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Principles of Radiation 
and Antennas

In Chapters 3, 4, 6, 7, 8, and 9, we studied the principles and applications of prop-
agation and transmission of electromagnetic waves. The remaining important
topic pertinent to electromagnetic wave phenomena is radiation of electromag-
netic waves. We have, in fact, touched on the principle of radiation of electro-
magnetic waves in Chapter 3 when we derived the electromagnetic field due to
the infinite plane sheet of time-varying, spatially uniform current density. We
learned that the current sheet gives rise to uniform plane waves radiating away
from the sheet to either side of it. We pointed out at that time that the infinite
plane current sheet is, however, an idealized, hypothetical source. With the ex-
perience gained thus far in our study of the elements of engineering electro-
magnetics, we are now in a position to learn the principles of radiation from
physical antennas, which is our goal in this chapter.

We begin the chapter with the derivation of the electromagnetic field due
to an elemental wire antenna, known as the Hertzian dipole. After studying the
radiation characteristics of the Hertzian dipole, we consider the example of a
half-wave dipole to illustrate the use of superposition to represent an arbitrary
wire antenna as a series of Hertzian dipoles to determine its radiation fields.We
also discuss the principles of arrays of physical antennas and the concept of
image antennas to take into account ground effects. Next we study radiation
from aperture antennas. Finally, we consider briefly the receiving properties of
antennas and learn of their reciprocity with the radiating properties.

10.1 HERTZIAN DIPOLE

The Hertzian dipole is an elemental antenna consisting of an infinitesimally
long piece of wire carrying an alternating current I(t), as shown in Fig. 10.1. To
maintain the current flow in the wire, we postulate two point charges andQ11t2
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676 Chapter 10 Principles of Radiation and Antennas
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FIGURE 10.1

Hertzian dipole.

terminating the wire at its two ends, so that the law of conservation of
charge is satisfied. Thus, if

(10.1)

then

(10.2a)

(10.2b)

and

(10.3a)

(10.3b)

The time variations of I, and given by (10.1), (10.3a) and (10.3b), respec-
tively, are illustrated by the curves and the series of sketches for the dipoles in
Fig. 10.2, corresponding to one complete period.The different sizes of the arrows
associated with the dipoles denote the different strengths of the current, where-
as the number of the plus or minus signs indicates the strength of the charges.

To determine the electromagnetic field due to the Hertzian dipole, we
consider the dipole to be situated at the origin and oriented along the z-axis, in
a perfect dielectric medium. We shall use an approach based on the magnetic
vector potential and obtain electric and magnetic fields consistent with
Maxwell’s equations, while fulfilling certain other pertinent requirements. We
shall begin with the magnetic vector potential for the static case and then ex-
tend it to the time-varying current element. To do this, we recall from Section
5.2 that for a current element of length situated at the origin, as
shown in Fig. 10.3 and carrying current I, the magnetic field at a point 
is given by

(10.4)A =
mI dl
4pr

=
mI dl

4pr
 az

P1r, u, f2dl = dl az

Q2,Q1,

 Q21t2 = -  

I0

v
  sin vt = -Q11t2

 Q11t2 =
I0

v
  sin vt

 
dQ2

dt
= -I1t2 = -I0 cos vt

 
dQ1

dt
= I1t2 = I0 cos vt

I1t2 = I0 cos vt

Q21t2
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FIGURE 10.2

Time variations of charges and current associated with the Hertzian dipole.

If the current in the element is now assumed to be time varying in the
manner we might expect the corresponding magnetic vector
potential to be that in (10.4) with I replaced by Proceeding in this
manner would however lead to fields inconsistent with Maxwell’s equa-
tions. The reason is that time-varying electric and magnetic fields give rise
to wave propagation, according to which the effect of the source current at
a given value of time is felt at a distance r from the origin after a time delay
of where is the velocity of propagation of the wave. Conversely, the
effect felt at a distance r from the origin at time t is due to the current that
existed at the origin at an earlier time Thus, for the time-varying1t - r>vp2.

vpr>vp,

I0 cos vt.
I = I0 cos vt,

Retarded
potential
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FIGURE 10.3

For finding the magnetic vector
potential due to an infinitesimal
current element.

current element situated at the origin, the magnetic vector
potential is given by

(10.5)

where we have replaced by the phase constant. The result given by
(10.5) is known as the retarded magnetic vector potential in view of the phase-
lag factor contained in it.

To augment the reasoning behind the retarded magnetic vector potential,
recall that in Section 5.1, we derived differential equations for the electromag-
netic potentials. For the magnetic vector potential, we obtained

(10.6)

which reduces to

(10.7)

for and Equation (10.7) has the form of the wave equation,
except in three dimensions and with the source term on the right side. Thus, the
solution for must be of the form of a traveling wave while reducing to the
static field case for no time variations.

Az

J = Jz az.A = Az az

§2Az - me  

02Az

0t2 = -mJz

§2A - me  
02A
0t2 = -mJ

br

b,v>vp

 =
mI0 dl

4pr
  cos 1vt - br2 az

 A =
mI0 dl

4pr
  cos va t -

r
vp
b  az

I0 dl cos vt az
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10.1 Hertzian Dipole 679

Expressing A in (10.5) in terms of its components in spherical coordinates,
as shown in Fig. 10.3, we obtain

(10.8)

The magnetic field due to the Hertzian dipole is then given by

or

(10.9)

Using Maxwell’s curl equation for H with J set equal to zero in view of perfect
dielectric medium, we then have

or

(10.10)

  -
b2 sin 1vt - br2

r
dau

  +
I0 dl sin u
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  c sin 1vt - br2

r3 +
b cos 1vt - br2
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Fields due to
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dipole
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680 Chapter 10 Principles of Radiation and Antennas

Equations (10.10) and (10.9) represent the electric and magnetic fields, re-
spectively, due to the Hertzian dipole. The following observations are pertinent
to these field expressions:

1. They satisfy the two Maxwell’s curl equations. In fact, we have obtained
(10.10) from (10.9) by using the curl equation for H.The reader is urged to
verify that (10.9) follows from (10.10) through the curl equation for E.

2. They contain terms involving and 1/r. Far from the dipole
such that the and terms are negligible compared to
the 1/r terms so that the fields vary inversely with r. Furthermore, for
any value of r, the time-average value of the of the Poynting
vector due to the fields is zero, and the contribution to the time-average
value of the r-component is completely from the 1/r terms (see Problem
P10.2). Thus, the time-average Poynting vector varies proportionately
to and is directed entirely in the radial direction. This is consistent
with the physical requirement that for the time-average power crossing
all possible spherical surfaces centered at the dipole to be the same, the
power density must be inversely proportional to since the surface
areas of the spherical surfaces are proportional to the squares of their
radii.

3. For the terms dominate the terms which in turn
dominate the 1/r terms. Also, and

so that

(10.11)

(10.12)

Equation (10.11) is the same as (5.37) with Q replaced by 
that is, in Fig. 10.1, and d replaced by dl. Equation (10.12) gives the
same B as the magnetic field given by Biot–Savart law applied to a current
element at the origin and then I replaced by that is, I(t) in
Fig. 10.1. Thus, electrically close to the dipole, where retardation effects
are negligible, the field expressions approach toward the corresponding
static field expressions with the static source terms simply replaced by the
time-varying source terms.

Example 10.1 Electric and magnetic fields of a Hertzian dipole

Let us consider in free space a Hertzian dipole of length 0.1 m situated at the origin and
along the z-axis, carrying the current A. We wish to obtain the electric
and magnetic fields at the point 15, p>6, 02.

10 cos 2p * 107t

I0 cos vt,I dl az

Q11t2
1I0>v2 sin vt,

H L
I0 dl cos vt

4pr2   sin u af

E L
I0 dl sin vt

4pevr3   12 cos u ar + sin u au2

cos 1vt - br2 L 1cos vt + br sin vt2,sin 1vt - br2 L 1sin vt - br cos vt21>r21>r3br � 1,

r2,

1>r2

u-component

1>r21>r3br � 1,
1>r3, 1>r2,
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10.1 Hertzian Dipole 681

For convenience in computation of the amplitudes and phase angles of the field
components, we shall express the field components in phasor form. Thus, replacing

by and by we have

(10.13)

(10.14)

(10.15)

where is the intrinsic impedance of the medium. Using 
and and carrying

out the computations, we obtain

Thus, the required fields are

K10.1. Hertzian dipole; Retarded magnetic vector potential; Complete electromagnet-
ic field; Behavior far from the dipole Behavior close to the dipole

D10.1. Consider a Hertzian dipole of length carrying sinusoidally time-varying
current of amplitude Find the magnitude of the electric dipole moment
for each of the following cases: (a) medium is free space; (b)

medium is free space; and (c) medium is seawater (
and ).

