
C H A P T E R  1 1

Several Solution Techniques

In this chapter, we turn our attention primarily to an introduction to numerical
methods, but also consider the analytical technique of separation of variables for
the solution of Laplace’s equation in two dimensions and a geometrical method
based on field mapping for the determination of transmission line parameters.

For the numerical techniques, we are interested in the application of well-
known methods for solving integral equations and partial differential equations
to the numerical solution of Maxwell’s equations and equations involving po-
tential. In this context, we shall consider four methods: (1) the finite-difference
method, leading to the solution of Laplace’s equation in two dimensions by
using appropriate finite-difference approximations to the derivative terms; (2)
the method of moments, involving the inversion of an integral equation relating
the electric potential to charge distribution by approximating the integral as a
summation; (3) the finite-element method, also for solving Laplace’s equation
in two dimensions, but based on the minimization of electric energy expressed
as an integral over the region of interest; and (4) the finite-difference time-do-
main method, for solving the one-dimensional wave equation or the first-order
differential equations leading to it by extending the finite-difference approxi-
mations to the time derivative terms. We shall also present several examples of
applications, including the determination of transmission-line parameters and
the time-domain analysis of an initially charged transmission line.

11.1 ANALYTICAL SOLUTION OF LAPLACE’S EQUATION

Considering Laplace’s equation (5.61) and its expansion in Cartesian coordi-
nates, given by (5.62), and assuming the potential to be independent of z, we ob-
tain the two-dimensional Laplace’s equation in x and y to be

(11.1)
02V

0x2 +
02V

0y2 = 0
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11.1 Analytical Solution of Laplace’s Equation 727

Equation (11.1) is a partial differential equation in two dimensions. As we
already discussed in Sec. 9.1, the technique by means of which it is solved is the
“separation of variables” technique. It consists of assuming that the solution for
the potential is the product of two functions, one of which is a function of x only
and the second is a function of y only. Denoting these functions to be X and Y,
respectively, we have

(11.2)

Substituting this assumed solution into the differential equation, we obtain

Dividing both sides by XY and rearranging, we get

(11.3)

The left side of (11.3) is a function of x only; the right side is a function of
y only.Thus (11.3) states that a function of x only is equal to a function of y only.
A function of x only other than a constant cannot be equal to a function of y
only other than the same constant for all values of x and y. For example, 2x is
equal to 4y for only those pairs of values of x and y for which Since we
are seeking a solution that is good for all pairs of x and y, the only solution that
satisfies (11.3) is that for which each side of (11.3) is equal to a constant. Denot-
ing this constant to be we have

(11.4a)

and

(11.4b)

Thus, we have obtained two ordinary differential equations involving separate-
ly the variables x and y, starting with the partial differential equation involving
both of the variables x and y. It is for this reason that the method is known as
the separation of variables technique.

The solutions for (11.4a) and (11.4b) are given by

(11.5a)X1x2 = eAeax + Be-ax for a Z 0
A0 x + B0 for a = 0

d2Y

dy2 = -a2Y

d2X

dx2 = a2X

a2,

x = 2y.

1
X

  
d2X

dx2 = -  
1
Y

  
d2Y

dy2

Y 
d2X

dx2 + X 
d2Y

dy2 = 0

V1x, y2 = X1x2Y1y2

“Separation
of variables”
technique
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728 Chapter 11 Several Solution Techniques

where A, B, and are arbitrary constants, and

(11.5b)

where C, D, and are arbitrary constants. Substituting (11.5a) and (11.5b)
into (11.2), we obtain

(11.6)

Equation (11.6) is the general solution for Laplace’s equation in the two dimen-
sions x and y. The arbitrary constants are evaluated from the boundary condi-
tions specified for a given problem. We shall now consider two examples.

Example 11.1 Application of analytical solution of Laplace’s equation in
two dimensions

Let us consider an infinitely long rectangular slot cut in a semi-infinite plane conducting
slab held at zero potential, as shown by the cross-sectional view, transverse to the slot, in
Fig. 11.1. With reference to the coordinate system shown in the figure, assume that a po-
tential distribution where is a constant, is created at the mouth

of the slot by the application of a potential to an appropriately shaped conductor
away from the mouth of the slot not shown in the figure. We wish to find the potential
distribution in the slot.

x = a
V0V = V0 sin 1py>b2,

V1x, y2 = e 1Aeax + Be-ax21C cos ay + D sin ay2 for a Z 0
1A0 x + B021C0 y + D02 for a = 0

D0C0,

Y1y2 = eC cos ay + D sin ay for a Z 0
C0 y + D0 for a = 0

B0A0,

b

a Slot Conductor
y � 0

x � 0, V � 0

V � 0

y � b

x � a

V � 0

x

yz

V � V0 sin
py
b

FIGURE 11.1

Cross-sectional view of a rectangular slot cut in a semi-infinite plane conducting
slab at zero potential. The potential at the mouth of the slot is volts.V0 sin 1py>b2
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11.1 Analytical Solution of Laplace’s Equation 729

Since the slot is infinitely long in the z direction with uniform cross section, the
problem is two dimensional in x and y and the general solution for V given by (11.6) is
applicable. The boundary conditions are

(11.7a)
(11.7b)
(11.7c)

(11.7d)

The solution corresponding to does not fit the boundary conditions, since V is re-
quired to be zero for two values of y and in the range Hence we can ignore
that solution and consider only the solution for 

Applying the boundary condition (11.7a), we have

The only way of satisfying this equation for a range of values of x is by setting 
Next, applying the boundary condition (11.7c), we have

This requires that which can be satisfied by either or
We, however, rule out since it results in a trivial solution of zero for the

potential. Hence we set

Thus the solution for V reduces to

(11.8)

where 
Next, applying boundary condition (11.7b) to (11.8), we obtain

To satisfy this equation without obtaining a trivial solution of zero for the potential, we set

or

 a =
np

b
 n = 1, 2, 3, Á

 ab = np n = 1, 2, 3, Á

sin ab = 0

0 = A¿ sinh ax sin ab for 0 6 x 6 a

A¿ = 2AD.

 = A¿ sinh ax sin ay

 V1x, y2 = 1Aeax - Ae-ax2D sin ay

A + B = 0 or B = -A

D = 0D = 0.
A + B = 01A + B2D = 0,

0 = 1A + B2D sin ay for 0 6 y 6 b

C = 0.

0 = 1Aeax + Be-ax21C2 for 0 6 x 6 a

a Z 0.
0 6 x 6 a.

a = 0

 V = V0 sin  
py

b
  for x = a, 0 6 y 6 b

 V = 0   for x = 0, 0 6 y 6 b

 V = 0   for y = b, 0 6 x 6 a

 V = 0   for y = 0, 0 6 x 6 a
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730 Chapter 11 Several Solution Techniques

Since several values of satisfy the boundary condition, several solutions are possible
for the potential. To take this into account, we write the solution as the superposition of
all these solutions multiplied by different arbitrary constants. In this manner, we obtain

(11.9)

Finally, applying the boundary condition (11.7d) to (11.9), we get

(11.10)

On the right side of (11.10) we have an infinite series of sine terms in y, but on the left
side we have only one sine term in y. Equating the coefficients of the sine terms having
the same arguments, we obtain

or

Substituting this result in (11.9), we obtain the required solution for V as

(11.11)

We may now compute the potential at any point inside the slot, given the values of
a, b, and For example, for that is, for a square slot, (11.11) gives the potential at
the center of the slot to be 

Example 11.2 Application of analytical solution of Laplace’s equation in
two dimensions

Let us assume that the rectangular slot of Fig. 11.1 is covered at the mouth by a
conducting plate that is kept at a potential making sure that the edges touching
the corners of the slot are insulated, as shown in Fig. 11.2(a), and find the solution for the
potential in the slot for this new boundary condition.

Since the boundary conditions (11.7a)–(11.7c) remain the same, all we need to do
to find the required solution for the potential is to substitute the new boundary condition

V = V0 for x = a, 0 6 y 6 b

V = V0,
x = a

0.1993V0.
a = b,V0.

V1x, y2 = V0  
sinh 1px>b2
sinh 1pa>b2   sin  

py

b

Aœ
n = 0 for n Z 1

Aœ
1 =

V0

sinh 1pa>b2

Aœ
n sinh  

npa

b
= eV0 for n = 1

0 for n Z 1

V0 sin  

py

b
= a

q

n = 1,2,3,Á
Aœ

n sinh  
npa

b
  sin  

npy

b
 for 0 6 y 6 b

V1x, y2 = a
q

n = 1,2,3,Á
Aœ

n sinh  
npx

b
  sin  

npy

b
 for 0 6 y 6 b

a
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11.1 Analytical Solution of Laplace’s Equation 731

y � 0

x � 0, V � 0

V � 0
y � b

x � a, V � V0

V � 0
V � 0 V � 0

V � 0

V � V0

x

yz
(a) (b)

FIGURE 11.2

(a) Cross-sectional view of a rectangular slot in a semi-infinite plane conducting slab at zero
potential and covered at the mouth by a conducting plate kept at a potential 
(b) Equipotentials and direction lines of electric field in the slot for the case b/a = 1

V0.

in (11.9) and evaluate the coefficients Thus we have

(11.12)

In this equation we have an infinite series on the right side, but the left side is a constant.
Thus we cannot hope to obtain by simply comparing the coefficients of the sine terms
having like arguments as in Example 11.1. If we do so, we get the result of and all

since there is no constant term on the right side and there are no sine terms on
the left side.

The way out of the dilemma is to make use of the so-called orthogonality property
of sine functions, given by

where m and n are integers. Multiplying both sides of (11.12) by and inte-
grating between the limits 0 and b, we have

The integration and summation on the right side can be interchanged, giving us

L
b

y = 0
V0 sin  

mpy

b
 dy = a

q

n = 1,2,3,Á
Aœ

n sinh  
npa

b L
b

y = 0
 sin  

npy

b
  sin  

mpy

b
  dy

L
b

y = 0
V0 sin  

mpy

b
  dy = L

b

y = 0
   a

q

n = 1,2,3,Á
Aœ

n sinh  
npa

b
  sin  

npy

b
  sin  

mpy

b
  dy

sin  

mpy

b
  dy

L
p

y = 0
sin  

npy

p
  sin  

mpy

p
  dy = c 0 n Z m

p

2
n = m

Aœ
n = 0

V0 = 0
Aœ

n

V0 = a
q

n = 1,2,3,Á
Aœ

n sinh  
npa

b
  sin  

npy

b
 for 0 6 y 6 b

Aœ
n.
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732 Chapter 11 Several Solution Techniques

or

Substituting this result in (11.9), we obtain the required solution for the potential inside
the slot as

(11.13)

The numerical values of potentials may now be computed for points inside the slot
for given values of a, b, and and equipotentials may be sketched by joining points hav-
ing approximately the same potential values. The electric field lines can then be drawn
orthogonal to the equipotentials. The resulting sketches for a square slot are shown in
Fig. 11.2(b).

K11.1. Laplace’s equation in two dimensions; Separation of variables technique.
D11.1. A conductor occupying the surfaces and is kept at

zero potential.A second conductor occupying the surfaces 
is kept at a potential of 100 V.The edges where the conductors touch are insulat-
ed. The medium between the conductors is free space. Find the following in a

(a) the potential at (b) the electric field inten-
sity at and (c) the surface charge density at 
Ans. (a) 50 V; (b) (c)

11.2 NUMERICAL SOLUTION BY FINITE-DIFFERENCE METHOD

The finite-difference method is employed for solving differential equations, and
it is perhaps the simplest method for that purpose. It consists of replacing the
derivative terms in the differential equation by their finite-difference approxi-
mations and solving the resulting algebraic equations. To do this, the region of
interest is discretized by selecting a set of grid points, and the derivatives of the
function of interest at each grid point are expressed in terms of the values of the
function at a subset of the grid points by using approximations such as the cen-
tral-difference formulas. The resulting set of algebraic equations are solved for
the values of the function at the grid points. We shall illustrate this first in one-
dimension.

