
A P P E N D I X  A

Complex Numbers 
and Phasor Technique

In this appendix, we discuss a mathematical technique known as the phasor
technique, pertinent to operations involving sinusoidally time-varying quanti-
ties. The technique simplifies the solution of a differential equation in which the
steady-state response for a sinusoidally time-varying excitation is to be deter-
mined, by reducing the differential equation to an algebraic equation involving
phasors. A phasor is a complex number or a complex variable. We first review
complex numbers and associated operations.

A complex number has two parts: a real part and an imaginary part. Imag-
inary numbers are square roots of negative real numbers. To introduce the con-
cept of an imaginary number, we define

(A.1a)

or

(A.1b)

Thus, j5 is the positive square root of is the negative square root of
and so on.A complex number is written in the form where a is the

real part and b is the imaginary part. Examples are

A complex number is represented graphically in a complex plane by using
two orthogonal axes, corresponding to the real and imaginary parts, as shown in
Fig.A.1, in which are plotted the numbers just listed. Since the set of orthogonal
axes resembles the rectangular coordinate axes, the representation is
known as the rectangular form.

1a + jb2

3 + j4 -4 + j1 -2 - j2 2 - j3

a + jb,-100,
-25, -j10

1;j22 = -1

2-1 = j

779
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FIGURE A.1

Graphical representation of complex
numbers in rectangular form.

An alternative form of representation of a complex number is the expo-
nential form where A is the magnitude and is the phase angle. To con-
vert from one form to another, we first recall that

(A.2)

Substituting we have

(A.3)

This is the so-called Euler’s identity. Thus,

(A.4)

Now, equating the two forms of the complex numbers, we have

or

(A.5a)
(A.5b) b = A sin f

 a = A cos f

a + jb = A cos f + jA sin f

 = A cos f + jA sin f
 Aejf = A1cos f + j sin f2

 = cos f + j sin f

 = a1 -
f2

2!
 + Á b + jaf -

f3

3!
 + Á b

 = 1 + jf -
f2

2!
- j 

f3

3!
 + Á

 ejf = 1 + jf +
1jf22

2!
+
1jf23

3!
 + Á

x = jf,

ex = 1 + x +
x2

2!
+

x3

3!
 + Á

fAejf,
Exponential
and polar
forms
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These expressions enable us to convert from exponential form to rectangular
form. To convert from rectangular form to exponential form, we note that

Thus,

(A.6a)

(A.6b)

Note that in the determination of the signs of and should be con-
sidered to see if it is necessary to add to the angle obtained by taking the in-
verse tangent of b/a.

In terms of graphical representation, A is simply the distance from the ori-
gin of the complex plane to the point under consideration, and is the angle
measured counterclockwise from the positive real axis to the line
drawn from the origin to the complex number, as shown in Fig. A.2. Since this
representation is akin to the polar coordinate representation of points in two-
dimensional space, the complex number is also written as the polar form.

Turning now to Euler’s identity, we see that for 
Thus, purely imaginary numbers correspond to

This justifies why the vertical axis, which is orthogonal to the real
(horizontal) axis, is the imaginary axis.

The complex numbers in rectangular form plotted in Fig. A.1 may now be
converted to exponential form (or polar form):

These are shown plotted in Fig. A.3. It can be noted that in converting from rec-
tangular to exponential (or polar) form, the angle can be correctly deter-
mined if the number is first plotted in the complex plane to see in which
quadrant it lies. Also note that angles traversed in the clockwise sense from the

f

 2 - j3 = 222 + 32 ej tan-11-3/22 = 3.61e-j0.313p = 3.61l -56.31°.

 -2 - j2 = 222 + 22 ej[tan-1112+p] = 2.83ej1.25p = 2.83l225°

 -4 + j1 = 242 + 12 ej[tan-11-1/42+p] = 4.12ej0.922p = 4.12l165.96°

 3 + j4 = 232 + 42 ej tan-114/32 = 5ej0.295p = 5l53.13°

f = ;p/2.
A cos p/2 ; jA sin p/2 = ;jA.

f = ;p/2, Ae;jp/2 =
Alf,

1f = 02f

p

sin fcos ff,

 f = tan-1
  
b
a

 A = 2a2 + b2

 cos f =
a

A
 sin f =

b

A
 tan f =

b
a

 a2 + b2 = A2
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Conversion
from
rectangular to
exponential
or polar form
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FIGURE A.2

Graphical representation of a complex number
in exponential form or polar form.
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positive real axis are negative angles. Furthermore, adding or subtracting an in-
teger multiple of to the angle does not change the complex number.

Complex numbers are added (or subtracted) by simply adding (or sub-
tracting) their real and imaginary parts separately as follows:

Graphically, this procedure is identical to the parallelogram law of addition (or
subtraction) of two vectors.

