Index

A

A. See Magnetic vector potential.

Addition

of complex numbers, 782
of sine functions, 784
of vectors, 5, 6
Air gap, 336, 337
Alternated line transformer, 517, 666, 667
AM radio, 176
Ampère, definition of, 795
Ampère turns, 334
Ampère's circuital law
analogy with Faraday's law, 137
illustration of, 103
in differential form, 137, 191
in integral form, 101, 120, 137
statement of, 102, 120, 191
Ampère's law of force, 46-47
experimental demonstration of, 99
Amplitude modulated signal, 554, 640
group velocity for, 554-55
with Gaussian envelope, 640
Anisotropic crystals
biaxial, 657
uniaxial, 657
Anisotropic dielectric
effective permittivity of, 226
permittivity tensor for, 226
wave propagation in, 655-57
Anisotropic dielectric materials, 225,655
characteristic polarizations for, 226, 655, 658
effective permittivity, 226

Anisotropic magnetic materials, 235
Annealed sheet steel, B - H curve for, 335

Antenna

aperture. See Aperture antenna.
directivity of, 686
effective area of, 713
half-wave dipole. See Half-wave dipole.
Hertzian dipole. See Hertzian dipole.
image, 702
linear. See Linear antenna.
loop. See Loop antenna.
radiation from, 105
radiation pattern, 684
radiation resistance of, 684
short dipole, 721
Antenna array
broadband, 700
group pattern for, 696
log-periodic dipole, 700-02
of two current sheets, 177-78
of two Hertzian dipoles, 694-96
principle of, 177-78
resultant pattern for, 696
uniform linear, 698
Antiferromagnetic materials, 228
Aperture antenna
circular, 722
examples of, 706
far-field determination of, 706-07
rectangular. See Rectangular aperture antenna.
Apparent phase velocities, 532, 587
Apparent wavelengths, 532, 587
Array. See Antenna array.

Array factor, 696
Atom, classical model of, 207
Attenuation constant, 241
for good conductor, 252
for imperfect dielectric, 251
for parallel-plate waveguide, 668
for rectangular waveguide, 625-28
units of, 241

B

B. See Magnetic flux density.

Bandwidth, for transmission-line matched system, 469
Bessel functions, 616, 634
modified, 635
roots of, 618
roots of derivatives of, 620
B - H curve, 236, 335
Bilinear transformation, 485
Biot-Savart law, 50, 66
Bounce diagram, 377
Bounce diagram technique
for arbitrary voltage source, 381-84
for constant voltage source, 377-81
for initially charged line, 400-03
for system of three lines, 387-89
Bound electrons, 207
Boundary condition
at transmission line short circuit, 441
explained, 255
for normal component of $\mathbf{B}, 259$
for normal component of $\mathbf{D}, 258-59$
for tangential component of $\mathbf{E}, 256-57$
for tangential component of $\mathbf{H}, 257-58$
Boundary conditions
at dielectric interface, 260, 270
at transmission line junction, 386
on perfect conductor surface, 260-61, 270
summary of, 259, 270
Brewster angle, 563, 589
Broadband array, example of, 700
Broadside radiation pattern, 696

C

Cable
coaxial. See Coaxial cable.
noninductive, leakage-free, 501
Candela, definition of, 796

Capacitance, for concentric spheres, 307
Capacitance per unit area, for parallelplate capacitor, 306, 307
Capacitance per unit length
for arbitrary line, 748-50
for coaxial cylinders, $306,307,309,311$
for parallel-cylindrical wire arrangement, 311-15
for parallel-plate line, 363
for parallel-strip line, 744-46
for some structures, 311
related to conductance per unit length, 310, 347
related to inductance per unit length, $310,347,364$
Capacitor, current-to-voltage relationship for, 139
Capacitor circuit, 104
Cartesian coordinate system
arbitrary curve in, 19
arbitrary surface in, 19
coordinates for, 13
curl in, 136, 192
differential length vector in, 15,64
differential surface vectors in, 18,64
differential volume in, 19, 64
divergence in, 146, 192
gradient in, 284, 345
Laplacian of scalar in, 287, 346
Laplacian of vector in, 288, 346
orthogonal surfaces, 12
unit vectors, 13
Cathode ray tube, 34-35
Cavity resonator
cylindrical, 622
frequencies of oscillation, 612, 622, 662
rectangular. See Rectangular cavity resonator.
Characteristic impedance, 368
experimental determination of, 491-94
for arbitrary line, 750
for coaxial cable, 370
for enclosed microstrip line, 746-48
for lossy line, 490
for low-loss line, 491
for microstrip line, 369-70
for parallel-plate line, 368
for parallel-strip line, 744-46
for parallel-wire line, 370
for shielded parallel-wire line, 370

Characteristic polarizations, 226, 655, 658
Charge, 3, 32
conservation of, 110
line, 41
of an electron, 32
point. See Point charge.
surface, 41
unit of, 32
Charge density
line, 41
surface, 41
volume, 41
Charge distributions, types of, 41
Charged particle motion
in electric and magnetic fields, 61-63
in uniform magnetic field, 57-58
Circuit
distributed. See Distributed equivalent circuit.
magnetic. See Magnetic circuit.
Circuit theory
distributed, 140
lumped, 139
Circular aperture, diffraction by, 652-54
Circular polarization, 180, 181-82
clockwise, 183
counterclockwise, 183
left-handed, 183
right-handed, 183
Circulation, 81
per unit area, 151
Cladding, of optical fiber, 633
Closed path, line integral around, 81
Closed surface, 88
Closed surface integral, 88
Coaxial cable, characteristic impedance of, 370
Coercivity, 237
Communication, underwater, 253
Commutative property of vector dot product, 7
Complete standing waves, 442
Complex number
conjugate of, 782
conversion to exponential or polar form, 781
exponential form, 780
polar form, 781
rectangular form, 779
Complex numbers, review of, 779-83

Conductance per unit area, for parallelplate arrangement, 306
Conductance per unit length
for coaxial cylinders, 309, 311
for parallel-cylindrical wire arrangement, 311
for some structures, 311
related to capacitance per unit length, 310, 347
Conduction, 208, 267
Conduction current, 211
Conduction current density, 211
relationship with E, 211, 267
Conductivities, table of, 213
Conductivity
definition of, 211
units of, 212
Conductor
good. See Good conductor.
in a static electric field, 213
perfect. See Perfect conductor.
Conductors, 208, 267
good, 251, 269
perfect, 254, 270
Conservation of charge, 110
law of, 110
Conservative fields
examples of, 83
versus nonconservative fields, 83
Constant SWR circle, 478
Constitutive relations, 239
Continuity equation, 148, 149, 192
Coordinate system
Cartesian, 12-20
cylindrical, 20-22
spherical, 22-24
Coordinates
Cartesian, 13
cylindrical, 20
relationships between, 64-65
spherical, 22
Core, of optical fiber, 633
Corner reflector, 704
Coulomb, as unit of charge, 32
Coulomb's law, 33
Critical angle, for total internal reflection, 561,566
Cross product of vectors, 8 distributive property of, 9,10
normal vector to a surface from, 16