Thus, let us consider solving the differential equation

(11.14)
d2f1x2

dx2 + f1x2 = 0

-50e0 C>m2.-1100ax + 50ay2 V>m;
x = 1, y = 0.x = 1, y = 2;

x = 1, y = 1;z = constant plane:

xy = 2, x 7 0, y 7 0,
y 7 0, x = 0x 7 0, y = 0

V0,

V = a
q

n = 1,3,5,Á
 

4V0

np
  

sinh 1npx>b2
sinh 1npa>b2   sin  

npy

b

Aœ
m = L 4V0

mp
  

1
sinh 1mpa>b2 for m odd

0 for m even

V0 b

mp
 11 - cos mp2 = aAœ

m sinh  
mpa

b
b  

b

2

Solution 
of one-
dimensional
differential
equation
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11.2 Numerical Solution by Finite-Difference Method 733

0

x � 0 x � 1x

1 2

(a)

(b)

3

x

k � 1 k k � 1

(k � 1)a ka (k � 1)a

4

FIGURE 11.3

For the solution of one-dimensional differential
equation using the finite-difference method.

over the region with the boundary conditions specified as 
and Then we divide the region of interest into n equal seg-
ments, thereby identifying grid points, including the two end points.The
situation is illustrated in Fig. 11.3(a) for Since the values of f at the end
points 0 and 4 are specified, we need to find the values at the three interior grid
points 1, 2, and 3, and hence we need to obtain a set of three algebraic equations.

Let us consider the kth grid point, where Then, at that grid
point, where a is the spacing between two adjacent grid points, as
shown in Fig. 12.1(b). We can approximate at this grid point as

(11.15)

where is the value of f at the kth grid point, that is, at The right side
of (11.15) is the central-difference approximation for the second derivative of f
at the grid point k.

Using (11.15) and noting that here a is equal to we can write the finite-
difference approximation for the differential equation at the kth grid point as

or

(11.16)

Applying this result to the three interior grid points 1, 2, and 3, we obtain the set
of three equations

 16f2 - 31f3 + 16f4 = 0
 16f1 - 31f2 + 16f3 = 0
 16f0 - 31f1 + 16f2 = 0

16fk - 1 - 31fk + 16fk + 1 = 0

161fk + 1 - 2fk + fk - 12 + fk = 0

1
4,

x = ka.fk

 =
1

a2 1fk + 1 - 2fk + fk - 12
 L

1
a

 c afk + 1 - fk

a
b - afk - fk - 1

a
b d

 L
1
a

 c adf

dx
b

x =1k - 0.52a
- adf

dx
b

x =1k + 0.52a
d

 cd2f

dx2 d
k

= cd2f

dx2 d
x = ka

d2f>dx2
x = ka,

k = 1, 2, 3.

n = 4.
1n + 12 0 … x … 1f112 = 1.

f102 = 00 … x … 1,
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734 Chapter 11 Several Solution Techniques

Recognizing that and these three equations can be arranged in
matrix form as

Solving, we obtain and An analytical so-
lution reveals that the exact solution for f(x) is (sin x)/(sin 1), which gives

and Thus, the numerical solution is accu-
rate to the fourth decimal place even for the number of interior grid points as
small as 3.

The procedure can be extended to two-dimensional and three-dimension-
al differential equations. One equation of interest is the Laplace’s equation
(5.61). We shall consider the two-dimensional Laplace’s equation in the Carte-
sian coordinates x and y, given by

(11.17)

To introduce the principle behind the numerical solution of (11.17), let us
suppose that we know the potentials and at four points equidistant
from a point P(0, 0, 0) and lying on mutually perpendicular axes, x and y, pass-
ing through P as shown in Fig. 11.4, and that we wish to find the potential at
P in terms of and Then we require that

(11.18)[§2V]P = c 02V

0x2 +
02V

0y2 d 10,0,02
= 0

V4.V1, V2, V3,
V0

V4V1, V2, V3,

§2V =
02V

0x2 +
02V

0y2 = 0

f3 = 0.8101.f1 = 0.2940, f2 = 0.5697,

f3 = 0.8109.f1 = 0.2943, f2 = 0.5702,

C -31 16 0
16 -31 16
0 16 -31

S Cf1

f2

f3

S = C 0
0

-16
S

f4 = 1,f0 = 0

x

y

V1 (a, 0, 0)

V2 (�a, 0, 0)

(0, 0, 0) (0, a, 0)(0, �a, 0)

P V3V4

FIGURE 11.4

For illustrating the principle behind the numerical
solution of Laplace’s equation in two dimensions.

Solution of
two-
dimensional
Laplace’s
equation
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11.2 Numerical Solution by Finite-Difference Method 735

To solve this equation approximately for we note that

(11.19a)

Similarly,

(11.19b)

Substituting (11.19a) and (11.19b) into (11.18) and rearranging, we obtain

(11.20)

Thus, the potential at P is approximately equal to the average of the potentials
at the four equidistant points lying along mutually perpendicular axes through
P. The result becomes more and more accurate as the spacing a becomes less
and less. Equation (11.20) is the finite-difference approximation to (11.17) and
forms the basis for its numerical solution by the finite-difference method. We
shall illustrate this by means of an example.

Example 11.3 Finite-difference method of solution of Laplace’s
equation in two dimensions

Let us consider four infinitely long conducting strips of equal widths, situated such that
the cross section of the arrangement is a square and held at potentials and 
as shown in Fig. 11.5. Note that the corners are insulated so that the plates do not touch.
By dividing the area between the conductors into a grid of squares, and using
(11.20), we wish to find the approximate values of the potentials at the grid points by the
finite-difference method.

The solution consists of obtaining a set of values for the potentials at the grid
points such that the potential at each grid point is the average of the potentials at the
neighboring four grid points to within a specified tolerance. Thus, if we denote the

6 * 6

Vr,Va, Vb, Vi,

V0 L 1
41V1 + V2 + V3 + V42

c 02V

0y2 d 10,0,02
L

1

a2  1V3 + V4 - 2V02

 =
1

a2 1V1 + V2 - 2V02
 =

1

a2 [1V1 - V02 - 1V0 - V22]

 L
1
a

 e [V]1a,0,02 - [V]10,0,02
a

-
[V]10,0,02 - [V]1- a,0,02

a
r

 L
1
a

 e c 0V

0x
d
1a>2,0,02

- c 0V

0x
d
1- a>2,0,02

r
 c 02V

0x2 d 10,0,02
= c 0

0x
 a 0V

0x
b d
10,0,02

V0,
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736 Chapter 11 Several Solution Techniques

potentials to be and if the specified tolerance is de-
noted to be then the values of the potentials must be such that

(11.21a)

(11.21b)

and so on.The simplest technique adaptable to computer solution is to begin with values
of zero for all unknown potentials. By traversing the grid in a systematic manner, the av-
erage of the four neighboring potentials is computed for each grid point and is used to
replace the potential at that grid point if that value differs from the computed average by
more than This procedure is repeated until a final set of values for the unknown po-
tentials consistent with (11.21a), (11.21b), is obtained.

Let us consider some numerical values:
and Then we first set all unknown potentials equal to zero. Beginning at the
grid point 11 and traversing the grid rowwise, we replace the zero value for by

or 35 V, then replace the zero value for by 
or 33.75 V, and so on. After one traversal is completed, we come back to the grid point 11
and traverse the grid again, replacing the potential value at each grid point by the average of
the then-existing values of the four neighboring potentials, as necessary. This procedure is
repeated until the desired set of values is obtained.

The procedure just discussed can be very conveniently carried out by using a com-
puter program. The final set of values from the run of such a program for 

and is shown in Fig. 11.6, which also shows
the residuals, where a residual at a grid point is the absolute value of the difference be-
tween the potential at that grid point and the average of the four neighboring potentials.
The residuals are shown below the potential values. It can be seen that all residuals are
less than 0.01 V.

¢ = 0.01 VVb = 0 V, Vl = 40 V, Vr = 0 V,
Va = 100 V,

1
41100 + 35 + 0 + 02,V12

1
41100 + 40 + 0 + 02,

V11

¢ = 0.01 V.
Va = 100 V, Vb = 0 V, Vl = 40 V, Vr = 0 V,

Á
¢.

 ƒV12 - 1
41Va + V13 + V22 + V112 ƒ 6 ¢

ƒV11 - 1
41Va + V12 + V21 + Vl2 ƒ 6 ¢

¢,
V11, V12, V13, V14, V15, V21, V22, Á V55,

y

x

V � Vl V � Vr

V � VaP

V � Vb

V54

d
d

V55

V15V14V13V12V11

V25V24V23V22V21

FIGURE 11.5

Cross-sectional view of an arrangement of four
infinitely long conducting strips, with the region
inside divided into a grid of squares.6 * 6
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11.2 Numerical Solution by Finite-Difference Method 737

Iteration
technique

100 100 100 100 100

0 0 0 0 0

65.60 72.71 72.30 65.76 48.10
0.006 0.006 0.004 0.006 0.006

49.69 52.99 50.73 42.68 26.66
0.006 0.007 0.004 0.007 0.006

40.21 38.84 34.95 27.61 15.89
0.004 0.004 0.000 0.004 0.004

32.32 27.23 22.65 16.92 9.29
0.006 0.007 0.004 0.007 0.006

21.86 15.14 11.49 8.19

ITERATION NO. � 25
SOLUTION COMPLETED
VALUE OF DELTA ACHIEVED � � 7.423401E-03

4.36

0

0

0

0

0

40

40

40

40

40
0.006 0.006 0.004 0.006 0.006

FIGURE 11.6

Final set of values of potentials and residuals for the
arrangement of Fig. 11.5, for 

and ¢ = 0.01 V.Vl = 40 V, Vr = 0 V,
Va = 100 V, Vb = 0 V,

The method we just discussed is known as the iteration technique since
it involves the iterative process of converging an initially assumed solution to
a final one consistent with Laplace’s equation in the approximate sense
given by (11.20). There are several variations of the iteration technique. For
example, by employing an initial guess other than zeros, a faster convergence
may be achieved. The end result will, however, still be only to within the
specified accuracy. Alternative to the iteration technique, one can write a set
of simultaneous equations by applying (11.20) to each grid point and then
solve the equations for the unknown potentials, as already illustrated for the
one-dimensional case.

The solution obtained for the potentials at the grid points by any method
can be used to plot approximately the equipotential lines by interpolating be-
tween grid points. An example of such plotting, also by using a computer, is
shown in Fig. 11.7, which corresponds to that of and

in Fig. 11.5, and an grid of squares. Figure 11.7(a) shows the
computed potential values at a set of grid points (with the remaining grid
points omitted for the sake of clarity) and the 25-V equipotential line being
plotted. Figure 11.7(b) shows a complete set of equipotential lines from 0 to 100
V in steps of 10 V. Note that in Fig. 11.7(b) the 0-V equipotential line does not
follow the boundary at the upper- and lower-left corners.This is because in view
of the division of the region into a finite grid of squares the solu-
tion is not influenced by the corner points; that is, the solution for the case of the
0-V conductor following the plotted 0-V line is the same as that for which it fol-
lows the original boundary.

18 * 8 here2,

4 * 4
8 * 8Vr = 100 V

Va = Vl = Vb = 0 V
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738 Chapter 11 Several Solution Techniques

Finally, the solution for the potentials can also be used to find approxi-
mate electric field intensities at the grid points by using the potential values to
obtain approximate values of and For example, in Fig. 11.5, the
electric-field intensity at the grid point 12 is given approximately by

where d is the spacing between two adjacent grid points. Similarly, the electric-
field intensities at points on the conductors can be found and used to obtain the
surface charge densities. For example, the surface charge density at the point P
on the conductor of potential and adjacent to the grid point 12 is given ap-
proximately by

where is the permittivity of the medium between the conductors.