Ans. (a) (b) (c) 8 * 10-5 C-m.6 * 10-3 C-m;6 * 10-7 C-m;
m = m0e = 80e0,4 S>m,

s =  f = 25 kHz,100 kHz,
f =  f = 10 MHz,

4p A.
0.1l

1br � 12.
1br � 12;
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682 Chapter 10 Principles of Radiation and Antennas

D10.2. Three Hertzian dipoles of lengths 1, 1, and 2 m are situated at the origin orient-
ed along the positive x-, y-, and z-axes, respectively, and carrying currents

and A, respectively.The medi-
um is free space. Find the following at (0, 0, 50) in Cartesian coordinates: (a)
(b) and (c)
Ans. (a) (b)

(c)

10.2 RADIATION RESISTANCE AND DIRECTIVITY

In the preceding section, we derived the expressions for the complete electromag-
netic field due to the Hertzian dipole. These expressions look very complicated.
Fortunately, it is seldom necessary to work with the complete field expressions
because one is often interested in the field far from the dipole that is governed pre-
dominantly by the terms involving 1/r. Thus, from (10.10) and (10.9), we find that
for a Hertzian dipole of length dl oriented along the z-axis and carrying current

(10.16a)

the electric and magnetic fields at values of r far from the dipole are given by

(10.17a)

(10.17b)

These fields are known as the radiation fields, since they are the components of
the total fields that contribute to the time-average radiated power away from the
dipole. Before we discuss the nature of these fields, let us find out quantitatively
what we mean by far from the dipole.To do this, we look at the expression for the
complete magnetic field given by (10.9) and note that the ratio of the amplitudes
of the and 1/r terms is equal to Hence, for the term is
negligible compared to the 1/r term, as already pointed out in the previous sec-
tion. This means that for or that is, even at a distance of a
few wavelengths from the dipole, the fields are predominantly radiation fields.

Returning now to the expressions for the radiation fields given by (10.17a)
and (10.17b), we note that at any given point, (1) the electric field the
magnetic field and the direction of propagation (r) are mutually perpen-
dicular, and (2) the ratio of to is equal to which are characteristic of
uniform plane waves. The phase of the field, however, is uniform over the sur-
faces that is, spherical surfaces centered at the dipole, whereas the
amplitude of the field is uniform over surfaces Hence, the
fields are only locally uniform plane waves, that is, over any small area normal
to the r-direction at a given point.

1sin u2>r = constant.
r = constant,

h,HfEu

1Hf2
1Eu2,

r � l>2p,r � 1>b,

1>r2br � 1,1>br.1>r2

 H = -  

bI0 dl sin u
4pr

  sin 1vt - br2 af
 = -  

hbI0 dl sin u
4pr

  sin 1vt - br2 au
 E = -  

b2I0 dl sin u
4pevr

  sin 1vt - br2 au

I = I0 cos vt

0.1327 cos 12p * 106t - 0.576p2 V>m.0.196p2 mV>m;
24.102 cos 12p * 106t +12.051 cos 12p * 106t + 0.696p2 mV>m;

Ez.Ey;
Ex;

2 cos 2p * 106t1 cos 2p * 106t, 2 sin 2p * 106t,

Radiation
fields
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For computing the power radiated by the
Hertzian dipole.

The Poynting vector due to the radiation fields is given by

(10.18)

By evaluating the surface integral of the Poynting vector over any surface en-
closing the dipole, we can find the power flow out of that surface, that is, the
power “radiated” by the dipole. For convenience in evaluating the surface inte-
gral, we choose the spherical surface of radius r and centered at the dipole, as
shown in Fig. 10.4. Thus, noting that the differential surface area on the spheri-
cal surface is or we obtain the instanta-
neous power radiated to be

(10.19)

 =
2phI0

2

3
 adl

l
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 sin2 1vt - br2
 =
hb2I0

2 1dl22
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2 1dl22
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p
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 sin3 u du

 = L
p

u= 0L
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hb2I0
2 1dl22 sin3 u

16p2   sin2 1vt - br2 du df

 P rad = L
p

u= 0L
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f= 0
P # r2 sin u du df ar

r2 sin u du df ar,1r du2 1r sin u df2 ar

 =
hb2I0

2 1dl22 sin2 u
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 = Eu au � Hf af = EuHf ar

 P = E � H
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684 Chapter 10 Principles of Radiation and Antennas

The time-average power radiated by the dipole, that is, the average of over
one period of the current variation, is

(10.20)

We now define a quantity known as the radiation resistance of the antenna,
denoted by the symbol as the value of a fictitious resistor that dissipates the
same amount of time-average power as that radiated by the antenna when a cur-
rent of the same peak amplitude as that in the antenna is passed through it. Re-
calling that the average power dissipated in a resistor R when a current 
is passed through it is we note from (10.20) that the radiation re-
sistance of the Hertzian dipole is

(10.21)

For free space, and

(10.22)

As a numerical example, for equal to 0.01,
Thus, for a current of peak amplitude 1 A, the time-average radiated power is
equal to 0.04 W. This indicates that a Hertzian dipole of length is not a
very effective radiator.

We note from (10.21) that the radiation resistance and, hence, the radiated
power are proportional to the square of the electrical length, that is, the physical
length expressed in terms of wavelength, of the dipole. The result given by
(10.21) is, however, valid only for small values of since if is not small,
the amplitude of the current along the antenna can no longer be uniform and its
variation must be taken into account in deriving the radiation fields and hence
the radiation resistance. We shall do this in the following section for a half-wave
dipole, that is, for a dipole of length equal to 

Let us now examine the directional characteristics of the radiation from the
Hertzian dipole. We note from (10.17a) and (10.17b) that, for a constant r, the
amplitude of the fields is proportional to Similarly, we note from (10.18) that
for a constant r, the power density is proportional to Thus, an observer wan-
dering on the surface of an imaginary sphere centered at the dipole views different

sin2 u.
sin u.

l>2.

dl>ldl>l

0.01l

Rrad = 80p210.0122 = 0.08 Æ.1dl>l2

Rrad = 80p2
 adl

l
b2

Æ

h = h0 = 120p Æ,

Rrad =
2ph

3
 adl

l
b2

Æ

1
2 I0

2R,
I0 cos vt

Rrad,

 =
1
2

 I0
2

 c2ph
3

 adl

l
b2 d

 =
phI0

2

3
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l
b2

 8Prad9 =
2phI0

2

3
 adl

l
b28sin2 1vt - br29

P rad

Radiation
pattern

Radiation
resistance
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u � 0

90 90

(a)

(b)

(c)

180

FIGURE 10.5

Directional characteristics of radiation from the Hertzian dipole.

amplitudes of the fields and of the power density at different points on the surface.
The situation is illustrated in Fig. 10.5(a) for the power density by attaching to dif-
ferent points on the spherical surface vectors having lengths proportional to the
Poynting vectors at those points. It can be seen that the power density is largest for

that is, in the plane normal to the axis of the dipole, and decreases con-
tinuously toward the axis of the dipole, becoming zero along the axis.
u = p>2,
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686 Chapter 10 Principles of Radiation and Antennas

It is customary to depict the radiation characteristic by means of a
radiation pattern, as shown in Fig. 10.5(b), which can be imagined to be obtained
by shrinking the radius of the spherical surface in Fig. 10.5(a) to zero with the
Poynting vectors attached to it and then joining the tips of the Poynting vectors.
Thus, the distance from the dipole point to a point on the radiation pattern is
proportional to the power density in the direction of that point. Similarly, the ra-
diation pattern for the fields can be drawn as shown in Fig. 10.5(c), based on the

dependence of the fields. In view of the independence of the fields from 
the patterns of Figs. 10.5(b) and (c) are valid for any plane containing the axis of
the dipole. In fact, the three-dimensional radiation patterns can be imagined to
be the figures obtained by revolving these patterns about the dipole axis. For a
general case, the radiation may also depend on and hence it will be necessary
to draw a radiation pattern for the plane. Here, this pattern is merely a
circle centered at the dipole.