Crosstalk
explained, 411
modeling for capacitive coupling, 412-13
modeling for inductive coupling, 413-14
weak coupling analysis for, 412
Crosstalk coefficient
backward, 415
forward, 414
Crosstalk voltage
backward, 415
forward, 414-15
Crosstalk voltages, example of determination of, 415-18
Crystals, anisotropic, 657
Cubical cavity resonator, 669
Curl
definition of, 149-51, 192
divergence of, 158-59, 349
in Cartesian coordinates, 136, 192
in cylindrical coordinates, 136, 790
in spherical coordinates, 136, 793
of $\mathbf{E}, 135,191$
of gradient of scalar, 283, 349
of $\mathbf{H}, 137,191$
physical interpretation of, 151-52
Curl meter, 151
Current
conduction, 211
displacement, 102
magnetization, 232, 235
polarization, 223
surface, 53
unit of, 795
volume, 53
Current density
conduction, 211
displacement, 138
surface, 53
volume, 53
Current distributions, 53
Current element
magnetic field of, 49-51
magnetic force on, 49, 66
Current enclosed by closed path, uniqueness of, 114
Current loop. See also Loop antenna.
dipole moment of, 227
vector potential due to, 721
Current reflection coefficient, 376, 421

Current sheet, infinite plane. See Infinite plane current sheet.
Current transmission coefficient, 387
Curve, equation for, 19
Curvilinear square, 750
Cutoff condition, 540, 601, 602
Cutoff frequencies, determination of, 608-09, 621-22
Cutoff frequency, 541
of dominant mode, 608, 622
Cutoff wavelength, 541
Cylindrical capacitor, 306
Cylindrical cavity resonator, 622
frequencies of oscillation, 622
Cylindrical coordinate system
coordinates for, 20
curl in, 136, 788-90
differential length vector in, 22, 65
differential surface vectors in, 22,65
differential volume in, 22, 65
divergence in, 146, 790
gradient in, 284, 790
Laplacian of scalar in, 287, 791
Laplacian of vector in, 350
limits of coordinates, 20
orthogonal surfaces, 20
unit vectors, 21
Cylindrical dielectric rod, 633
Cylindrical waveguide, 613
determination of propagating modes in, 621-22
dominant mode in, 622
TE modes in, 619-20
TM modes in, 616-19
Cylindrical wire of current, \mathbf{H} due to, 117-19

D

D. See Displacement flux density.

Del operator, 135
Density
charge. See Charge density. current. See Current density.
Depletion layer, 301, 302
Derived equation, checking the validity of, 799
Diamagnetic materials, values of χ_{m} for, 235
Diamagnetism, 228
Dielectric
imperfect. See Imperfect dielectric. in a static electric field, 219-21

Dielectric (Continued)
in a uniform plane wave field, 221-24
perfect. See Perfect dielectric.
Dielectric constant, 224
Dielectric interface
boundary conditions at, 260, 270
oblique incidence of uniform plane waves on, 555
Dielectric slab waveguide
description, 566
even TE modes in, 571-74
graded index. See Graded index guide.
odd TE modes in, 574-75
power confinement factor for, 597
power flow in, 575-76
propagating TE modes in, 570
radiation modes, 577
self-consistency condition for waveguiding in, 566
TE modes in, 568-69, 571-75, 597
TM modes in, 571, 577, 597
Dielectrics, 208, 267
anisotropic, 225
imperfect, 250, 269
perfect, 250, 269
polarization in, 217-18
table of relative permittivities for, 225
Differential
net longitudinal, 143-44
net right-lateral, 134
right-lateral, 134
Differential equation, solution by phasor technique, 784-86
Differential length vector
along a curve, 15
in Cartesian coordinates, 15, 64
in cylindrical coordinates, 22,65
in spherical coordinates, 24,65
Differential surface, as a vector, 17-18
Differential surface vectors
in Cartesian coordinates, 18,64
in cylindrical coordinates, 22,65
in spherical coordinates, 24,65
Differential volume
in Cartesian coordinates, 19, 64
in cylindrical coordinates, 22,65
in spherical coordinates, 24,65
Diffraction
by circular aperture, 652-54
compared to interference, 651, 663
contrasted to geometrical optics, 651
explained, 651
Fraunhofer, 654, 706
Fresnel, 654
Diffusion, 498
Diffusion equation, 502
Dimensions, 796, 798
table of, 796-98
Diode, tunnel, 303
Dipole
electric. See Electric dipole.
half-wave. See Half-wave dipole.
Hertzian. See Hertzian dipole.
magnetic. See Magnetic dipole.
short, 721
Dipole moment
electric, 217
magnetic, 227
of current loop, 227
per unit volume, 218, 228
Dipole moment per unit volume electric. See Polarization vector. magnetic. See Magnetization vector.
Directive gain, of an antenna, 687
Direction line, computer generation of, 37-41
Direction lines, 29
finding equations for, 29-30
for electric dipole field, 294
for point charge field, 36
Directivity
definition of, 686
for arbitrary radiation pattern, 686-87
of half-wave dipole, 692,717
of Hertzian dipole, 686, 717
of rectangular aperture antenna, 710
Discharge tube, in gas lasers, 563
Diskette, 237
Dispersion, 245, 549
in optical waveguides, 643-44
intermodal, 585, 590, 644
material, 644-45
pulse broadening due to, 639-40
waveguide, 644
Dispersion coefficient, 645
Dispersion diagram, 552
Displacement current, 102 emanating from a closed surface, 104
Displacement current density, 138
Displacement flux, 102, 107, 120
Displacement flux density, 102, 267-68
divergence of, 144,191
due to line charge, 115-16
due to spherical volume charge, 116-17
relationship with $\mathbf{E}, 102,120,224,268$
units of, 102
Displacement vector. See Displacement flux density.
Distortionless line, 498
characteristic impedance for, 499
propagation constant for, 488-89
pulse propagation along, 499-501
Distortionless transmission, 498
Distributed circuit theory, 140, 359
Distributed equivalent circuit, 364-65
for lossy line, 488
physical interpretation of, 365-66
Distributive property
of vector cross product, 9,10
of vector dot product, 7
Divergence
definition of, 154-55, 192
in Cartesian coordinates, 146,192
in cylindrical coordinates, 146, 790
in spherical coordinates, 146, 793
of $\mathbf{B}, 147,191$
of curl of a vector, 158-59, 349
of $\mathbf{D}, 144,191$
of $\mathbf{J}, 148,192$
physical interpretation of, 155
Divergence meter, 155
Divergence theorem, 158, 193
Division of vector by a scalar, 6
Dominant mode, 608, 622, 644, 662
cutoff frequency of, 608, 622, 662
Dot product of vectors, 7
commutative property of, 7
distributive property of, 7
finding angle between vectors from, 8
Double-stub matching, 467-69
by Smith chart, 481-84
Drift velocity, 209