K11.2. Finite-difference method; Solution of one-dimensional differential equation;
Solution of Laplace’s equation in two dimensions; Iteration technique.

D11.2. Three infinitely long conductor strips are arranged such that the cross section
is an isosceles triangle, as shown in Fig. 11.8. The region between the conduc-
tors is divided into a grid of points as shown in the figure, where the spacing be-
tween adjacent pairs of points is d. By writing equations consistent with (11.20)

e

 = e  

Va - V12

d

 [rS]P L -ay
# e  

V12 - Va

d
 ay

Va

[E]12 L
V11 - V13

2d
 ax +

V22 - Va

2d
 ay

0V>0y.0V>0x

V � 0

(a)

6.81

9.53 53.51

6.81

18.29

43.02

�100 V

�100 V

�100 V

�100 V

�100 V

�100 V

�100 V

�100 V

���

��

���

�100 V
V � 0

V � 0

V � 0

(b)

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V
V � 0

V � 0

18.29

43.02

25 V

24.89 20 V

10 V

�

FIGURE 11.7

(a) Plotting of an equipotential line by interpolation between grid points. (b) Set of equipotential lines
from 0 to 100 V in steps of 10 V.
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V � 14 V
V � 0

V � 0

A

B C

P

y

x
FIGURE 11.8

For Problem D11.2.

for the potentials at the grid points A, B, and C and solving them, find the fol-
lowing: (a) the approximate potential at the grid point C; (b) the approximate
electric field intensity at the grid point C; and (c) the approximate surface
charge density at the point P, assuming the medium between the conductors to
be free space.
Ans. (a) 8 V; (b) (c)

11.3 METHOD OF MOMENTS

When the boundaries of the physical arrangement extend to infinity, the finite-
difference method cannot be used unless some approximations are made to
limit the extent for the grid to be finite.Another numerical technique, known as
the method of moments, is useful in such situations. The method of moments is
commonly used to solve integral equations. An example consists of finding the
charge distribution on the conductors held at known constant potentials. Thus,
the problem is the inverse of the problem of finding the potential for a known
charge distribution. To cast the technique in general terms, let us consider a sur-
face charge distribution on a given surface. Then applying superposi-
tion in conjunction with the expression for the potential due to a point charge
given by (5.35), the potential due to the charge distribution can be expressed as

(11.22)

where the primes denote source point coordinates.The procedure consists of di-
viding the surface into a finite number of subsections to approximate the inte-
gral in (11.22) by a summation and applying the equation to points on the
subsections to obtain a set of linear algebraic equations. The set of equations is
then inverted to obtain the desired solution. We shall illustrate the method by
means of an example.

V1x, y, z2 =
1

4pe0Lsurface of
the charge
distribution

 

rS1x¿, y¿, z¿2
R

  dS¿

rS1x, y, z2

-4e0>d C>m2.-15ax + 7ay2>d V>m;
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740 Chapter 11 Several Solution Techniques

Example 11.4 Application of method of moments to a straight wire
held at a known potential

Let us consider a thin, straight wire of length l and radius as shown in Fig. 11.9(a),
held at a potential of 1 V. We wish to obtain the resulting (surface) charge distribution on
the wire by the method of moments.

The determination of the charge distribution by the method of moments consists
of dividing the wire into a number of segments, assuming the charge density in each seg-
ment to be uniform, and setting up and solving a set of algebraic equations. For simplici-
ty of illustration, we shall divide the wire into five equal segments numbered 1 through 5
and having surface charge densities From considerations of symmetry,
there are then only three unknowns, since and Hence, we need three
independent equations.

An equation is obtained by writing the potential at the center point of a given seg-
ment to be the superposition of the potentials at that point due to the charges in the five
segments.To obtain the contribution due to a segment, we consider the cylindrical surface
charge of uniform density coaxial with the z-axis and located symmetrically about the
origin, as shown in Fig. 11.9(b), and compute the potential due to it at two points: (1) at the
origin and (2) at a point (0, 0, z), where using the approximation Case 1 is
appropriate to finding the potential due to the charge in a given segment in Fig. 11.9(a) at
its own center point, whereas case 2 is appropriate to finding the potential due to the
charge in a given segment in Fig. 11.9(a) at the center point of another segment.

Dividing the cylindrical surface charge in Fig. 11.9(b) into a number of ring
charges, one of which is shown in the figure, and using superposition, we obtain

which for reduces to

(11.23a)

For a point P(0, 0, z), where we can consider the cylindrical surface charge to be a
line charge of density and write

(11.23b)

 =
rS0 a

2e0
  ln  

z + d

z - d

 =
rS0 a

2e0
 [- ln 1z - z¿2]z¿ = -d

d

 [V]P = L
d

z¿ = -d
 

2parS0 dz¿
4pe01z - z¿2

2parS0

z 7 d,

 =
rS0 a

e0
  ln  

2d

a

 [V]10,0,02 L
rS0 a

2e0
  ln  

2d

-d + d11 + a2>2d22

a � d

 =
rS0 a

2e0
  ln  

d + 2a2 + d2

-d + 2a2 + d2

 =
rS0 a

2e0
 5ln [z¿ + 2a2 + 1z¿22]6z¿ = -d

d

 [V]10,0,02 = L
d

z¿ = -dL
2p

f= 0
 

rS0 a df dz¿

4pe02a2 + 1z¿22

a � d.z 7 d,

rS0

rS5 = rS1.rS4 = rS2

rS1, rS2, Á , rS5.

a1� l2,Thin, straight
wire held at
known
potential
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11.3 Method of Moments 741

Applying (11.23a) and (11.23b) to write the equation for the potential at the cen-
ter of segment 1 in Fig. 11.9(a), we obtain

or

(11.24)

where we have substituted and Similarly, writing the equations for
the potentials at the center points of segments 2 and 3 and arranging the three equations
in matrix form, we get

(11.25)

By inverting (11.25), the solutions for and can be obtained. For a numerical
example, if and the values of and are 
and respectively. When a larger number of segments are used, a more accurate
solution is obtained for the charge distribution on the wire. For example, the result for

143.32e0,
158.38e0, 145.42e0,rS3rS1, rS2,a = 1 mm,l = 1 m

rS3rS1, rS2,

F
2 ln  
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FIGURE 11.9

(a) Thin wire divided into five equal
segments. (b) For the determination of
the potential due to a cylindrical
surface charge.
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742 Chapter 11 Several Solution Techniques

obtained by using a computer program is shown in Fig. 11.10, where the height of
the first rectangle is 

Proceeding further, we recall that in Example 5.6 we discussed the solu-
tion of Laplace’s equation for the one-dimensional case of two infinite, plane,
parallel, perfectly conducting plates, which may be considered an idealization
of a parallel-plate capacitor with its plates having large dimensions compared
to the spacing between them. We then obtained the expression for the capaci-
tance of the arrangement per unit area of the plates. Because of the idealiza-
tion, this expression is only approximate for a capacitor with finite-sized
plates. It becomes less and less accurate as the size of the plates becomes less
and less large for a given spacing between them, since the fringing of the field
at the edges of the plates becomes more and more severe. Thus, the problem is
that, in the nonideal case, the field distribution between the capacitor plates
and the charge distribution on the capacitor plates are not uniform, whereas,
for the ideal case, they are uniform. Hence, it is not in general possible to ob-
tain an analytical expression for the capacitance; one has to resort to numeri-
cal or graphical techniques. The method of moments serves as a useful tool for
such cases.

For an example, let us consider an arrangement in which the spacing be-
tween the plates is a, the dimensions of the plates are and from sym-
metry considerations, the upper plate is held at a potential of 1 V and the
lower plate is held at a potential of For the purposes of illustration of
the method, we shall divide each plate into a set of squares, as shown in
Fig. 11.11, and assume that within each square, the (surface) charge density is
uniform. From symmetry considerations, we then have only two unknown
charge densities and as shown in the figure. Therefore, it is sufficient
to write two independent equations. We shall do this by considering squares 1
and 2 and equating the potentials at the center points of these squares to 1 V.

To write the expression for the potential at the center point of a square
due to the charge in a different square, we shall consider that charge to be a
point charge at the center of the square. Thus, the potential at point 1 due to the
charge in square 4 is the potential at point 2 due to the charge in
square 12 is and so on. To write the expression for the po-
tential at the center point of a square due to the charge in that square, we shall
use the result given in Problem P5.11. For example, the potential at point 1 due

-rS1 a2>4pe0113a2,rS1 a2>4pe0 a,

rS2,rS1,

2 * 3
-1 V.

2a * 3a,

204e0 C>m2.
n = 40

FIGURE 11.10

Charge distribution along a thin, straight wire of length 1 m
and radius 1 mm, and held at a potential of 1 V. The height
of the first rectangle is 204e0 C>m2.

Capacitance
of a parallel-
plate
capacitor
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11.3 Method of Moments 743

to the charge in square 1 is Proceeding in this manner,
we obtain the two equations to be

(11.26a)

(11.26b)

or

(11.27a)

(11.27b)

Solving (11.27a) and (11.27b) for and we obtain 
and The magnitude of charge on either plate is then equal to

or Finally, noting that the
potential difference between the plates is 2 V, the capacitance can be comput-
ed to be A more accurate result can be obtained by dividing each10.983e0 a.

21.9662e0 a.14a2 * 3.8378e0>a + 2a2 * 3.3075e0>a2,
rS2 = 3.3075e0>a.

rS1 = 3.8378e0>arS2,rS1
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FIGURE 11.11

For finding the capacitance of a parallel-plate capacitor by the method of moments.
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744 Chapter 11 Several Solution Techniques

plate into a larger number of squares, but it is instructive to compare the value
just obtained with the value of which follows from the application of

where A is the area of the plates, and d is the spacing between the
plates.

K11.3. Method of moments;Thin, straight wire held at known potential; Determination
of charge distribution; Parallel-plate capacitor; Determination of capacitance.

D11.3. For the problem of Example 11.4, consider that to compute the potential at the
center of a given segment due to the charge in another segment, the charge in
that segment can be assumed to be a point charge at the center of that segment.
Modify the formulation to obtain the new matrix equation in the place of (11.25)
and find the values of and for and 
Ans.

D11.4. Consider a parallel-plate capacitor having square-shaped plates of sides a and
spacing a between the plates. Find the following: (a) the capacitance of the ca-
pacitor if fringing of fields at the edges of the plates is neglected; (b) the capaci-
tance by using the method of moments, considering each plate as one square;
and (c) the capacitance by dividing each plate into a set of squares and
using the method of moments. Assume free space for the dielectric.
Ans. (a) (b) (c)

11.4 DETERMINATION OF TRANSMISSION-LINE PARAMETERS

In this section, we shall illustrate the application of the numerical methods in-
troduced in the previous two sections for the determination of transmission-line
parameters, by means of two examples.

Example 11.5 Determination of parallel-strip line parameters by using
method of moments

The parallel-strip line is the same as the parallel-plate line (see Fig. 6.2) without the im-
position of the approximation such that fringing of fields can not be neglected.
We wish to find the capacitance per unit length and hence the characteristic impedance
of the parallel-strip line embedded in a homogeneous medium (which we shall assume
here to be free space) for the case of by using the method of moments.