We now define a parameter known as the directivity of the antenna, denoted
by the symbol D, as the ratio of the maximum power density radiated by the an-
tenna to the average power density. To elaborate on the definition of D, imagine
that we take the power radiated by the antenna and distribute it equally in all di-
rections by shortening some of the vectors in Fig. 10.5(a) and lengthening the oth-
ers so that they all have equal lengths. The pattern then becomes nondirectional,
and the power density, which is the same in all directions, will be less than the
maximum power density of the original pattern. Obviously, the more directional
the radiation pattern of an antenna is, the greater is the directivity.

From (10.18), we obtain the maximum power density radiated by the
Hertzian dipole to be

(10.23)

By dividing the radiated power given by (10.19) by the surface area of the
sphere of radius r, we obtain the average power density to be

(10.24)

Thus, the directivity of the Hertzian dipole is given by

(10.25)

To generalize the computation of directivity for an arbitrary radiation pat-
tern, let us consider

(10.26)Pr =
P0 sin2 1vt - br2

r2  f1u, f2

D =
[Pr]max

[Pr]av
= 1.5

[Pr]av =
Prad

4pr2 =
hb2I0

2 1dl22
24p2r2   sin2 1vt - br2

4pr2

 =
hb2I0

21dl22
16p2r2   sin2 1vt - br2

 [Pr]max =
hb2I0

21dl22 [sin2 u]max

16p2r2   sin2 1vt - br2

u = p>2 f,

f,sin u

Directivity
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where is a constant, and is the power density pattern. Then

(10.27)

Example 10.2 Computation of directivity of an antenna for a given
power density radiation pattern

Let us compute the directivity corresponding to the power density pattern function

From (10.27),

The ratio of the power density radiated by the antenna as a function of di-
rection to the average power density is given by This quantity is
known as the directive gain of the antenna. Another useful parameter is the
power gain of the antenna, which takes into account the ohmic power losses in
the antenna. It is denoted by the symbol G and is proportional to the directive
gain, the proportionality factor being the power efficiency of the antenna, which
is the ratio of the power radiated by the antenna to the power supplied to it by
the source of excitation.

Df1u, f2.

 = 1 
7
8

 =
1
2

  
1
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 = 4p  
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4 
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p
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1pu= 012p
f= 0 sin3 u cos2 u du df
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# r2 sin u du df ar
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Prad

4pr2

 [Pr]max =
P0 sin2 1vt - br2

r2  [f1u, f2]max

f1u, f2P0
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688 Chapter 10 Principles of Radiation and Antennas

K10.2. Radiation fields; 1/r terms;Time-average radiated power; Radiation re-
sistance; Radiation pattern; Power density; Directivity.

D10.3. Three Hertzian dipoles of lengths 1, 2, and 2 m are situated at the origin orient-
ed along the positive x-, y-, and z-axes, respectively, carrying currents

and respectively. Deter-
mine the polarizations (including right-hand or left-hand sense in the case of
circular and elliptical) of the radiation field at each of the following points: (a) a
point on the x-axis; (b) a point on the y-axis; and (c) a point on the z-axis.
Ans. (a) right circular; (b) left elliptical; (c) linear.

D10.4. Compute the directivity corresponding to each of the following functions
in (10.27):

(a)

(b)

(c)

Ans. (a) 2; (b) 3; (c) 1.2.

10.3 LINEAR ANTENNAS

In the preceding section, we found the radiation fields due to a Hertzian dipole,
which is an elemental antenna of infinitesimal length. If we now have an anten-
na of any length having a specified current distribution, we can divide it into a
series of Hertzian dipoles, and by applying superposition, we can find the radia-
tion fields for that antenna. We illustrate this procedure in this section by first
considering the half-wave dipole, which is a commonly used form of antenna.

The half-wave dipole is a center-fed, straight-wire antenna of length L
equal to and having the current distribution

(10.28)

where the dipole is assumed to be oriented along the z-axis with its center at the
origin, as shown in Fig. 10.6(a). As can be seen from Fig. 10.6(a), the amplitude
of the current distribution varies cosinusoidally along the antenna with zeros at
the ends and maximum at the center. To see how this distribution comes about,
the half-wave dipole may be imagined to be the evolution of an open-circuited
transmission line with the conductors folded perpendicularly to the line at
points from the end of the line. The current standing wave pattern for an
open-circuited line is shown in Fig. 10.6(b). It consists of zero current at the
open circuit and maximum current at from the open circuit, that is, at points
a and Hence, it can be seen that when the conductors are folded perpendicu-
larly to the line at a and the half-wave dipole shown in Fig. 10.6(a) results.a¿,

a¿.
l>4

l>4

I1z2 = I0 cos  
pz

L
  cos vt for -L>2 6 z 6 L>2

l>2

f1u, f2 = e1 for 0 6 u 6 p>2
sin2 u for p>2 6 u 6 p

f1u, f2 = e sin2 u for 0 6 u 6 p>2
0 otherwise

f1u, f2 = e1 for 0 6 u 6 p>2
0 otherwise

f1u, f2

2 sin 2p * 106t A,1 cos 2p * 106t, 2 cos 2p * 106t,

br � 1;

Half-wave
dipole
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10.3 Linear Antennas 689

Now to find the radiation field due to the half-wave dipole, we divide it
into a number of Hertzian dipoles, each of length as shown in Fig. 10.7. If
we consider one of these dipoles situated at distance from the origin, then
from (10.28), the current in this dipole is From (10.17a)
and (10.17b), the radiation fields due to this dipole at point P situated at dis-
tance from it are given by

(10.29a)

(10.29b)

where is the angle between the z-axis and the line from the current element
to the point P and is the unit vector perpendicular to that line, as shown in
Fig. 10.7.The fields due to the entire current distribution of the half-wave dipole
are then given by

(10.30a)

(10.30b)

where and are functions of z¿.au¿r¿, u¿,

 = -L
L>2

z¿ = -L>2
 

bI0 cos 1pz¿>L2 sin u¿  dz¿
4pr¿

  sin1vt - br¿2 af

 H = L
L>2

z¿ = -L>2
 dH

 = -L
L>2

z¿ = -L>2
 

hbI0 cos 1pz¿>L2 sin u¿  dz¿
4pr¿

  sin1vt - br¿2 au¿

 E = L
L>2

z¿ = -L>2
 dE

au¿
u¿

 dH = -  

bI0 cos 1pz¿>L2 dz¿ sin u¿
4pr¿

  sin1vt - br¿2 af
 dE = -  

hbI0 cos 1pz¿>L2 dz¿ sin u¿
4pr¿

  sin1vt - br¿2 au¿
r¿

I0 cos 1pz¿>L2 cos vt.
z¿

dz¿,

Amplitude
of Current
Distribution

z � L
2

z � �

I

I

z � 0
a

a'

L
2

l

4

(a) (b)

FIGURE 10.6

(a) Half-wave dipole. (b) Open-circuited transmission line for illustrating the
evolution of the half-wave dipole.
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For radiation fields, is at least equal to several wavelengths and hence
We can therefore set and since they do not vary signifi-

cantly for We can also set in the amplitude factors for
the same reason, but for in the phase factors, we substitute since
the phase angle in can vary appreciably over
the range For example, if and

then varies from 11 for to 9 for and varies
from for to for Thus, we have

where

Evaluating the integral, we obtain

(10.31a)Eu = -  

hI0

2pr
  

cos [1p>22 cos u]

sin u
  sin avt -

p

L
 rb

 = -  

h1p>L2I0 sin u

4pr L
L>2

z¿ = -L>2
 cos  
pz¿
L

  sin avt -  
p

L
 r +

p

L
 z¿ cos ub  dz¿

 Eu = -  L
L>2

z¿ = -L>2
 

hbI0 cos 1pz¿>L2 sin u

4pr
  sin 1vt - br + bz¿ cos u2 dz¿

E =  Euau

z¿ = L>2.4.5pz¿ = -L>25.5p
pr¿>Lz¿ = L>2,z¿ = -L>2r¿r = 10,

L = 2 m 1l = 4 m2, u = 0,-L>2 6 z¿ 6 L>2.
sin 1vt - br¿2 = sin 1vt - pr¿>L2 r - z¿ cos ur¿

r¿ L r-L>2 6 z¿ 6 L>2.
u¿ L uau¿ L au� L.