E

E. See Electric field intensity.

Earth-ionosphere waveguide, 543
Effective area, 713
for Hertzian dipole, 713-14
Effective permittivity, of anisotropic dielectric, 226
Electrets, 218

Electric dipole, 217
dipole moment of, 217
direction lines for the field of, 294
electric field of, 294
equipotential surfaces for, 294
potential field of, 293-94
schematic representation of, 218
torque on, 218, 273
Electric dipole moment, definition of, 217
Electric dipole moment per unit volume.
See Polarization vector.
Electric energy, stored in a line, 403
Electric energy density, 188, 189, 195, 248, 269
Electric field, 32
dielectric in an, 219-21
energy density in, $188,189,195,248,269$
energy storage in, 188
induced, 96
source of, 34
static. See Static electric field.
Electric field intensity
curl of, 135, 191
definition of, 33-34
due to charge distribution, 41
due to dipole, 294
due to line charge, 43-44, 55
due to point charge, $36,55,65$
due to point charges, 37-41
due to ring charge, 41-43
due to sheet charge, 44-46, 55
relationship with $\mathbf{D}, 102,120$
unit of, 33
Electric field system, quasistatic, 325-26
Electric flux, See Displacement flux
Electric force
between two point charges, 32-33
on a test charge, 33-34, 65
Electric polarization. See Polarization in dielectrics.
Electric potential
due to a point charge, 291-92, 346
due to a line charge, 296-98
due to an electric dipole, 293-94
Electric potential difference. See Potential difference.
Electric scalar potential, 286. See also Electric potential.
Electric susceptibility, 219
Electrical generator, 339
Electrical motor, 339

Electrocardiography, 294
Electromagnet, 343
Electromagnetic field
due to current sheet, 168-69, 172, 194, 243, 268
due to Hertzian dipole, 679, 716
power flow density in, 186, 195
Electromagnetic flow meters, 216
Electromagnetic potentials, 286
Electromagnetic waves
guiding of, 359, 527. See also Transmission line; Waveguide.
propagation of, 105, 129. See also Wave propagation.
radiation of, 105, 161, 675. See also Radiation.
Electromechanical energy conversion, 97, 339
example of computation of, 341-42
Electromechanical energy converter, example of, 97
Electromechanical system
electric field, 342
magnetic field, 342
Electromechanics, 96, 282
Electromotive force, 81, 90
motional, 96
Electron, charge of, 32
Electronic polarization, 217
Electrons
bound, 207
conduction, 208
free, 208
mobility of, 210
Electrostatic separation of minerals, 34
Elliptical polarization, 180, 183
Emf. See Electromotive force.
Enclosed-microstrip line, 746
characteristic impedance for, 747
velocity of propagation for, 747
Endfire radiation pattern, 178, 696
Energy
electric. See Electric energy.
magnetic. See Magnetic energy.
potential. See Potential energy.
Energy band diagrams, 208-09
Energy conversion, 97. See also
Electromechanical energy conversion.
Energy density
in electric field, 188, 189, 195, 248, 269
in magnetic field, 188, 189, 195, 248, 269

Energy storage
in electric field, 188
in magnetic field, 188
Equipotential lines, computer plotting of, 294-96, 737-38
Equipotential surfaces, 291-92
between parallel plates, 305
for electric dipole, 294
for line charge, 297-98
for point charge, 291-92
Etalon, Fabry-Perot, 651, 663, 670
Experimental demonstration
of Ampère's law of force, 98-99
of Faraday's law, 99
of magnetic levitation, 99-100
of two-beam interference, 629-31
External inductance, 315

F

Fabry-Perot etalon, 651, 663, 670
Fabry-Perot resonator, 563
Faraday rotation, 659, 663
example of, 659
Faraday's law
determination of emf using, 94-96
experimental demonstration of, 99
for N-turn coil, 93
illustration of, 91
in differential form, 132, 135, 191
in integral form, $91,119,130$
statement of, 91, 119, 191
FD-TD method. See Finite-difference time-domain method.
Fermat's principle, 597
Ferrimagnetic materials, 228
Ferrites, 237
Ferroelectric materials, 218
Ferromagnetic materials, 228, 235
relative permeability for, 235
Ferromagnetism, theory of, 235-36
Field
definition of, 27
electric. See Electric field.
gravitational, 27, 32, 33
magnetic. See Magnetic field.
Field intensity
electric. See Electric field intensity. magnetic. See Magnetic field intensity.
Field map, 370
for arbitrary line, 748-50

Field mapping, determination of line parameters from, 750
Field mapping technique, 371, 765
Fields
conservative, 83
radiation, 682. See also Radiation fields. scalar, 27-29. See also Scalar fields. sinusoidally time-varying, 171
static, 28. See also Static fields. time-varying, 28-29
vector, 29-30. See also Vector fields.
Finite-difference method, 726, 732,766
example of illustration of, 735-37
for enclosed-microstrip line, 746-47
for two-dimensional Laplace's equation, 734-35
illustration in one dimension, 732-34
iteration technique, 737
Finite-difference time-domain method, 726, 760, 767
example of illustration of, 762-65
for one-dimensional wave equation, 760
leap-frog scheme of solution, 762, 767
Finite-element method, 726, 751, 766
compared to finite-difference method, 751
element coefficient matrix, 755, 766-67
example of solution of, 758-59
for two-dimensional Laplace's equation, 754
global coefficient matrix, 755, 767
shape functions, 753
solution procedure, 751
Floppy disk, 237-38
Flux
displacement, 102, 107
magnetic, 84,108
Flux density
displacement. See Displacement flux density.
magnetic. See Magnetic flux density.
Flux lines, 29
FM radio, 176
Force
Ampère's law of, 46-48
electric. See Electric force.
gravitational, 27, 32
magnetic. See Magnetic force.
unit of, 752
Fraunhofer diffraction, 654, 706
boundary with Fresnel diffraction, 671
Free electrons, 208