The procedure for the application of method of moments to find the capacitance
per unit length of a parallel-strip line is similar to that used for finding the capacitance of
a parallel-plate capacitor in Section 11.3. Thus, let us consider the cross-sectional view of
the parallel-strip line and divide each conductor into 2n substrips, as shown in Fig. 11.12
for and assume the charge density in each substrip to be uniform. From symmetry
considerations, we can apply a potential of 1 V to one of the conductors and to the
other conductor. Also from symmetry considerations, there are only unknown
charge densities to be determined, namely, the charge densities associated with the sub-
strips in one half of one of the conductors. Thus, we need to write a set of inde-
pendent equations for the unknown charge densities. To do this, we consider
pairs of substrips situated opposite to each other, and we write the expression11¿, 22¿, Á ,

n1=  32
n1=  32

n1=  32
-1 V

n = 3,

d = w,

d>w � 1,

2.8367e0 a.2.488e0 a;e0 a;

2 * 2

159.48e0 C>m2; 147.94e0 C>m2; 145.77e0 C>m2.
a = 1 mm.l = 1 mrS3,rS1, rS2,

C = e0 A>d,
6e0 a,

Parallel-strip
line
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1� 2� 3� 4� 5� 6�

1 2 3 4 5 6

�rS1 �rS2 �rS3 �rS3 �rS2 �rS1

rS1 rS2 rS3 rS3 rS2 rS1

w

d � kwe � e0

FIGURE 11.12

Division of the conductors of a
parallel-strip line into substrips.

for the potential difference between the center points of each pair and set that equal
to 2 V. The expression for the potential difference between the center points of a given
pair is the sum of the contributions to the potential difference from all pairs.
To obtain the contribution from a given pair, we make use of the result given in Prob-
lem P5.12 for the potential difference between two points due to an infinitely long strip
of uniform surface charge density. For example, let us consider the potential difference
between the center points of 1 and Then the contribution to it from the pair of sub-
strips 1 and is

whereas the contribution from the pair of substrips 2 and is

Writing contributions in this manner and adding appropriately, we obtain the ma-
trix equation for the three unknown charge densities and for the case of

that is, as given by

so that

 rS3 =
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746 Chapter 11 Several Solution Techniques

The magnitude of the charge per unit length on either conductor is

Thus, the capacitance per unit length is given by

Finally, the characteristic impedance of the parallel-strip line for the case of is
or For larger values of n, the solution can be carried out by

using a computer program. For example, for and the values of 
and can be computed to be 18.5252 pF/m and respectively.

Example 11.6 Determination of enclosed-microstrip line parameters by
finite-difference method

When the bottom conductor of the microstrip line of Fig. 6.5 is extended so as to sur-
round the top conductor, we get the enclosed-microstrip line, as shown by the cross-
sectional view in Fig. 11.13. Here we assume a square cross section for the outer
conductor and wish to determine the propagation parameters for the line by using the
finite-difference method to find the values of capacitance per unit length with and
without the dielectric substrate in place, as required by (6.25a) and (6.25b), in view of
the inhomogeneity.

For purposes of illustration, we divide the region inside the outer conductor into
a set of squares with the grid points identified as (i, j), where i is the row number
(1 to 5 from top to bottom), and j is the column number (1 to 5 from left to right). We
place the inner conductor along the line from grid point (4, 2) to grid point (4, 4) so that
the region below row 4 is dielectric substrate (relative permittivity ), and the region
above row 4 is free space. We further assume the inner conductor to be kept at 10 V and
the outer conductor at 0 V, and apply the iteration procedure, illustrated in Example 11.3
to compute the potentials at the grid points not on the conductors. We note, however,
that in view of the inhomogeneity when the dielectric substrate is in place, the modified

eR

6 * 6

179.9352 Æ,Z0

cn = 10,d = w = 1 cm,
183.98 Æ.1m0e0>2.0491e0,

d = w

c =
4.0982e0

2
= 2.0491e0 F>m

1w>32 * 1rS1 + rS2 + rS32112 = 4.098e0 C

Enclosed-
microstrip
line

eR � 1

10 V

0 V

eR

FIGURE 11.13

Division of the region between the conductors of
an enclosed-microstrip line into a set of squares.
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11.4 Determination of Transmission-Line Parameters 747

form of (11.20) given by (see Problem P11.8)

(11.28)

needs to be used. Thus, the procedure consists of the following steps:

(a) With the dielectric substrate in place, find the solution for the potentials at the grid
points not on the conductors, consistent with (11.28) to within a specified tolerance

assumed here to be 0.01 V. Find the magnitude of the charge per unit length
along the conductors by applying Gauss’ law in integral form to a surface having as
the cross section the contour that passes through the center points of the squares
adjacent to the outer conductor, as shown in Fig. 11.13. Find the capacitance per
unit length 

(b) With the dielectric replaced by free space, repeat step (a) to obtain the capacitance
per unit length 

(c) Find and by using (6.25a) and (6.25b), respectively.

The solution just outlined can be carried out by using a computer program. The
final set of values for the potentials obtained from the run of such a program for the spe-
cific arrangement of Fig. 11.13 for as well as the results for and are
shown in Fig. 11.14. The upper rows of potential values at the interior grid points corre-
spond to the case of the dielectric substrate in place and the lower rows correspond to
the case of the dielectric replaced by free space.

vp,c, c0, Z0,eR = 10,

vpZ0

1c02.
1c2.

1¢2

V0 L
V1 + er V2

211 + er2 +
V3 + V4

4

0 00 0 0 0

0 0 0 0 0

0

0 0

0 0

0 0

0 0

0 0

0 0

0.69 1.23 1.43 1.23 0.69
0.69 1.24 1.44 1.24 0.69

1.53 2.84 3.27 2.84 1.53
1.54 2.85 3.28 2.85 1.54

2.58 5.34 5.99 5.34 2.58
2.63 5.36 6.00 5.36 2.63

3.47 10.00 10.00 10.00 3.47
3.64 10.00 10.00 10.00 3.64

1.89 4.10 4.55 4.10

C � 226.4795 PF/m           C0 � 37.85039  PF/m
Z0 � 36.00221  OHMS
VP � 1.226428E�08   M/S

1.89
1.93 4.12 4.55 4.12 1.94

FIGURE 11.14

Final set of values for the potentials and the results for
and for the enclosed-microstrip line of 

Fig. 11.13 for eR = 10.
vpc, c0, Z0,
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748 Chapter 11 Several Solution Techniques

K11.4. Parallel-strip line; Method of moments; Enclosed-microstrip line; Finite-differ-
ence method.

D11.5. For the parallel-strip line of Fig. 11.12, find the following for (a) the
contribution to the potential difference between the center points of sub-
strips 2 and from the pair of substrips 2 and (b) the contribution to the
potential difference between the center points of substrips 2 and from the
pair of substrips 5 and and (c) the contribution to the potential difference
between the center points of substrips 1 and from the pair of substrips 6
and 
Ans. (a) (b) (c)

11.5 SOLUTION BY FIELD MAPPING

For a line with arbitrary cross section and involving a homogeneous dielectric,
an approximate value of and hence of can be determined by constructing
a field map, that is, a graphical sketch of the direction lines of the electric field
and associated equipotential lines between the conductors. To illustrate this, let
us consider the cross section shown in Fig. 11.15. Assuming that the inner con-
ductor is positive with respect to the outer conductor, we can draw the field
map from the following considerations. (1) The electric field lines originate on
the inner conductor and normal to it and terminate on the outer conductor and
normal to it, since the tangential component of the electric field on the conduc-
tor surface must be zero. (2) The equipotential lines must be everywhere per-
pendicular to the electric field lines. Thus, suppose that we start with the inner
conductor and draw several lines normal to it at several points on the surface,
as shown in Fig. 11.15(b). We can then draw a curved line displaced from the
conductor surface and perpendicular everywhere to the electric-field lines of
Fig. 11.15(b), as shown in Fig. 11.15(c).This contour represents an equipotential
line and forms the basis for further extension of the electric-field lines, as
shown in Fig. 11.15(d). A second equipotential line can then be drawn so that it
is everywhere perpendicular to the extended electric-field lines, and the proce-
dure is continued until the entire cross section between the conductors is filled
with two sets of orthogonal contours, as shown in Fig. 11.15(e), thereby result-
ing in a field map made up of curvilinear rectangles. For the actual, time-vary-
ing case, the magnetic-field lines are the same as the equipotential lines and the
field map represents a sketch of the direction lines of electric and magnetic
fields between the conductors.

By drawing the field lines with very small spacings, we can make the rec-
tangles so small that each of them can be considered to be the cross section of a
parallel-plate line. If we now replace the equipotential lines by perfect conduc-
tors, since it does not violate any boundary condition, it can be seen that the
arrangement can be viewed as the parallel combination, in the angular direc-
tion, of m number of series combinations of n number of parallel-plate lines in
the radial direction, where m is the number of rectangles in the angular direction,

Z0,c,

0.0238rS1 w>e0.0.043rS2 w>e0;0.1849rS2 w>e0;
6¿.

1¿
5¿;

2¿
2¿;2¿

d = w:

Field
mapping
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(a) (b)

(c) (d)

(e) (f)

Conductors E lines

Equipotential
line

FIGURE 11.15

For illustrating the construction of a
field map for a transmission line of
arbitrary cross section.

that is, along a magnetic-field line, and n is the number of rectangles in the radi-
al direction, that is, along an electric field line. If are the charges
per unit length associated with the angular direction and are the
potential differences associated with the radial direction, the capacitance per

V1, V2, Á , Vn

Q1, Q2, Á , Qm
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750 Chapter 11 Several Solution Techniques

unit length of the line is given by

where is the capacitance per unit length corresponding to the rec-
tangle ij. The simplicity of the field mapping technique lies in the fact that if the
map consists entirely of curvilinear squares (a curvilinear rectangle becomes a
curvilinear square if a circle can be inscribed in it), all are approximately
equal to and we obtain the simple formula

(11.29)

and hence

(11.30)

Thus, the determination of consists of sketching a field map consisting of
curvilinear squares, as shown in Fig. 11.15(f), counting the number of squares in
each direction and substituting these values in (11.29). For the rough sketch of
Fig. 11.15(f), and so that 

K11.5. Field mapping; Curvilinear squares.
D11.6. Two lossless transmission lines 1 and 2 have nonmagnetic homoge-

neous perfect dielectrics of and respectively. The values ofe2 = 4e0,e1 = 2.25e0

1m = m02,

Z0 L 0.154h.n = 4,m = 26

Z0

 L
n
m

 Z0 =
2me
c

c L e 
m
n

e,
cij

cij = Qi>Vj

 = a
m

i = 1
 

1

a
n

j = 1
 

1
cij

 = a
m

i = 1
 

1

a
n

j = 1
 

Vj

Qi

   +
1

V1

Q2
+

V2

Q2
+ Á +

Vn

Q2

+ Á +
1

V1

Qm
+

V2

Qm
+ Á +

Vn

Qm

 =
1

V1

Q1
+

V2

Q1
+ Á +

Vn

Q1

c =
Q

V
=

Q1 + Q2 + Á + Qm

V1 + V2 + Á + Vn
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11.6 Finite-Element Method 751

the ratio m/n corresponding to their curvilinear square field maps are 4 and 5
for lines 1 and 2, respectively. Find (a) (b) and (c) where
the subscripts 1 and 2 denote lines 1 and 2, respectively.
Ans. (a) 4/3; (b) 0.45; (c) 5/3.

11.6 FINITE-ELEMENT METHOD

The finite-element method, a general technique for solving differential equa-
tions, was first developed by structural engineers for the analysis of stresses and
strains in complex systems. It was not until 1968 that its applications to the solu-
tion of electromagnetic-field problems were initiated. Unlike the finite-differ-
ence method, which provides solutions at an array of grid points in the region of
interest, the finite-element method provides solution over the entire region of
interest. Furthermore, it is difficult to apply the finite-difference method to re-
gions having irregularly shaped boundaries, whereas the finite-element method
is particularly suitable for such regions. However, the finite-element method in
its precise form is elaborate and we shall here present only an introduction by
considering the early simple approach.

The basic concept of the finite-element method is that although the be-
havior of a function may be complex when viewed over a large region, a simple
approximation may be sufficient for a small subregion. The total region is divid-
ed into a number of nonoverlapping subregions called finite elements. Within
each element, the function of interest is approximated by an algebraic expres-
sion, and where the adjoining elements overlap, the algebraic representations
must agree to provide continuity of the function.The equations to be solved are
derived not directly from the differential equations that govern the function,
but from the minimization of an integral-type functional such as the electric en-
ergy in the case of the electric potential. The solution procedure in this manner
consists essentially of four steps: (1) discretizing the region of interest into the
finite elements, (2) deriving the governing equations for the individual finite el-
ements, (3) relating the individual finite elements to the assembly of the ele-
ments, and (4) obtaining and solving the system of equations for the potentials.
We shall describe these steps in the context of finding the solution for the two-
dimensional Laplace’s equation in Cartesian coordinates x and y, given by
(11.16), and then illustrate by means of an example.

