

j

FIGURE 2.7

(a) Division of the portion of the xy-plane lying between 
and into 25 squares. (b) The area corresponding to the ijth square.y = 1

x = 0, x = 1, y = 0,
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2.2 The Surface Integral 47

the product of two differential lengths. In fact, the work in Example 2.4 indicates that
as i and j tend to infinity, the double summation becomes a double integral involving
the variables of integration x and y.

Example 2.5

We shall illustrate the evaluation of the surface integral by computing the exact value of the
magnetic flux in Example 2.4.

To do this, we note that at any arbitrary point (x, y) on the surface, the infinitesimal surface
vector is given by

The value of at the point (x, y) is

Thus, the required magnetic flux is given by

When the surface under consideration is a closed surface, the surface integral is
written with a circle associated with the integral sign in the manner The sur-
face integral of B over the closed surface Sis simply the magnetic flux emanating from
the volume bounded by the surface. We shall now consider an example of evaluating
the closed surface integral.

Example 2.6

Let us consider the vector field

and evaluate where Sis the surface of the cubical box bounded by the planes

as shown in Figure 2.8.

x = 0, x = 1
y = 0, y = 1
z = 0, z = 1

AS A # dS

A = 1x + 22ax + 11 - 3y2ay + 2zaz

AS B # dS.

 = L
1

x = 0
 L

1

y = 0
 3xy2 dx dy = 0.5 Wb

 [c]S = LS
B # dS

 = 3xy2 dx dy

 B # dS = 3xy2 az # dx dy az

B # dS

dS = dx dy az
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48 Chapter 2 Maxwell’s Equations in Integral Form

Noting that

(2.13)

we simply evaluate each of the surface integrals on the right side of (2.13) and add them up to
obtain the required quantity. In doing so, we recognize that since the quantity we want is the flux
of A out of the box, we should direct the normal vectors toward the outside of the box. Thus for
the surface abcd,

For the surface efgh,

For the surface aehd,

Laehd
A # dS = L

1

x = 0
 L

1

z = 0
1 - 12 dz dx = - 1

A # dS = - dz dx

y = 0, A = 1x + 22ax + 1ay + 2zaz, dS = - dz dx ay

Lefgh
A # dS = L

1

z = 0
 L

1

y = 0
3 dy dz = 3

A # dS = 3 dy dz

x = 1, A = 3ax + 11 - 3y2ay + 2zaz, dS = dy dz ax

Labcd
 A # dS = L

1

z = 0 

 L
1

y = 0
1- 22 dy dz = - 2

A # dS = - 2 dy dz

x = 0, A = 2ax + 11 - 3y2ay + 2zaz, dS = - dy dz ax

+ Laefb
 A # dS + Ldhgc

A # dS

 CS
A # dS = Labcd

A # dS + Lefgh
A # dS + Laehd 

A # dS + Lbfgc
A # dS

y

x

z

d
1

1

1

h

e

g

f
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c

FIGURE 2.8

For evaluating the surface integral of a vector field over 
a closed surface.
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2.3 Faraday’s Law 49

For the surface bfgc,

For the surface aefb,

For the surface dhgc,

Finally,

2.3 FARADAY’S LAW

In the previous sections we introduced the line and surface integrals.We are now ready
to consider Maxwell’s equations in integral form.The first equation, which we shall dis-
cuss in this section, is a consequence of an experimental finding by Michael Faraday in
1831 that time-varying magnetic fields give rise to electric fields and hence it is known
as Faraday’s law. Faraday discovered that when the magnetic flux enclosed by a loop of
wire changes with time, a current is produced in the loop, indicating that a voltage or an
electromotive force, abbreviated as emf, is induced around the loop. The variation of
the magnetic flux can result from the time variation of the magnetic flux enclosed by a
fixed loop or from a moving loop in a static magnetic field or from a combination of
the two, that is, a moving loop in a time-varying magnetic field.

Thus far we have merely stated Faraday’s finding without regard to the polarity
of the induced emf around the loop or that of the magnetic flux enclosed by the loop.
To clarify the point, let us consider a planar circular loop in the plane of the paper as
shown in Figure 2.9. Then, we can talk of emf induced in the clockwise sense or in the

CS
 A # dS = - 2 + 3 - 1 - 2 + 0 + 2 = 0

Ldhgc
A # dS = L

1

y = 0L
1

x = 0
2 dx dy = 2

A # dS = 2 dx dy

z = 1, A = 1x + 22ax + 11 - 3y2ay + 2az, dS = dx dy az

Laefb
A # dS = 0

A # dS = 0

z = 0, A = 1x + 22ax + 11 - 3y2ay + 0az, dS = - dx dy az

Lbfgc
A # dS = L

1

x = 0L
1

z = 0
1 - 22 dz dx = - 2

A # dS = - 2 dz dx

y = 1, A = 1x + 22ax - 2ay + 2zaz, dS = dz dx ay
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50 Chapter 2 Maxwell’s Equations in Integral Form

counterclockwise sense. The emf induced in the clockwise sense is the line integral of
E ( ) evaluated by traversing the loop in the clockwise direction, as shown in
Figures 2.9(a) and 2.9(b). The emf induced in the counterclockwise sense is the line
integral of E ( ) evaluated by traversing the loop in the counterclockwise direc-
tion, as shown in Figures 2.9(c) and 2.9(d). One is, of course, the negative of the other.
Similarly, we can talk of enclosed magnetic flux directed into the paper or out of the
paper. The enclosed magnetic flux into the paper is the surface integral of B ( )
evaluated over the plane surface bounded by the loop and with the normal to the sur-
face directed into the paper, as shown in Figures 2.9(a) and 2.9(c). The enclosed mag-
netic flux out of the paper is the surface integral of B ( ) evaluated over the
plane surface bounded by the loop and with the normal to the surface directed out
of the paper, as shown in Figures 2.9(b) and 2.9(d). One is, of course, the negative of
the other.