Free space
intrinsic impedance of, $167,176,193$
permeability of, 47
permittivity of, 33
velocity of light in, 166
Free space reduction, of field from
physical antenna, 187
Frequencies of oscillation, for cavity
resonator, 612, 622, 662
Frequency, 172
cutoff, 541
times wavelength, 175
Frequency ranges, designations for, 175
Frequency response, from unit impulse
response, 390
Fresnel coefficients
for parallel polarization, 560
for perpendicular polarization, 559
reflection, 559, 560
transmission, 559, 560
Fresnel diffraction, 654
boundary with Fraunhofer diffraction, 671
Friis transmission formula, 715

G

Gas lasers, 563
Gauss' law for the electric field
illustration of, 108
in differential form, 144, 191
in integral form, 107, 108, 120, 142
statement of, 107, 120, 191
Gauss' law for the magnetic field analogy with Gauss' law for the electric field, 108
illustration of, 109
in differential form, 147, 191
in integral form, 108, 120, 146
physical significance of, 108
statement of, 108, 120
Geometrical optics
contrasted to diffraction, 651
explained, 578
Good conductor attenuation constant for, 252
definition of, 251-52
intrinsic impedance for, 252
phase constant for, 252
skin effect in, 252-53
wave propagation in, 251-54
wavelength in, 252

Good conductors, 251, 269
Graded-index guide, 576, 578
description, 578
guidance condition, 582-84
parabolic index profile, 584-85,590
solution of guidance condition, 585
Gradient, 283
curl of, 283, 349
in Cartesian coordinates, 284,345
in cylindrical coordinates, 284,790
in spherical coordinates, 284, 793-94
physical interpretation of, 284-85
Gravitational field, 27, 32, 33
Gravitational force, 27,32
Ground, effect on antenna, 702
Group pattern, 696
for uniform linear array, 699
Group patterns, determination of, 696-98
Group refractive index, 644
Group velocity
concept of, 549
for a pair of frequencies, 552
for amplitude modulated signal, 554-55
for narrowband signal, 553
in parallel-plate waveguide, 553
Guide characteristic impedance, 545
compared to line characteristic impedance, 546, 547
for TE waves, 547, 588
for TM waves, 547,588
Guide wavelength, 541, 588, 621

H

H. See Magnetic field intensity.

Half-wave dipole, 688
directivity of, 692,717
evolution of, 668-69
radiation fields for, 689-91, 717
radiation patterns for, 692
radiation resistance for, 691-92, 717
time-average radiated power, 691
Hall effect, 216
Heart, electrical activity of, 294
Helmhotz's theorem, 288
Hertzian dipole, 675
above perfect conductor surface, 702-04
charges and current associated with, 676, 677
directivity of, 686,717
effective area of, 713-14
electromagnetic field for, 679, 716
radiation fields for, 682,716
radiation patterns for, 684-85
radiation resistance for, 684,716
receiving properties of, 771
retarded potential for, 678
time-average radiated power, 684,716
Hertzian dipoles, array of, 694-96
Holes, 208
mobility of, 211
Huygens-Fresnel principle, 652, 663, 706
Hybrid modes, in optical fiber, 633, 636, 663
Hysteresis, 235
Hysteresis curve, 236
Hysteresis effect, development of, 236-37
Hysteresis phenomenon, use of, 237
I
Image antennas, concept of, 702
Image charge, 273
Imperfect dielectric
attenuation constant for, 251
definition of, 250
intrinsic impedance for, 251
phase constant for, 251
wave propagation in, 251
wavelength in, 250-51
Imperfect dielectrics, 250, 269
Induced electric field, 96
Induced emf, determination of, 93
Inductance per unit length
for coaxial cylinders, 310
for parallel-cylindrical wire arrangement, 311
for parallel-plate line, 363
for some structures, 311
related to capacitance per unit length, 310, 347, 364
Inductor
quasistatic field analysis for, 320-25
voltage-to-current relationship for, 139
Infinite plane current sheet
as an idealized source, 161
electromagnetic field due to, 168-69, 172, 193, 194, 242, 268
magnetic field due to, 53-55
Infinite plane sheet of charge, electric field due to, 44-46, 55

Infinitely long line charge, electric field due to, 43-44, 55
Infinitely long wire of current, magnetic field due to, 51-52, 55
Input impedance
for line with arbitrary load, 460
for lossy line, 492
of short-circuited line, 446-447, 507
Input reactance, of short-circuited line, 447
Insulators, 208
Integral
closed line. See Circulation.
closed surface, 88
line, 77
surface, 84
volume, 107
Integrated optics, 566
Interference
compared to diffraction, 651,663
experimental demonstration, 647
explained, 646
multiple-beam, 648-51,663
two-beam, 647-48, 663
Interferometer, 724
Fabry-Perot, 651
Intermodal dispersion, 585, 590, 644
Internal inductance, 315
example of determination of, 315-17
general expression for, 317
International system of units, 32, 795
Intrinsic impedance
for copper, 253
for good conductor, 252
for imperfect dielectric, 251
for material medium, 242, 246, 268
for perfect dielectric, 250
of free space, $167,176,193$
Ionic polarization, 218
Ionosphere, 543
and earth as waveguide, 543-44
Isotropic materials, 112, 225, 268
Iteration technique, 737

J

J. See Volume current density.
\mathbf{J}_{c}. See Conduction current density.
Joule, definition of, 796
Junction
between transmission lines, 385
$p-n, 300$

K

Kelvin, definition of, 795-96
Kilogram, definition of, 795
Kirchhoff's current law, 365
Kirchhoff's voltage law, 364

L

Laplace's equation, 304, 347
analytical solution of, 726-28
in one dimension, 304-06
in two dimensions, 726, 734, 765
numerical solution of, 734-35, 766
for steady current condition, 304
Laplacian of a scalar, 287
in Cartesian coordinates, 287,346
in cylindrical coordinates, 287,791
in spherical coordinates, 288, 794
Laplacian of a vector, 288
in Cartesian coordinates, 288, 346
in cylindrical coordinates, 350
Lasers, gas, 563
Law of conservation of charge
for static case, 113
illustration of, 111
in differential form, 148, 192
statement of, 110, 120, 192
Law of reflection, 556, 589
Law of refraction, 556, 589
Lenz's law, 93, 94, 96
Light, velocity of. See Velocity of light.
Line admittance, 462
from the Smith chart, 479
normalized, 462
Line charge, 41
D due to, 115-16
electric field of, 43-44, 55
equipotential surfaces for, 297-98
potential field of, 296-98
Line charge density, 41
units of, 41
Line current, magnetic field due to, 51-52
Line impedance, 459, 492
from the Smith chart, 478
normalized, 462
properties of, 459-60
Line integral, 77
around closed path, 81
evaluation of, 80-81, 82-83