1. Discretization of region into finite elements. In two dimensions, the fi-
nite elements are usually polygons, the simplest of which are triangles and
quadrilaterals. We shall confine our presentation to triangles to keep the analy-
sis simple. Figure 11.16 shows an example in which a region is divided into five
triangular elements, with a total of seven nodes. The most common type of ex-
pression for V within an element is a polynomial expansion. For a triangular el-
ement, it is given by

(11.31)Ve1x, y2 = a + bx + cy

Z01>Z02,c1>c2,vp1>vp2,

Solution
procedure
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752 Chapter 11 Several Solution Techniques

where the subscript e denotes element. Note that this represents linear variation
of potential within the element, as shown, for example, in Fig. 11.16(b) for one
element. Also, this approximation is the same as assuming that the electric field
is uniform within the element, since

(11.32)

2. Equations governing the elements. Let us consider a typical element
shown in Fig. 11.17. Using (12.18), we can then express the potentials 
and at nodes 1, 2, and 3, respectively, as

(11.33a)

(11.33b)

(11.33c)

from which we can write

(11.34)

 =
1

2A
 C 1x2 y3 - x3 y22 1x3 y1 - x1 y32 1x1 y2 - x2 y121y2 - y32 1y3 - y12 1y1 - y221x3 - x22 1x1 - x32 1x2 - x12

S CVe1

Ve2

Ve3

S
 C a

b
c
S = C1 x1 y1

1 x2 y2

1 x3 y3

S-1

 CVe1

Ve2

Ve3

S

 Ve3 = a + bx3 + cy3

 Ve2 = a + bx2 + cy2

 Ve1 = a + bx1 + cy1

Ve3

Ve1, Ve2,

E = - �Ve = -1bax + cay2

1

2

3

4

5

4
3

2

5

6

7
1

2

5

1

Actual
boundary

Ve

(a) (b)

FIGURE 11.16

(a) Discretization of a region into triangular finite elements. (b) Linear variation
of potential within a triangular finite element.
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y

x

1

3

2

(x3, y3)

(x1, y1)

(x2, y2)

FIGURE 11.17

A typical triangular finite element for setting
up the equations governing the element.

where

(11.35)

is the area of the element. Note that for A to be positive, the nodes need to be
numbered counterclockwise as in Fig. 11.17.

Proceeding further, we have, by substituting (11.34) into (11.31)

(11.36)

or

(11.37)

where

(11.38a)

(11.38b)

(11.38c)

The quantities are called the shape functions.ai

a3 =
1

2A
 [1x1 y2 - x2 y12 + 1y1 - y22x + 1x2 - x12y]

a2 =
1

2A
 [1x3 y1 - x1 y32 + 1y3 - y12x + 1x1 - x32y]

a1 =
1

2A
 [1x2 y3 - x3 y22 + 1y2 - y32x + 1x3 - x22y]

Ve = a
3

i = 1
ai1x, y2Vei

Ve =
1

2A
 [1 x y]C 1x2 y3 - x3 y22 1x3 y1 - x1 y32 1x1 y2 - x2 y121y2 - y32 1y3 - y12 1y1 - y221x3 - x22 1x1 - x32 1x2 - x12

S CVe1

Ve2

Ve3

S

 = 1
2[1x2 - x121y3 - y12 - 1x3 - x121y2 - y12]

 A =
1
2
3 1 x1 y1

1 x2 y2

1 x3 y3

3
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754 Chapter 11 Several Solution Techniques

Now, for the solution of Laplace’s equation in two dimensions for the
electric potential, the functional to be minimized is the electric energy per unit
length normal to the two dimensions, that is,

(11.39)

over the region of interest. For the element under consideration, this is given by

(11.40)

where we have used (11.37). We now define

(11.41)

so that we can write (11.40) as

(11.42)

where

(11.43a)

(11.43b)

and

(11.43c)[C1e2] = CC11
1e2 C12

1e2 C13
1e2

C21
1e2 C22

1e2 C23
1e2

C31
1e2 C32

1e2 C33
1e2
S

 [Ve]
T = [Ve1 Ve2 Ve3] = transpose of [Ve]

 [Ve] = CVe1

Ve2

Ve3

S

We = 1
2 e[Ve]

T[C1e2][Ve]

Cij
1e2 = LA

1�ai
# �aj2 dS

 =
1
2

 ea
3

i = 1
a

3

j = 1
Vei aLA

�ai
# �aj dSb  Vej

 =
1
2

 eLA
 aa

3

i = 1
Vei�ai

# a
3

i = 1
Vei�aib  dS

 =
1
2

 eLA
1�Ve

# �Ve2 dS

 =
1
2LA
e ƒ �Ve ƒ2 dS

We = Larea
of e

 
1
2

 e ƒE ƒ2 dS

W = L  
1
2

 e ƒE ƒ2 dS

Functional
for solution
of Laplace’s
equation
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11.6 Finite-Element Method 755

The matrix is known as the element coefficient matrix. Substitut-
ing (11.38a)–(11.38c) into (11.41) and evaluating, we obtain

(11.44a)

(11.44b)

(11.44c)

(11.44d)

(11.44e)

(11.44f)

(11.44g)

(11.44h)

(11.44i)

Note that that is, the sum of each row of and that is,
the sum of each column of are zero.

3. Relating the individual elements to the assembly. Proceeding further, we
consider the assembly of all elements in the region of interest to write the ex-
pression for the total energy in the region. This is given by

(11.45)

where

(11.46)

is the column matrix of the potentials at the nodes, is the transpose of [V],
and [C], which is known as the global coefficient matrix, is the matrix resulting
from the assemblage of the individual element coefficient matrices.

To illustrate the determination of [C], let us consider the assembly of
three elements shown in Fig. 11.18. For each element, the node numbers 1, 2,
and 3 are indicated inside the triangle in the counterclockwise sense. These are
called local nodes. The nodes for the assembly, which are called global nodes,

[V]T

[V] = E
V1

V2

V3

o
Vn

U

W = a
n

e = 1
We =

1
2

 e[V]T[C][V]

[C1e2],
©j = 1

3  Cij
1e2,[C1e2],©i = 1

3 Cij
1e2

,

 C33
1e2 =

1
4A

 [1y1 - y222 + 1x1 - x222]
 C32
1e2 = C23

1e2
 C31
1e2 = C13

1e2
 C23
1e2 =

1
4A

 [1y3 - y121y1 - y22 + 1x3 - x121x1 - x22]
 C22
1e2 =

1
4A

 [1y3 - y122 + 1x3 - x122]
 C21
1e2 = C12

1e2
 C13
1e2 =

1
4A

 [1y2 - y321y1 - y22 + 1x2 - x321x1 - x22]
 C12
1e2 =

1
4A

 [1y2 - y321y3 - y12 + 1x2 - x321x3 - x12]
 C1e211 =

1
4A

 [1y2 - y322 + 1x2 - x322]

[C1e2]
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756 Chapter 11 Several Solution Techniques

are indicated at the vertices outside the assembly. The element numbers are
circumscribed by circles. Since there are five global nodes, [C] is a matrix
as given by

(11.47)

The global matrix [C] is not to be confused with the element matrices For
triangular elements, all element matrices are whereas the global matrix
has the size 

Since the total energy as expressed in (11.45) is the sum of the energies in
the three individual elements, and since the potential distribution must be con-
tinuous across the boundaries of pairs of adjacent elements, the elements of [C]
are related to the elements of the individual matrices Thus, for example,
since global node 1 belongs to element 1 only and is the same as the local node 1,

Since global node 2 belongs to all three elements and is the same as local node
2 for element 1, local node 1 for element 2, and local node 1 for element 3,

Similarly,

 C55 = C22
122 + C33

122
 C44 = C33

112 + C33
122

 C33 = C22
132

C22 = C22
112 + C11

122 + C11
132

C11 = C11
112

[C1e2].

n * n.
3 * 3,

[C1e2].

[C] = E
C11 C12 C13 C14 C15

C21 C22 C23 C24 C25

C31 C32 C33 C34 C35

C41 C42 C43 C44 C45

C51 C52 C53 C54 C55

U

5 * 5

1

2

3

5

4

33

1
1

2 1
1

2

3
22

3

FIGURE 11.18

An assembly of three triangular finite elements, for
relating the individual elements to the assembly.
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11.6 Finite-Element Method 757

The global link 12 is the same as the local link 12 for element 1. Hence,

The global link 23 is the same as the local link 12 for element 3. Hence,

The global link 24 is common to elements 1 and 2, and is the same as the local
link 23 for element 1 and the local link 13 for element 2. Therefore,

Similarly,

Since there is no coupling between global nodes 1 and 3,

In this manner, the elements of the entire matrix [C] can be written as follows:

(11.48)

The global matrix has the following properties: (a) It is symmetric, which can be
understood if we recall that the local matrices are all symmetric, and (b) it is singu-
lar, that is, the determinant formed by its elements is zero, as we shall discuss later.

4. Equations governing the potentials and solution. Having obtained the
elements of the global matrix, we now set the derivatives of the energy given by
(11.45) with respect to the node potentials equal to zero, to minimize the func-
tional, that is, the total energy in the region. Thus,

(11.49)

For example, from (11.45) and (11.47), we obtain

(11.50)

which gives

(11.51)C11 V1 + C12 V2 + C13 V3 + C14 V4 + C15 V5 = 0

 = 0
   + C15 V5 + C21 V2 + C31 V3 + C41 V4 + C51 V5

0W

0V1
 = 2C11 V1 + C12 V2 + C13 V3 + C14 V4

0W

0Vk
= 0, for k = 1, 2, Á , n

[C] = E
C11
112 C12

112 0 C13
112 0

C21
112 C22

112 + C11
122 + C11

132 C12
132 C23

112 + C13
122 C12

132 + C13
132

0 C21
132 C22

132 0 C23
132

C31
112 C32

112 + C31
122 0 C33

112 + C33
122 C32

122
0 C21

122 + C31
132 C32

132 C23
122 C22

122 + C33
132

U

C13 = 0

C25 = C25
122 + C13

132

C24 = C23
112 + C13

122

C23 = C12
132

C12 = C12
112

Minimization
of functional
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In general,

(11.52)

For the case under consideration, and we get five equations for the five
potentials. Noting that the right sides of all five equations are zero, we now ob-
serve that the global matrix [C] must be singular in order to have a nontrivial so-
lution. Since [C] is singular, it also means that the solution of (11.52) is not
unique. The situation is that for a given problem, the potentials are specified at a
subset of the global nodes and, hence, we can only use the subset of (11.52) that
is pertinent to the derivatives with respect to the unknown potentials.Thus, if the
potentials at nodes 1, 3, and 5 are specified, then we use only those two equations
resulting from setting and equal to zero to solve for and 

Let us now consider an example.

Example 11.7 Application of finite-element method to an assembly of
two triangular elements

An assembly of two finite elements is shown in Fig. 11.19. Global node 3 is kept at 10-V
potential, whereas global node 1 is at 0 V. It is desired to find the values of the potentials
at global nodes 2 and 4 by using the finite-element method.

We proceed with the solution by executing the four steps as discussed:

Step 1: The region of interest is already discretized. With reference to the numbering
of the elements, local nodes, and global nodes, as in Fig. 11.19, we proceed with the re-
maining three steps as follows.

Step 2: Compute the element coefficient matrix for each element. Using (11.45) and
(11.44a)–(11.44i) for each of the two elements, we obtain the following values.