1  B # dS

1  B # dS

A  E # dl

A  E # dl

(b)(a) (c) (d)

B

C

an

B

C

an

B

C

an

B

C

an

FIGURE 2.9

Four possible pairs of directions of traversal around a planar circular loop
and normal to the surface bounded by the loop.

If we do not pay any attention to the polarities, we can write four equations relat-
ing the emf around the loop to the magnetic flux enclosed by the loop. These are

(2.14a)

(2.14b)

(2.14c)

(2.14d)

The fourth equation is, however, consistent with the first and the third equation is con-
sistent with the second.Thus, we are left with a choice between the first and the second.
Only one of them can be correct, since they provide contradictory results for the emf.
Faraday’s experiments showed that the second equation is the one that should be used.
Alternatively, if we wish to work with clockwise-induced emf and magnetic flux into
the paper (or with counterclockwise-induced emf and magnetic flux out of the paper),

 [emf]counterclockwise = d
dt

 [magnetic flux]out of the paper

 [emf]counterclockwise = d
dt

 [magnetic flux]into the paper

 [emf]clockwise = d
dt

 [magnetic flux]out of the paper

 [emf]clockwise = d
dt

 [magnetic flux]into the paper
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2.3 Faraday’s Law 51

we must include a minus sign in front of the time derivative.This is, in fact, what is done
conventionally.The convention is to use that normal to the surface which is directed to-
ward the advancing direction of a right-hand screw when it is turned in the sense in
which the loop is traversed, as shown in Figures 2.10(a) and 2.10(b). This is known as
the right-hand screw rule and is applied consistently for all electromagnetic field laws.
Hence, it is well worthwhile digesting it at this early stage.

B

S

C

dS

(a) (b)

C

C

FIGURE 2.11

For illustrating Faraday’s law.

FIGURE 2.10

Right-hand screw rule convention employed in the formulation of
electromagnetic field laws.

We can now express Faraday’s law mathematically as

(2.15)

where Sis a surface bounded by C. For the law to be unique, the surface Sneed not be a
plane surface and can be any curved surface bounded by C, as depicted in Figure 2.11.
This tells us that the magnetic flux through all possible surfaces bounded by C must be
the same.We shall make use of this later. In fact, if C is not a planar loop, we cannot have
a plane surface bounded by C. A further point of interest is that C need not represent a
loop of wire but can be an imaginary closed path. It means that the time-varying mag-
netic flux induces an electric field in the region and this results in an emf around the
closed path. If a wire is placed in the position occupied by the closed path, the emf will
produce a current in the loop simply because the charges in the wire are constrained to
move along the wire. Let us now consider some examples.

CC
 E # dl = - d

dtLS
B # dS
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52 Chapter 2 Maxwell’s Equations in Integral Form

Example 2.7

A rectangular loop of wire with three sides fixed and the fourth side movable is situated in a
plane perpendicular to a uniform magnetic field as illustrated in Figure 2.12.The mov-
able side consists of a conducting bar moving with a velocity in the -direction. It is desired to
find the emf induced in the loop.

yv0

B = B0az,

xl

z
y

v0ay

B

FIGURE 2.12

A rectangular loop of wire with a movable
side situated in a uniform magnetic field.

Letting the position of the movable side at any time t be y0 0t, we obtain the magnetic
flux enclosed by the loop and directed into the paper as

The emf induced in the loop in the clockwise sense is then given by

Thus, if the bar is moving to the right, the induced emf produces a current in the counterclock-
wise sense. Note that this polarity of the current is such that it gives rise to a magnetic field di-
rected out of the paper inside the loop. The flux of this magnetic field is in opposition to the flux
of the original magnetic field and hence tends to decrease it. This observation is in accordance
with Lenz’s law, which states that the induced emf is such that it acts to oppose the change in
the magnetic flux producing it. The minus sign on the right side of Faraday’s law ensures that
Lenz’s law is always satisfied.

It is also of interest to note that the induced emf can also be interpreted as due to the elec-
tric field induced in the moving bar by virtue of its motion perpendicular to the magnetic field.
Thus, a charge Q in the bar experiences a force To an
observer moving with the bar, this force appears as an electric force due to an electric field

Viewed from inside the loop, this electric field is in the counterclockwise direc-
tion and hence the induced emf is 0B0l in that sense, as deduced above from Faraday’s law. This
concept of induced emf is known as the motional emf concept, which is employed widely in the
study of electromechanics.

v
F>Q = v0B0ax.

F = Qv : B or Qv0ay : B0az = Qv0B0ax.

 = - B0 lv0

 = -  
d
dt

 [l1y0 + v0 t2B0]

 C E # dl = -  
d
dt

 c

 = l1y0 + v0 t2B0

 c = (area of the loop)B0

v+
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2.3 Faraday’s Law 53

Example 2.8

A time-varying magnetic field is given by

where is a constant. It is desired to find the induced emf around a rectangular loop in the 
xz-plane, as shown in Figure 2.13.

B0

B = B0 cos vt ay

x

z
y x #  0

z #  0 z #  b

x #  a
B0 cos vt ay

FIGURE 2.13

A rectangular loop in the xz-plane
situated in a time-varying magnetic field.

The magnetic flux enclosed by the loop and directed into the paper is given by

The induced emf in the clockwise sense is then given by

The time variations of the magnetic flux enclosed by the loop and the induced emf
around the loop are shown in Figure 2.14. It can be seen that when the magnetic flux enclosed
by the loop is decreasing with time, the induced emf is positive, thereby producing a clockwise
current if the loop were a wire. This polarity of the current gives rise to a magnetic field directed
into the paper inside the loop and hence acts to increase the magnetic flux enclosed by the loop.
When the magnetic flux enclosed by the loop is increasing with time, the induced emf is nega-
tive, thereby producing a counterclockwise current around the loop. This polarity of the current
gives rise to a magnetic field directed out of the paper inside the loop and hence acts to de-
crease the magnetic flux enclosed by the loop. These observations are once again consistent
with Lenz’s law.