Line integral of \mathbf{E}, physical meaning of, 81
Linear antenna
half-wave dipole. See Half-wave dipole. of arbitrary length, 692-94
Linear polarization, 180-81
Load-line technique, 405
example of, 405-07
for interconnection between two TTL inverters, 408-11
for initially charged line, 407-08
Logic gates, interconnection between, 408
Log-periodic dipole array, 700-02
Longitudinal differential, net, 143-44
Loop antenna, 96, 711
application of, 96-97, 713
magnetic vector potential for, 721
principle of, 96-97
radiation fields of, 721
receiving properties of, 711-12
Lorentz force equation, 59, 66
applications based on, 60-61
Lorenz condition, 289
Loss tangent, 245
Lossy line
characteristic impedance for, 490
distributed equivalent circuit for, 488
input impedance of, 492
power flow along, 495
propagation constant for, 481
transmission line equations for, 488-89
Lossy lines, pulses on, 498-506
Loudspeaker, principle of, 49
Low frequency approximation, lumped circuit theory as, 139
Low frequency behavior, of a resistor, 326-30
Low-loss line, 490-91
LP modes, in optical fiber, 639, 663
Lumped circuit theory, 139, 359
distinction with distributed circuit theory, 374

M

Magic time step, in FD-TD method, 765
Magnetic circuit, 333, 347
analysis of, 336-38
equivalent circuit for, 338
reluctance of, 334
Magnetic circuits, applications of, 333

Magnetic dipole, 227
dipole moment of, 227
schematic representation of, 227
torque on, 228, 274
Magnetic dipole moment, definition of, 227
Magnetic dipole moment per unit volume.
See Magnetization vector.
Magnetic domains, 235
Magnetic energy, stored in a line, 404
Magnetic energy density, 188, 189, 195, 248, 269
Magnetic field
energy density in, 188, 189, 195, 248, 269
energy storage in, 188
inside a good conductor, 254
magnetic material in a, 229-31
realizability of, 147
source of, 57
Magnetic field intensity, 102, 267-68
curl of, 137, 191
due to cylindrical wire of current, 117-19
relationship with B, 102, 120, 233-34, 268
units of, 102
Magnetic field system, quasistatic, 325-26
Magnetic flux, crossing a surface, 84-85
Magnetic flux density
definition of, 56-57
divergence of, 147, 191
due to current element, 49-51, 55, 66
due to current sheet, 53-55
due to straight wire, 51-52, 55
in terms of $\mathbf{A}, 282-83,345$
relationship with $\mathbf{H}, 102,120$
units of, 49
Magnetic force
between two current elements, 47-49
on a current element, 48-49, 66
on a moving charge, 55-57, 66
Magnetic levitation, 98
experimental demonstration of, 98-100
Magnetic material
in a static magnetic field, 229-31
in a uniform plane-wave field, 231-34
Magnetic materials, 227, 267
anisotropic, 235
Magnetic memories, 237
Magnetic susceptibility, 228
values of, 235

Magnetic vector potential, 283
due to current element, 298-99, 346
for circular loop antenna, 721
for Hertzian dipole, 678
relationship with B, 282-83, 345
retarded, 678
Magnetization, 227-28, 267
Magnetization current, 232, 235
Magnetization current density, 232
relationship to magnetization vector, 233
Magnetization surface currents, 230
Magnetization vector
definition of, 228
relationship with $\mathbf{B}, 228$
units of, 228
Magnetization volume current, 235
Magnetomotive force, 102
Magneto-optical switch, 659-61, 664
Magnitude of vector, 6
Malignant tissues, heating of, 253
Mass, 3, 55
unit of, 752
Matching, transmission line. See Transmission-line matching.
Material dispersion, 644-45
in fused silica, 645, 663
Material parameters, from propagation parameters, 246
Materials
anisotropic, 225, 235
antiferromagnetic, 228
classification of, 207
conductive. See Conductors.
constitutive relations for, 239
diamagnetic. See Diamagnetic materials
dielectric. See Dielectrics.
ferrimagnetic, 228
ferroelectric, 218
ferromagnetic. See Ferromagnetic materials.
isotropic, 225, 268
magnetic. See Magnetic materials.
paramagnetic. See Paramagnetic materials.
Maxwell's equations
as a set of laws, 77
for static fields, 113
in differential form, 149, 286
in integral form, 113
independence of, 120
Mechanical force of electric origin, 339
computation of, 339-41, 342-44
Metallic waveguide
compared to transmission line, 527
cylindrical. See Cylindrical waveguide.
parallel-plate. See Parallel-plate waveguide.
rectangular. See Rectangular waveguide.
Meter, definition of, 795
Method of moments technique, 739, 766
for thin straight wire, 740-42
for parallel-plate capacitor, 742-44
for parallel-strip line, 744-46
procedure explained, 739
Microstrip line, 369, 419
Microwave ovens, 176
MKSA system of units, 795
Mmf. See Magnetomotive force.
Mobility, 210
Mode, dominant. See Dominant mode.
Modes
hybrid, 633, 636, 663
LP, 639, 663
TE. See TE modes.
TM. See TM modes.
Modified Bessel functions, 635
Motional emf concept, 96
Moving charge, magnetic force on, 55-56, 66
Multiple-beam interference, 648-51, 663
Multiplication of vector, by a scalar, 6
Mutual inductance, 317
example of computation of, 318-19

N

Natural frequencies of oscillation, 446
Natural oscillations, 445
Newton, definition of, 795
Newton's law of gravitation, 32
Newton's third law, 48
Nonconservative field, example of, 83
Nonconservative fields, conservative fields versus, 83
Noninductive, leakage-free cable, 501
diffusion along, 501-06
Normal component of B, boundary condition for, 259

Normal component of \mathbf{D}, boundary condition for, 258-59
Normalized line admittance, 462
Normalized line impedance, 462
Nucleus, 207
Numerical aperture, 637, 663, 669

