
Vectors and Fields

Electromagnetics deals with the study of electric and magnetic fields. It is at once
apparent that we need to familiarize ourselves with the concept of a field, and in par-
ticular with electric and magnetic fields. These fields are vector quantities and their
behavior is governed by a set of laws known as Maxwell’s equations. The mathematical
formulation of Maxwell’s equations and their subsequent application in our study of
the fundamentals of electromagnetics require that we first learn the basic rules perti-
nent to mathematical manipulations involving vector quantities.With this goal in mind,
we shall devote this chapter to vectors and fields.

We shall first study certain simple rules of vector algebra without the implica-
tion of a coordinate system and then introduce the Cartesian coordinate system,
which is the coordinate system employed for the most part of our study in this book.
After learning the vector algebraic rules, we shall turn our attention to a discussion
of scalar and vector fields, static as well as time-varying, by means of some familiar
examples. We shall devote particular attention to sinusoidally time-varying fields,
scalar as well as vector, and to the phasor technique of dealing with sinusoidally
time-varying quantities. With this general introduction to vectors and fields, we shall
then devote the remainder of the chapter to an introduction of the electric and
magnetic field concepts, from considerations of the experimental laws of Coulomb
and Ampere.

1.1 VECTOR ALGEBRA

In the study of elementary physics we come across several quantities such as mass, tem-
perature, velocity, acceleration, force, and charge. Some of these quantities have associ-
ated with them not only a magnitude but also a direction in space, whereas others are
characterized by magnitude only. The former class of quantities are known as vectors,
and the latter class of quantities are known as scalars. Mass, temperature, and charge
are scalars, whereas velocity, acceleration, and force are vectors. Other examples are
voltage and current for scalars and electric and magnetic fields for vectors.
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2 Chapter 1 Vectors and Fields

FIGURE 1.1

Graphical representation of vectors.

Vector quantities are represented by boldface roman type symbols, for example,A,
in order to distinguish them from scalar quantities, which are represented by lightface
italic type symbols, for example, A. Graphically, a vector, say A, is represented by a
straight line with an arrowhead pointing in the direction of A and having a length pro-
portional to the magnitude of A, denoted or simply A. Figures 1.1(a)–(d) show
four vectors drawn to the same scale. If the top of the page represents north, then
vectors A and B are directed eastward, with the magnitude of B being twice that
of A.Vector C is directed toward the northeast and has a magnitude three times that of
A. Vector D is directed toward the southwest and has a magnitude equal to that of C.
Since C and D are equal in magnitude but opposite in direction, one is the negative of
the other. It is important to note that the lengths of the lines are not associated with the
physical quantity distance, unless the vector quantity represents distance; they are as-
sociated with the magnitudes of the physical quantity that the vector represents, such
as velocity, acceleration, or force.

ƒ A ƒ

Since a vector may have in general an arbitrary orientation in three dimensions,
we need to define a set of three reference directions at each and every point in space in
terms of which we can describe vectors drawn at that point. It is convenient to choose
these three reference directions to be mutually orthogonal as, for example, east, north,
and upward or the three contiguous edges of a rectangular room. Thus, let us consider
three mutually orthogonal reference directions and direct unit vectors along the three
directions as shown, for example, in Figure 1.2(a). A unit vector has magnitude unity.
We shall represent a unit vector by the symbol a and use a subscript to denote its di-
rection. We shall denote the three directions by subscripts 1, 2, and 3. We note that for
a fixed orientation of two combinations are possible for the orientations of and

as shown in Figures 1.2(a) and (b). If we take a right-hand screw and turn it from 
to through the 90°-angle, it progresses in the direction of in Figure 1.2(a) but op-
posite to the direction of in Figure 1.2(b). Alternatively, a left-hand screw when
turned from to in Figure 1.2(b) will progress in the direction of Hence, the set
of unit vectors in Figure 1.2(a) corresponds to a right-handed system, whereas the set
in Figure 1.2(b) corresponds to a left-handed system. We shall work consistently with
the right-handed system.

a3.a2a1

a3

a3a2

a1a3,
a2a1,

A B

DC

(a) (b)

(d)(c)
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1.1 Vector Algebra 3

A vector of magnitude different from unity along any of the reference directions
can be represented in terms of the unit vector along that direction.Thus, represents
a vector of magnitude 4 units in the direction of represents a vector of magni-
tude 6 units in the direction of and represents a vector of magnitude 2 units in
the direction opposite to that of as shown in Figure 1.3. Two vectors are added by
placing the beginning of the second vector at the tip of the first vector and then draw-
ing the sum vector from the beginning of the first vector to the tip of the second vector.
Thus to add and we simply slide without changing its direction until its
beginning coincides with the tip of and then draw the vector from the
beginning of to the tip of as shown in Figure 1.3. By adding to this vector

in a similar manner, we obtain the vector as shown
in Figure 1.3. We note that the magnitude of is , or 7.211, and
that the magnitude of is or 7.483. Conversely to the242 + 62 + 22,14a1 + 6a2 - 2a32 242 + 6214a1 + 6a2214a1 + 6a2 - 2a32,(4a1 + 6a2)

- 2a36a2,4a1

(4a1 + 6a2)4a1

6a26a2,4a1

a3,
- 2a3a2,

a1, 6a2

4a1

a3
a2

a1

4a1

6a2

4a1 ! 6a2 " 2a3

4a1 ! 6a2

6a2

–2a3

"2a3 FIGURE 1.3

Graphical addition of vectors.

(a) (b)

a3

a3a2

a2

a1 a1

FIGURE 1.2

(a) Set of three orthogonal unit vectors in a right-handed system. (b) Set of three
orthogonal unit vectors in a left-handed system.
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4 Chapter 1 Vectors and Fields

foregoing discussion, a vector A at a given point is simply the superposition of three
vectors and that are the projections of A onto the reference direc-
tions at that point. and are known as the components of A along the 1, 2,
and 3 directions, respectively. Thus,

(1.1)

We now consider three vectors A, B, and C given by

(1.2a)

(1.2b)

(1.2c)

at a point and discuss several algebraic operations involving vectors as follows.

Vector Addition and Subtraction

Since a given pair of like components of two vectors are parallel, addition of two vec-
tors consists simply of adding the three pairs of like components of the vectors. Thus,

(1.3)

Vector subtraction is a special case of addition. Thus,

(1.4)

Multiplication and Division by a Scalar

Multiplication of a vector A by a scalar m is the same as repeated addition of the
vector. Thus,

(1.5)

Division by a scalar is a special case of multiplication by a scalar. Thus,

(1.6)

Magnitude of a Vector

From the construction of Figure 1.3 and the associated discussion, we have

(1.7)ƒ A ƒ = ƒ A1 a1 + A2 a2 + A3 a3 ƒ = 4A1
2 + A2

2 + A3
2

B
n

= 1
n

 1B2 =
B1

n
 a1 +

B2

n
 a2 +

B3

n
 a3

mA = m1A1 a1 + A2 a2 + A3 a32 = mA1 a1 + mA2 a2 + mA3 a3

 = 1B1 - C12a1 + 1B2 - C22a2 + 1B3 - C32a3

 B - C = B + 1 - C2 = 1B1 a1 + B2 a2 + B3 a32 + 1 - C1 a1 - C2 a2 - C3 a32
 = 1A1 + B12a1 + 1A2 + B22a2 + 1A3 + B32a3

 A + B = 1A1 a1 + A2 a2 + A3 a32 + 1B1 a1 + B2 a2 + B3 a32

 C = C1 a1 + C2 a2 + C3 a3

 B = B1 a1 + B2 a2 + B3 a3

 A = A1 a1 + A2 a2 + A3 a3

A = A1 a1 + A2 a2 + A3 a3

A3A1, A2,
A3 a3A1 a1, A2 a2,
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1.1 Vector Algebra 5

(a) (b) (c)

a a

B cos a

A
 co

s a

A
A

A

B B B
C

B ! C

FIGURE 1.4

(a) and (b) For showing that the dot product of two vectors A and B is the product of
the magnitude of one vector and the projection of the second vector onto the first vector.
(c) For proving the distributive property of the dot product operation.

Unit Vector Along A

The unit vector has a magnitude equal to unity but its direction is the same as that
of A. Hence,

(1.8)

Scalar or Dot Product of Two Vectors

The scalar or dot product of two vectors A and B is a scalar quantity equal to the product
of the magnitudes of A and B and the cosine of the angle between A and B. It is
represented by a boldface dot between A and B. Thus if is the angle between A
and B, then

(1.9)

For the unit vectors we have

(1.10a)

(1.10b)

(1.10c)

By noting that we observe that the dot prod-
uct operation consists of multiplying the magnitude of one vector by the scalar ob-
tained by projecting the second vector onto the first vector as shown in Figures 1.4(a)
and (b). The dot product operation is commutative since

(1.11)B # A = BA cos a = AB cos a = A # B

A # B = A1B cos a2 = B1A cos a2, a3 # a1 = 0 a3 # a2 = 0 a3 # a3 = 1

 a2 # a1 = 0 a2 # a2 = 1 a2 # a3 = 0

 a1 # a1 = 1 a1 # a2 = 0 a1 # a3 = 0

a1, a2, a3,

A # B = ƒ A ƒ ƒ B ƒ  cos a = AB cos a

a

 =
A12A2

1 + A2
2 + A2

3

 a1 +
A22A2

1 + A2
2 + A2

3

 a2 +
A32A2

1 + A2
2 + A2

3

 a3

 aA = A

ƒA ƒ
=

A1a1 + A2a2 + A3a32A2
1 + A2

2 + A2
3

aA
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6 Chapter 1 Vectors and Fields

The distributive property also holds for the dot product, as can be seen from the con-
struction of Figure 1.4(c), which illustrates that the projection of onto A is
equal to the sum of the projections of B and C onto A. Thus,

(1.12)

Using this property, and the relationships (1.10a)–(1.10c), we have

(1.13)

Thus, the dot product of two vectors is the sum of the products of the like components
of the two vectors.