ELEMENT 1

 [C112] = C 1 -1>2 -1>2
-1>2 1>2 0
-1>2 0 1>2

S
 A = 2

V4.V20W>0V40W>0V2

n = 5,

a
n

i = 1
Cki Vi = 0 for k = 1, 2, Á , n

0 1 2 3 4 5

1
1 1

4 3

2
(1, 1) (3, 1)

(4, 3)(1, 3)

2

3

x

y

1

3
3 2

12

2

0 V

10 V

FIGURE 11.19

Assembly of two finite
elements for Example 11.7.
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11.6 Finite-Element Method 759

ELEMENT 2

Note that for each of and the sum of each row and the sum of each
column are zero.

Step 3: Compute the global coefficient matrix.

Step 4: Using

and noting that and we have

or,

Solving, we obtain

 V4 = 3.077 V

 V2 = 4.615 V

 -3V2 + 11V4 = 20

 5V2 - V4 = 20

c -1>2 5>4 -1>2 -1>4
-1>2 -1>4 -1>6 11>12

d D 0
V2

10
V4

T = c0
0
d

V3 = 10 V,V1 = 0

0W

0V2
= 0 and 0W

0V4
= 0

 = D 1 -1>2 0 -1>2
-1>2 5>4 -1>2 -1>4

0 -1>2 2>3 -1>6
-1>2 -1>4 -1>6 11>12

T

 [C] = DC11
112 C12

112 0 C13
112

C21
112 C22

112 + C11
122 C12

122 C23
112 + C13

122
0 C21

122 C22
122 C23

122
C31
112 C32

112 + C31
122 C32

122 C33
112 + C33

122
T

[C122],[C112]

 [C122] = C 3>4 -1>2 -1>4
-1>2 2>3 -1>6
-1>4 -1>6 5>12

S
 A = 3
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K11.6. Finite-element method; Functional; Minimization of functional; Solution of
Laplace’s equation in two dimensions; Element coefficient matrices; Global co-
efficient matrix.

D11.7. For the assembly of four triangular elements in the xy-plane, shown in Fig. 11.20,
find the numerical values of the following elements of the global coefficient ma-
trix: (a) (b) (c) (d) and (e)
Ans. (a) 0; (b) (c) 0; (d) 2; (e) 5.-2;

C55.C44;C31;C25;C12;

(2, 2)

(2, 3)

(2, 1)2

4

(4, 2)(0, 2)

1 5 3

FIGURE 11.20

For Problem D11.7

Solution of
one-
dimensional
wave
equation

11.7 FINITE-DIFFERENCE TIME-DOMAIN METHOD

In Section 11.2, we introduced the finite-difference method for solving differ-
ential equations. We recall that it consists of replacing the derivatives (with
respect to space coordinates) in the differential equations by their finite-dif-
ference approximations and solving the resulting algebraic equations. The fi-
nite-difference time-domain (FD-TD) method extends this procedure to
derivatives involving time variation in addition to the space derivatives, and
it is a useful technique for the numerical solution of a wide range of problems
in electromagnetics. We shall here include only a very elementary treatment
of the topic.

The simplest differential equation involving space and the time variations
is the one-dimensional second-order partial differential equation (3.73) given by

(11.53)

We already know that the solution to this equation consists of a superposition
of traveling waves propagating in the and the and,
hence, it is known as the one-dimensional wave equation. To solve this equa-
tion numerically, we discretize the range of interest in z and replace the left
side by its central-difference approximation. Similarly, the time interval of in-
terest can be discretized and the derivative on the right side replaced by its
central difference approximation. The resulting algebraic equation can be re-
arranged to express at a given point in a space-time (z–t) grid of points inEx

-z-direction+z-direction

02Ex1z, t2
0z2 = m0e0  

02Ex1z, t2
0t2
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0 1a 2 3 4

1

d

2

3

4

t

z

Ex Ex Ex

Ex Ex Ex

Hy Hy

Hy Hy

Ex Ex Ex

FIGURE 11.21

Space-time grid for the FD-TD solution of
the coupled partial differential equations
(11.54a) and (11.54b).

terms of its (previously computed) values at certain other neighboring grid
points (see Problem P11.29). The rearranged equation thus permits the pro-
gressive computation of at the grid points, beginning with its values
specified by the boundary conditions and initial conditions pertinent to the
problem.

A more illuminating approach, which is also illustrative of the physical
phenomenon, emanates from the use of the two first-order coupled partial dif-
ferential equations (3.72a) and (3.72b), given by

(11.54a)

(11.54b)

and from which (3.73) was derived. Recall that these equations follow from
Maxwell’s curl equations for the special case of and

and free space for the medium. In the continuous solution of
these equations, both and are variables defined at the same point (z, t)
in the space-time coordinate system. The starting point in the solution by the
FD-TD method is to consider and as variables not at the same point,
but at alternate points, in the space-time grid, as illustrated, for example, in
Fig. 11.21.

Note that the arrangement of Fig. 11.21 leaves certain points in the grid
unlabelled and surrounded by four labelled points. For example, the point (1, 2)
is unlabelled and surrounded by the two points (0, 2) and (2, 2) labelled 
along the line parallel to the z-axis, and the two points (1, 1) and (1, 3) labelled

along the line parallel to the t-axis. We can use this arrangement to expressHy

Ex

HyEx

HyEx

H = Hy1z, t2ay,
E = Ex1z, t2ax

 
0Hy1z, t2

0z
= -e0  

0Ex1z, t2
0t

 
0Ex1z, t2

0z
= -m0  

0Hy1z, t2
0t

Ex1z, t2
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and at this point in terms of their finite-difference approxima-
tions and substitute them in (11.54a). Thus, we have

(11.55a)

where a and are the spacings between the grid points for the z- and t-varia-
tions, respectively. Similarly, the point (2, 3) is unlabelled and surrounded by
the two points (1, 3) and (3, 3) labelled along the line parallel to the z-axis,
and the two points (2, 2) and (2, 4) labelled along the line parallel to the t-
axis. We can use this arrangement to approximate and at the grid
point (2, 3) to write (11.54b) as

(11.55b)

Equations (11.55a) and (11.55b) can be used in a “leap-frog” scheme to progress
on the grid with the solution. We shall illustrate this by means of an analogous
transmission-line example.

Example 11.8 Application of finite-difference time-domain method to
an initially charged line

Figure 11.22(a) shows a lossless transmission line of length characteristic im-
pedance and velocity of propagation and short-circuited at
both ends. At the line current is zero everywhere along the line, and the line volt-
age has the distribution

as shown in Fig. 11.22(b). It is desired to apply the FD-TD method to investigate the line
voltage and line current for 

The differential equations of interest are the transmission-line equations (6.12a)
and (6.12b) given by

(11.56a)

(11.56b)

which are analogous to (11.54a) and (11.54b), respectively. From the given values of 
and we obtain

 c =
1

Z0 vp
=

1

100 * 108 = 10-10 F>m
 l =

Z0

vp
=

100

108 = 10-6 H>m
vp,

Z0

 
0I1z, t2

0z
= -c  

0V1z, t2
0t

 
0V1z, t2

0z
= -l  

0I1z, t2
0t

t 7 0.

V1z, 02 = 10 sin  
pz

12
  V

t = 0,
vp = 108 m>s,Z0 = 100 Æ,

l = 12 m,

Hy13, 32 - Hy11, 32
2a

= -e0  

Ex12, 42 - Ex12, 22
2d

0Ex>0t0Hy>0z
Ex

Hy

d

Ex12, 22 - Ex10, 22
2a

= -m0  

Hy11, 32 - Hy11, 12
2d

0Hy>0t0Ex>0z
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Initially
charged
transmission
line
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6 120

10

zz � 0

Z0, vp

(a)

(b)

z � l

V (z, 0), V

z, m

FIGURE 11.22

(a) Lossless transmission line short-
circuited at both ends. (b) Voltage
distribution on the line for t = 0.

0 1 2 3 4 5 6 7 8 9 10 11 12

00508.6601008.660500

0

0

0

0

0

0

1

2

3

4

5

6

7

i

j

t, 10�8 s

z, m

FIGURE 11.23

Space-time grid of points for the FD-TD solution for the line voltage for for the transmission
line of Fig. 11.22. Numbers beside the circled points represent voltage in volts and those beside the
crossed points represent current in amperes.

t 7 0

We shall divide the line into 12 equal segments of width 1 m and use a time step of
so that the space-time grid is as shown in Fig. 11.23. The grid points at

which V is known or to be computed are denoted by circles, and the grid points at which
I is known or to be computed are denoted by crosses. Initial values, as specified by the
initial distributions of voltage and current, are marked at the grid points on the 
line. Boundary values of as required by short circuits at either end of the line, are
marked at the grid points on the ordinate and ordinate.z = 12z = 0

V = 0,
t = 0

1>vp = 10-8 s,
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TABLE 11.1 Progression of FD-TD Solution for the Initially Charged Line of Fig. 11.22

i
0 1 2 3 4 5 6 7 8 9 10 11 12j

V, V 0 0 5 8.66 10 8.66 5 0

I, A 0 0 0 0 0 0 0

I, A 1 0.0067 0.0183 0.025

V, V 2 0 4.33 7.50 8.66 7.50 4.33 0

I, A 3 0.0183 0.05 0.0683

V, V 4 0 2.50 4.33 5.00 4.33 2.50 0

The values of i and j correspond to the space-time grid in Fig. 11.23.

-0.0183-0.05-0.0683

-0.0067-0.0183-0.025

764 Chapter 11 Several Solution Techniques

Denoting the grid points by (i, j), where i refers to space (z) and j refers to time (t),
and applying the finite-difference approximations to the derivatives in (11.56a), we have

or

(11.57)

where 3, 5, 7, 9, 11, and To find the line currents corresponding to
we use the initial values of zero corresponding to and only one time step.

Thus,

(11.58)

Applying the finite-difference approximations to the derivatives in (11.56a), we have

or

(11.59)

We can now proceed with the solution, as shown in Table 11.1. To begin the solu-
tion, we use (11.58) to compute the values of I corresponding to Then, we use al-
ternatingly (11.57) and (11.59) to compute values of V followed by the values of I for
successive values of j. The resulting solutions are shown in Table 11.1.

j = 1.

V1i, j2 = V1i, j - 22 + 100[I1i - 1, j - 12 - I1i + 1, j - 12]

I1i + 1, j - 12 - I1i - 1, j - 12
2 * 1

= -10-10
  

V1i, j2 - V1i, j - 22
2 * 10-8

I1i, 12 =
V1i - 1, 02 - V1i + 1, 02

200

j = 0j = 1,
j = 3, 5, 7, Á .i = 1,

I1i, j2 = I1i, j - 22 +
V1i - 1, j - 12 - V1i + 1, j - 12

100

V1i + 1, j - 12 - V1i - 1, j - 12
2 * 1

= -10-6
  

I1i, j2 - I1i, j - 22
2 * 10-8
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Magic time
step

1See A.Taflove, Computational Electrodynamics;The Finite-Difference Time-Domain Method (Nor-
wood, MA: Artech House, 1995), p. 38.

The continuous solution to this problem can be obtained by using the procedures
discussed in Section 6.5 for time-domain analysis of transmission lines with initial
conditions, or by using the natural oscillations concepts in Section 7.1. This solution is
given exactly by

It can be seen that the computed values of V at the grid points agree with the exact analyt-
ical solution. In fact, it can be shown that this is the case when the grid points are chosen
such that the time increment is equal to the so-called “magic time step,”1 which is the space
segment width divided by the velocity of propagation.The solution may, however, be insuf-
ficient to represent the actual behavior in the continuous region if the discretization in z
does not correspond to a fraction of a wavelength. A discussion of such considerations as
accuracy of the solution and stability of the solution process is beyond the scope here.

K11.7. Finite-difference time-domain method; One-dimensional second-order partial
differential equation; First-order coupled partial differential equations; Leap-
frog scheme.