0

Ohm's law, 215
$\omega-\beta_{\mathrm{z}}$ diagram, 552
Operator, del, 135
Optical fiber
description, 633
field solutions, 634-36
guidance condition, 636-37
hybrid modes, 633, 637, 663
LP modes, 639, 663
numerical aperture, 637, 663, 669
single-mode operation, 638, 663
step-index, 633
TE modes, 636, 637
TM modes, 636, 637
Optical waveguides, principle of, 562
Orientational polarization, 218
Origin, 12

P
Paddle wheel, 151
Parabolic index guide, 584
paraxial modes in, 585
Parabolic index profile, paraxial rays in, 581-82
Parallel-plate capacitor, 304-06 capacitance by method of moments, 742-44
with a movable plate, 339
Parallel-plate resonator, 512, 513, 515 Q factor for, 669
Parallel-plate transmission line, 360 capacitance per unit length for, 363 characteristic impedance of, 368 inductance per unit length for, 363 power flow along, 362
voltage and current along, 361-62
Parallel-plate waveguide, 539 attenuation constant for, 668 cutoff frequencies for, 541 cutoff wavelengths for, 541 discontinuity in, 545
group velocity in, 553
guide wavelength in, 541
phase velocity along, 542
TE mode fields in, 542
TE modes in, 539-42
TM mode fields in, 543
TM modes in, 543
Parallel polarization, 559
Fresnel coefficients for, 560
Parallel-strip line, 744
capacitance per unit length of, 744-46
characteristic impedance of, 744-46
Parallel-wire line
capacitance per unit length of, 311-15
characteristic impedance of, 370
Parallelepiped, volume of, 10
Paraxial modes, in parabolic index guide, 585
Paraxial rays, 581, 590
in parabolic index profile, 581-82
Paramagnetic materials, 228 χ_{m} for, 235
Paramagnetism, 228
Partial standing waves, 454
Pattern multiplication, 678
Perfect conductor
boundary conditions, 260-61, 270
definition of, 254
Perfect conductors, 254, 270
Perfect dielectric
boundary conditions, 260, 270
definition of, 250
intrinsic impedance for, 250
phase constant for, 250
phase velocity in, 250
wave propagation in, 250
wavelength in, 250
Perfect dielectrics, 250, 269
Permanent magnetization, 228
Permeability
of free space, 47
of magnetic material, 234
relative, 234
units of, 47
Permittivity
effective, 226
of dielectric material, 224
of free space, 33
relative, 224
units of, 33
Permittivity tensor, 226

Perpendicular polarization, 557
Fresnel coefficients for, 559
Personal computers, secondary memory in, 237
Phase, 172
Phase constant, 174
for good conductor, 252
for imperfect dielectric, 251
for material medium, 245
for perfect dielectric, 250
Phase velocity, 174
along guide axis, 542, 588, 621
in free space, 175
in good conductor, 252
in imperfect dielectric, 251
in material medium, 245
in perfect dielectric, 250
Phased array, 700
Phasor, 783
Phasor technique, review of, 783-86 example using, 786-87
Plane surface, equation for, 19
Plane wave, uniform. See Uniform plane wave.
$p-n$ junction semiconductor, 300
analysis of, 300-03
Point charge
electric field of, $36,55,65$
equipotential surfaces for, 291-92
potential field of, 291-92, 346
Point charges, 32
electric field of, 37-41
Poisson's equation, 300, 346
application of, 300-03
Polarization current, 223
Polarization current density, 223
relationship to polarization vector, 224
Polarization in dielectrics, 217-18, 267
electronic, 217
ionic, 218
orientational, 218
Polarization of sinusoidally time-varying fields, 178
circular, 180-82. See also Circular polarization.
clockwise, 183
counterclockwise, 183
elliptical, 180, 183
in reception of radio waves, 183
left-handed, 183
linear, 180, 181
right-handed, 183
Polarization surface charges, 219
Polarization vector
definition of, 218
relationship with $\mathbf{E}, 219$
units of, 219
Polarization volume charge, 225
Polarizing angle, 563
Police traffic radars, 176
Position vector, 13, 26
Potential
electric. See Electric potential.
magnetic vector. See Magnetic vector potential.
Potential difference, 290-91
compared to voltage, 291
Potential field. See Electric potential.
Potential function equations, 288
Power
carried by an electromagnetic wave, 185
radiated by half-wave dipole, 691
radiated by Hertzian dipole, 684
radiated by rectangular aperture, 710
time-average, 190
Power density, associated with an electromagnetic field, 186
Power dissipation density, 248, 269
Power flow
along lossy line, 495
along short-circuited line, 442
along transmission line, 362, 373, 460-62
in dielectric slab guide, 576
in rectangular waveguide, 627
Power gain, of an antenna, 687
Poynting vector, 186, 195
complex, 190
surface integral of, 186, 248
time-average, 190
units of, 185
Poynting's theorem, 188-89, 248, 269
Propagation constant
experimental determination of, 491-94
for lossy line, 481
for low loss line, 491
for material medium, 241, 268
Propagation parameters
for enclosed microstrip line, 746-47
for line with homogeneous dielectric, 368-69
for line with multiple dielectrics, 369-70

Propagation parameters (Continued)
from material parameters, 247
techniques for determination of, 370-71
Propagation vector, 531
Pulse broadening
analysis, 640-43
due to dispersion, 639-40
heuristic explanation, 639
Pulse broadening parameter, 642, 645, 663

Q

Q factor
definition of, 628
for parallel-plate resonator, 669
for rectangular cavity resonator, 629-32
Quarter-wave dielectric coating, 517
Quarter-wave transformer matching, 464-65
in waveguide, 610-11
Quasistatic approximation
condition for validity, 325
equivalent circuit beyond, 330-31
explained, 320
Quasistatic approximations, 320
Quasistatic electric field system, 325-26
Quasistatic extension
explained, 320
of static field, 320, 323
Quasistatic field analysis
for a resistor, 326-30
for an inductor, 320-25
Quasistatic magnetic field system, 325-26

R

Radiation
from aperture antennas, 706
from physical antennas, 675
principle of, 161
simplified explanation of, 105
Radiation fields
definition of, 682
for half-wave dipole, 689-91, 717
for Hertzian dipole, 682, 716
for loop antenna, 721
Radiation modes, 577
Radiation pattern, 686
broadside, 696
endfire, 178, 696