Vector or Cross Product of Two Vectors

The vector or cross product of two vectors A and B is a vector quantity whose magni-
tude is equal to the product of the magnitudes of A and B and the sine of the smaller
angle between A and B and whose direction is the direction of advance of a right-
hand screw as it is turned from A to B through the angle as shown in Figure 1.5. It is
represented by a boldface cross between A and B. Thus if is the unit vector in the
direction of advance of the right-hand screw, then

(1.14)

For the unit vectors we have

(1.15a)
(1.15b)
(1.15c)

Note that the cross product of identical vectors is zero. If we arrange the unit vectors in
the manner and then go forward, the cross product of any two successive
unit vectors is equal to the following unit vector, but if we go backward, the cross product
of any two successive unit vectors is the negative of the following unit vector.

a1 a2 a3 a1 a2

 a3 : a1 = a2     a3 : a2 = - a1     a3 : a3 = 0
 a2 : a1 = - a3     a2 : a2 = 0     a2 : a3 = a1

 a1 : a1 = 0     a1 : a2 = a3     a1 : a3 = - a2

a1, a2, a3,

A : B = ƒ A ƒ ƒ B ƒ  sin a aN = AB sin a aN

aN

a,
a

 = A1 B1 + A2 B2 + A3 B3

 + A3 a3 # B1 a1 + A3 a3 # B2 a2 + A3 a3 # B3 a3

 +  A2 a2 # B1 a1 + A2 a2 # B2 a2 + A2 a2 # B3 a3

 = A1 a1 # B1 a1 + A1 a1 # B2 a2 + A1 a1 # B3 a3

 A # B = 1A1 a1 + A2 a2 + A3 a32 # 1B1 a1 + B2 a2 + B3 a32
A # 1B + C2 = A # B + A # C

(B + C)

aN

a

A

B
FIGURE 1.5

The cross product operation A : B.
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1.1 Vector Algebra 7

The cross product operation is not commutative, since

(1.16)

The distributive property holds for the cross product (we shall prove this later in this
section) so that

(1.17)

Using this property and the relationships (1.15a)–(1.15c), we obtain

(1.18)

This can be expressed in determinant form in the manner

(1.19)

A triple cross product involves three vectors in two cross product operations.
Caution must be exercised in evaluating a triple cross product since the order of evalu-
ation is important, that is, is not equal to This can be
illustrated by means of a simple example involving unit vectors.Thus if 
and then

whereas

Scalar Triple Product

The scalar triple product involves three vectors in a dot product operation and a cross
product operation as, for example, It is not necessary to include parenthe-
ses, since this quantity can be evaluated in only one manner, that is, by evaluating

first and then dotting the resulting vector with A. It is meaningless to try to
evaluate the dot product first since it results in a scalar quantity and hence we cannot
proceed any further. From (1.13) and (1.19), we have

(1.20)A # B : C = 1A1 a1 + A2 a2 + A3 a32 # 3 a1 a2 a3

B1 B2 B3

C1 C2 C3

3 = 3A1 A2 A3

B1 B2 B3

C1 C2 C3

3
B : C

A # B : C.

1A : B2 : C = 1a1 : a12 : a2 = 0 : a2 = 0

 A : 1B : C2 = a1 : 1a1 : a22 = a1 : a3 = - a2

C = a2,
A = a1, B = a1,

1A : B2 : C.A : 1B : C2
A : B = 3 a1 a2 a3

A1 A2 A3

B1 B2 B3

3 +  1A1 B2 - A2 B12a3

 = 1A2 B3 - A3 B22a1 + 1A3 B1 - A1 B32a2

 +  A3 B1 a2 - A3 B2 a1

 = A1 B2 a3 - A1 B3 a2 - A2 B1 a3 + A2 B3 a1

 +  A3 a3 : B1 a1 + A3 a3 : B2 a2 + A3 a3 : B3 a3

 +  A2 a2 : B1 a1 + A2 a2 : B2 a2 + A2 a2 : B3 a3

 = A1 a1 : B1 a1 + A1 a1 : B2 a2 + A1 a1 : B3 a3

 A : B = 1A1 a1 + A2 a2 + A3 a32 : 1B1 a1 + B2 a2 + B3 a32
A : 1B + C2 = A : B + A : C

B : A = ƒ B ƒ ƒ A ƒ  sin a 1 - aN2 = - AB sin a aN = - A : B
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8 Chapter 1 Vectors and Fields

Since the value of the determinant on the right side of (1.20) remains unchanged if the
rows are interchanged in a cyclical manner,

(1.21)

We shall now show that the distributive law holds for the cross product operation
by using (1.21). Thus, let us consider Then, if D is any arbitrary vector,
we have

(1.22)

where we have used the distributive property of the dot product operation. Since
(1.22) holds for any D, it follows that

Example 1.1

Given three vectors

let us carry out several of the vector algebraic operations.

(a)

(b)
(c)

(d)

(e)

(f)

(g)

(h)

(i) A # B : C = 3 1 1 0
1 2 - 2
0 1 2

3 = 112162 + 1121 - 22 + 102112 = 4

1A : B2 : C = 3 a1 a2 a3

- 2 2 1
0 1 2

3 = 3a1 + 4a2 - 2a3

 = - 2a1 + 2a2 + a3

 A : B = 3 a1 a2 a3

1 1 0
1 2 - 2

3 = 1 - 2 - 02a1 + 10 + 22a2 + 12 - 12a3

A # B = 1a1 + a22 # 1a1 + 2a2 - 2a32 = 112112 + 112122 + 1021 - 22 = 3

aB = B
ƒ B ƒ

=
a1 + 2a2 - 2a3

3
= 1

3
 a1 + 2

3
 a2 - 2

3
 a3

ƒ B ƒ = ƒ a1 + 2a2 - 2a3 ƒ = 41122 + 1222 + 1 - 222 = 3

4C = 41a2 + 2a32 = 4a2 + 8a3

B - C = 1a1 + 2a2 - 2a32 - 1a2 + 2a32 = a1 + a2 - 4a3

A + B = 1a1 + a22 + 1a1 + 2a2 - 2a32 = 2a1 + 3a2 - 2a3

 C = a2 + 2a3

 B = a1 + 2a2 - 2a3

 A = a1 + a2

A : 1B + C2 = A : B + A : C

 = D # A : B + D # A : C = D # 1A : B + A : C2 D # A : 1B + C2 = 1B + C2 # 1D : A2 = B # 1D : A2 + C # 1D : A2
A : 1B + C2.

A # B : C = B # C : A = C # A : B

M01_RAO3333_1_SE_CHO1.QXD  4/9/08  1:13 PM  Page 8



1.2 Cartesian Coordinate System 9

1.2 CARTESIAN COORDINATE SYSTEM

In the previous section we introduced the technique of expressing a vector at a point in
space in terms of its component vectors along a set of three mutually orthogonal direc-
tions defined by three mutually orthogonal unit vectors at that point. Now, in order to
relate vectors at one point in space to vectors at another point in space, we must define
the set of three reference directions at each and every point in space.To do this in a sys-
tematic manner, we need to use a coordinate system.Although there are several differ-
ent coordinate systems, we shall use for the most part of our study the simplest of these,
namely, the Cartesian coordinate system, also known as the rectangular coordinate system,
to keep the geometry simple and yet sufficient to learn the fundamentals of electro-
magnetics. We shall, however, find it necessary in a few cases to resort to the use of
cylindrical and spherical coordinate systems. Hence, a discussion of these coordinate
systems is included in Appendix A. In this section we introduce the Cartesian coordi-
nate system.

The Cartesian coordinate system is defined by a set of three mutually orthogonal
planes, as shown in Figure 1.6(a).The point at which the three planes intersect is known
as the origin O. The origin is the reference point relative to which we locate any other
point in space. Each pair of planes intersects in a straight line. Hence, the three planes
define a set of three straight lines that form the coordinate axes. These coordinate axes
are denoted as the x-, y-, and z-axes. Values of x, y, and z are measured from the origin
and hence the coordinates of the origin are (0, 0, 0), that is, and 
Directions in which values of x, y, and z increase along the respective coordinate axes
are indicated by arrowheads. The same set of three directions is used to erect a set of
three unit vectors, denoted and as shown in Figure 1.6(a), for the purpose of
describing vectors drawn at the origin. Note that the positive x-, y-, and z-directions are
chosen such that they form a right-handed system, that is, a system for which

On one of the three planes, namely, the yz-plane, the value of x is constant and
equal to zero, its value at the origin, since movement on this plane does not require any
movement in the x-direction. Similarly, on the zx-plane the value of y is constant and
equal to zero, and on the xy-plane the value of z is constant and equal to zero.Any point
other than the origin is now given by the intersection of three planes obtained by in-
crementing the values of the coordinates by appropriate amounts. For example, by dis-
placing the plane by 2 units in the positive x-direction, the plane by 5 units in
the positive y-direction, and the plane by 4 units in the positive z-direction, we
obtain the planes and respectively, which intersect at the point
(2, 5, 4), as shown in Figure 1.6(b). The intersections of pairs of these planes define
three straight lines along which we can erect the unit vectors and toward the
directions of increasing values of x, y, and z, respectively, for the purpose of describing
vectors drawn at that point. These unit vectors are parallel to the corresponding unit
vectors drawn at the origin, as can be seen from Figure 1.6(b). The same is true for any
point in space in the Cartesian coordinate system. Thus, each one of the three unit vec-
tors in the Cartesian coordinate system has the same direction at all points and hence
it is uniform. This behavior does not, however, hold for all unit vectors in the cylindri-
cal and spherical coordinate systems.