D11.8. For the transmission-line problem of Example 11.8, extend the solution beyond
the grid points in Table 11.1 to find the following quantities: (a) I(5, 3); (b) V(6, 8);
(c) I(7, 7); and (d) V(8, 4).
Ans. (a) (b) 0 V; (c) 0.025 A; (d)

SUMMARY

In this chapter, we considered several solution techniques, including the analyt-
ical technique of separation of variables, the geometrical method of field map-
ping, and four numerical methods: (1) the finite-difference method, (2) the
method of moments, (3) the finite-element method, and (4) the finite-difference
time-domain method.

We illustrated the solution of the Laplace’s equation in two dimensions

(11.60)

by using the separation of variables technique, and considered two examples in-
volving the determination of the potential distribution inside a rectangular slot
cut in a semi-infinite plane conducting slab held at zero potential and for a spec-
ified potential distribution at the mouth of the slot. For the field mapping tech-
nique, we illustrated it by considering a transmission line with arbitrary cross
section and finding the line parameters.

02V

0x2 +
02V

0y2 = 0

-4.33 V.-0.0683 A;

V1z, t2 = 10 sin  
pz

12
  cos  

108pt

12
  V
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766 Chapter 11 Several Solution Techniques

The finite-difference method is based on replacing the derivative terms in
a differential equation by their finite-difference approximations and solving the
resulting algebraic equations. We illustrated the technique by applying it to a
one-dimensional differential equation. We then discussed and illustrated by
means of an example the numerical solution of (11.60). The numerical solution
is based on the finite-difference approximation to (11.60), where the potential

at a point P in the charge-free region is given by

(11.61)

where and are the potentials at four equidistant points lying along
mutually perpendicular axes through P. By using an iterative technique, a set of
values for the potentials at appropriately chosen grid points is obtained such that
the potential at each grid point satisfies (11.61) to within a specified tolerance.

We then turned our attention to the method of moments, which is a nu-
merical technique useful for solving a class of problems for which exact analyti-
cal solutions are in general not possible. Considering, for example, a surface
charge distribution on a given surface, the method of moments tech-
nique consists of inverting the integral equation

by approximating the integral as a summation.We illustrated the method of mo-
ments technique by means of two examples: (1) finding the charge distribution
on a thin, straight wire held at a known potential and (2) finding the capacitance
of a parallel-plate capacitor, taking into account fringing of the field at the
edges of the plates.

We then applied the method of moments and the finite-difference method
to the determination of transmission-line parameters. Specifically, we illustrated
the determination of and for a parallel-strip line embedded in a homoge-
neous medium by using the method of moments and for an enclosed-microstrip
line by using the finite-difference method.

The finite-element method, a more general technique than the finite-dif-
ference method for solving differential equations, is based on the minimization
of an integral-type functional such as the electric energy in the case of the elec-
tric potential, instead of solving the differential equations directly. The solution
procedure consists of (1) discretizing the region of interest into a set of finite el-
ements, (2) deriving the governing equations for the individual finite elements,
(3) relating the individual elements to the assembly of the elements, and (4) ob-
taining and solving the system of equations for the potentials.

We illustrated this procedure for the solution of the two-dimensional
Laplace’s equation (11.60) by considering triangles for the finite elements.A lin-
ear variation is assumed for the potential within each triangle and the element

vpZ0

V1x, y, z2 =
1

4pe0Lsurface of
the charge
distribution

 

rS1x¿, y¿, z¿2
R

  dS¿

rS1x, y, z2

V4V1, V2, V3,

V0 L 1
4 
1V1 + V2 + V3 + V42

V0
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Review Questions 767

coefficient matrix that relates the energy within the triangle to the potentials at
the vertices of the triangle is derived. A global coefficient matrix that relates the
assembly of elements to the individual element is then obtained and used to
complete the solution. We considered an example involving an assembly of two
triangles with the potentials specified at two of the four global nodes and com-
puted the two unknown potentials to illustrate this procedure.

The finite-difference time-domain method extends the numerical tech-
nique to solving differential equations involving time. A simple example is the
solution of the one-dimensional wave equation, consisting of replacing the sec-
ond derivatives with respect to the spatial dimension and time by the corre-
sponding central-difference approximations and applying the resulting
algebraic equation to a space-time grid of points. Alternatively, two first-order
coupled partial differential equations following from Maxwell’s curl equations
can be used in a more illuminating manner by applying their approximations to
a space-time grid of points in a “leap-frog” scheme. We illustrated this proce-
dure by considering a lossless transmission line initially charged to a voltage,
and finding the line voltage and current values at points on the line at a later
value of time.

REVIEW QUESTIONS

Q11.1. Outline the solution of Laplace’s equation in two dimensions by the separation
of variables technique.

Q11.2. Describe the formulation behind the finite-difference method of solving differ-
ential equations.

Q11.3. Outline the procedure for solving a one-dimensional differential equation by
the finite-difference method.

Q11.4. Discuss the basis behind the numerical solution of Laplace’s equation in two di-
mensions by the finite-difference method.

Q11.5. Describe the iteration technique for the computer solution of Laplace’s equa-
tion in two dimensions by the finite-difference method.

Q11.6. How would you apply the iteration technique for the computer solution of
Laplace’s equation in three dimensions?

Q11.7. Discuss the formulation behind the problem of finding the charge distribution
on a conductor of known potential by the method of moments.

Q11.8. Outline by means of an example the procedure for obtaining the charge distrib-
ution on a conductor of known potential by the method of moments technique.

Q11.9. Why is the expression for the capacitance of a parallel-plate capacitor obtained
by using Laplace’s equation in one dimension approximate?

Q11.10. Discuss the determination of the capacitance of a parallel-plate capacitor by the
method of moments technique.

Q11.11. Describe the procedure for obtaining and for a parallel-strip line embed-
ded in a homogeneous medium by using the method of moments.

Q11.12. Outline the procedure for obtaining and for an enclosed-microstrip line
by using the finite-difference method.

vpZ0

vpZ0
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768 Chapter 11 Several Solution Techniques

Q11.13. Describe the procedure for computing the transmission-line parameters by
using the field mapping technique.

Q11.14. Describe the basic concept of the finite-element method for solving differential
equations and outline the steps involved in its implementation.

Q11.15. Discuss the linear approximation for the potential within a triangular finite
element.

Q11.16. Discuss the functional to be minimized for the solution of Laplace’s equation in
two dimensions by the finite-element method.

Q11.17. Discuss the derivation of the element coefficient matrix for a triangular finite
element, and describe its properties.

Q11.18. Describe the determination of the global coefficient matrix for an assembly of
triangular elements from the individual element coefficient matrices and dis-
cuss its properties.

Q11.19. Describe the solution of the one-dimensional wave equation by the FD-TD
method.

Q11.20. Discuss the key to the solution of Maxwell’s curl equations for the special case of
and and free space for the medium, by the FD-

TD method, as compared to the solution of the one-dimensional wave equation.
Q11.21. Describe the “leap-frog” scheme of carrying out the FD-TD solution to the

transmission-line equations for the lossless case.
Q11.22. Discuss the agreement between the values of V computed by the FD-TD

method in Example 11.8 with those provided by the exact analytical solution.

PROBLEMS

Section 11.1.

P11.1. Application of analytical solution of Laplace’s equation in two dimensions. The
potential distribution at the mouth of the slot of Fig. 11.1 is given by

(a) Find the solution for the potential distribution inside the slot. (b) Compute
the value of the potential at the center of the slot, assuming the slot to be square.

P11.2. Application of analytical solution of Laplace’s equation in two dimensions. Re-
peat Problem 11.1 for the potential distribution at the mouth of the slot given by

P11.3. Application of analytical solution of Laplace’s equation in two dimensions. As-
sume that the rectangular slot of Fig. 11.1 is covered at the mouth by conducting
plates such that the potential distribution is given by

Find the solution for the potential inside the slot.

V = c 0 for 0 6 y 6 b>4
V0 for b>4 6 y 6 3b>4
0 for 3b>4 6 y 6 b

V = V0 sin3
  

py

b

V = V0 sin  

py

b
+

1
3

 V0 sin  

3py

b

H = Hy1z, t2ay,E = Ex1z, t2ax
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1 2 3

P

V � 83 V

4

5

FIGURE 11.24

For Problem P11.6.

P11.4. Using the solution of Laplace’s equation for the potential to find the electric field.
For the rectangular slot of Example 11.1, (a) find the expression for the electric
field intensity inside the slot and (b) find the electric field intensity at the center of
the slot, assuming the slot to be square.

Section 11.2

P11.5. Solution of a one-dimensional differential equation by finite-difference method.
By discretizing the region between and into five equal segments
spaced 0.2 apart and applying the finite-difference method, solve for the approx-
imate values of f at the four interior grid points for the one-dimensional differ-
ential equation

with the boundary conditions specified as and Compare
your answers with the exact solution to the differential equation.

P11.6. Finite-difference method of solution of Laplace’s equation in two dimensions.
The cross section of an infinitely long arrangement of conductors normal to the
page and that repeats endlessly in the plane of the page is shown in Fig. 11.24.
For the grid points shown, find the values of and by writing
equations consistent with (11.20) and solving them. Then find the approximate
magnitude of the field intensity at grid point 2 and the approximate value of the
surface charge density at point P, assuming that the spacing between the grid
points is d and the medium between the conductors is free space.

V5,V1, V2, V3, V4,

f112 = 1.f102 = 0

d2f1x2
dx2 + 4f1x2 = 0

x = 1x = 0

P11.7. Finite-difference method of solution of Laplace’s equation in two dimensions.
The cross section of an arrangement of conductors, infinitely long and normal to
the page, is square, as shown in Fig. 11.25. Three sides are kept at 0 V and the
fourth side is kept at 28 V. The region between the conductors is divided into a

grid of squares. Although there are nine grid points, there are only six un-
known potentials because of symmetry. (a) By writing equations
consistent with (11.20) for these six potentials and solving the equations, find
the values of the potentials. (b) Find the approximate magnitude of the electric
field intensity at grid point B, assuming that the spacing between grid points is
d. (c) Find the approximate surface charges per unit length of the arrangement
on the 28-V conductor and the 0-V conductor.

VA, VB, Á , VF,
4 * 4
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770 Chapter 11 Several Solution Techniques

P11.8. Modification of solution by finite-difference method for an inhomogeneous
medium. In Fig. 11.4, assume that the region below the y-axis is a per-
fect dielectric of relative permittivity whereas the region above the y-axis

is free space. Show that the modified form of (11.20) is then given by

P11.9. Modification of solution by finite-difference method for unequal grid spacing.
For unequal spacings between grid points, as shown in Fig. 11.26, show that the
generalization of (11.20) is given by

 +
V3

11 + d3>d4211 + d3 d4>d2 d12 +
V4

11 + d4>d3211 + d4 d3>d1 d22

 V0 =
V1

11 + d1>d2211 + d1 d2>d3 d42 +
V2

11 + d2>d1211 + d2 d1>d4 d32

V0 L
V1 + er V2

211 + er2 +
V3 + V4

4

1x 7 02
er,

1x 6 02

0 V 0 V

28 V

VA VD

VB VE

VC VF

0 V

FIGURE 11.25

For Problem P11.7.

V1

V3V4 V0d4 d3y

d1

d2

x

V2

FIGURE 11.26

For Problem P11.9.

Section 11.3

P11.10. Application of method of moments to a bent wire held at a known potential.
Consider a thin, straight cylindrical wire of length l and radius bent in
the middle to make a 90° angle and held at a potential of 1 V. By dividing the

a 1� l2
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a

a

a

a

a a

FIGURE 11.27

For Problem P11.13.

wire into four equal segments and assuming the charge density in each segment
to be uniform, and using the method of moments, find the total charge on the
wire if and To compute the potential at the center of a given
segment due to the charge in another segment, assume the charge to be a point
charge at the center of that segment.