Radiation patterns
for antenna above perfect conductor, 704
for half-wave dipole, 692
for Hertzian dipole, 684-85
Radiation resistance
definition of, 684
for half-wave dipole, 691-92, 717
for Hertzian dipole, 684, 718
Radio transmitter, location of, 97
Radome, 390
Rationalized MKSA units, 795
Ray tracing, 578
for linear profile of permittivity, 580-81
for spherical geometry, 598
Receiving properties
of Hertzian dipole, 771
of loop antenna, 711-12
Reciprocity, 710
Rectangular aperture antenna, 707
beamwidth between first nulls, 709
directivity, 710
radiation characteristics, 708-09
Rectangular cavity resonator, 611
analysis for losses, 624-25
determination of Q factor, 629-32
frequencies of oscillation, 612, 662
Rectangular coordinate system. See Cartesian coordinate system.
Rectangular waveguide, 600
analysis for losses, 624-25
determination of attenuation constant, 625-28
determination of propagating modes in, 608-09
dominant mode in, 608
field expressions and parameters for, 607
TE modes in, 600-07
TM modes in, 607-08
Reflection coefficient, 264
at waveguide discontinuity, 546
current, 376, 421
for oblique incidence, 558-59, 560
from the Smith chart, 477
voltage. See Voltage reflection coefficient.
Reflection diagram, 377
Reflection of plane waves
normal incidence, 263
oblique incidence, 555
Refraction of plane waves, 555
Refractive index, 556, 578

Relative permeability, 234
for ferromagnetic materials, 235
Relative permittivity, 224
table of values of, 225
Reluctance, 334
analogy with resistance, 334
Remanence, 237
Resistance, 215
Resistor
low frequency behavior of, 326-30
voltage-to-current relationship for, 139-40
Resonant system
at microwave frequencies, 448-50
condition for resonance, 449
Resonator, cavity. See Cavity resonator.
Resultant pattern, 696
Retardation plates. See Wave plates.
Retarded magnetic vector potential, 678
Retentivity, 237
R.H.S. rule. See Right-hand screw rule.

Right-hand screw rule, 91, 103
illustration of, 91
Right-handed coordinate system, 13
Right-lateral differential, net, 134
Ring charge, electric field due to, 41-43
Rotating generator, principle of, 97-98

S

Scalar
definition of, 3
gradient of. See Gradient.
Laplacian of. See Laplacian of a scalar.
Scalar fields, 27
graphical representation of, 27-29
Scalar product. See Dot product of vectors.
Scalar triple product, 10
Scalars
examples of, 4-5
vectors versus, 3-4
Second, definition of, 795
Self-inductance, 317
Semiconducting material, Hall effect in, 216
Semiconductor
extrinsic, 209
intrinsic, 209
p-n junction, 315
Semiconductors, 209, 267
conductivity of, 212
Separation of variables technique, 603-04, 615, 727

Shielded parallel wire line, characteristic impedance of, 370
Shielded strip line, 774
Shielding, 253
Short circuit, location of, 447-48
Short-circuited line
input impedance of, 446-47, 507
instantaneous power flow down, 442
standing wave patterns for, 444
voltage and current on, 441
Short dipole, 721
Signal with Gaussian envelope, pulse broadening analysis, 640-43
Sine functions, addition of, 784
Single-stub matching, 465-67
by Smith chart, 480-81
Sinusoidal waves
classification of, 175-76
frequency, 172
polarization of, 178
properties and parameters, 172-76, 194
Sinusoidally time-varying fields, 171
polarization of. See Polarization of sinusoidally time-varying fields.
Skin depth, 252
for copper, 253
Skin effect, 252-53
Slotted line, 456
Smith chart
applications of, 479-87
basic procedures, 476-79
construction of, 473-76
double-stub matching solution, 481-84
single-stub matching solution, 480-81
use as admittance chart, 479
Snell's law, 556, 589
Space charge layer, 300
Space-time diagram, 377
Spherical capacitor, 306-07
Spherical coordinate system
coordinates for, 22
curl in, 136, 791-93
differential length vector in, 24,65
differential surface vectors, 24,65
differential volume, 24, 65
divergence in, 146, 793
gradient in, 284, 793-94
Laplacian of scalar in, 288, 794
limits of coordinates, 22
orthogonal surfaces, 22
unit vectors, 23

Spherical volume charge, D due to, 116-17
Standing wave measurements, 456-57
Standing wave parameters, 454-55
application of, 456
Standing wave patterns, 444
for partial standing wave, 454
for short-circuited line, 444
Standing wave ratio definition of, 454 from the Smith chart, 477-78
Standing waves
complete, 442
partial, 454
Static electric field conductor in a, 213 conservative property of, 83
in terms of potential, 291, 299, 346
of electric dipole, 294
realizability of, 135
Static fields, Maxwell's equations for, 113
Steady current condition, 304
Step-index fiber, 633
Stokes' theorem, 156-57, 193
Stream lines, 29
Strip line
parallel, 744
shielded, 774
Stub, 465
Stub matching
double. See Double-stub matching. single. See Single-stub matching.
Subtraction of vectors, 6
Surface
differential. See Differential surface.
equation for, 19
Surface charge density, 41
units of, 41
Surface charges, 41
Surface current density, 53
units of, 53
Surface currents, 53
Surface integral, 84
closed, 88
evaluation of, 87, 88-90
of $\mathbf{E} \times \mathbf{H}, 186$
Susceptibility
electric, 219
magnetic, 228
SWR. See Standing wave ratio.