azax, ay,

z = 4,x = 2, y = 5,
z = 0

y = 0x = 0

ax : ay = az.

az,ax, ay,

z = 0.x = 0, y = 0,
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10 Chapter 1 Vectors and Fields

It is now a simple matter to apply what we have learned in Section 1.1 to vectors
in Cartesian coordinates. All we need to do is to replace the subscripts 1, 2, and 3 for
the unit vectors and the components along the unit vectors by the subscripts x, y, and z,
respectively, and also utilize the property that and are uniform vectors. Thus
let us, for example, obtain the expression for the vector drawn from point

to point as shown in Figure 1.6(c). To do this, we note that
the position vector drawn from the origin to the point is given by

(1.23)

and that the position vector drawn from the origin to the point is given by

(1.24)r2 = x2 ax + y2 ay + z2 az

P2r2

r1 = x1 ax + y1 ay + z1 az

P1r1

P21x2, y2, z22,P11x1, y1, z12 R12

azax, ay,

(a) (b)

x # 0 y # 0

z # 0
y # 5

x # 2

z # 4

x

x

y

y

z

z

az

az

az

ay

ay

ax

ax

2
5

4

(2, 5, 4)

O

O ay
ax

x

z

y

(c)

O

r1

r2

P1 (x1, y1, z1)
R12

P2 (x2, y2, z2)

x

y

z az

ax

ay

dy

dz
dzdz

dy

dy

dx

dx

dx

O

P
Q

(d)

FIGURE 1.6

Cartesian coordinate system. (a) The three orthogonal planes defining the coordinate
system. (b) Unit vectors at an arbitrary point. (c) Vector from one arbitrary point to another
arbitrary point. (d) Differential lengths, surfaces, and volume formed by incrementing the
coordinates.
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1.2 Cartesian Coordinate System 11

The position vector is so called because it defines the position of the point in space rel-
ative to the origin. Since, from the rule for vector addition, we obtain

(1.25)

In our study of electromagnetic fields, we have to work with line integrals, surface
integrals, and volume integrals. As in elementary calculus, these involve differential
lengths, surfaces, and volumes, obtained by incrementing the coordinates by infinitesi-
mal amounts. Since in the Cartesian coordinate system the three coordinates represent
lengths, the differential length elements obtained by incrementing one coordinate at a
time, keeping the other two coordinates constant, are and for the 
x-, y-, and z-coordinates, respectively, as shown in Figure 1.6(d), at an arbitrary point

The three differential length elements form the contiguous edges of a rec-
tangular box in which the corner Q diagonally opposite to P has the coordinates

The differential length vector dl from P to Q is simply the
vector sum of the three differential length elements. Thus,

(1.26)

The box has six differential surfaces with each surface defined by two of the three length
elements, as shown by the projections onto the coordinate planes in Figure 1.6(d). The
orientation of a differential surface dS is specified by a unit vector normal to it, that is, a
unit vector perpendicular to any two vectors tangential to the surface. Unless specified,
the normal vector can be drawn toward any one of the two sides of a given surface.Thus,
the differential surfaces formed by the pairs of differential length elements are

(1.27a)

(1.27b)

(1.27c)

Finally, the differential volume formed by the three differential lengths is simply the
volume of the box, that is,

(1.28)

We shall now briefly review some elementary analytic geometrical details that
will be useful in our study of electromagnetics. An arbitrary surface is defined by an
equation of the form

(1.29)

In particular, the equation for a plane surface making intercepts a, b, and c on the x-,
y-, and z-axes, respectively, is given by

(1.30)

Since a curve is the intersection of two surfaces, an arbitrary curve is defined by a pair
of equations

(1.31)f1x, y, z2 = 0  and  g1x, y, z2 = 0

x
a

+
y
b

+ z
c

= 1

f1x, y, z2 = 0

dv = dx dy dz

dv

 ;  dS ay = ;  dz dx ay = ;  dz az : dx ax

 ;  dS ax = ;  dy dz ax = ;  dy ay : dz az

 ;  dS az = ;  dx dy az = ;  dx ax : dy ay

dl = dx ax + dy ay + dz az

(x + dx, y + dy, z + dz).

P(x, y, z).

dz azdx ax, dy ay,

R12 = r2 - r1 = 1x2 - x12ax + 1y2 - y12ay + 1z2 - z12az

r1 + R12 = r2,
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12 Chapter 1 Vectors and Fields

Alternatively, a curve is specified by a set of three parametric equations

(1.32)

where t is an independent parameter. For example, a straight line passing through the
origin and making equal angles with the positive x-, y-, and z-axes is given by the pair
of equations and or by the set of three parametric equations 
and 

Example 1.2

Let us find a unit vector normal to the plane

By writing the given equation for the plane in the form

we identify the intercepts made by the plane on the x-, y-, and z-axes to be 4, 10, and 5,
respectively. The portion of the plane lying in the first octant of the coordinate system is shown
in Figure 1.7.

x
4

+
y

10
+ z

5
= 1

5x + 2y + 4z = 20

z = t.
x = t, y = t,z = x,y = x

x = x1t2, y = y1t2, z = z1t2

x

y

z

C (0, 0, 5)

B (0, 10, 0)

A (4, 0, 0)FIGURE 1.7

The plane surface .5x + 2y + 4z = 20

To find a unit vector normal to the plane, we consider two vectors lying in the plane and
evaluate their cross product. Thus considering the vectors and , we have from (1.25),

The cross product of and is then given by

This vector is perpendicular to both and and hence to the plane. Finally, the required
unit vector is obtained by dividing by its magnitude. Thus, it is equal to

50ax + 20ay + 40az

ƒ50ax + 20ay + 40az ƒ
=

5ax + 2ay + 4az225 + 4 + 16
= 1

325
 (5ax + 2ay + 4az)

RAB : RAC

RACRAB

RAB : RAC = † ax ay az

- 4 10 0
- 4 0 5

† = 50ax + 20ay + 40az

RACRAB

RAC = (0 - 4)ax + (0 - 0)ay + (5 - 0)az = - 4ax + 5az

RAB = (0 - 4)ax + (10 - 0)ay + (0 - 0)az = - 4ax + 10ay

RACRAB
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1.3 Scalar and Vector Fields 13

1.3 SCALAR AND VECTOR FIELDS

Before we take up the task of studying electromagnetic fields, we must understand what is
meant by a field. A field is associated with a region in space and we say that a field exists
in the region if there is a physical phenomenon associated with points in that region. For
example, in everyday life we are familiar with the earth’s gravitational field. We do not
“see” the field in the same manner as we see light rays, but we know of its existence in the
sense that objects are acted upon by the gravitational force of the earth. In a broader
context, we can talk of the field of any physical quantity as being a description, mathemat-
ical or graphical, of how the quantity varies from one point to another in the region of the
field and with time.We can talk of scalar or vector fields depending on whether the quan-
tity of interest is a scalar or a vector.We can talk of static or time-varying fields depend-
ing on whether the quantity of interest is independent of or changing with time.

We shall begin our discussion of fields with some simple examples of scalar fields.
Thus, let us consider the case of the conical pyramid shown in Figure 1.8(a). A descrip-
tion of the height of the pyramidal surface versus position on its base is an example of
a scalar field involving two variables. Choosing the origin to be the projection of the
vertex of the cone onto the base and setting up an xy-coordinate system to locate
points on the base, we obtain the height field as a function of x and y to be

(1.33)

Although we are able to depict the height variation of points on the conical surface
graphically by using the third coordinate for h, we will have to be content with the
visualization of the height field by a set of constant-height contours on the xy-plane if
only two coordinates were available, as in the case of a two-dimensional space. For the
field under consideration, the constant-height contours are circles in the xy-plane cen-
tered at the origin and equally spaced for equal increments of the height value, as
shown in Figure 1.8(a).

For an example of a scalar field in three dimensions, let us consider a rectangular
room and the distance field of points in the room from one corner of the room, as shown
in Figure 1.8(b). For convenience, we choose this corner to be the origin O and set up a
Cartesian coordinate system with the three contiguous edges meeting at that point as
the coordinate axes. Each point in the room is defined by a set of values for the three
coordinates x, y, and z. The distance r from the origin to that point is
Thus, the distance field of points in the room from the origin is given by

(1.34)

Since the three coordinates are already used up for defining the points in the field
region, we have to visualize the distance field by means of a set of constant-distance
surfaces. A constant-distance surface is a surface for which points on it correspond to a
particular constant value of r. For the case under consideration, the constant-distance
surfaces are spherical surfaces centered at the origin and are equally spaced for equal
increments in the value of the distance, as shown in Figure 1.8(b).

The fields we have discussed thus far are static fields.A simple example of a time-
varying scalar field is provided by the temperature field associated with points in a
room, especially when it is being heated or cooled. Just as in the case of the distance

r1x, y, z2 = 4x2 + y2 + z2

2x2 + y2 + z2.

h1x, y2 = 6 - 24x2 + y2
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14 Chapter 1 Vectors and Fields

(a) (b)
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FIGURE 1.8

(a) A conical pyramid lying above the xy-plane, and a set of constant-height
contours for the conical surface. (b) A rectangular room, and a set of
constant-distance surfaces depicting the distance field of points in the room
from one corner of the room.

field of Figure 1.8(b), we set up a three-dimensional coordinate system and to each set
of three coordinates corresponding to the location of a point in the room, we assign a
number to represent the temperature T at that point. Since the temperature at that
point, however, varies with time t, this number is a function of time. Thus, we describe
mathematically the time-varying temperature field in the room by a function T(x, y, z, t).
For any given instant of time, we can visualize a set of constant-temperature or isother-
mal surfaces corresponding to particular values of T as representing the temperature
field for that value of time. For a different instant of time, we will have a different set of
isothermal surfaces for the same values of T. Thus, we can visualize the time-varying
temperature field in the room by a set of isothermal surfaces continuously changing
their shapes as though in a motion picture.