r¿

z

x

u�

u

r�

z�

dz�

z� cos u

r

y

af

au�

P

L
2

�

L
2

FIGURE 10.7

For the determination of the
radiation field due to the half-
wave dipole.
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Similarly,

where

(10.31b)

The Poynting vector due to the radiation fields of the half-wave dipole is
given by

(10.32)

The power radiated by the half-wave dipole is given by

(10.33)

where we have used the result

obtainable by numerical integration. The time-average radiated power is

(10.34)

Thus, the radiation resistance of the half-wave dipole is

(10.35)Rrad =
0.609h
p

  Æ

 =
1
2

 I0
2

 a0.609h
p
b

 8Prad9 =
0.609hI0

2

p
 h sin2

 avt -
p

L
 rb i

L
p>2

u= 0
 

cos2 [1p>22 cos u]

sin u
 du = 0.609

 =
0.609hI0

2

p
  sin2

 avt -
p

L
 rb

 =
hI0

2

p
  sin2

 avt -
p

L
 rbL

p>2

u= 0
 

cos2 [1p>22 cos u]

sin u
 du

 = L
p

u= 0L
2p

f= 0
 

hI0
2

4p2  

cos2 [1p>22 cos u]

sin u
  sin2

 avt -
p

L
 rb  du df

 Prad = L
p

u= 0L
2p

f= 0
P # r2 sin u du df ar

 =
hI0

2

4p2r2  

cos2 [1p>22 cos u]

sin2 u
  sin2

 
 avt -

p

L
 rb  ar

 P = E � H = EuHf ar

Hf = -  

I0

2pr
  

cos [1p>22 cos u]

sin u
  sin avt -

p

L
 rb

H = Hfaf
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(a)

(b)

FIGURE 10.8

Radiation patterns for (a) the fields and
(b) the power density due to the half-
wave dipole.

For free space, and

(10.36)

Turning our attention now to the directional characteristics of the half-
wave dipole, we note from (10.31a) and (10.31b) that the radiation pattern for
the fields is whereas for the power density, it is

These patterns, shown in Fig. 10.8(a) and (b), are
slightly more directional than the corresponding patterns for the Hertzian
dipole. The directivity of the half-wave dipole may now be found by using
(10.27). Thus,

or

(10.37)

For a center-fed linear antenna of length L equal to an arbitrary number
of wavelengths, the current distribution can be written as

(10.38)I1z2 = d I0 sin b aL

2
+ zb  cos vt for -  

L

2
6 z 6 0

I0 sin b aL

2
- zb  cos vt for 0 6 z 6

L

2

D = 1.642

 = 4p  
1

2p * 2 * 0.609

 D = 4p  

5cos2 [1p>22 cos u]>sin2 u6max

1u= 0
p 1f= 0

2p 5cos2 [1p>22 cos u]>sin2 u6 sin u du df

5cos2 [1p>22 cos u]6>sin2 u.
5cos [1p>22 cos u]6>sin u,

Rrad = 0.609 * 120 = 73Æ

h = h0 = 120p Æ,

Linear
antenna of
arbitrary
length
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where once again the antenna is assumed to be oriented along the z-axis with its
center at the origin. Note that the current distribution is such that the amplitude
of the current goes to zero at the two ends of the antenna and varies sinusoidal-
ly along the antenna with phase reversals every half wavelength from the ends,
as shown, for example, for in Fig. 10.9. Note also that for 
(10.38) reduces to (10.28). Using (10.38) and proceeding in the same manner as
for the half-wave dipole, the components of the radiation fields, the radiation
resistance, and the directivity for the linear antenna of arbitrary electrical
length can be obtained. The results are

(10.39a)

(10.39b)

(10.39c)

(10.39d)

where

(10.40)

is the radiation pattern for the fields. For (10.40) reduces to

(10.41)F1u2 =
cos 1kp cos u2 - cos 1kp2

sin u

L = kl,

F1u2 =
cos [1bL>22 cos u] - cos 1bL>22

sin u

 D =
[F21u2]max

1u= 0
p>2 F21u2 sin u du

 Rrad =
h

pL
p>2

u= 0
F21u2 sin u du

 Hf = -  

I0

2pr
 F1u2 sin 1vt - br2

 Eu = -  

hI0

2pr
 F1u2 sin 1vt - br2

L = l>2,L = 5l>2

10.3 Linear Antennas 693

l/2

p

p

L
2

z �

L
2

z � �

z � 0

L
2

z �

L
2

z � �

z � 0

Amplitude of
Current

Distribution

Phase of
Current

Distribution

I0

0

0

FIGURE 10.9

Variations of amplitude and
phase of current distribution
along a linear antenna of
length L = 5l>2.
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FIGURE 10.10

Computer-generated plot of radiation
pattern for a linear antenna of length 2.5l.

For a specified value of k, the radiation pattern can be obtained by substituting
(10.41) for As an example, Fig. 10.10 shows a computer-generated
plot of the radiation pattern for The radiation resistance and directivi-
ty can be computed by evaluating numerically the integrals in (10.39c) and
(10.39d), respectively. For these are 120.768 and 3.058, respectively.

K10.3. Half-wave dipole; Radiation fields; Radiation characteristics; Linear antenna;
Arbitrary length.

D10.5. A center-fed linear antenna in free space has the current distribution of the
form given by (10.38), where Find the amplitude of at 
for each of the following cases: (a) (b)

and (c)
Ans. (a) 0.49 V/m; (b) 0 V/m; (c) 1.335 V/m.

10.4 ANTENNA ARRAYS

In Section 3.5, we illustrated the principle of an antenna array by considering
an array of two parallel, infinite plane, current sheets of uniform densities. We
learned that by appropriately choosing the spacing between the current sheets
and the amplitudes and phases of the current densities, a desired radiation
characteristic can be obtained. The infinite plane current sheet is, however, a
hypothetical antenna for which the fields are truly uniform plane waves propa-
gating in the one dimension normal to the sheet. Now that we have gained
some knowledge of physical antennas, in this section we consider arrays of such
antennas.

The simplest array we can consider consists of two Hertzian dipoles, ori-
ented parallel to the z-axis and situated at points on the x-axis on either side of
and equidistant from the origin, as shown in Fig. 10.11. We shall consider the
amplitudes of the currents in the two dipoles to be equal, but we shall allow a
phase difference between them. Thus, if and are the currents in theI21t2I11t2a

L = 4 m, f = 300 MHz, u = 30°.f = 200 MHz, u = 60°;
L = 2 m,L = 2 m, f = 75 MHz, u = 60°;

r = 100 mEuI0 = 1 A.

k = 2.5,

k = 2.5.
0 6 u 6 p.

Array of two
Hertzian
dipoles
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dipoles situated at (d/2, 0, 0) and respectively, then

(10.42a)

(10.42b)

For simplicity, we consider a point P in the xz-plane and compute the radiation
field at that point due to the array of the two dipoles. To do this, we note from
(10.17a) that the electric field intensities at the point P due to the individual
dipoles are given by

(10.43a)

(10.43b)

where and are as shown in Fig. 10.11.
For that is, for points far from the array, which is the region of in-

terest, we can set and Also, we can set in
the amplitude factors, but for and in the phase factors, we substitute

(10.44a)

(10.44b) r2 L r +
d

2
  cos c

 r1 L r -
d

2
  cos c

r2r1

r1 L r2 L rau1
L au2

L au.u1 L u2 L u
r � d,

au2
u1, u2, r1, r2, au1

,

 E2 = -  

hbI0 dl sin u2

4pr2
  sin avt - br2 -

a

2
b  au2

 E1 = -  

hbI0 dl sin u1

4pr1
  sin avt - br1 +

a

2
b  au1

 I2 = I0 cos avt -
a

2
b

 I1 = I0 cos avt +
a

2
b

1-d>2, 0, 02,

10.4 Antenna Arrays 695

z
P

x

I2

u2
u1u

c

I1

r2

r1

au
2

au
1au

r

d
2

d
2

FIGURE 10.11

For computing the
radiation field due to an
array of two Hertzian
dipoles.
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where is the angle made by the line from the origin to P with the axis of the array,
that is, the x-axis, as shown in Fig. 10.11.Thus, we obtain the resultant field to be

(10.45)

Comparing (10.45) with the expression for the electric field at P due to a sin-
gle dipole situated at the origin, we note that the resultant field of the array is sim-
ply equal to the single dipole field multiplied by the factor 

known as the array factor. Thus, the radiation pattern of the resultant field is
given by the product of which is the radiation pattern of the single dipole
field, and which is the radiation pattern of the array if the
antennas were isotropic.We shall call these three patterns the resultant pattern, the
unit pattern, and the group pattern, respectively. It is apparent that the group pat-
tern is independent of the nature of the individual antennas as long as they have
the same spacing and carry currents having the same relative amplitudes and
phase differences. It can also be seen that the group pattern is the same in any
plane containing the axis of the array. In other words, the three-dimensional group
pattern is simply the pattern obtained by revolving the group pattern in the xz-
plane about the x-axis, that is, the axis of the array.