T

Table
of conductivities, 213
of dimensions, 753-55
of relative permittivities, 225
of units, 796-98
Tangential component of \mathbf{E}, boundary condition for, 256-57
Tangential component of \mathbf{H}, boundary condition for, 257-58
TE modes
cutoff frequencies for, 541, 606, 607, 620
cutoff wavelengths for, 541,606 , 607, 620
field expressions for, 542, 607, 620
guide characteristic impedance for, 547 , 607, 621
in cavity resonator, 612,622
in cylindrical waveguide, 620
in dielectric slab guide, 568-69, 571-75, 597
in optical fiber, 636, 637
in parallel-plate waveguide, 539-42
in rectangular waveguide, 600-07
TE wave, 538
TE waves, 536
TEM waves, 366
Thin film waveguides, 566
Time-average power
radiated by half-wave dipole, 691
radiated by Hertzian dipole, 684, 716
Time-average power flow
along short-circuited line, 442
down a lossless line, 460
down a lossy line, 495
for TE wave, 538
Time-average Poynting vector, 190, 248
Time-domain reflectometry, 390
application of, 391-93
TM modes
cutoff frequencies for, 607, 620
cutoff wavelengths for, 607, 620
field expressions for, 543, 607, 618
guide characteristic impedance for, 547, 607, 621
in cavity resonator, 612,622
in cylindrical waveguide, 618
in dielectric slab guide, $571,577,597$
in optical fiber, 636, 637
in parallel-plate waveguide, 543
in rectangular waveguide, 607-08
TM waves, 543
Toroidal conductor, 332
resistance of, 333-34
Toroidal magnetic core, 332
reluctance of, 334
Torque
on electric dipole, 218,273
on magnetic dipole, 228, 274
Total internal reflection, 561, 566, 589
Transmission coefficient, 264-65 current, 387
for oblique incidence, 558-59, 560
voltage, 387
Transmission line, 360
characteristic impedance of, 368,490
coaxial. See Coaxial cable.
compared to waveguide, 515
distortionless, See Distortionless line.
enclosed microstrip. See Enclosed microstrip line.
field mapping, 748-50
location of short circuit in, 447-48
lossy. See Lossy line.
microstrip, 369, 419
parallel-plate. See Parallel-plate transmission line.
parallel-strip. See Parallel-strip line. parallel-wire, See Parallel-wire line.
propagation constant for, 481
shielded strip, 774
short-circuited. See Short-circuited line.
Transmission-line admittance. See Line admittance.
Transmission-line analogy, 609
Transmission-line discontinuity boundary conditions at, 386
current transmission coefficient, 387, 421
reflection coefficient, 386
voltage transmission coefficient, 387, 420
Transmission-line equations, 363,364 , 419
analogy with field equations, 367
circuit representation of, 364-65
for lossy line, 488-89
general solution, 367-68, 372, 419, 440, 506-07
Transmission-line equivalent, for waveguide discontinuity, 547

Transmission-line impedance. See Line impedance.
Transmission-line matching bandwidth, 469
by double-stub, 467-69, 481-84
by quarter-wave transformer, 464-65
by single-stub, 465-67, 480-81
principle behind, 463-64
Transmission-line parameters
for arbitrary line, 748-50
for parallel-plate line, 363-64
Transmission-line system
unit impulse response of, 387-89
with a capacitive discontinuity, 397-98
Transmission-line theory, 140, 359
Transmission lines, crosstalk on, 411 See also Crosstalk.
Transverse electric waves. See TE waves.
Transverse electromagnetic waves. See TEM waves.
Transverse magnetic waves. See TM waves.
Traveling wave, 166
velocity of, 166
Triple cross product, 9
TTL inverters, interconnection between, 408
Tunnel diode, 303
Two-beam interference, 647
experimental demonstration of, 647-48
Two-dimensional Laplace's equation
analytical solution of, 726-28
examples of solution of, 728-32, 735-37
numerical solution of, 734-35

\mathbf{U}

UHF TV channels, 176
Underwater communication, 253
Uniform linear array, 698
group pattern for, 699
Uniform plane wave
defined, 160
guided between perfect conductors, 360
oblique incidence on a dielectric, 555
parameters associated with, 172-76
Uniform plane wave in three dimensions
apparent phase velocities, 532, 587
apparent wavelengths, 532, 587
electric field vector of, 531, 586
magnetic field vector of, 531-32, 586
propagation vector for, 531, 586

Uniform plane wave propagation. See Wave propagation.
Uniform plane waves bouncing obliquely of, 539
normal incidence of, 263
superposition of, 537
Unit conductance circle, 479
Unit impulse response frequency response from, 390 of transmission-line system, 387-89
Unit pattern, 696
Unit vector, 4, 6 along line between two points, 14
Unit vector normal to a surface from cross product, 16 from gradient, 285
Unit vectors cross products of, 8 dot products of, 7,25 in Cartesian coordinates, 13 in cylindrical coordinates, 21
in spherical coordinates, 23
left-handed system of, 4
right-handed system of, 4
Units
International system of, 32,795
MKSA rationalized, 795
table of, 796-98

V

V. See Electric potential; Voltage.

Vector
circulation of, 81
curl of. See Curl.
definition of, 3
divergence of. See Divergence.
division by a scalar, 6
graphical representation of, 4
joining two points, 13-14
Laplacian of. See Laplacian of a vector.
magnitude of, 6
multiplication by a scalar, 6
position, 13, 26
unit, 4,6
Vector algebra, summary of rules of, 64
Vector fields
graphical description of, 29-31
sinusoidally time-varying, 178-84

Vector potential. See Magnetic vector potential.
Vector product. See Cross product of vectors.
Vectors
addition of, 5, 6
conversions between coordinate systems, 24-25
cross product of, 8
dot product of, 7
examples of, 4-5
scalar triple product of, 10
subtraction of, 6
triple cross product of, 9
unit. See Unit vectors.
versus scalars, 3-4
Velocity
drift, 209
group. See Group velocity.
phase. See Phase velocity.
Velocity of light, in free space, 166
Velocity of propagation, 166, 367. See also Phase velocity.
VHF TV channels, 176
Volt, definition of, 34, 796
Voltage, 81
around closed path, 81
compared to potential difference, 291
Voltage reflection coefficient, 375, 420
for some special cases, 377
generalized, 452
Voltage transmission coefficient, 387
Volume, differential. See Differential volume.
Volume charge density, 41
units of, 41
Volume current density, 53 units of, 53
Volume integral, evaluation of, 107

W

Watt, definition of, 796
Wave
traveling. See Traveling wave.
uniform plane. See Uniform plane wave.
Wave equation
for material medium, 240
one-dimensional, 163
solution of, 163-64, 240-41

Wave plates, 657, 663
full-wave, 657
half-wave, 657
quarter-wave, 657
Wave propagation
in anisotropic dielectric, 655-57
in free space, 160-178
in good conductor, 251-54
in imperfect dielectric, 251
in material medium, 239-49
in perfect dielectric, 250
in terms of voltage and current, 363
Waveguide
compared to transmission line, 527
cylindrical. See Cylindrical waveguide.
dielectric slab. See Dielectric slab waveguide.
graded-index. See Graded-index guide.
metallic. See Metallic waveguide.
optical. See Optical fiber.
parallel-plate. See Parallel-plate waveguide.
rectangular. See Rectangular waveguide.
Wavelength, 174
guide, 541, 588, 621
in good conductor, 252
in imperfect dielectric, 250-51
in material medium, 246
in perfect dielectric, 250
times frequency, 175
Waveguide dispersion, 644
Waveguides, optical. See Optical waveguides.
Waves
classification of, 175
electromagnetic. See Electromagnetic waves.
sinusoidal. See Sinusoidal waves.
standing. See Standing waves.
TE, 536
TEM, 366
TM, 543
Work, in moving a test charge, 77-78