The foregoing discussion of scalar fields may now be extended to vector fields by
recalling that a vector quantity has associated with it a direction in space in addition to
magnitude. Hence, in order to describe a vector field we attribute to each point in the
field region a vector that represents the magnitude and direction of the physical quan-
tity under consideration at that point. Since a vector at a given point can be expressed
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1.3 Scalar and Vector Fields 15

as the sum of its components along the set of unit vectors at that point, a mathematical
description of the vector field involves simply the descriptions of the three component
scalar fields. Thus for a vector field F in the Cartesian coordinate system, we have

(1.35)

Similar expressions hold in the cylindrical and spherical coordinate systems. We
should, however, note that two of the unit vectors in the cylindrical coordinate system
and all the unit vectors in the spherical coordinate system are themselves functions of
the coordinates.

To illustrate the graphical description of a vector field, let us consider the linear
velocity vector field associated with points on a circular disk rotating about its center
with a constant angular velocity rad/s. We know that the magnitude of the linear
velocity of a point on the disk is then equal to the product of the angular velocity and
the radial distance r of the point from the center of the disk. The direction of the linear
velocity is tangential to the circle drawn through that point and concentric with the
disk. Hence, we may depict the linear velocity field by drawing at several points on the
disk vectors that are tangential to the circles concentric with the disk and passing
through those points, and whose lengths are proportional to the radii of the circles, as
shown in Figure 1.9(a), where the points are carefully selected in order to reveal the
circular symmetry of the field with respect to the center of the disk. We, however, find
that this method of representation of the vector field results in a congested sketch of
vectors. Hence, we may simplify the sketch by omitting the vectors and simply placing
arrowheads along the circles, giving us a set of direction lines, also known as stream
lines and flux lines, which simply represent the direction of the field at points on them.
We note that for the field under consideration the direction lines are also contours of
constant magnitude of the velocity, and hence by increasing the density of the direction
lines as r increases, we can indicate the magnitude variation, as shown in Figure 1.9(b).

v
v

F1x, y, z, t2 = Fx1x, y, z, t2 ax + Fy1x, y, z, t2 ay + Fz1x, y, z, t2 az

(a)

v

(b)

FIGURE 1.9

(a) Linear velocity vector field associated with points on a rotating disk.
(b) Same as (a) except that the vectors are omitted, and the density of direction
lines is used to indicate the magnitude variation.
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16 Chapter 1 Vectors and Fields

1.4 SINUSOIDALLY TIME-VARYING FIELDS

In our study of electromagnetic fields we will be particularly interested in fields that
vary sinusoidally with time. Hence, we shall devote this section to a discussion of sinu-
soidally time-varying fields. Let us first consider a scalar sinusoidal function of time.
Such a function is given by an expression of the form where A is 
the peak amplitude of the sinusoidal variation, is the radian frequency, f is the
linear frequency, and is the phase. In particular, the phase of the function for

is . A plot of this function versus t, shown in Figure 1.10, illustrates how the
function changes periodically between positive and negative values. If we now have
a sinusoidally time-varying scalar field, we can visualize the field quantity varying
sinusoidally with time at each point in the field region with the amplitude and phase
governed by the spatial dependence of the field quantity. Thus, for example, the field

, where and are positive constants, is characterized by sinu-
soidal time variations with amplitude decreasing exponentially with z and the phase at
any given time decreasing linearly with z.

bA, a,Ae - az cos (vt - bz)

ft = 0
(vt + f)

v = 2pf
A cos (vt + f)

t
0

A

A cos ø

A cos (vt + ø) 

"A

v
p"

v
p 2p

v
3p
v

FIGURE 1.10

Sinusoidally time-varying scalar function A cos (vt + f).

For a sinusoidally time-varying vector field, the behavior of each component of
the field may be visualized in the manner just discussed. If we now fix our attention on
a particular point in the field region, we can visualize the sinusoidal variation with time
of a particular component at that point by a vector changing its magnitude and direc-
tion as shown, for example, for the x-component in Figure 1.11(a). Since the tip of the
vector simply moves back and forth along a line, which in this case is parallel to the 
x-axis, the component vector is said to be linearly polarized in the x-direction. Similarly,
the sinusoidal variation with time of the y-component of the field can be visualized by
a vector changing its magnitude and direction as shown in Figure 1.11(b), not necessar-
ily with the same amplitude and phase as those of the x-component. Since the tip of the
vector moves back and forth parallel to the y-axis, the y-component is said to be
linearly polarized in the y-direction. In the same manner, the z-component is linearly
polarized in the z-direction.
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1.4 Sinusoidally Time-Varying Fields 17

If two components sinusoidally time-varying vectors have arbitrary amplitudes
but are in phase or phase opposition as, for example,

(1.36a)

(1.36b)

then the sum vector is linearly polarized in a direction making an angle

with the x-direction, as shown in the series of sketches in Figure 1.12 for the in-phase
case illustrating the time history of the magnitude and direction of F over an interval of
one period.

a = tan - 1 
Fy

Fx
= ;  tan - 1 

F2

F1

F = F1 + F2

 F2 = ; F2 cos (vt + f) ay

 F1 = F1 cos (vt + f) ax

t

x

t

y

0

0

p
2v

p
v

2v
3p

v
2p

v
3p

2v
5p

2v
7p

(a)

(b)

FIGURE 1.11

(a) Time variation of a linearly polarized vector in the x-direction. (b) Time variation of
a linearly polarized vector in the y-direction.

x

y

F1

F2

F

a aa a

a a a

FIGURE 1.12

The sum vector of two linearly polarized vectors in phase is a linearly polarized vector.
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18 Chapter 1 Vectors and Fields

If two component sinusoidally time-varying vectors have equal amplitudes, differ
in direction by , and differ in phase by , as, for example,

(1.37a)

(1.37b)

then, to determine the polarization of the sum vector , we note that the
magnitude of F is given by

(1.38)

and that the angle which F makes with is given by

(1.39)

Thus, the sum vector rotates with constant magnitude and at a rate of so that
its tip describes a circle. The sum vector is then said to be circularly polarized. The
series of sketches in Figure 1.13 illustrates the time history of the magnitude and direc-
tion of F over an interval of one period.

v rad/sF0

a = tan - 1 
Fy

Fx
= tan - 1 c F0 sin (vt + f)

F0 cos (vt + f)
d = vt + f

axa

| F | = ƒ  F0 cos (vt + f) ax + F0 sin (vt + f) ay ƒ = F0

F = F1 + F2

 F2 = F0 sin (vt + f) ay

 F1 = F0 cos (vt + f) ax

p>290°

x

y

F1

F2

F
a

FIGURE 1.13

Circular polarization.

For the general case in which two component sinusoidally time-varying vectors
differ in amplitude, direction, and phase by arbitrary amounts, the sum vector is
elliptically polarized, that is, its tip describes an ellipse.

Example 1.3

Given two vectors and we wish to determine the polar-
ization of the vector 

We note that the vector , consisting of two components (x and z) that are in phase opposi-
tion, is linearly polarized with amplitude or 5, which is equal to that of Since 
varies as and varies as they differ in phase by Also,

so that and are perpendicular. Thus and are two linearly polarized vectors having
equal amplitudes but differing in direction by 90° and differing in phase by Hence,

is circularly polarized.F = F1 + F2

p>2.
F2F1F2F1

F1 # F2 = (3ax - 4az) # 5ay = 0

p>2.sin vt,F2cos vt
F1F2.232 + ( - 4)2

F1

F = F1 + F2.
F2 = 5ay sin vt,F1 = (3ax - 4az) cos vt
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1.4 Sinusoidally Time-Varying Fields 19

In the remainder of this section we shall briefly review the phasor technique
which, as the student may have already learned in sinusoidal steady-state circuit analy-
sis, is very useful in carrying out mathematical manipulations involving sinusoidally
time-varying quantities. Let us consider the simple problem of adding the two quanti-
ties and To illustrate the basis behind the phasor tech-
nique, we carry out the following steps:

(1.40)

where Re stands for real part of, and the addition of the two complex numbers 
and is performed by locating them in the complex plane and then using the
parallelogram law of addition of complex numbers, as shown in Figure 1.14. Alterna-
tively, the complex numbers may be expressed in terms of their real and imaginary
parts and then added up for conversion into exponential form in the manner

(1.41)

In practice, we do not write all of the steps shown in (1.40). First, we express all
functions in their cosine forms and then recognize the phasor corresponding to each
cosine function as the complex number having the magnitude equal to the amplitude

 = 10e - jp/3

 = 5 - j8.66 = 252 + 8.662e - j tan - 1
 8.66>5 10ej0 + 10e - j2p>3 = (10 + j0) + ( - 5 - j8.66)

10e - j2p/3
10ej0

 = 10 cos (vt - 60°)

 = Re[10ej(vt - p>3)]

 = Re[10e - jp>3ejvt]

 = Re[(10ej0 + 10e - j2p>3)ejvt]

 = Re[10ej0ejvt] + Re[10e - j2p>3ejvt]

 = Re[10ejvt] + Re[10ej(vt - 2p>3)]

 10 cos vt + 10 sin (vt - 30°) = 10 cos vt + 10 cos (vt - 120°)

10 sin (vt - 30°).10 cos vt

60°
120°

Im

Re
10e j0

10e"j2p/3 10e"jp/3

FIGURE 1.14

Addition of two complex numbers.
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20 Chapter 1 Vectors and Fields

of the cosine function and phase angle equal to the phase angle of the cosine function
for . For the above example, the complex numbers and are the pha-
sors corresponding to 10 and , respectively. Then we add the
phasors and from the sum phasor write down the required cosine function. Thus, the
steps involved are as shown in Figure 1.15.