 = -  
d
dt

 [abB0 cos vt] = abB0v sin vt

 CC
E # dl = -  

d
dtLS

B # dS

 = B0 cos vtL
b

z = 0L
a

x = 0
dx dz = abB0 cos vt

 c = LS
B # dS = L

b

z = 0L
a

x = 0
B0 cos vt ay # dx dz ay
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54 Chapter 2 Maxwell’s Equations in Integral Form

2.4 AMPERE’S CIRCUITAL LAW

In the previous section we introduced Faraday’s law, one of Maxwell’s equations, in in-
tegral form. In this section we introduce another of Maxwell’s equations in integral
form. This equation, known as Ampere’s circuital law, is a combination of an experi-
mental finding of Oersted that electric currents generate magnetic fields and a mathe-
matical contribution of Maxwell that time-varying electric fields give rise to magnetic
fields. It is this contribution of Maxwell that led to the prediction of electromagnetic
wave propagation even before the phenomenon was discovered experimentally.
In mathematical form, Ampere’s circuital law is analogous to Faraday’s law and is
given by

(2.16)

where Sis any surface bounded by C, as shown in Figure 2.15. Here again, in order to
evaluate the surface integrals on the right side of (2.16), we choose that normal to the
surface which is directed toward the advancing direction of a right-hand screw when it
is turned in the sense of C, just as in the case of Faraday’s law. Also, both integrals on
the right side of (2.16) must be evaluated on the same surface, whatever be the surface
chosen.

The quantity Jon the right side of (2.16) is the volume current density vector
having the magnitude equal to the maximum value of current per unit area (A/m2) at
the point under consideration, as discussed in Section 1.5. Thus, the quantity ,
being the surface integral of Jover S, has the meaning of current due to flow of charges
crossing the surface Sbounded by C. It also includes line currents, that is, currents flow-
ing along thin filamentary wires enclosed by C, and surface currents, that is, currents
flowing along ribbon-like wires enclosed by C. Thus, , although formulated in1S J# dS

1S J# dS

CC

B
m0

# dl = LS
 J# dS + d

dtLS
P0E # dS

0 p

c

2p 3p
vt

0 p 2p 3p
vt

abB0

abB0v

emf

FIGURE 2.14

Time variations of magnetic
flux enclosed by the loop of
Figure 2.13, and the resulting
induced emf around the loop.

c
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2.4 Ampere’s Circuital Law 55

terms of the volume current density vector J, represents the algebraic sum of all the
currents due to flow of charges across the surface S.

The quantity on the right side of (2.16) is the flux of the vector field
crossing the surface S. The vector is known as the displacement vector or the

displacement flux density vector and is denoted by the symbol D. By recalling from
(1.52) that E has the units of (charge) per [(permittivity)(distance)2], we note that the
quantity D has the units of charge per unit area, or . Hence, the quantity

, that is, the displacement flux has the units of charge, and the quantity

has the units of (charge) or current and is known as the displacement 
current. Physically, it is not a current in the sense that it does not represent the flow of
charges, but mathematically it is equivalent to a current crossing the surface S.

The quantity on the left side of (2.16) is the line integral of the vector 

field around the closed path C. We learned in Section 2.1 that the quantity
has the physical meaning of work per unit charge associated with the 

movement of a test charge around the closed path C. The quantity does not

have a similar physical meaning.This is because magnetic force on a moving charge is di-
rected perpendicular to the direction of motion of the charge as well as to the direction
of the magnetic field and hence does not do work in the movement of the charge. The
vector is known as the magnetic field intensity vector and is denoted by the symbol H.
By recalling from (1.68) that B has the units of [(permeability)(current)(length)] per

we note that the quantity H has the units of current per unit distance, or
A/m. This gives the units of current or A to In analogy with the name 
electromotive force for the quantity is known as the magnetomotive
force, abbreviated as mmf.

Replacing and in (2.16) by H and D, respectively, we rewrite Ampere’s
circuital law as

(2.17)

In words, (2.17) states that “the magnetomotive force around a closed path C is equal
to the total current, that is, the current due to actual flow of charges plus the displace-
ment current bounded by C.” When we say “the total current bounded by C,” we mean

CC
H # dl = LS

J# dS + d
dtLS

D # dS

P0EB>m0

AC
 H # dlAC E # dl,
AC H # dl.

[1distance22],B>m0

CC
 
B
m0

# dl
AC

 E # dl
B>m0

CC
 
B
m0

# dl

d
dt

d
dt1S P0E # dS

1S   P0E # dS
C/m2

P0EP0E
1S   P0E # dS

J, D

S

C
dS

FIGURE 2.15

For illustrating Ampere’s circuital law.
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56 Chapter 2 Maxwell’s Equations in Integral Form

“the total current crossing any given surface Sbounded by C.” This implies that the
total current crossing all possible surfaces bounded by C must be the same since for a
given C, must have a unique value.

Example 2.9

An infinitely long, thin, straight wire situated along the z-axis carries a current I in the z-direction.
It is desired to find around a circle of radius a lying on the xy-plane and centered at the
origin as shown in Figure 2.16.

AC H # dl

AC H # dl

z

x

y

I

(a)

C
C I

z
a

H

2pa
n

(b)

FIGURE 2.16

(a) For illustrating the uniqueness
of a wire current enclosed by a
closed path for an infinitely long,
straight wire. (b) For finding the
magnetic field due to the wire.