Example 10.3 Group patterns for several cases of an array of two
antennas

For the array of two antennas carrying currents having equal amplitudes, let us consider
several pairs of d and and investigate the group patterns.

Case 1: The group pattern is

This is shown in Fig. 10.12(a). It has maxima perpendicular to the axis of the array and
nulls along the axis of the array. Such a pattern is known as a broadside pattern.

Case 2: The group pattern is

This is shown in Fig. 10.12(b). It has maxima along the axis of the array and nulls per-
pendicular to the axis of the array. Such a pattern is known as an endfire pattern.

` cos a bl
4

  cos c +
p

2
b ` = ` sin ap

2
  cos cb `

d � L/2, A � P.

` cos a bl
4

  cos cb ` = cos ap
2

  cos cb

d � L/2, A � 0.

a

cos [1bd cos c + a2>2],
sin u,

a2>2],
2 cos [1bd  cos c +

 = -  

2hbI0 dl sin u
4pr

  cos a bd cos c + a
2

b  sin 1vt - br2 au

 + sin avt - br -
bd

2
 cos c -

a

2
b d  au

 = -  

hbI0 dl sin u
4pr

 csin avt - br +
bd

2
 cos c +

a

2
b

 E = E1 + E2

c
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Unit, group,
and resultant
patterns
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(a) (b) (c) (d)

FIGURE 10.12

Group patterns for an array of two antennas carrying currents of equal amplitude for
(a) (b) (c) and (d) d = l, a = 0.d = l>4, a = -p>2,d = l>2, a = p,d = l>2, a = 0,

Case 3: The group pattern is

This is shown in Fig. 10.12(c). It has a maximum along and null along 
Again, this is an endfire pattern, but directed to one side.This case is the same as the one
considered in Section 3.5.

Case 4: The group pattern is

This is shown in Fig. 10.12(d). It has maxima along and 180° and nulls along
and 120°.

Proceeding further, we can obtain the resultant pattern for an array of two Hertz-
ian dipoles by multiplying the unit pattern by the group pattern. Thus, recalling that the
unit pattern for the Hertzian dipole is in the plane of the dipole and considering val-
ues of and 0 for d and respectively, for which the group pattern is given in Fig.
10.12(a), we obtain the resultant pattern in the xz-plane, as shown in Fig. 10.13(a). In the

a,l>2
sin u

c = 60°
c = 0°, 90°,

` cos a bl
2

  cos cb ` = ƒcos 1p cos c2 ƒ
d � L, A � 0.

c = p.c = 0

` cos a bl
8

  cos c -
p

4
b ` = cos ap

4
  cos c -

p

4
b

d � L>4, A � �P>2.

�

(a)

�

�

(b)

� FIGURE 10.13

Determination of the resultant
pattern of an antenna array by
multiplication of unit and group
patterns.
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l

2
l

l

2
l

2

� �

(a)

(b)

(c)

FIGURE 10.14

Determination of the resultant pattern for a
linear array of four isotropic antennas.

xy-plane, that is, the plane normal to the axis of the dipole, the unit pattern is a circle,
and, hence, the resultant pattern is the same as the group pattern, as illustrated in
Fig. 10.13(b).

Example 10.4 Pattern multiplication technique for obtaining the
resultant pattern of an antenna array

The procedure of multiplication of the unit and group patterns to obtain the resultant
pattern illustrated in Example 10.3 is known as the pattern multiplication technique. Let
us consider a linear array of four isotropic antennas spaced apart and fed in phase, as
shown in Fig. 10.14(a), and obtain the resultant pattern by using the pattern multiplica-
tion technique.

To obtain the resultant pattern of the four-element array, we replace it by a two-
element array of spacing as shown in Fig. 10.14(b), in which each element forms a
unit representing a two-element array of spacing The unit pattern is then the pat-
tern shown in Fig. 10.12(a). The group pattern, which is the pattern of two isotropic ra-
diators having and is the pattern given in Fig. 10.12(d). The resultant
pattern of the four-element array is the product of these two patterns, as illustrated in
Fig. 10.14(c). If the individual elements of the four-element array are not isotropic,
then this pattern becomes the group pattern for the determination of the new resultant
pattern.

a = 0,d = l

l>2.
l,

l>2

Uniform
linear array
of n antennas

Pattern
multiplication

Let us now consider a uniform linear array of n antennas of spacing d, as
shown in Fig. 10.15.Then assuming currents of equal amplitude and progressive
phase shift that is, in the manner 
for antennas 1, 2, 3, respectively, we can obtain the far field as fol-
lows. If the complex electric field at the point due to element 1 is assumed
to be then the complex electric fields at that point due to elements 2, 3, Á1e-jbr0,

1r0, c2
1r � nd2Á ,

I0 cos 1vt + 2a2, ÁI0 cos vt, I0 cos 1vt + a2,a,
I0
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1 d 2 d 3 4 5 . . . n
x

z

c
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 d co

s c
r 0

r 0 
�

 2d
 co

s c

FIGURE 10.15

For obtaining the group pattern for a
uniform linear array of n antennas.

are so that the field due to the n-element
array is

(10.46)

The magnitude of is given by

(10.47)

which has a maximum value of n for Thus, the
group pattern is

(10.48)

Note that for (10.48) reduces to which is the
group pattern obtained for the two-element array.The nulls of the pattern occur
for where m is any integer but not equal to 0,

For (10.48) reduces to

(10.49)F1c2 =
1
n

 ` sin n 1pk cos c + a>22
sin 1pk cos c + a>22 `

d = kl,n, 2n, Á .
n1bd cos c + a2 = 2mp,

cos [1bd cos c + a2>2],n = 2,

F1c2 =
1
n

 ` sin n[1bd cos c + a2>2]

sin [1bd cos c + a2>2]
`

bd cos c + a = 0, 2p, 4p, Á .

 = ` sin n[1bd cos c + a2>2]

sin [1bd cos c + a2>2]
`

 ƒE –1c2 ƒ = ` 1 - ejn1bd cos c +  a2
1 - ej1bd cos c +  a2 `

E
 –

 =
1 - ejn1bd cos c +  a2
1 - ej1bd cos c +  a2  e-jbr0

 + Á + ej1n - 12 1bd cos c +  a2]e-jbr0

 = [1 + ej1bd cos c +  a2 + ej21bd cos c +  a2
 + 1ej1n - 12ae-jb[r0 -1n - 12d cos c]
 + 1ej2ae-jb1r0 - 2d cos c2 + Á

 E
 –1c2 = 1e-jbr0 + 1ejae-jb1r0 -  d cos c2

1ejaejb1r0 - d cos c2, 1ej2aejb1r0 - 2d cos c2, Á ,
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c

a � 90

a � 0

a � 120

a � 30

a � 150

a �  60

a � �90

a � �180

a � �60

a � �150

a � �30

a � �120

FIGURE 10.16

Plots of group patterns for the uniform linear array of Fig. 10.15 for and 
The horizontal scale for for each plot is such that varies for 0 to 180°.cc

k = 0.5.n = 6

Figure 10.16 shows a computer-generated sequence of plots of F versus
for values of ranging from to 150° in steps of 30°, for

and It can be seen that as the value of is varied, the value of 
along which the principal maximum of the group pattern occurs varies in a con-
tinuous manner, as to be expected.