10 sin 1vt - 30°2cos vt
10e - j2p>310ej0t = 0

10 cos vt

10 cos vt

10 sin (vt " 30°)!

!

!

#

10 cos (vt " 60°)

10 cos (vt " 120°)

10e"j2p/3

10e"jp/3

(Phasors)

(Sum phasor)

10e j0

FIGURE 1.15

Block diagram of steps involved in the
application of phasor technique to the addition
of two sinusoidally time-varying functions.

The same technique is adopted for solving differential equations by recognizing,
for example, that

and hence the phasor for is

or times the phasor for .Thus, the differentiation operation is replaced
by for converting the differential equation into an algebraic equation involving
phasors. To illustrate this, let us consider the differential equation

(1.42)

The solution for this is of the form . Recognizing that and
replacing by and all time functions by their phasors, we obtain the corre-
sponding algebraic equation as

(1.43)

or

(1.44)I
-(1 + j1) = 10ej0

10 - 3(j1000I
-) + I

- = 10ej0

j1000d>dt
v = 1000i = I0 cos (vt + u)

10 - 3 
di
dt

+ i = 10 cos 1000t

jv
A cos (vt + u)jv

Avej(u + p>2) = Avejp>2eju = jvAeju

d
dt

 [A cos (vt + u)]

d
dt

 [A cos (vt + u)] = - Av sin (vt + u) = Av cos (vt + u + p>2)
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1.5 The Electric Field 21

where the overbar above I indicates the complex nature of the quantity. Solving (1.44)
for we obtain

(1.45)

and finally

(1.46)

1.5 THE ELECTRIC FIELD

Basic to our study of the fundamentals of electromagnetics is an understanding of the
concepts of electric and magnetic fields. Hence, we shall devote this and the following
section to an introduction of the electric and magnetic fields. From our study of Newton’s
law of gravitation in elementary physics, we are familiar with the gravitational force
field associated with material bodies by virtue of their physical property known as
mass. Newton’s experiments showed that the gravitational force of attraction between
two bodies of masses and separated by a distance R, which is very large com-
pared to their sizes, is equal to where G is the constant of universal gravita-
tion. In a similar manner, a force field known as the electric field is associated with
bodies that are charged. A material body may be charged positively or negatively or
may possess no net charge. In the International System of Units that we shall use
throughout this book, the unit of charge is coulomb, abbreviated C. The charge of an
electron is Alternatively, approximately 
represent a charge of one negative coulomb.

Experiments conducted by Coulomb showed that the following hold for two
charged bodies that are very small in size compared to their separation so that they can
be considered as point charges:

1. The magnitude of the force is proportional to the product of the magnitudes of
the charges.

2. The magnitude of the force is inversely proportional to the square of the distance
between the charges.

3. The magnitude of the force depends on the medium.
4. The direction of the force is along the line joining the charges.
5. Like charges repel; unlike charges attract.

For free space, the constant of proportionality is where is known as the per-
mittivity of free space, having a value or approximately equal to

Thus, if we consider two point charges and separated R m in free
space, as shown in Figure 1.16, then the forces and experienced by and 
respectively, are given by

(1.47a)F1 =
Q1 Q2

4pP0 R2 a21

Q2,Q1F2F1

Q2 CQ1 C10- 9>36p.
8.854 * 10- 12

P01>4pP0

6.24 * 1018 electrons- 1.60219 * 10- 19 C.

m1 m2 G>R2
m2m1

i = 7.07 cos a 1000t - p
4
b

I
- = 10ej0

1 + j1
= 10ej012ejp>4 = 7.07e - jp>4

I
-,
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22 Chapter 1 Vectors and Fields

F1

F2

Q1

Q2

a12

a21

R

FIGURE 1.16

Forces experienced by two point charges and Q2 .Q1 

and

(1.47b)

where and are unit vectors along the line joining and , as shown in Fig-
ure 1.16. Equations (1.47a) and (1.47b) represent Coulomb’s law. Since the units of
force are newtons, we note that has the units 
These are commonly known as farads per meter, where a farad is per
newton-meter.

In the case of the gravitational field of a material body, we define the gravitational
field intensity as the force per unit mass experienced by a small test mass placed in that
field. In a similar manner, the force per unit charge experienced by a small test charge
placed in an electric field is known as the electric field intensity, denoted by the symbol
E. Alternatively, if in a region of space, a test charge q experiences a force F, then the
region is said to be characterized by an electric field of intensity E given by

(1.48)

The unit of electric field intensity is newton per coulomb, or more commonly volt per
meter, where a volt is newton-meter per coulomb. The test charge should be so small
that it does not alter the electric field in which it is placed. Ideally, E is defined in the
limit that q tends to zero, that is,

(1.49)

Equation (1.49) is the defining equation for the electric field intensity irrespective of
the source of the electric field. Just as one body by virtue of its mass is the source of a

E = Lim
q:0  

 
F
q

E = F
q

1coulomb221newton-meter22.1coulomb22 perP0

Q2Q1a12a21

F2 =
Q2 Q1

4pP0 R2 a12
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1.5 The Electric Field 23

gravitational field acting upon other bodies by virtue of their masses, a charged body is
the source of an electric field acting upon other charged bodies.We will, however, learn
in Chapter 2 that there exists another source for the electric field, namely, a time-varying
magnetic field.

Returning now to Coulomb’s law and letting one of the two charges in Figure 1.16,
say be a small test charge q, we have

(1.50)

The electric field intensity at the test charge due to the point charge is then
given by

(1.51)

Generalizing this result by making R a variable, that is, by moving the test charge
around in the medium, writing the expression for the force experienced by it, and
dividing the force by the test charge, we obtain the electric field intensity E of a point
charge Q to be

(1.52)

where R is the distance from the point charge to the point at which the field intensity is
to be computed and is the unit vector along the line joining the two points under
consideration and directed away from the point charge. The electric field intensity due
to a point charge is thus directed everywhere radially away from the point charge and
its constant-magnitude surfaces are spherical surfaces centered at the point charge, as
shown in Figure 1.17.

aR

E =
Q

4pP0 R2 aR

E2 =
F2

q
=

Q1

4pP0 R2 a12

Q1E2

F2 =
Q1 q

4pP0 R2 a12

Q2,

R

Q

aR

E

FIGURE 1.17

Direction lines and constant-magnitude
surfaces of electric field due to a point charge.

If we now have several point charges as shown in Figure 1.18, the
force experienced by a test charge situated at a point P is the vector sum of the forces
experienced by the test charge due to the individual charges. It then follows that the

Q1, Q2, Á ,
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24 Chapter 1 Vectors and Fields

electric field intensity at point P is the superposition of the electric field intensities due
to the individual charges, that is,

(1.53)

Let us now consider an example.

E =
Q1

4pP0 R1
2 aR1

+
Q2

4pP0 R2
2 aR2

+ # # # +
Qn

4pP0 Rn
2  aRn

aRn

aR3

aR2

aR1
P

R1

Q1

Q2

Q3

R2

R3

Rn

Qn

FIGURE 1.18

A collection of point charges and unit
vectors along the directions of their 
electric fields at a point P.

(0, 1, 1)(0, 0, 1)

(1, 0, 1) (1, 1, 1)
(0, 0, 0)

(0, 1, 0)

(1, 0, 0) (1, 1, 0)

Q

Q Q

Q

z

y

x

Q

QQ

Q
FIGURE 1.19

A cubical arrangement of point charges.

First, we note from (1.52) that the electric field intensity at a point due to a
point charge Q at point is given by

(1.54) =
Q

4pP0
 
(x2 - x1)ax + (y2 - y1)ay + (z2 - z1)az

[(x2 - x1)2 + (y2 - y1)2 + (z2 - z1)2]3>2
 EB =

Q

4pP0(AB)2 aAB =
Q

4pP0(AB)2 
RAB

(AB)
=

Q(RAB)

4pP0(AB)3

A(x1, y1, z1)
B(x2, y2, z2)

Example 1.4

Figure 1.19 shows eight point charges situated at the corners of a cube. We wish to find the elec-
tric field intensity at each point charge, due to the remaining seven point charges.
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1.5 The Electric Field 25

where we have used to denote the vector from A to B. Let us now consider the point (1, 1, 1).
Applying (1.54) to each of the charges at the seven other points and using (1.53), we obtain the
electric field intensity at the point (1, 1, 1) to be

Noting that is the unit vector directed from (0, 0, 0) to (1, 1, 1), we find the
electric field intensity at (1, 1, 1) to be directed diagonally away from (0, 0, 0), with a magnitude

equal to . From symmetry considerations, it then follows that the electric field intensity

at each point charge, due to the remaining seven point charges, has a magnitude , and
it is directed away from the corner opposite to that charge.

The foregoing illustration of the computation of the electric field intensity due to a
multitude of point charges may be extended to the computation of the field intensity for
a continuous charge distribution by dividing the region in which the charge exists into
elemental lengths, surfaces, or volumes depending on whether the charge is distributed
along a line, over a surface, or in a volume, and treating the charge in each elemental
length, surface, or volume as a point charge and then applying superposition. We shall
include some of the simpler cases in the problems for the interested reader.