Let us consider the plane surface enclosed by C.The total current crossing the surface con-
sists entirely of the current I carried by the wire. In fact, since the wire is infinitely long, the total
current crossing any of the infinite number of surfaces bounded by C is equal to I. The situation
is illustrated in Figure 2.16(a) for a few of the infinite number of surfaces. Thus, noting that the
current I is bounded by C in the right-hand sense, and that it is uniquely given, we obtain

(2.18)

We can proceed further and evaluate H at points on the circular path from symmetry con-
siderations. In order for to be nonzero, H must be directed (or have a component) tan-
gential to the circular path and then, from symmetry considerations, it must have the same
magnitude at all points on the circle, since the circle is centered at the wire. We, however, know
from elementary considerations of the magnetic field due to a current element that H must be
directed entirely tangential to the circular path. Thus, let us divide the circle into a large number
of equal segments, say n, as shown in Figure 2.16(b). Since the length of each segment is 
and since H is parallel to the segment, for the segment is and

From (2.18), we then have

or

H = I
2pa

2paH = I

 = 2pa
n

H # n = 2paH

 CC
 
H # dl = 2pa

n
H(number of segments)

(2pa>n)HH # dl
2pa>n

AC  H # dl

CC H # dl = I
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2.4 Ampere’s Circuital Law 57

Thus, the magnetic field intensity due to the infinitely long wire is directed circular to the wire in
the right-hand sense and has a magnitude where a is the distance of the point from the wire.
The method we have discussed here is a standard procedure for the determination of the static
magnetic field due to current distributions possessing certain symmetries. We shall include some
cases in the problems for the interested reader.

If the wire of Example 2.9 is finitely long, say, extending from to on the
z-axis, then, the construction of Figure 2.17 illustrates that for some surfaces the wire
pierces through the surface, whereas for some other surfaces it does not. Thus, for this
case, there is no unique value of the wire current alone that is enclosed by C. Hence,
there must be a displacement current through the surfaces in addition to the wire current
so that the total current enclosed by C is uniquely given. In fact, this displacement cur-
rent is provided by the time-varying electric field due to charges accumulating at one end
and depleting at the other end of the current-carrying wire. Thus, considering, for
example, the surfaces and and setting the total currents through and to be
equal, we have

(2.19)

Now, since the wire pierces through in the right-hand sense,

(2.20)

The wire does not pierce through . Hence,

(2.21)

Substituting (2.20) and (2.21) into (2.19), we get

(2.22)

or

(2.23)
d
dtLS3

D # dS - d
dtLS1

D # dS = I

I + d
dtLS1

D # dS = 0 + d
dtLS3

D # dS

LS3

 J# dS = 0

S3

LS1

 J# dS = I

S1

LS1

J# dS + d
dtLS1

D # dS = LS3

J# dS + d
dtLS3

D # dS

S3S1S3S1

+d- d

I>2pa,

x

C

d"d

S1
S2

S3

y

I

FIGURE 2.17

For illustrating that the wire current enclosed by a
closed path is not unique for a finitely long wire.
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58 Chapter 2 Maxwell’s Equations in Integral Form

Reversing the sense of evaluation of the surface integral of D over and changing the
minus sign to a plus sign, we obtain

(2.24)

Thus, the displacement current emanating from the closed surface is equal to I.
Another example in which the wire current enclosed by C is not uniquely defined

is shown in Figure 2.18, which is that of a simple circuit consisting of a capacitor driven
by an alternating voltage source. Considering two surfaces and , where cuts
through the wire and passes between the plates of the capacitor, we have

(2.25)

and

(2.26)LS2

 J# dS = 0

LS1

 J# dS = I

S2

S1S2S1

S1 + S3

d
dtCS3 + S1

D # dS = I

S1

C

S1

S2

I
FIGURE 2.18

A capacitor circuit illustrating that the wire
current enclosed by a closed path is not unique.

If we neglect fringing and assume that the electric field in the capacitor is contained
entirely within the region between the plates, then 

(2.27)
For to be unique,

(2.28)

Substituting (2.25), (2.26), and (2.27) into (2.28), we obtain

(2.29)

Thus, the displacement current, that is, the time rate of change of the displacement flux
between the capacitor plates, is equal to the wire current.

Example 2.10

A time-varying electric field is given by

where is a constant. It is desired to find the induced mmf around a rectangular loop in the 
yz-plane, as shown in Figure 2.19.

E0

E = E0z sin vt ax

d
dtLS2

D # dS = I

LS1

J# dS + d
dtLS1

D # dS = LS2

J# dS + d
dtLS2

D # dS

AC H # dl LS1

 D # dS = 0
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2.5 Gauss’ Law for the Electric Field 59

The total current here is composed entirely of displacement current. The displacement
flux enclosed by the loop and directed into the paper is given by

The induced mmf around C is then given by

2.5 GAUSS’ LAW FOR THE ELECTRIC FIELD

In the previous two sections we learned two of the four Maxwell’s equations.These two
equations have to do with the line integrals of the electric and magnetic fields around
closed paths. The remaining two Maxwell’s equations are pertinent to the surface inte-
grals of the electric and magnetic fields over closed surfaces. These are known as
Gauss’ laws.

Gauss’ law for the electric field states that “the total displacement flux emanating
from a closed surface S is equal to the total charge contained within the volume V
bounded by that surface,” as illustrated in Figure 2.20. This statement, although famil-
iarly known as Gauss’ law, has its origin in experiments conducted by Faraday. In mathe-
matical form, Gauss’ law for the electric field is given by

(2.30)

where is the volume charge density associated with points in the volume V.r
CS

D # dS = LV
r dv

 = P0
b2d
2

E0v cos vt

 = d
dt
a P0

b2d
2

 E0 sin vtb
 CC

H # dl = d
dtLS

D # dS

 = P0
b2d
2

E0 sin vt

 = P0E0 sin vt L
b

z = 0L
d

y = 0
z dy dz

 LS
D # dS = L

b

z = 0L
d

y = 0
P0E0z sin vt ax # dy dz ax

y

x
z

z #  0

y #  0

z #  b

y #  d

E0z sin vt ax

FIGURE 2.19

A rectangular loop in a time-varying
electric field.