The behavior illustrated in Fig. 10.16 is the basis for the principle of
phased arrays. In a phased array, the phase differences between the elements of
the array are varied electronically to scan the radiation pattern over a desired
angle without having to move the antenna structure mechanically.

A type of array that is commonly seen is the log-periodic dipole array,
which is an example of a broadband array. To discuss briefly, we first note that
the directional properties of antennas and antenna arrays depend on their elec-
trical dimensions, that is, the dimensions expressed in terms of the wavelength
at the operating frequency. Hence, an antenna of fixed physical dimensions ex-
hibits frequency-dependent characteristics. This very fact suggests that for an
antenna to be frequency-independent, its electrical size must remain constant
with frequency, and hence, its physical size should increase proportionately to
the wavelength. Alternatively, for an antenna of fixed physical dimensions, the
active region, that is, the region responsible for the predominant radiation,
should vary with frequency, that is, scale itself in such a manner that its electrical
size remains the same. An example in which this is the case is the log-periodic
dipole array, shown in Fig. 10.17. As the name implies, it employs a number of

cak = 0.5.n = 6
-180°ac 10 … c … 180°2

Principle of
phased array

Log-periodic
dipole array
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di � 1

li � 1
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di

1
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1
4
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a

FIGURE 10.17

Log-periodic dipole array.

dipoles. The dipole lengths and the spacings between consecutive dipoles in-
crease along the array by a constant scale factor such that

(10.50)

From the principle of scaling, it is evident that for this structure extending from
zero to infinity and energized at the apex, the properties repeat at frequencies
given by where n takes integer values. When plotted on a logarithmic scale,
these frequencies are equally spaced at intervals of It is for this reason
that the structure is called log periodic.

The log-periodic dipole array is fed by a transmission line, as shown in Fig.
10.17, such that a 180° phase shift is introduced between successive elements in
addition to that corresponding to the spacing between the elements. The result-
ing radiation pattern is directed toward the apex, that is, toward the source. Al-
most all the radiation takes place from those elements that are in the vicinity of
a half wavelength long. The operating band of frequencies is therefore bounded
on the low side by frequencies at which the largest elements are approximately
a half wavelength long and on the high side by frequencies corresponding to the
size of the smallest elements. As the frequency is varied, the radiating, or active,
region moves back and forth along the array. Since practically all the input

log t.
tnf,

li + 1

li
=

di + 1

di
= t
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702 Chapter 10 Principles of Radiation and Antennas

power is radiated by the active region, the larger elements to the right of it are
not excited. Furthermore, because the radiation is toward the apex, these larger
elements are essentially in a field-free region and hence do not significantly in-
fluence the operation.Although the shorter elements to the left of the active re-
gion are in the antenna beam, they have small influence on the pattern because
of their short lengths, close spacings, and the 180° phase shift.

K10.4. Antenna array; Unit pattern; Group pattern; Resultant pattern; Pattern multi-
plication; Uniform linear array; Image antenna concept; Corner reflector.

D10.6. For the array of two antennas of Example 10.3, assume that and
Find the three lowest values of for which the group pattern has

nulls.
Ans. 33.56°, 80.41°, 120°.

D10.7. Obtain the expression for the resultant pattern for each of the following cases of
linear array of isotropic antennas: (a) three antennas carrying currents with am-
plitudes in the ratio 1:2:1, spaced apart and fed in phase; (b) five antennas car-
rying currents with amplitudes in the ratio 1:2:2:2:1, spaced apart and with
progressive phase shift of 180°; and (c) five antennas carrying currents in the
ratio 1:2:3:2:1, spaced apart and fed in phase.
Ans. (a) (b)
(c)

10.5 ANTENNAS IN THE PRESENCE OF REFLECTORS

Thus far, we have considered the antennas to be situated in an unbounded
medium, so that the waves radiate in all directions from the antenna without
giving rise to reflections from any obstacles. In practice, however, we have to
consider the effect of reflections from the ground even if no other obstacles are
present. To do this, it is reasonable to assume that the ground is a perfect con-
ductor and use the concept of image antennas, which together with the actual
antennas form arrays.

To introduce this concept, let us consider a Hertzian dipole oriented verti-
cally and located at a height h above a plane, perfect conductor surface, as
shown in Fig. 10.18(a). Since no waves can penetrate into the perfect conductor,
as we learned in Section 4.5, the waves radiated from the dipole onto the con-
ductor give rise to reflected waves, as shown in Fig. 10.18(a) for two directions
of incidence. For a given incident wave onto the conductor surface, the angle of
reflection is equal to the angle of incidence, as can be seen intuitively from the
following reasons: (1) the reflected wave must propagate away from the con-
ductor surface, (2) the apparent wavelengths of the incident and reflected waves
parallel to the conductor surface must be equal, and (3) the tangential compo-
nent of the resultant electric field on the conductor surface must be zero, which
also determines the polarity of the reflected wave electric field. Also because of
(3), the reflected wave amplitude must equal the incident wave amplitude. If we
now extend the directions of propagation of the two reflected waves backward,

[sin2 13p cos c2]>[9 sin2  1p cos c2].
sin2 [1p>22 cos c] ƒcos 1p cos c2 ƒ ;cos2 1p cos c2;

l

l>2
l

ca = p>2.
d = 3l>2

Image
antennas
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FIGURE 10.18

For illustrating the concept of image antennas. (a) Vertical Hertzian dipole and (b)
horizontal Hertzian dipole above a plane perfect conductor surface.

they meet at a point that is directly beneath the dipole and at the same distance
h below the conductor surface as the dipole is above it.Thus, the reflected waves
appear to be originating from an antenna, which is the image of the actual an-
tenna about the conductor surface. This image antenna must also be a vertical
antenna since in order for the boundary condition of zero tangential electric
field to be satisfied at all points on the conductor surface, the image antenna
must have the same radiation pattern as that of the actual antenna, as shown in
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� �

FIGURE 10.19

Determination of radiation pattern in the vertical plane for a vertical Hertzian dipole
above a plane perfect conductor surface.

Fig. 10.18(a). In particular, the current in the image antenna must be directed in
the same sense as that in the actual antenna in order to be consistent with the
polarity of the reflected wave electric field. It can be seen, therefore, that the
charges associated with the image dipole have signs opposite to those of the
corresponding charges associated with the actual dipole.

A similar reasoning can be applied to the case of a horizontal Hertzian di-
pole above a perfect conductor surface, as shown in Fig. 10.18(b). Here it can be
seen that the current in the image antenna is directed in the opposite sense to
that in the actual antenna. This again results in charges associated with the
image dipole having signs opposite to those of the corresponding charges asso-
ciated with the actual dipole. In fact, this is always the case.

From the foregoing discussion, it can be seen that the field due to an an-
tenna in the presence of the conductor is the same as the resultant field of the
array formed by the actual antenna and the image antenna. There is, of course,
no field inside the conductor. The image antenna is only a virtual antenna that
serves to simplify the field determination outside the conductor. The simplifica-
tion results from the fact that we can use the knowledge gained on antenna ar-
rays to determine the radiation pattern.

For example, for a vertical Hertzian dipole at a height of above the
conductor surface, the radiation pattern in the vertical plane is the product of
the unit pattern, which is the radiation pattern of the single dipole in the plane
of its axis, and the group pattern corresponding to an array of two isotropic ra-
diators spaced apart and fed in phase. This multiplication and the resultant
pattern are illustrated in Fig. 10.19. The radiation patterns for the case of the
horizontal dipole can be obtained in a similar manner.

To discuss another example of the application of the image-antenna concept,
we consider the corner reflector, an arrangement of two plane perfect conductors
at an angle to each other, as shown by the cross-sectional view in Fig. 10.20 for the
case of the 90° angle. We shall assume that each conductor is semi-infinite in
extent. For a Hertzian dipole situated parallel to both conductors, the locations and
polarities of the images can be obtained to be as shown in the figure. By using the
pattern multiplication technique, the radiation pattern in the cross-sectional plane
can then be obtained.

l

l>2

Corner
reflector
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c

FIGURE 10.21

Radiation pattern in the cross-sectional plane for the case
of in the arrangement of Fig. 10.20.d1 = d2 = l>4

For an example, let Then using the notation in Fig. 10.20,
we can consider antennas 1 and 2 as constituting a unit for which the pattern is

which is that of case 2 in Example 10.3, except that is
measured from the line which is perpendicular to the axis of the array.Antennas 3
and 4 constitute a similar unit except for opposite polarity so that the group pat-
tern for the two units is Thus, the required radiation pattern is

which is shown plotted in Fig. 10.21.