Let us now consider the motion of a cloud of electrons, distributed uniformly
with density N, under the influence of a time-varying electric field of intensity

(1.55)
Each electron experiences a force given by

(1.56)
where e is the charge of the electron. The equation of motion of the electron is then
given by

(1.57)

where m is the mass of the electron and v is its velocity. Solving (1.57) for v , we obtain

(1.58)

where C is the constant of integration.Assuming an initial condition of for 
gives us , reducing (1.58) to

(1.59)v =
eE0

mv
 sin vt ax = -

ƒ e ƒ E0

mv
 sin vt ax

C = 0
t = 0v = 0

v =
eE0

mv
 sin vt ax + C

m
dv
dt

= eE0 cos vt ax

F = eE = eE0 cos vt ax

E = E0 cos vt ax

3.29Q

4pP0
  N>C

3.29Q

4pP0
  N>C

(ax + ay + az)>23

 =
3.29Q

4pP0
a ax + ay + az23

b
 =

Q

4pP0
a 1 + 122

+ 1

323
b (ax + ay + az)

 +  

ax + ay

(2)3>2 +
ax + ay + az

(3)3>2 d
E(1, 1, 1) =

Q

4pP0
c ax

(1)3>2 +
ay

(1)3>2 +
az

(1)3>2 +
ay + az

(2)3>2 +
az + ax

(2)3>2

RAB
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26 Chapter 1 Vectors and Fields

The motion of the electron cloud gives rise to current flow. To find the current
crossing an infinitesimal surface of area oriented such that the normal vector to the
surface makes an angle with the x direction as shown in Figure 1.20, let us for in-
stance consider an infinitesimal time interval when is negative. The number of
electrons crossing the area from its right side to its left side in this time interval is
the same as that which exists in a column of length and cross-sectional area

to the right of the area under consideration. Thus, the negative charge 
crossing the area in time to its left side is given by

(1.60)

The current flowing through the area from its left side to its right side is then
given by

(1.61)

where is the unit vector normal to the area as shown in Figure 1.20.¢S,an

 = Ne 
2 

 mv
  E0 sin vt ax # ¢S an 

 =
N|e|2 
 mv

 E0 sin vt ¢S cos a

 ¢I =
|¢Q ƒ
 ¢t

= N ƒ e ƒ ƒ vx ƒ ¢S cos a

¢S¢I

 = Ne|vx ƒ ¢S cos a ¢t

 ¢Q = (¢S cos a)( ƒ vx ƒ ¢t)Ne

¢t¢S
¢Q¢S cos a

|vx ƒ ¢t
¢S

vx¢t
a

¢S

$S
a

an

ax

FIGURE 1.20

For finding the current crossing an
infinitesimal area in a moving cloud of
electrons.

We can now talk of a current density vector J, associated with the current flow.
The current density vector has a mgnitude equal to the current per unit area and a di-
rection normal to the area when the area is oriented in order to maximize the current
crossing it. The current crossing is maximized when that is, when the area is

oriented such that . The current per unit area is then equal to .
Thus, the current density vector is given by

(1.62)

Finally, by substituting (1.62) back into (1.61), we note that the current crossing any
area is simply equal to .J# ¢S¢S = ¢S an

 = Ne v

 J = Ne 
2

 mv
  E0 sin vt ax

Ne2 
 mv

  E0 sin vtan = ax

a = 0,¢S
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1.6 The Magnetic Field 27

1.6 THE MAGNETIC FIELD

In the preceding section we presented an experimental law known as Coulomb’s law
having to do with the electric force associated with two charged bodies, and we intro-
duced the electric field intensity vector as the force per unit charge experienced by a
test charge placed in the electric field. In this section we present another experimental
law known as Ampere’s law of force, analogous to Coulomb’s law, and use it to intro-
duce the magnetic field concept.

Ampere’s law of force is concerned with magnetic forces associated with two loops
of wire carrying currents by virtue of motion of charges in the loops. Figure 1.21 shows
two loops of wire carrying currents and and each of which is divided into a large
number of elements having infinitesimal lengths. The total force experienced by a loop
is the vector sum of forces experienced by the infinitesimal current elements comprising
the loop.The force experienced by each of these current elements is the vector sum of the
forces exerted on it by the infinitesimal current elements comprising the second loop.
If the number of elements in loop 1 is m and the number of elements in loop 2 is n, then
there are pairs of elements.A pair of magnetic forces is associated with each pair
of these elements just as a pair of electric forces is associated with a pair of point charges.
Thus, if we consider an element in loop 1 and an element in loop 2, then the forces

and experienced by the elements and respectively, are given by

(1.63a)

(1.63b)

where and are unit vectors along the line joining the two current elements, R is
the distance between them, and k is a constant of proportionality that depends on the
medium. For free space, k is equal to where is known as the permeability of
free space, having a value From (1.63a) or (1.63b), we note that the units
of are newtons per ampere squared.These are commonly known as henrys per meter
where a henry is a newton-meter per ampere squared.
m0

4p * 10- 7.
m0m0>4p,

a12a21

 dF2 = I2 dl2 : a kI1 dl1 : a12

 R2 b
 dF1 = I1 dl1 : a kI2 dl2 : a21

 R2 bdl2,dl1dF2dF1

dl2dl1

m * n

I2 I1 

a12

a21

dl1

I1

I2

dl2

R

FIGURE 1.21

Two loops of wire carrying currents and I2 .I1 
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28 Chapter 1 Vectors and Fields

Equations (1.63a) and (1.63b) represent Ampere’s force law as applied to a pair
of current elements. Some of the features evident from these equations are as
follows:

1. The magnitude of the force is proportional to the product of the two currents and
to the product of the lengths of the two current elements.

2. The magnitude of the force is inversely proportional to the square of the distance
between the current elements.

3. To determine the direction of the force acting on the current element we first
find the cross product and then cross into the resulting vector. Simi-
larly, to determine the direction of the force acting on the current element we
first find the cross product and then cross into the resulting vector.
For the general case of arbitrary orientations of and these operations
yield and which are not equal and opposite. This is not a violation of
Newton’s third law since isolated current elements do not exist without sources
and sinks of charges at their ends. Newton’s third law, however, must and does
hold for complete current loops.

The forms of (1.63a) and (1.63b) suggest that each current element is acted upon
by a field which is due to the other current element. By definition, this field is the mag-
netic field and is characterized by a quantity known as the magnetic flux density vector,
denoted by the symbol B. Thus, we note from (1.63b) that the magnetic flux density at
the element due to the element is given by

(1.64)

and that this flux density acting upon results in a force on it given by

(1.65)

Similarly, we note from (1.63a) that the magnetic flux density at the element due to
the element is given by

(1.66)

and that this flux density acting upon results in a force on it given by

(1.67)

From (1.65) and (1.67), we see that the units of B are newtons per ampere-meter,
commonly known as webers/meter2 (or tesla), where a weber is a newton-meter per
ampere. The units of webers per unit area give the character of flux density to the
quantity B.

Although B has the character of a flux density, whereas E has the character of a
field intensity, they are the fundamental field vectors, because together they define the
force acting on a charge in a region of electric and magnetic fields, as we shall learn
later in this section. We will introduce the electric flux density and the magnetic field
intensity vectors in Chapter 2.

dF1 = I1 dl1 : B2

dl1

B2 =
m0

 4p
  
I2 dl2 : a21

 R2

dl2
dl1

dF2 = I2 dl2 : B1

dl2

B1 =
m0

 4p
  
I1 dl1 : a12

 R2

dl1dl2

dF21dF12

dl2,dl1
dl2dl1 : a12

dl2,
dl1dl2 : a21

dl1,
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1.6 The Magnetic Field 29

Generalizing (1.64) and (1.66), we obtain the magnetic flux density due to an in-
finitesimal current element of length and carrying current to be

(1.68)

where R is the distance from the current element to the point at which the flux density
is to be computed and is the unit vector along the line joining the current element
and the point under consideration and directed away from the current element as
shown in Figure 1.22. Equation (1.68) is known as the Biot-Savart law and is analogous
to the expression for the electric field intensity due to a point charge. The Biot-Savart
law tells us that the magnitude of B at a point P is proportional to the current I, the ele-
ment length dl, and the sine of the angle between the current element and the line
joining it to the point P, and is inversely proportional to the square of the distance
from the current element to the point P. Hence, the magnetic flux density is zero at
points along the axis of the current element. The direction of B at point P is normal to
the plane containing the current element and the line joining the current element to P,
as given by the cross product operation that is, right circular to the axis of the
wire. As a numerical example, for a current element m situated at the origin and
carrying current 2 A, the magnetic flux density at the point (0, 1, 1) has a magnitude

and is directed in the -direction. The magnetic field due to a given
current distribution can be found by dividing the current distribution into a number of
infinitesimal current elements, applying the Biot-Savart law to find the magnetic field
due to each current element, and then using superposition. We shall include some sim-
ple cases in the problems for the interested reader.

Turning our attention now to (1.65) and (1.67) and generalizing, we say that an
infinitesimal current element of length dl and current I placed in a magnetic field of
flux density B experiences a force dF given by

(1.69)

Alternatively, if a current element experiences a force in a region of space, then the
region is said to be characterized by a magnetic field. Since current is due to flow of
charges, (1.69) can be formulated in terms of the moving charge causing the flow
of current. Thus, if the time taken by the charge dq contained in the length dl of the

dF = I dl : B

- ax10 - 9!12 Wb/m2

0.01az

dl : aR,

a

aR

B =
m0

 4p
  
I dl : aR

 R2

Idl

I dl
a

aR

R
P

B
FIGURE 1.22

Magnetic flux density due to an
infinitesimal current element.
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30 Chapter 1 Vectors and Fields

current element to flow with a velocity v across the cross-sectional area of the wire is
dt, then and so that

(1.70)

It then follows that the force F experienced by a test charge q moving with a velocity
v in a magnetic field of flux density B is given by

(1.71)

We may now obtain a defining equation for B in terms of the moving test charge.
To do this, we note from (1.71) that the magnetic force is directed normally to both v
and B, as shown in Figure 1.23, and that its magnitude is equal to where is
the angle between v and B. A knowledge of the force F acting on a test charge moving
with an arbitrary velocity v provides only the value of To find B, we must
determine the maximum force that occurs for equal to 90° by trying out several
directions of v , keeping its magnitude constant.Thus, if this maximum force is and it
occurs for a velocity then

(1.72)

As in the case of defining the electric field intensity, we assume that the test charge
does not alter the magnetic field in which it is placed. Ideally, B is defined in the limit
that tends to zero, that is,

(1.73)

Equation (1.73) is the defining equation for the magnetic flux density irrespective of
the source of the magnetic field. We have learned in this section that an electric cur-
rent or a charge in motion is a source of the magnetic field. We will learn in Chapter 2
that there exists another source for the magnetic field, namely, a time-varying electric
field.