M02_RAO3333_1_SE_CHO2.QXD  4/9/08  1:15 PM  Page 59



60 Chapter 2 Maxwell’s Equations in Integral Form

The volume charge density at a point is defined as the charge per unit volume
at that point in the limit that the volume shrinks to zero. Thus,

(2.31)

As an illustration of the computation of the charge contained in a given volume for a
specified charge density, let us consider 

and the cubical volume V bounded by the planes 
and . Then the charge Q contained within the cubical volume is given by

 = 3
2

 C

 = cx2

2
+ x d1

x = 0

 = L
1

x = 0
(x + 1) dx

 = L
1

x = 0
cxy +

y2

2
+

y
2
d

y = 0

1        

dx

 = L
1

x = 0L
1

y = 0
a x + y + 1

2
b  dx dy

 = L
1

x = 0L
1

y = 0 

cxz + yz + z2

2
d1

z = 0
dx dy

 Q = LV
r dv = L

1

x = 0L
1

y = 0L
1

z = 0
 (x + y + z) dx dy dz

z = 1
x = 0, x = 1, y = 0, y = 1, z = 0,

r = (x + y + z) C/m3

r = Lim
¢v:0

 
¢Q
¢v

(C/m3)

D

S
dS

r

V

FIGURE 2.20

For illustrating Gauss’ law for the
electric field.
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2.5 Gauss’ Law for the Electric Field 61

Although the quantity on the right side of (2.30), that is, the charge contained
within the volume V bounded by the surface Sassociated with the quantity on the left
side of (2.30), is formulated in terms of the volume charge density, it includes surface
charges, line charges, and point charges enclosed by S. Thus it represents the algebraic
sum of all the charges contained in the volume V. Let us now consider an example.

Example 2.11

A point charge Q is situated at the origin. It is desired to find and D over the surface of
a sphere of radius a centered at the origin.

According to Gauss’ law for the electric field, the required displacement flux is given by

(2.32)

To evaluate D on the surface of the sphere, we note that in order for to be nonzero, D
must be directed normal to the spherical surface. From symmetry considerations, it must have the
same magnitude at all points on the spherical surface, since the surface is centered at the origin.
Thus, let us divide the spherical surface into a large number of infinitesimal areas, as shown in
Figure 2.21. Since D is normal to each area, for each area is simply equal to D dS. Hence,

From (2.32), we then have

or

Thus, the displacement flux density due to the point charge is directed away from the charge and
has a magnitude where a is the distance of the point from the charge. The method we
have discussed here is a standard procedure for the determination of the static electric field due
to charge distributions possessing certain symmetries. We shall include some cases in the prob-
lems for the interested reader.

Q>4pa2

D =
Q

4pa2

4pa2D = Q

 = 4pa2D

 = D (surface area of the sphere)

 CS
D # dS = DLS

 dS

D # dS

AS D # dS
CS

 D # dS = Q

AS  D # dS

Q

DD

FIGURE 2.21

For evaluating the displacement flux
density over the surface of a sphere
centered at a point charge.
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62 Chapter 2 Maxwell’s Equations in Integral Form

Gauss’ law for the electric field is not independent of Ampere’s circuital law if we
recognize that, in view of conservation of electric charge, “the total current due to flow
of charges emanating from a closed surface Sis equal to the time rate of decrease of
the charge within the volume V bounded by S,” that is,

or

(2.33)

This statement is known as the law of conservation of charge. In fact, it is this consider-
ation that led to the mathematical contribution of Maxwell to Ampere’s circuital law.
Ampere’s circuital law in its original form did not include the displacement current
term which resulted in an inconsistency with (2.33) for time-varying fields.

Returning to the discussion of the dependency of Gauss’ law on Ampere’s cir-
cuital law through (2.33), let us consider the geometry of Figure 2.22, consisting of a
closed path C and two surfaces and , both of which are bounded by C. Applying
Ampere’s circuital law to C and and to C and , we get

(2.34a)

and

(2.34b)

respectively. Combining (2.34a) and (2.34b), we obtain 

(2.35)

Now, using (2.33), we have

- d
dtLV

r dv + d
dtCS

D # dS = 0

CS1 + S2

J# dS + d
dt CS1 + S2

D # dS = 0

CC
H # dl = - LS2

J# dS2 - d
dtLS2

D # dS2

CC
H # dl = LS1

J# dS1 + d
dtLS1

D # dS1

S2S1

S2S1

CS
J# dS + d

dtLV
r dv = 0

CS
J# dS = - d

dtLV
r dv

CS1 S2

FIGURE 2.22

A closed path C, and two surfaces
and bounded by C.S2S1
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B

S

dS

FIGURE 2.23

For illustrating Gauss’ law for the
magnetic field.

or

(2.36)

where we have replaced by Sand where V is the volume enclosed by .
Thus from (2.36), we get

(2.37)

Since there is no experimental evidence that the right side of (2.37) is nonzero, it
follows that

thereby giving Gauss’ law for the electric field.

2.6 GAUSS’ LAW FOR THE MAGNETIC FIELD

Gauss’ law for the magnetic field states that “the total magnetic flux emanating from a
closed surface Sis equal to zero.” In mathematical form, this is given by

(2.38)

In physical terms, (2.38) signifies that magnetic charges do not exist and magnetic flux
lines are closed. Whatever magnetic flux enters (or leaves) a certain part of a closed
surface must leave (or enter) through the remainder of the closed surface, as illustrated
in Figure 2.23.