K10.5. Image antenna concept; Corner reflector.
D10.8. For the Hertzian dipole in the presence of the corner reflector of Fig. 10.20, let r

be the ratio of the radiation field at a point in the cross-sectional plane and
along the line extending from the corner through the dipole, to the radiation
field at the same point in the absence of the corner reflector. Find the value of r
for each of the following cases: (a) (b) and
(c)
Ans. (a) 0; (b) 2; (c) 3.275.

d1 = 0.3l, d2 = 0.4l.
d1 = d2 = l>422;d1 = d2 = 22l;

` sin ap
2

 sin cb  sin ap
2

 cos cb `
ƒsin [1p>22 cos c] ƒ .

cƒsin [1p>22 sin c] ƒ ,

d1 = d2 = l>4.

c

3

4

1

2

Image
Actual

Hertzian
Dipole

Image Image

d2 d2

d2

d1

d1

d1

d1

d2

FIGURE 10.20

Application of image-antenna
concept to obtain the radiation
pattern for a Hertzian dipole in
the presence of a corner reflector.
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FIGURE 10.22

Geometry pertinent to the
determination of the far field for
radiation from an aperture antenna.

10.6 APERTURE ANTENNAS

An important class of antennas, called aperture antennas, is one for which the
radiation is computed from a knowledge of the field distribution in an aperture
instead of from a current distribution associated with the source of radiation, as
has been the case thus far.The corner reflector discussed in the previous section
is, in the practical case of finite-sized conductors (and, hence, defining an aper-
ture), an example of such an antenna. Besides reflectors such as the corner re-
flector, other examples of aperture antennas are horns extending from
waveguides, slots in conducting enclosures, and lenses. Essentially for an aper-
ture antenna, the primary source, which is elsewhere, sets up the field distribu-
tion in the aperture, which in turn is assumed to give rise to secondary waves in
accordance with the Huygens-Fresnel principle, introduced in Section 9.6.

In particular, as mentioned in Section 9.6, the determination of the far
field from an aperture antenna is the same as setting up the problem to solve for
Fraunhofer diffraction from the aperture. To review briefly, consider a plane
monochromatic wave incident normally on a screen in the xy-plane, with an
aperture cut into it, as shown in Fig. 10.22.Then, according to the Huygens-Fres-
nel principle, the incident wave may be thought of as giving rise to secondary
(spherical) waves emanating from every point in the aperture and that interfere
with one another to produce the field distribution away from the aperture. The
scalar field at a point P is approximately given by

(10.51)E
 –1P2 L

jb

2pLS
 

E
 –1x¿, y¿, 02

R
 e-jbR dS

Description
and examples

Far-field
determination
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10.6 Aperture Antennas 707

where S is the area of the aperture, and is the scalar field in the
aperture. For the Fraunhofer approximation, the waves arriving at P approach
plane waves, thereby permitting simplification of the integrand in (10.51) by
using the plane wave approximation. This consists of assuming that the lines
from points in the aperture to the observation point P(x, y, z) are all
parallel so that

(10.52)

For the R in the denominator in the integrand, further approximation can be
made as Thus, (10.51) reduces to

(10.53)

Equation (10.53) is the starting point for the determination of the far-field dis-
tribution for an aperture antenna. We shall illustrate by means of an example.

Example 10.5 Far field for a rectangular-aperture antenna with uniform
field distribution

Let us consider a rectangular aperture in the xy-plane and centered at the origin with a
uniform field distribution in it, as shown in Fig. 10.23, and investigate the char-
acteristics of the far field due to it.

Applying (10.53) to the rectangular aperture, we have at a point far
from the aperture

(10.54)

Evaluating the integrals, we obtain

(10.55)E
 – =

jbE0  abe-jbr

2pr
 a sin c1

c1
b a sin c2

c2
b

 =
jbE0 e-jbr

2pr L
a>2

-a>2
ejx¿b sin u cos f dx¿L

b>2

-b>2
ejy¿b sin u sin f dy¿

 E
 – L

jbe-jbr

2pr L
a>2

x¿ = -a>2L
b>2

y¿ = -b>2
E0 ejb sin u 1x¿ cos f+ y¿ sin f2 dx¿dy¿

P1r, u, f2
E = E0 ay

E
 –1x, y, z2 L

jb

2pr
 e-jbr

LS
E
 –1x¿, y¿, 02ejb sin u 1x¿ cos f+ y¿ sin f2 dx¿dy¿

R L r.

 = r - x¿ sin u cos f - y¿ sin u sin f

 L ra1 -
xx¿
r2 -

yy¿
r2 b

 = r c1 -
2xx¿

r2 -
2yy¿

r2 + ax¿
r
b2

+ ay¿
r
b2 d1>2

 = 2r2 - 2xx¿ - 2yy¿ + 1x¿22 + 1y¿22
 R = 21x - x¿22 + 1y - y¿22 + z2

1x¿, y¿ � r2, 1x¿, y¿, 02

E
 –1x¿, y¿, 02

Rectangular
aperture with
uniform
excitation
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where

(10.56a)

and

(10.56b)

The quantities of interest in (10.55) are the type of terms, which deter-
mine the radiation pattern. To discuss this, we consider the two coordinate planes 
and and find from (10.55) that the amplitudes of the fields in these two planes
are given by

(10.57a)

and

(10.57b)

 =
bE0 ab

2pr
 ` sin [1bb sin u2>2]

bb sin u2>2 `

 ƒE – ƒf= 90° =
bE0 ab

2pr
 ` sin c2

c2
`
f= 90°

 =
bE0 ab

2pr
 ` sin [1ba sin u2>2]

ba sin u2>2 `

 ƒE – ƒf= 0 =
bE0 ab

2pr
 ` sin c1

c1
`
f= 0

f = 90°
f = 0

1sin c2>c

c2 =
bb sin u sin f

2

c1 =
ba sin u cos f

2
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Radiation
characteristics
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x
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P

E
FIGURE 10.23

Rectangular aperture
antenna with a uniform
field distribution in the
aperture.
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10.6 Aperture Antennas 709

where we have used the fact that is equal to 1. Thus, in both planes, the
behavior is the same except for the appearance of the different dimensions a and b in the

factors in (10.57a) and (10.57b), respectively.
To examine this behavior, we consider the plot of versus which is

shown in Fig. 10.24. We note that it indicates a strong central maximum of unity at 
and a series of secondary (weaker) maxima on either side of it, with nulls occurring at

The secondary maxima, which occur at 
are successively less intense, having values 0.2172, 0.1284, 0.0913, respec-

tively. If we consider the fact that the power density is proportional to then the in-
significance of these maxima becomes more evident, since the successive maxima of

are 1, 0.0472, 0.0165, 0.0083, Thus, the quantity of interest is the beam
width between the first nulls (BWFN) between which the radiation is concentrated. The
BWFN is given by twice the value of corresponding to the first null. For the plane,
this value is given by

(10.58)

For narrow beams, which is the case in practice, in this range, so that (10.58) can
be written as

(10.59)

or

(10.60a)

Similarly,

(10.60b)[BWFN]f= 90° L
2l
b

[BWFN]f= 0 L
2l
a

 u L
2p
ba

=
l

a

 
bau

2
L p

sin u L u

ba sin u

2
= p

f = 0u

Á .ƒ1sin c2>c ƒ2

ƒE – ƒ2,
Á ,3.471p, Á ,

ƒc ƒ = 1.4303p, 2.459p,m = 1, 2, 3, . Ámp,ƒc ƒ =

c = 0
c,ƒ1sin c2>c ƒ

1sin c2>c
lim¢:0 1sin ¢2>¢

1

�4p �3p �2p p 0 p 2p 3p 4p c

sin c
c

FIGURE 10.24

Variation of with pertinent to the
radiation pattern for the rectangular aperture
antenna of Fig. 10.23.

c,ƒ1sin c2>c ƒ
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710 Chapter 10 Principles of Radiation and Antennas

Finally, we consider the determination of the directivity of the rectangular aper-
ture antenna. To do this, it is convenient to use the basic definition that

(10.61)

instead of using (10.27), since the power radiated from the antenna, being the same
as that passing through the aperture, is much easier to compute from the aperture field
distribution as compared to the evaluation of the integral in (10.27). Thus, in view of the
uniform distribution of in the aperture,

(10.62)

and from (10.55),

(10.63)

Substituting (10.62) and (10.63) into (10.61), we obtain

(10.64)

This result tells us that the directivity of the rectangular aperture antenna is times
the physical aperture, ab.Although we have derived it here for the rectangular aperture, it
is true for an aperture of any shape with uniform excitation.