B = Lim
qv:0

 
Fm : am

 qv

qv

B =
Fm : am

 qv

vam,
Fm

dqvB
B sin d.

dqvB sin d,

F = qv : B

dF =
dq
 dt

 v  dt : B = dq v : B

dl = v  dtI = dq>dt,

F
B

B

q d

v

FIGURE 1.23

Force experienced by a test charge q moving with a
velocity v in a magnetic field B.
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Summary 31

We can now combine (1.48) and (1.71) to write the expression for the total force
acting on a test charge q moving with a velocity v in a region characterized by an elec-
tric field of intensity E and a magnetic field of flux density B as

(1.74)

Equation (1.74) is known as the Lorentz force equation. We shall now consider an
example.

Example 1.5

The forces experienced by a test charge q for three different velocities at a point in a region
characterized by electric and magnetic fields are given by

where , , and are constants. Find E and B at the point.
From Lorentz force equation, we have

(1.75a)

(1.75b)

(1.75c)

Eliminating E by subtracting (1.75a) from (1.75b) and (1.75c) from (1.75b), we obtain

(1.76a)

(1.76b)

It follows from these two equations that B is perpendicular to both and Hence it is
equal to or where C is to be determined. To do this, we substitute

in (1.76a) to obtain

or Thus, we get

Substituting this result in (1.75c), we obtain

SUMMARY

We first learned in this chapter several rules of vector algebra that are necessary for
our study of the fundamentals of electromagnetics by considering vectors expressed in
terms of their components along three mutually orthogonal directions.To carry out the
manipulations involving vectors at different points in space in a systematic manner, we

E = E0( ax + ay)

B = B0 az

C = - B0.

 -  C(ax + ay) = B0 (ax + ay)

 1ay - ax2 : 1 - Caz2 = B0 (ax + ay)

B = - Caz

- CazC1ax + ay2 : ax

ax.1ax + ay2 1ay - az2 : B = B0 ax

 1ay - ax2 : B = B01ax + ay2
 qE + qv0 az : B = q[E0 ax + E0 ay]

 qE + qv0 ay : B = q[(E0 + v0B0)ax + E0ay]

 qE + qv0 ax : B = q[E0 ax + (E0 - v0B0)ay]

B0E0v0

 F3 = q[E0ax + E0ay]     for v 3 = v0az

 F2 = q[(E0 + v0B0)ax + E0ay]     for v 2 = v0 ay

 F1 = q[E0 ax + (E0 - v0B0)ay]     for v 1 = v0 ax

F = qE + qv : B = q1E + v : B2
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32 Chapter 1 Vectors and Fields

then introduced the Cartesian coordinate system and discussed the application of the
vector algebraic rules to vectors in the Cartesian coordinate system. To summarize
these rules, we consider three vectors

in a right-handed Cartesian coordinate system, that is, with We then have

Other useful expressions are

As a prelude to the introduction of electric and magnetic fields, we discussed the
concepts of scalar and vector fields, static and time-varying, by means of some simple ex-
amples, such as the height of points on a conical surface above its base, the temperature
field of points in a room, and the velocity vector field associated with points on a disk
rotating about its center. We learned about the visualization of fields by means of
constant-magnitude contours or surfaces and in addition by means of direction lines in the
case of vector fields. Particular attention was devoted to sinusoidally time-varying fields.
Polarization of vector fields as a means of describing how the orientation of a vector at a
point changes with time was discussed. The phasor technique as a means of facilitating
mathematical operations involving sinusoidally time-varying quantities was reviewed.

 dv = dx dy dz

 dS = ; dx dy az,    ; dy dz ax,    ; dz dx ay

 dl = dx ax + dy ay + dz az

 A #  B : C = 3Ax Ay Az

Bx By Bz

Cx Cy Cz

3 A : B = 3 ax ay az

Ax Ay Az

Bx By Bz

3 A #  B = AxBx + AyBy + AzBz

 aA =
Ax4A2

x + A2
y + A2

z

 ax +
Ay4A2

x + A2
y + A2

z

 ay +
Az4A2

x + A2
y + A2

z

 az

 ƒ A ƒ = 4A2
x + A2

y + A2
z

 
B
n

=
Bx

n
 ax +

By

n
 ay +

Bz

n
 az

 mA = mAx ax + mAy ay + mAz az

 B - C = 1Bx - Cx2ax + 1By - Cy2ay + 1Bz - Cz2az

 A + B = 1Ax + Bx2ax + 1Ay + By2ay + 1Az + Bz2az

ax : ay = az.

 C = Cx ax + Cy ay + Cz az

 B = Bx ax + By ay + Bz az

 A = Ax ax + Ay ay + Az az
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Having obtained the necessary background vector algebraic tools and physical
field concepts, we then introduced the electric and magnetic fields from considerations
of experimental laws known as Coulomb’s law and Ampere’s force law, having to do
with the electric forces between two point charges, and the magnetic forces between
two current elements, respectively. From these laws, we deduced the expressions for
the electric field intensity E due to a point charge Q and the magnetic flux density B
due to a current element I dl. These expressions are

where and are the permittivity and the permeability, respectively, of free space, R
is the distance from the source to the point, say P, at which the field is to be computed,
and is the unit vector directed from the source toward the point P. We learned that
the electric field is a force field acting on charges merely by virtue of the property of
charge. The electric force is given simply by

On the other hand, the magnetic field exerts forces only on moving charges, or current
elements, as given by

Combining the electric and magnetic field concepts, we finally introduced the Lorentz
force equation for the force exerted on a charge q moving with a velocity v in a region
of electric and magnetic fields E and B, respectively, as

F = q(E + v : B)

F = dq v : B = Idl : B

F = qE

aR

m0P0

B =  
m0I dl : aR

4pR2

E =  
Q

4pP0R
2 aR

REVIEW QUESTIONS

1.1. Give some examples of scalars.
1.2. Give some examples of vectors.
1.3. State all conditions for which 
1.4. State all conditions for which 
1.5. What is the significance of 
1.6. Is it necessary for the reference vectors , , and to be an orthogonal set?
1.7. State whether , , and directed westward, northward, and downward, respectively,

is a right-handed or a left-handed set.
1.8. What is the particular advantageous characteristic associated with the unit vectors in

the Cartesian coordinate system?
1.9. How do you find a vector perpendicular to a plane?

a3a2a1

a3a2a1

A #  B : C = 0?
A : B = 0.
A #  B = 0.
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34 Chapter 1 Vectors and Fields

1.10. How do you find the perpendicular distance from a point to a plane?

1.11. What is the total distance around the circumference of a circle of radius 1 m? What is
the total vector distance around the circle?

1.12. What is the total surface area of a cube of sides 1 m? Assuming the normals to the sur-
faces to be directed outward of the cubical volume, what is the total vector surface area
of the cube?

1.13. Describe briefly your concept of a scalar field and illustrate with an example.

1.14. Describe briefly your concept of a vector field and illustrate with an example.

1.15. How do you depict pictorially the gravitational field of the earth?

1.16. A sinusoidally time-varying vector is expressed in terms of its components along the x-,
y-, and z-axes. What is the polarization of each of the components?

1.17. What are the conditions for the sum of two linearly polarized sinusoidally time-varying
vectors to be circularly polarized?

1.18. What is the polarization for the general case of the sum of two sinusoidally time-varying
linearly polarized vectors having arbitrary amplitudes, phase angles, and directions?

1.19. Considering the second hand on your watch to be a vector, state its polarization. What
is the frequency?

1.20. What is a phasor?

1.21. Is there any relationship between a phasor and a vector? Explain.

1.22. Describe the phasor technique of adding two sinusoidal functions of time.

1.23. Describe the phasor technique of solving a differential equation for the sinusoidal
steady-state solution.

1.24. State Coulomb’s law. To what law in mechanics is Coulomb’s law analogous?

1.25. What is the definition of the electric field intensity?

1.26. What are the units of the electric field intensity?

1.27. What is the permittivity of free space? What are its units?

1.28. Describe the electric field due to a point charge.

1.29. How do you find the electric field intensity due to a continuous charge distribution?

1.30. How is current density defined? What are its units?

1.31. For a current flowing on a sheet, how would you define the current density at a point on
the sheet? What are the units?

1.32. State Ampere’s force law as applied to current elements.

1.33. Why is it not necessary for Newton’s third law to hold for current elements?

1.34. What is the permeability of free space? What are its units?

1.35. Describe the magnetic field due to a current element.

1.36. How is the magnetic flux density defined in terms of force on a current element?

1.37. How is the magnetic flux density defined in terms of force on a moving charge?

1.38. What are the units of the magnetic flux density?

1.39. State Lorentz force equation.

1.40. If it is assumed that there is no electric field, the magnetic field at a point can be found
from the knowledge of forces exerted on a moving test charge for two noncollinear
velocities. Explain.
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PROBLEMS

1.1. A bug starts at a point and travels 1 m northward, m eastward, m southward, m
westward, m northward, and so on, making a 90°-turn to the right and halving the
distance each time. (a) What is the total distance traveled by the bug? (b) Find the final
position of the bug relative to its starting location. (c) Find the straight-line distance
from the starting location to the final position.