CS
B # dS = 0

CS
D # dS = LV

r dv

CS
D # dS - LV

r dv = constant with time

S1 + S2S1 + S2

d
dt
cCS

D # dS - LV
r dv d = 0

Equation (2.38) is not independent of Faraday’s law. This can be shown by con-
sidering the geometry of Figure 2.22. Applying Faraday’s law to C and , we have

(2.39)CC
E # dl = - d

dtLS1

B # dS1

S1
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64 Chapter 2 Maxwell’s Equations in Integral Form

where is directed out of the volume bounded by the closed surface .Apply-
ing Faraday’s law to C and , we have

(2.40)

where is directed out of the volume bounded by . Combining (2.39) and
(2.40), we obtain

(2.41)

or

(2.42)

or

(2.43)

Since there is no experimental evidence that the right side of (2.43) is nonzero, it
follows that

where we have replaced by S.

SUMMARY

We first learned in this chapter how to evaluate line and surface integrals of vector
quantities and then we introduced Maxwell’s equations in integral form. These equa-
tions, which form the basis of electromagnetic field theory, are given as follows in
words and in mathematical form and are illustrated in Figures 2.11, 2.15, 2.20, and 2.23,
respectively.

Faraday’s law. The electromotive force around a closed path C is equal to the nega-
tive of the time rate of change of the magnetic flux enclosed by that path, that is,

(2.44)

Ampere’s circuital law. The magnetomotive force around a closed path C is equal to
the sum of the current enclosed by that path due to the actual flow of charges and the
displacement current due to the time rate of change of the displacement flux enclosed
by that path, that is,

(2.45)CC
H # dl = LS

J# dS + d
dtLS

D # dS

CC
E # dl = -  

d
dtLS

B # dS

S1 + S2

CS
B # dS = 0

CS1 + S2

B # dS = constant with time

d
dtCS1 + S2

B # dS = 0

- d
dtLS1

B # dS1 = d
dtLS2

B # dS2

S1 + S2dS2

CC
E # dl = d

dtLS2

B # dS2

S2

S1 + S2dS1
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Gauss’ law for the electric field. The displacement flux emanating from a closed sur-
face Sis equal to the charge enclosed by that surface, that is,

(2.46)

Gauss’ law for the magnetic field. The magnetic flux emanating from a closed surface
Sis equal to zero, that is,

(2.47)

The vectors D and H, known as the displacement flux density and the magnetic
field intensity vectors, respectively, are related to E and B, known as the electric field
intensity and the magnetic flux density vectors, respectively, in the manner

(2.48)

(2.49)

where and are the permittivity and the permeability of free space, respectively. In
evaluating the right sides of (2.44) and (2.45), the normal vectors to the surfaces must
be chosen such that they are directed in the right-hand sense, that is, toward the side of
advance of a right-hand screw as it is turned around C, as shown in Figures 2.11 and
2.15. We have also learned that (2.47) is not independent of (2.44) and that (2.46)
follows from (2.45) with the aid of the law of conservation of charge given by

(2.50)

In words, (2.50) states that the sum of the current due to the flow of charges across  a
closed surface S and the time rate of increase of the charge within the volume V
bounded by Sis equal to zero. In (2.46), (2.47), and (2.50) the surface integrals must be
evaluated in order to find the flux outward from the volume bounded by the surface.

Finally, we observe that time-varying electric and magnetic fields are interdepen-
dent, since according to Faraday’s law (2.44), a time-varying magnetic field produces
an electric field, whereas according to Ampere’s circuital law (2.45), a time-varying
electric field gives rise to a magnetic field. In addition, Ampere’s circuital law tells us
that an electric current generates a magnetic field. These properties from the basis for
the phenomena of radiation and propagation of electromagnetic waves. To provide a
simplified, qualitative explanation of radiation from an antenna, we begin with a piece
of wire carrying a time-varying current, I(t), as shown in Figure 2.24. Then, the time-
varying current generates a time-varying magnetic field H(t), which surrounds the
wire.Time-varying electric and magnetic fields, E(t) and H(t), are then produced in suc-
cession, as shown by two views in Figure 2.24, thereby giving rise to electromagnetic
waves. Thus, just as water waves are produced when a rock is thrown in a pool of
water, electromagnetic waves are radiated when a piece of wire in space is excited by a
time-varying current.

CS
 J# dS + d

dtLV
 r dv = 0

m0P0

 H = B
m0

 D = P0E

CS
 B # dS = 0

CS
D # dS = LV

 r dv
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REVIEW QUESTIONS

2.1. How do you find the work done in moving a test charge by an infinitesimal distance in
an electric field?

2.2. What is the amount of work involved in moving a test charge normal to the electric field?

2.3. What is the physical interpretation of the line integral of E between two points A and B?

2.4. How do you find the approximate value of the line integral of a vector along a given path?

2.5. How do you find the exact value of the line integral?

2.6. What is the physical significance of the line integral of the earth’s gravitational field
intensity?

2.7. What is the value of the line integral of the earth’s gravitational field intensity around a
closed path?

2.8. How do you find the magnetic flux crossing an infinitesimal surface?

2.9. What is the magnetic flux crossing an infinitesimal surface oriented parallel to the mag-
netic flux density vector? 

2.10. For what orientation of the infinitesimal surface relative to the magnetic flux density
vector is the magnetic flux crossing the surface a maximum?