Two complex numbers are multiplied by multiplying each part of one
complex number by each part of the second complex number and adding the
four products according to the rule of addition as follows:

Two complex numbers whose real parts are equal but whose imaginary
parts are the negative of each other are known as complex conjugates. Thus,

is the complex conjugate of and vice versa. The product of
two complex conjugates is a real number:

(A.7)

This property is used in division of one complex number by another by multiply-
ing both the numerator and the denominator by the complex conjugate of the
denominator and then performing the division by real number. For example,

3 + j4

2 - j3
=
13 + j4212 + j32
12 - j3212 + j32 =

-6 + j17

13
= -0.46 + j1.31

1a + jb2 1a - jb2 = a2 - jab + jba + b2 = a2 + b2

1a + jb2,1a - jb2

 = 18 - j1
 = 6 - j9 + j8 + 12

 13 + j42 12 - j32 = 6 - j9 + j8 - j21122

 12 - j32 - 1-4 + j12 = 6 - j4
 13 + j42 + 12 - j32 = 5 + j1

2p

(�4 � j1)

(�2� j2)

(2 � j3)

(3 � j4)

5

4.12

2.8
3

Imaginary

Real
3.61

53.13

56.31

165.96

225

FIGURE A.3

Polar form representation of the
complex numbers of Fig. A.1.

Arithmetic of
complex
numbers
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The exponential form is particularly useful for multiplication, division,
and other operations, such as raising to the power, since the rules associated
with exponential functions are applicable. Thus,

(A.8a)

(A.8b)

(A.8c)

Let us consider some numerical examples:

(a)

(b)

(c)

(d)

Note that in evaluating the square roots, although k can assume an infinite
number of integer values, only the first two need to be considered since the
numbers repeat themselves for higher values of integers. Similar considerations
apply for cube roots, and so on.

Having reviewed complex numbers, we are now ready to discuss the pha-
sor technique. The basis behind the phasor technique lies in the fact that since

(A.9)

we can write

(A.10)

where Re stands for “real part of.” In particular, if then we have

(A.11)

where is known as the phasor (the overbar denotes that is com-
plex) corresponding to Thus, the phasor corresponding to a co-
sinusoidally time-varying function is a complex number having magnitude same
as the amplitude of the cosine function and phase angle equal to the phase of
the cosine function for To find the phasor corresponding to a sine function,t = 0.

A cos 1vt + u2. AA = Aeju

 = Re[Aejvt]

 = Re[Aejuejvt]

 A cos 1vt + u2 = Re[Aej1vt +u2]

x = vt + u,

A cos x = Re[Aejx]

Aejx = A cos x + jA sin x

 = 2.03ej0.461p, or 2.03ej1.461p

 = 24.12 ej10.461p+ kp2,  k = 0, 1

 24.12ej0.922p = [4.12ej10.922p+ 2kp2]1/2, k = 0, 1, 2, Á
12.83ej1.25p24 = 64.14ej5p = 64.14ejp

5ej0.295p

3.61e-j0.313p = 1.39ej0.608p

15ej0.295p213.61e-j0.313p2 = 18.05e-j0.018p

 1Aejf2n = Anejnf

 
A1 ejf1

A2 ejf2
=

A1

A2
 ej1f1 -f22

 1A1 ejf121A2 ejf22 = A1 A2 ej1f1 +f22

Phasor
defined
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Addition of
two sine
functions

we first convert it into a cosine function and proceed as in (A.11). Thus,

(A.12)

Hence, the phasor corresponding to is or 

Let us now consider the addition of two sinusoidally time-varying func-
tions (of the same frequency), for example, and by
using the phasor technique. To do this, we proceed as follows:

(A.13)

In practice, we need not write all the steps just shown. First, we express all
functions in their cosine forms and then recognize the phasor corresponding to
each function. For the foregoing example, the complex numbers and

are the phasors corresponding to and re-
spectively.Then we add the phasors and from the sum phasor write the required
cosine function as one having the amplitude the same as the magnitude of the
sum phasor and the argument equal to plus the phase angle of the sum pha-
sor. Thus, the steps involved are as shown in the block diagram of Fig. A.4.

We shall now discuss the solution of a differential equation for sinusoidal
steady-state response by using the phasor technique. To do this, let us consider
the problem of finding the steady-state solution for the current I(t) in the simple
RL series circuit driven by the voltage source as
shown in Fig. A.5. From Kirchhoff’s voltage law, we then have

(A.14)

We know that the steady-state solution for the current must also be a co-
sine function of time having the same frequency as that of the voltage source,

RI1t2 + L 

dI1t2
dt

= Vm cos 1vt + f2

V1t2 = Vm cos 1vt + f2,

vt

10 sin 1vt - 30°2,5 cos vt10e-j2p/3
5ej0

 = 8.66 cos 1vt - 90°2
 = Re[8.66ej1vt -p/22]
 = Re[8.66e-jp/2ejvt]