1.2. Solve the following equations for A, B, and C:

1.3. Show that and that
Verify the above for and

1.4. Given and find

1.5. Show that is equal to the area of the triangle having A and B as two of its
sides. Then find the area of the triangle formed by the points  (1, 2, 1), and

1.6. Show that is the volume of the parallelepiped having A, B, and C as three of
its contiguous edges. Then find the volume if and

Comment on your result.
1.7. Given and find A.
1.8. Find the component of the vector drawn from (5, 0, 3) to (3, 3, 2) along the direction of

the vector drawn from (6, 2, 4) to (3, 3, 6).
1.9. Find the unit vector normal to the plane . Then find the distance

from the origin to the plane.
1.10. Write the expression for the differential length vector d l at the point (1, 2, 8) on the

straight line and having the projection dx on the x-axis.
1.11. Write the expression for the differential length vector d l at the point (4, 4, 2) on the

curve and having the projection dz on the z-axis.
1.12. Write the expression for the differential surface vector dS at the point (1, 1, ) on the

plane and having the projection dx dy on the xy-plane.
1.13. Find two differential length vectors tangential to the surface at the point (2, 4, 1)

and then find a unit vector normal to the surface at that point.
1.14. A hemispherical bowl of radius 2 m lies with its base on the xy-plane and with its center

at the origin. Write the expression for the scalar field, describing the height of points on
the bowl as a function of x and y.

1.15. A number equal to the sum of its coordinates is assigned to each point in a rectangular
room having three of its contiguous edges as the coordinate axes. Draw a sketch of the
constant-magnitude surfaces for the number field generated in this manner.

1.16. Write the expression for the vector distance of a point in a rectangular room from one
corner of the room, choosing the three edges meeting at that point as the coordinate
axes. Describe the vector distance field associated with the points in the room.

1.17. For the rotating disk of Figure 1.9, write the expression for the linear velocity vector
field associated with the points on the disk; use an xy-coordinate system with the origin
at the center of the disk.

y = x2
x + 2z = 2

1
2

x = y = z2

y = 2x, z = 4y,

4x - 5y + 3z = 60

ay : A = ax - 2az,ax : A = - ay + 2az

C = 2ay + 6az.
A = 4ax, B = 2ax + ay + 3az,

A # B : C
(2, - 1, - 3).

( - 3, - 4, 5),

1
2 ƒA : B ƒ

A : (B : C) + B : (C : A) + C : (A : B).
C = 3a1 + 2a2 + a3,B = a1 - 2a2 + a3,A = - 2a1 + a2,

B = a1 + a2 - 2a3.A = 3a1 - 5a2 + 4a3

(A + B) : (A - B) = 2B : A.(A + B) # (A - B) = A2 - B2

 A - 2B + 3C = 4a1 + 5a2 + a3

 2A + B - C = a1 + 3a2

 A + B + C = 2a1 + 3a2 + 2a3

1
16

1
8

1
4

1
2

M01_RAO3333_1_SE_CHO1.QXD  4/9/08  1:14 PM  Page 35



36 Chapter 1 Vectors and Fields

1.18. Given (a) draw sketches of f versus z for
and and (b) draw sketches of f versus t

for and 10 m. From your sketches of part (a), what can you say about
the function ?

1.19. Repeat Problem 1.18 for 
1.20. Repeat Problem 1.18 for 
1.21. For each of the following vector fields, find the polarization:

(a)

(b)

(c)
1.22. Determine the polarization of the sum vector obtained by adding the two vector fields

1.23. For the vector field draw sketches similar to those of Fig-
ures 1.12 and 1.13 and describe the polarization.

1.24. Find by using the phasor technique.
1.25. Find by using the phasor technique.

1.26. Solve the differential equation by using the phasor
technique.

1.27. Two point charges each of mass m and charge q are suspended by strings of length l
from a common point. Find the value of q for which the angle made by the strings at the
common point is 

1.28. Point charges Q and are situated at (0, 0, 1) and (0, 0, ), respectively. Find the
approximate electric field intensity at (a) (0, 0, l00), and (b) (100, 0, 0).

1.29. For the point charge configuration of Example 1.4, find E at the point (2, 2, 2).
1.30. A line charge consists of charge distributed along a line just as graphite in a pencil lead.

We then talk of line charge density, or charge per unit length, having the units C/m.
Obtain a series expression for the electric field intensity at (0, 1, 0) for a line charge
situated along the z-axis between (0, 0, ) and (0, 0, 1) with uniform density C/m
by dividing the line into 100 equal segments. Consider the charge in each segment to be
a point charge located at the center of the segment, and use superposition.

1.31. Repeat Problem 1.30, but assume the line charge density to be C/m.
1.32. Charge is distributed uniformly with density C/m on a circular ring of radius 2 m

lying in the xy-plane and centered at the origin. Obtain the electric field intensity at the
point (0, 0, 1) by using the procedure described in Problem 1.30.

1.33. A surface charge consists of charge distributed on a surface just as paint on a table top.
We then talk of surface charge density, or charge per unit area, having the units .
Obtain a series expression for the electric field intensity at (0, 0, 1) for a surface charge
of uniform density situated within the square on the xy-plane having the cor-
ners (1, 1, 0), ( , 1, 0), ( , , 0), and (1, , 0) by dividing the square into 10,000
equal areas. Consider the charge in each area as a point charge located at the center of
the area, and use superposition.

1.34. Repeat Problem 1.33, but assume the surface charge density to be .10 - 3 ƒ xy2 ƒ  C/m2

- 1- 1- 1- 1
10- 3 C/m2

C/m2

10 - 3
10- 3 ƒz ƒ

10 - 3- 1

- 1- Q
90°.

5 * 10- 6
 
di
dt

+ 12i = 13 cos 106t

3 cos (vt + 60°) - 4 cos (vt + 150°)
10 cos (vt - 30°) + 10 cos (vt + 210°)

1 cos vt ax + 22 sin vt ay,

 F2 = a 1
2

 ax + 13
2

 ay - 13 azb  sin vt

 F1 = ( - 23ax + ay) cos vt

1 cos (vt + 30°) ax + 22 cos (vt - 60°) ay

1 cos (vt + 30°) ax + 1 cos (vt - 60°) ay

1 cos (vt + 30°) ax + 22 cos (vt + 30°) ay

f(z, t) = 10 cos 2p * 107t cos 0.1pz.
f(z, t) = 10 cos (2p * 107t + 0.1pz).

f(z, t)
z = 0, 2.5, 5, 7.5,

1
2 * 10 - 7 s,3

8 * 10- 7,t = 0, 18 * 10- 7, 14 * 10- 7,
f(z, t) = 10 cos (2p * 107t - 0.1pz),

M01_RAO3333_1_SE_CHO1.QXD  4/9/08  1:14 PM  Page 36



Problems 37

1.35. For an electron cloud of uniform density oscillating under the influence
of an electric field find (a) the current density, and
(b) the current crossing the surface 0.01 .

1.36. An object of mass m and charge q, suspended by a spring of spring constant k is acted
upon by the earth’s gravitational field and an electric field parallel to the
gravitational field. Obtain the steady-state solution for the velocity of the object.

1.37. Find and for located at the origin and located
at (0, 1, 0).

1.38. For an infinitesimal current element located at the point (1, 0, 0),
find the magnetic flux density at (a) the point (0, 1, 1) and (b) the point (2, 2, 2).

1.39. A square loop of wire of sides 0.01 m lies in the xy-plane, with its sides parallel to the 
x- and y-axes and with its center at the origin. It carries a current of 1 A in the clockwise
sense as seen along the positive z-axis. Find the approximate magnetic flux density at
(a) (0, 0, 1) and (b) (0, 1, 0).

1.40. A straight wire along the z-axis carries current I in the positive z-direction. Consider
the portion of the wire lying between (0, 0, ) and (0, 0, 1). By dividing this portion
into 100 equal segments and using superposition, obtain a series expression for B at 
(0, 1, 0).

1.41. A circular loop of wire of radius 2 m is situated in the xy-plane and with its center at the
origin. It carries a current I in the clockwise sense as seen along the positive z-axis. Find
B at (0, 0, 1) by dividing the loop into a large number of equal infinitesimal segments
and by using superposition.

1.42. Obtain the expression for the orbital frequency for an electron moving in a circular
orbit normal to a uniform magnetic field of flux density B0 Wb/m2. Compute its value
for B0 equal to 

1.43. A magnetic field exists at a point. What should be the electric
field at that point if the force experienced by a test charge moving with a velocity

is to be zero?
1.44. The forces experienced by a test charge q at a point in a region of electric and magnetic

fields are given as follows for three different velocities of the test charge:

where and are constants. (a) Find E and B at that point. (b) Find the force experi-
enced by the test charge for .v = v0(ax - ay)

E0v0

 F3 = - qE0az   for v = v0(ax + ay)

 F2 = 0  for v = v0ay

 F1 = 0  for v = v0ax

v = v0(3ax - ay + 2az)

B = B0(ax + 2ay - 4az)
5 * 10 - 5.

- 1

I dx (ax + 2ay + 2az)

I2 dl2 = I2 dy ayI1 dl1 = I1 dx axdF2dF1

E0 cos vt

(ax + ay) m2
E = 10 - 3 cos 2p * 107 t ax V/m,

N = 1012 m - 3
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