I(t)

E

E

H

H

FIGURE 2.24

Two views of a simplified depiction of electromagnetic wave radiation
from a piece of wire carrying a time-varying current.
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2.11. How do you find the approximate value of the surface integral over a given surface? 
2.12. How do you find the exact value of the surface integral?
2.13. Provide physical interpretations for the closed surface integrals of any two vectors of

your choice.
2.14. State Faraday’s law.
2.15. Why is it necessary to have the minus sign associated with the time rate of increase of

magnetic flux on the right side of Faraday’s law?
2.16. What is electromotive force?
2.17. What are the different ways in which an emf is induced around a loop?
2.18. To find the induced emf around a planar loop, is it necessary to consider the magnetic

flux crossing the plane surface bounded by the loop?
2.19. Discuss briefly the motional emf concept.
2.20. What is Lenz’s law?
2.21. How would you orient a loop antenna in order to obtain maximum signal from an inci-

dent electromagnetic wave which has its magnetic field linearly polarized in the
north–south direction?

2.22. State three applications of Faraday’s law.
2.23. State Ampere’s circuital law.
2.24. What are the units of the magnetic field intensity vector?
2.25. What are the units of the displacement flux density vector?
2.26. What is displacement current? Give an example involving displacement current.
2.27. Why is it necessary to have the displacement current term on the right side of Ampere’s

circuital law?
2.28. When can you say that the current in a wire enclosed by a closed path is uniquely

defined? Give two examples.
2.29. Give an example in which the current in a wire enclosed by a closed path is not uniquely

defined.
2.30. Is it meaningful to consider two different surfaces bounded by a closed path to compute

the two different currents on the right side of Ampere’s circuital law to find 
around the closed path?

2.31. Discuss briefly the application of Ampere’s circuital law to determine the magnetic
field due to current distributions.

2.32. State Gauss’ law for the electric field.
2.33. How is volume charge density defined?
2.34. State the law of conservation of charge.
2.35. How is Gauss’ law for the electric field derived from Ampere’s circuital law?
2.36. Discuss briefly the application of Gauss’ law for the electric field to determine the

electric field due to charge distributions.
2.37. State Gauss’ law for the magnetic field. How is it derived from Faraday’s law?
2.38. What is the physical interpretation of Gauss’ law for the magnetic field?
2.39. Summarize Maxwell’s equations in integral form. Discuss the interdependence of time-

varying electric and magnetic fields, with the aid of an example.
2.40. Which two of the Maxwell’s equations are independent?

AH # dl
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68 Chapter 2 Maxwell’s Equations in Integral Form

PROBLEMS

2.1. For the force field , find the approximate value of the line integral of F from
the origin to the point (1, 3, 0) along a straight line path by dividing the path into ten
equal segments.

2.2. For the force field , obtain a series expression for the line integral of F from the
origin to the point (1, 3, 0) along a straight line path by dividing the path into equal
segments. Express the sum of the series in closed form and compute its value for values
of equal to 5, 10, 100, and .

2.3. For the force field , find the exact value of the line integral of F from the origin
to the point (1, 3, 0) along a straight line path.

2.4. Given , find along the following paths: (a) straight line
path , , (b) straight line path from (0, 0, 0) to (1, 0, 0), and then straight line
path from (1, 0, 0) to (1, 1, 0), and (c) any path of your choice.

2.5. Show that for any closed path , and hence show that for a uniform field

2.6. Given , find where is the closed path in the -plane consist-
ing of the following: the straight line path from (0, 0, 0) to , the straight line path
from to , the straight line path from to (0, 1, 0), the circular
path from (0, 1, 0) to (1, 0, 0) having its center at (0, 0, 0), and the straight line path from
(1, 0, 0) to (0, 0, 0).

2.7. Given , find where is the closed path comprising
the straight lines from (0, 0, 0) to (1, 1, 1), from (1, 1, 1) to (1, 1, 0), and from (1, 1, 0) to
(0, 0, 0).

2.8. For the magnetic flux density vector , find the approximate value of
the magnetic flux crossing the portion of the xy-plane lying between , ,

, and , by dividing the area into 100 equal parts.

2.9. For the magnetic flux density vector , obtain a series expression
for the magnetic flux crossing the portion of the -plane lying between ,

, , and by dividing the area into equal parts. Express the sum of
the series in closed form and compute its value for values of n equal to 5, 10, 100,
and .

2.10. For the magnetic flux density vector , find the exact value of the
magnetic flux crossing the portion of the -plane lying between , , ,
and by evaluating the surface integral of B.

2.11. Given , find where Sis the hemispherical surface of
radius 2 m lying above the -plane and having its center at the origin.

2.12. Show that for any closed surface , and hence show that for a uniform field A,
.

2.13. Given , find , that is, the current flow-
ing out of the surface of the rectangular box bounded by the planes , ,

, , , and .

2.14. Given , find the time rate of decrease of the magnetic flux
crossing toward the positive -side and enclosed by the path in the -plane from (0, 0, 0)
to (1, 0, 0) along , from (1, 0, 0) to (1, 1, 0) along , and from (1, 1, 0) to (0, 0, 0)
along .y = x3

x = 1y = 0
xyz

E = (yax - xay) cos vt V/m

z = 3z = 0y = 2y = 0
x = 1x = 0S

AS J# dSA/m2J= 3xax + (y - 3)ay + (2 + z)az

AS A # dS = 0
AS dS = 0S

xy
1S A # dSA = xax + yay + zaz

y = 1
y = 0x = 1x = 0xy

Wb/m2B = x2e - yaz

q

n2y = 1y = 0x = 1
x = 0xy

Wb/m2B = x2e - yaz

y = 1y = 0
x = 1x = 0

Wb/m2B = x2e - yaz

CAC F # dlF = xyax + yzay + zxaz

(0, 12, 0)(0, 22, 0)( - 1, 1, 0)
( - 1, 1, 0)

xyCAC F # dlF = yax - xay

F, AC F # dl = 0.
AC dl = 0C

z = 0y = x
1(1, 1, 0)

(0, 0, 0)  E # dlE = yax + xay

F = x2ay

qn

n
F = x2ay

F = x2ay
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2.15. A magnetic field is given in the -plane by , where is a constant.A 

rigid rectangular loop is situated in the -plane and with its corners at the points
, , , and . If the loop is moving in that

plane with a velocity , where is a constant, find by using Faraday’s law
the induced emf around the loop in the sense defined by connecting the above specified
points in succession. Discuss your result by using the motional emf concept.