 = Re[10 - j8.662ejvt]

 = Re5[15 + j02 + 1-5 - j8.662]ejvt6
 = Re[15ej0 + 10e-j2p/32ejvt]

 = Re[5ej0ejvt + 10e-j2p/3ejvt]

 = Re[5ej0ejvt] + Re[10e-j2p/3ejvt]

 = Re[5ejvt] + Re[10ej1vt - 2p/32]
 5 cos vt + 10 sin 1vt - 30°2 = 5 cos vt + 10 cos 1vt - 120°2

10 sin 1vt - 30°2,5 cos vt

or -jBejf.
Bejfe-jp/2,Bej1f-p/22,B sin 1vt + f2

 = Re[Bej1f-p/22ejvt]

 = Re[Bej1vt +f-p/22]
 B sin 1vt + f2 = B cos 1vt + f - p/22

Solution of
differential
equation
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5 cos vt

5 cos vt

5e j0 10e�j2p/3

8.66 cos (vt � 90 )

�

�

�

� (Sum Phasor)

(Phasors)

8.666e�jp/2

10 sin (vt � 30 )

10 cos (vt � 120 )

FIGURE A.4

Block diagram of steps involved in 
the application of the phasor technique to 
the addition of two sinusoidally time-varying
functions.

but not necessarily in phase with it. Hence, let us assume

(A.15)

The problem now consists of finding and 
Using the phasor concept, we write

(A.16a)

(A.16b)

where and are the phasors corresponding to 
and respectively. Substituting these

into the differential equation, we have

(A.17)R5Re[I
 –

ejvt]6 + L 
d

dt
5Re[I

 –
ejvt]6 = Re[Vejvt]

I1t2 = Im cos 1vt + u2,Vm cos 1vt + f2 V1t2 =I
 – = Im ejuV = Vm ejf

 = Re[Iejvt]
 = Re[Im ejuejvt]

 Im cos 1vt + u2 = Re[Im ej1vt +u2]

 = Re[Vejvt]
 = Re[Vm ejfejvt]

 Vm cos 1vt + f2 = Re[Vm ej1vt +f2]

u.Im

I1t2 = Im cos 1vt + u2

�
�

V(t)

I(t)R

L

FIGURE A.5

RL series circuit.
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Since R and L are constants, and since d/dt and Re can be interchanged, we can
simplify this equation in accordance with the following steps:

(A.18)

Let us now consider two values of say, and For we
obtain

(A.19)

For we obtain

or

(A.20)

where Im stands for “imaginary part of.” Now, since the real parts as well as the
imaginary parts of and are equal, it follows that the two com-
plex numbers are equal. Thus,

(A.21)

By solving this equation, we obtain and hence and Note that by using the
phasor technique, we have reduced the problem of solving the differential equa-
tion (A.14) to one of solving the phasor (algebraic) equation (A.21). In fact, the
phasor equation can be written directly from the differential equation without
the necessity of the intermediate steps, by recognizing that the time functions
I(t) and V(t) are replaced by their phasors and respectively, and d/dt is re-
placed by We have here included the intermediate steps merely to illustrate
the basis behind the phasor technique. We shall now consider an example.

Example A.1 Solution of differential equation using phasor technique

For the circuit of Fig. A.5, let us assume that and 
and obtain the steady-state solution for I(t).

The differential equation for I(t) is given by

Replacing the current and voltage by their phasors and respectively, and d/dt
by we obtain the phasor equation

I
 – + 10-31j1000I

 –2 = 10ejp/6

jv = j1000,
10ejp/6,I

 –

I + 10-3
 
dI

dt
= 10 cos 11000t + 30°2

10 cos 11000t + 30°2 V
V1t2 =R = 1 Æ, L = 10-3 H,

jv.
V,I

 –

u.ImI
 –

RI
 – + jvLI

 – = V

V1RI
 – + jvLI

 –2

Im1RI
 – + jvLI

 –2 = Im1V2

Re[j1RI
 – + jvLI

 –2] = Re[jV]

vt = p/2,

Re1RI
 – + jvLI

 –2 = Re1V2

vt = 0,vt = p/2.vt = 0vt,

 Re[1RI
 – + jvLI

 –2ejvt] = Re[Vejvt]
 Re[RI

 –
ejvt] + Re[jvLI

 –
ejvt] = Re[Vejvt]

 Re[RI
 –

ejvt] + Re cL 
d

dt
 1I –ejvt2 d = Re[Vejvt]
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or

Having determined the value of we now find the required solution to be

 = 7.07 cos 11000t - 15°2 A
 = Re[7.07e-jp/12ej1000t]

 I1t2 = Re[I
 –

ejvt]

I
 –

,

 = 7.07e-jp/12

 I
 – =

10ejp/6

1 + j1
=

10ejp/622 ejp/4

 I
 –11 + j12 = 10ejp/6
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