P11.11. Application of method of moments to a square-shaped wire held at a known po-
tential. Consider a thin wire of radius 1 mm bent into the form of a square of
sides 60 cm and held at a potential of 1 V. By dividing each side of the square
into three equal segments and assuming the charge density in each segment to
be uniform, and using the method of moments, find the total charge on the wire.
To compute the potential at the center of a given segment due to the charge in
another segment, assume the charge to be a point charge at the center of that
segment.

P11.12. Capacitance of an arrangement of two square-shaped wires by method of mo-
ments. Consider two thin wires that are square-shaped as in Problem P11.11
and arranged such that the sides of one wire are directly above and parallel to
the sides of the second wire at a spacing of 10 cm, so as to form a capacitor.
Using the method of moments as in Problem P11.11, find the capacitance of the
arrangement.

P11.13. Application of method of moments to a square-shaped conductor with a square
hole. A square-shaped conductor of area with a square-shaped hole
of area in the middle, as shown in Fig. 11.27, is held at a potential of 1 V.
By dividing the conductor into eight squares, as shown in the figure, and using
the method of moments, find the total charge on the conductor. To find the po-
tential at the center point of a square due to the charge in another square, con-
sider the charge in that square to be a point charge at the center of that square.

a * a
3a * 3a,

a = 1 mm.l = 1 m

P11.14. Capacitance of an arrangement of two square-shaped conductors with square
holes. Assume that a capacitor is made up of two parallel conductors, each hav-
ing the shape shown in Fig. 11.27. If the spacing between the plates is a, find the
capacitance of the arrangement by dividing each conductor into squares, as
shown in Fig. 11.27, and applying the method of moments.

P11.15. Capacitance for a square-shaped conductor above a square-holed conductor.
The arrangement shown in Fig. 11.28 is that of a capacitor obtained by removing
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VA

w

2w

e � e0 d � kw

VB

rS1

rS3rS2
FIGURE 11.29

For Problem P11.18.

a square-shaped part of sides a from the center of a square-shaped conductor of
sides 3a and displacing it by distance a directly above the hole. By dividing the
lower plate as shown in the figure, find the capacitance of the arrangement.

P11.16. Application of method of moments to a cube-shaped conductor. A conductor
having the shape of a cube of sides a is held at a potential of 1 V. By dividing
each side into a set of squares, assuming the charge density in each square
to be uniform, and using the method of moments, find the total surface charge
on the conductor. To find the potential at the center of a square due to the
charge in another square, consider the charge in that square to be a point charge
at the center of the square.

Section 11.4

P11.17. Determination of parallel-strip line parameters by using method of moments.
For the parallel-strip line of Example 11.5, repeat the solution by considering
the charges to be line charges along the centerlines of the substrips for writing
the contributions to the potential difference between a given pair of substrips
due to the charges in a different pair of substrips and using the formula given in
Problem P5.12.

P11.18. Application of method of moments to a parallel-strip line of unequal conductor
widths. Consider a parallel-strip line with unequal widths of the conductors, as
shown in Fig. 11.29. Obtain the characteristic impedance of the line for the case
of by dividing the conductors into substrips as shown in the figure and
using the method of moments. Note that from considerations of symmetry, there
are only three unknown charge densities and Write two equationsrS3.rS1, rS2,

k = 1

2 * 2

a a

aa

a

a a a

a

a

a

FIGURE 11.28

For Problem P11.15.
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3w w

w

3w

VA

VB

rS2 rS1

rS3

e � e0

FIGURE 11.30

For Problem P11.19.

by equating the expressions for the potential differences and to
and the third equation from consideration of charge neutrality. Use

the result of Problem P5.12 for writing the contributions to the potential differ-
ences in all cases.

P11.19. Application of method of moments to coaxial conductors of square cross sections.
Consider a transmission line having the cross-sectional view shown in Fig. 11.30.
With the conductors of the line divided into substrips as shown in the figure, ob-
tain the characteristic impedance by using the method of moments. Note that
from considerations of symmetry, there are only three unknown charge densities

and Write two equations by equating the expressions for the poten-
tial differences and to and the third equation from considera-
tion of charge neutrality. For writing the contribution to the potential difference
between a given pair of substrips due to one of those substrips, use the result of
Problem P5.12. But for writing the contribution to the potential difference be-
tween a given pair of substrips due to a third substrip, consider the charge in that
substrip to be a line charge along the centerline of the substrip.

1VA - VB2V13V12

rs3.rs1, rs2,

1VA - VB2
V13V12

P11.20. Determination of enclosed-microstrip line parameters by finite-difference
method. For the enclosed-microstrip line of Fig. 11.13, repeat the computa-
tions of and by finding the magnitude of the charge per unit length
by considering the contour that passes through the center points of the squares
adjacent to the center conductor, instead of the one shown in the figure.

Section 11.5.

P11.21. Application of field mapping by the curvilinear squares technique to a coaxial
cable. By applying the curvilinear squares technique to a coaxial cable of inner
radius a and outer radius b, show that the characteristic impedance of the cable
is where is the intrinsic impedance of the dielectric of the cable.

P11.22. Field mapping by the curvilinear squares technique for an eccentric coaxial cable.
The cross section of an eccentric coaxial cable [see Fig. 5.13(d)] consists of an
outer circle of radius and an inner circle of radius with their
centers separated by By constructing a field map consisting of curvilin-
ear squares, obtain the approximate value of in terms of of the dielectric.hZ0

d = 2 cm.
b = 2 cm,a = 5 cm

h1h>2p2 ln b>a,

vp,c, c0, Z0,
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2a

e � e0

a

FIGURE 11.32

For Problem P11.24.

P11.23. Field mapping by the curvilinear squares technique for a shielded-strip line.
When one microstrip line is inverted and placed on top of another microstrip
line, as shown by the cross-sectional view in Fig. 11.31, a shielded strip line is ob-
tained. Although the sandwich arrangement of this line is more difficult to fab-
ricate than is the microstrip line, it has the advantage that the fields are confined
mostly to the substrate region. Assuming for simplicity that the fields are con-
fined to the substrate region, construct a field map consisting of curvilinear
squares and compute the approximate value of of the line, for the dimen-
sions shown in Fig. 11.31, and considering the substrate to be a perfect dielectric
having and m = m0.e = 9e0

Z0

0.04"

0.1"

0.02"

Substrate

FIGURE 11.31

For Problem P11.23.

P11.24. Method of curvilinear squares for a line with cross section of circle inside a
square. Consider a transmission line having the cross section shown in Fig. 11.32.
The inner conductor is a circle of radius a and the outer conductor is a square of
sides 2a. Find the approximate value of the characteristic impedance of the line,
by using the method of curvilinear squares.

Section 11.6

P11.25. Alternate representation for the element coefficient matrix in finite-element
method. Alternative to the representations (11.44a)–(11.44i), show that the el-
ements of the element coefficient matrix in (11.43c) can be written as

[C1e2] =
1
2

 C  cot u2 + cot u3 -cot u3 -cot u2

-cot u3 cot u1 + cot u3 -cot u1

-cot u2 -cot u1 cot u1 + cot u2

S
[C1e2]
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3

1
u1

u3

u2 2
FIGURE 11.33

For Problem P11.25.

4 3
(1, 3) (4, 3)

(3, 1)(1, 1)
21

0 V

10 V

FIGURE 11.34

For Problem P11.26.

where and are the interior angles at the vertices 1, 2, and 3, respective-
ly, of the triangular element, as shown in Fig. 11.33.

u3u1, u2,

4 5 3
(1, 3) (4, 3)(3, 3)

(3, 1)(1, 1)
21

0 V

10 V

FIGURE 11.35

For Problem P11.27.

P11.26. Application of the finite-element method to an assembly of two triangular ele-
ments. Solve Example 11.7 by discretizing the region Fig. 11.19, as shown in
Fig. 11.34.

P11.27. Application of the finite-element method to an assembly of three triangular el-
ements. By discretizing the region of Fig. 11.19 into three triangles, as shown in
Fig. 11.35, solve for the potentials at global nodes 2, 4, and 5.

P11.28. Application of the finite-element method to an assembly of three triangular el-
ements. Repeat Problem P11.27 for the region of Fig. 11.19 discretized into
three triangles, as shown in Fig. 11.36.
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4

5

3
(1, 3) (4, 3)

(2, 2)

(3, 1)(1, 1)
21

0 V

10 V

FIGURE 11.36

For Problem P11.28.

Section 11.7

P11.29. Application of central-difference approximation to derivatives in wave equa-
tion. Show that the application of the central-difference approximation to the
derivatives in (11.53) in conjunction with the space-time grid of Fig. 11.21 gives
the result

where i and j refer to space (z) and time (t), respectively, and 
P11.30. Application of finite-difference time-domain method to an initially charged

line. In Example 11.8, assume that

Using the same space-time grid as in Fig. 11.23, prepare a table similar to Table 11.1
for obtaining values of V at the grid points corresponding to 

P11.31. Application of finite-difference time-domain method to an initially charged
line. Repeat Problem 11.30 for

P11.32. Application of finite-difference time-domain method to an initially charged
line. Repeat Problem 11.30 for

REVIEW PROBLEMS

R11.1. Application of analytical solution of Laplace’s equation in two dimensions. As-
sume that the rectangular slot of Fig. 11.1 is covered at the mouth by conducting

V1z, 02 = e 5
3 z for 0 … z … 6
20 - 5

3 z for 6 … z … 12

V1z, 02 = 10 sin3
  
pz

12
  V

j = 4.

V1z, 02 = 10 sin  
pz

6
  V

c = 1>2m0e0.

   + Ex1i - 1, j2] - Ex1i, j, - 12
 Ex1i, j + 12 = a2 - 2 

d2c2

a2 b  Ex1i, j2 +
d2c2

a2  [Ex1i + 1, j2
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For Problem R11.2.
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FIGURE 11.38

For Problem R11.3.

plates such that the potential distribution is given by

Find the solution for the potential inside the slot.
R11.2. Capacitance of rectangular-shaped conductors at right angles by method of mo-

ments. Consider two thin rectangular-shaped conductors of size arranged
as shown in Fig. 11.37. By dividing each conductor into three squares of sides a and
applying the method of moments, find the capacitance of the arrangement.To find
the potential at the center of a square due to the charge on another square, consid-
er the charge on that square to be a point charge at the center of that square.

a * 3a

V = e V0 for 0 6 y 6 b>2
-V0 for b>2 6 y 6 b

R11.3. Finite-difference method for a line with cross section of circle inside a square.
Consider a transmission line having the cross section shown in Fig. 11.38. The
inner conductor is a circle of radius a and the outer conductor is a square of
sides 2a. Using the grid points as shown in the figure and applying the finite-dif-
ference method, find the approximate value of the characteristic impedance of
the line. (Hint: Use the result of Problem P11.9 for grid point 6.)
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778 Chapter 11 Several Solution Techniques

R11.4. Consistency of finite-element method with finite-difference method. Consider
a square region divided into four right isosceles triangular finite elements, as
shown in Fig. 11.39. Show that for linear variation of potential within each ele-
ment, as represented by (11.31), the electric energy is proportional to the sum of
the squares of the differences between the potential at global node 5 (the 90°-
vertex) and the remaining two nodes (the 45°-vertices). For example, for ele-
ment 1, it is proportional to Further show that the
finite-element method gives the same result for in terms of and 
as that given by the finite-difference method, that is,

V5 = 1
41V1 + V2 + V3 + V42

V4,V1, V2, V3,V5

[1V1 - V522 + 1V2 - V522].
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4 2
5

5
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2
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FIGURE 11.39

For Problem R11.4.

R11.5. Application of finite-difference time-domain method to an initially charged
line. Repeat the solution of Example 11.8 up to for each of the
following two cases: (a) time and (b) time 

For each case, compare the values of V obtained for with
those from the exact analytical solution and comment on your results.

t = 4 * 10-8 s10-8 s.
step = 0.5 *  step = 2 * 10-8 s

t = 4 * 10-8 s
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