2.16. Assuming the rectangular loop of Problem 2.15 to be stationary, find the induced emf 

around the loop if .

2.17. Assuming the rectangular loop of Problem 2.15 to be moving with the velocity

, find the induced emf around the loop if .

2.18. For , find the induced emf around the closed path comprising
the straight lines successively connecting the points (0, 0, 0), (1, 0, 0.01), (1, 1, 0.02),
(0, 1, 0.03), (0, 0, 0.04), and (0, 0, 0).

2.19. Repeat Problem 2.18 for the closed path comprising the straight lines successively
connecting the points (0, 0, 0), (1, 0, 0.01), (1, 1, 0.02), (0, 1, 0.03), (0, 0, 0.04), (1, 0, 0.05),
(1, 1, 0.06), (0, 1, 0.07), (0, 0, 0.08), and (0, 0, 0), with a slight kink in the last straight line
at the point (0, 0, 0.04) to avoid touching the point.

2.20. A rigid rectangular loop of area is situated normal to the -plane and symmetrically
about the -axis. It revolves around the -axis at rad/s in the sense defined by the
curling of the fingers of the right hand when the -axis is grabbed with the thumb pointed
in the positive -direction. Find the induced emf around the loop if 
where is a constant, and show that the induced emf has two frequency components

and .
2.21. For the revolving loop of Problem 2.20, find the induced emf around the loop if

.
2.22. For the revolving loop of Problem 2.20, find the induced emf around the loop if

.
2.23. A current flows from infinity to a point charge at the origin through a thin wire along

the negative -axis and a current flows from the point charge to infinity through
another thin wire along the positive -axis. From considerations of uniqueness of

find the displacement current emanating from (a) a spherical surface of radius
1 m and having its center at the point (2, 2, 2) and (b) a spherical surface of radius 1 m
and having its center at the origin.

2.24. A current density due to flow of charges is given by . From consid-
eration of uniqueness of , find the displacement current emanating from the
cubical box bounded by the planes , , , , , and .

2.25. An infinitely long, cylindrical wire of radius , having the -axis as its axis, carries current
in the positive -direction with uniform density . Find H both inside and outside
the wire.

2.26. An infinitely long, hollow, cylindrical wire of inner radius and outer radius , having
the -axis as its axis, carries current in the positive -direction with uniform density

. Find H everywhere.
2.27. An infinitely long, straight wire situated along the -axis carries current in the positive

-direction.What are the values of along (a) the circular path of radius 1 m
and centered at the origin and (b) along a straight line path?

1(0, 1, 0)
(1, 0, 0)  H # dlz

Iz
J0 A/m2

zz
ba

J0 A/m2z
za

z = 1z = 0y = 1y = 0x = 1x = 0
AC H # dl

J= y cos vt ay A/m2

AC H # dl,
y

I2y
I1

B = B0(cos v1t ax -  sin v1t ay)

B = B0(cos v1t ax + sin v1t ay)

|v1 - v2|(v1 + v2)
B0

B = B0 cos v2t ax,z
z
v1zz

xyA

B = B0 cos vt az Wb/m2

B =
B0

x
 cos vt ay Wb/m2v = v0ax m/s

B =
B0

x
 cos vt ay Wb/m2

v0v = v0ax m/s
(x0 + a, z0)(x0 + a, z0 + b)(x0, z0 + b)(x0, z0)

xz

B0Wb/m2B =
B0

x
ayxz
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70 Chapter 2 Maxwell’s Equations in Integral Form

2.28. Given , find the charge contained in the volume of the wedge-shaped box
defined by the planes , , , , and .

2.29. Given , find the displacement flux emanating from the surface of the cu-
bical box defined by the planes , , , , , and .

2.30. Charge is distributed uniformly along the -axis with density C/m. Using Gauss’ law
for the electric field, find the electric field intensity due to the line charge.

2.31. Charge is distributed uniformly with density within a spherical volume of
radius a m and having its center at the origin. Using Gauss’ law for the electric field,
find the electric field intensity both inside and outside the charge distribution.

2.32. A point charge C is situated at the origin. What are the values of the displacement
flux crossing (a) the spherical surface , , , and and
(b) the plane surface , , , and ?

2.33. Given , find the time rate of increase of the charge contained in the cubi-
cal volume bounded by the planes , , , , , and .

2.34. Given , find the time rate of increase of the charge contained in the
volume of the wedge-shaped box that is defined by the planes  , , ,

, and .
2.35. Using the property that , find the absolute value of over that

portion of the surface bounded by , , , and , for
.

2.36. Repeat Problem 2.35 for the plane rectangular surface having the vertices at (0, 0, 0),
(0, 0, 1), (1, 1, 1), and (0, 1, 1).

B = yax - xay

z = 1z = 0x = px = 0y = sin x
1  B # dSAS B # dS = 0

z = 0y = 1
y = 0x + z = 1x = 0

J= xax A/m2
z = 1z = 0y = 1y = 0x = 1x = 0

J= xax A/m2
z 7 0y 7 0x 7 0x + y + z = 1

z 7 0y 7 0x 7 0x2 + y2 + z2 = 1
Q

r0 C/m3

rL0z
z = 1z = 0y = 1y = 0x = 1x = 0

r = xe - x2
 C/m3

z = 0y = 1y = 0x + z = 1x = 0
D = yay
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