K10.5. Aperture antenna; Far field; Rectangular aperture; Uniform excitation; BWFN.
D10.9. For the rectangular aperture antenna of Fig. 10.23, the BWFN in the 

plane is 0.1 rad and the directivity is Find the following in degrees: (a) the
BWFN in the plane; (b) the half-power beamwidth (HPBW), that is,
twice the value of for which the power density is one-half of the maximum
power density in the plane; and (c) the beamwidth between the first sec-
ondary maxima in the plane.
Ans. (a) 11.46; (b) 2.54; (c) 8.19.

10.7 RECEIVING PROPERTIES

Thus far, we have considered the radiating, or transmitting, properties of anten-
nas. Fortunately, it is not necessary to repeat all the derivations for the discussion

f = 0
f = 0
u

f = 90°
800p.

f = 0

4p>l2

D =
b2ab

p
=

4p

l2  1ab2

 =
b2E0

2a2b2

8p2r2h0

 8Pr9max =
1
2

   

ƒE –max ƒ2
h0

 E
 –

max =
jbE0 abe-jbr

2pr

8Prad9 =
1
2

  

E0
2

h0
 1ab2

E1x, y, 02 = E0 ay

Prad,

D =
[Pr]max

[Pr]av
=
8Pr9max

8Pr9av
=

4pr28Pr9max

8Prad9

Reciprocity
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FIGURE 10.25

For investigating the receiving properties
of a Hertzian dipole.

of the receiving properties of antennas since reciprocity dictates that the receiv-
ing pattern of an antenna be the same as its transmitting pattern.To illustrate this
in simple terms without going through the general proof of reciprocity, let us
consider a Hertzian dipole situated at the origin and directed along the z-axis, as
shown in Fig. 10.25.We know that the radiation pattern is then given by and
that the polarization of the radiated field is such that the electric field is in the
plane of the dipole axis.

To investigate the receiving properties of the Hertzian dipole, we assume
that it is situated in the radiation field of a second antenna so that the incom-
ing waves are essentially uniform plane waves. Thus, let us consider a uniform
plane wave with its electric field E in the plane of the dipole and incident on
the dipole at an angle with its axis, as shown in Fig. 10.25. Then the compo-
nent of the incident electric field parallel to the dipole is Since the di-
pole is infinitesimal in length, the voltage induced in the dipole, which is the
line integral of the electric-field intensity along the length of the dipole, is sim-
ply equal to or to This indicates that for a given ampli-
tude of the incident wave field, the induced voltage in the dipole is
proportional to Furthermore, for an incident uniform plane wave having
its electric field normal to the dipole axis, the voltage induced in the dipole is
zero; that is, the dipole does not respond to polarization with electric field nor-
mal to the plane of its axis. These properties are reciprocal to the transmitting
properties of the dipole. Since an arbitrary antenna can be decomposed into a
series of Hertzian dipoles, it then follows that reciprocity holds for an arbi-
trary antenna. Thus, the receiving pattern of an antenna is the same as its
transmitting pattern.

Let us consider the loop antenna, a common type of receiving antenna. A
simple form of loop antenna consists of a circular loop of wire with a pair of
terminals. We shall orient the circular loop antenna with its axis aligned with
the z-axis, as shown in Fig. 10.26, and we shall assume that it is electrically short;

sin u.

E dl sin u.1E sin u2 dl

E sin u.
u

sin u

Loop
antenna
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712 Chapter 10 Principles of Radiation and Antennas

that is, its dimensions are small compared to the wavelength of the incident
wave, so that the spatial variation of the field over the area of the loop is negli-
gible. For a uniform plane wave incident on the loop, we can find the voltage in-
duced in the loop, that is, the line integral of the electric-field intensity around
the loop, by using Faraday’s law. Thus, if H is the magnetic-field intensity associ-
ated with the wave, the magnitude of the induced voltage is given by

(10.65)

where A is the area of the loop. Hence, the loop does not respond to a wave hav-
ing its magnetic field entirely parallel to the plane of the loop, that is, normal to
the axis of the loop.

For a wave having its magnetic field in the plane of the axis of the loop and
incident on the loop at an angle with its axis, as shown in Fig. 10.26,

and, hence, the induced voltage has a magnitude

(10.66)

Thus, the receiving pattern of the loop antenna is given by the same as that
of a Hertzian dipole aligned with the axis of the loop antenna. The loop anten-
na, however, responds best to polarization with the magnetic field in the plane
of its axis, whereas the Hertzian dipole responds best to polarization with the
electric field in the plane of its axis.

sin u,

ƒV ƒ = mA ` 0H

0t
`  sin u

H sin u
Hz =u

 = mA ` 0Hz

0t
`

 = ` -m 
d

dtLarea of
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H # dS az `

 ƒV ƒ = ` -  
d
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B # dS `
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z

x

u
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H

FIGURE 10.26

Circular loop antenna.
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Example 10.6 Principle of radio source location using two loop
antennas

The directional properties of a receiving antenna can be used to locate the source of an
incident signal. To illustrate the principle, as already discussed in Section 2.3, let us con-
sider two vertical loop antennas, numbered 1 and 2, situated on the x-axis at and

respectively. By rotating the loop antennas about the vertical (z-axis), it is
found that no (or minimum) signal is induced in antenna 1 when it is in the xz-plane and
in antenna 2 when it is in a plane making an angle of 5° with the axis, as shown by the top
view in Fig. 10.27. Let us find the location of the source of the signal.

Since the receiving properties of a loop antenna are such that no signal is induced
for a wave arriving along its axis, the source of the signal is located at the intersection of
the axes of the two loops when they are oriented so as to receive no (or minimum) signal.
From simple geometrical considerations, the source of the signal is therefore located on
the y-axis at or 2.286 km.y = 200>tan 5°,

x = 200 m,
x = 0 m

�
�

ZA

ZL

Voc
FIGURE 10.28

Equivalent circuit for a receiving antenna connected to
a load.

2

1

x

y

200 m

5

FIGURE 10.27

Top view of two loop antennas used to locate the
source of an incident signal.

Effective areaA useful parameter associated with the receiving properties of an antenna
is the effective area, denoted and defined as the ratio of the time-average
power delivered to a matched load connected to the antenna to the time-average
power density of the appropriately polarized incident wave at the antenna. The
matched condition is achieved when the load impedance is equal to the complex
conjugate of the antenna impedance.

Let us consider the Hertzian dipole and derive the expression for its effec-
tive area. First, with reference to the equivalent circuit shown in Fig. 10.28, where

is the open-circuit voltage induced between the terminals of the antenna,Voc

Ae
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714 Chapter 10 Principles of Radiation and Antennas

is the antenna impedance, and is the load impedance,
we note that the time-average power delivered to the matched load is

(10.67)

For a Hertzian dipole of length l, the open-circuit voltage is

(10.68)

where is the electric field of an incident wave linearly polarized parallel to the
dipole axis. Substituting (10.68) into (10.67), we get

(10.69)

For a lossless dipole, so that

(10.70)

The time-average power density at the antenna is

(10.71)

Thus, the effective area is

(10.72)

or

(10.73)

In practice, is greater than due to losses in the antenna, and the effective
area is less than that given by (10.73). Rewriting (10.72) as

and recalling that the directivity of the Hertzian dipole is 1.5, we observe that

(10.74)

Although we have obtained this result for a Hertzian dipole, it can be shown that
it holds for any antenna. It is of interest to note from (10.74) and (10.64) that the
effective area of a rectangular aperture antenna for uniform field distribution in
the aperture is equal to the physical aperture, which is to be expected.
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We shall now derive the Friis transmission formula, an important equation
in making communication link calculations. To do this, let us consider two an-
tennas, one transmitting and the other receiving, separated by a distance d. Let
us assume that the antennas are oriented and polarization matched so as to
maximize the received signal. Then if is the transmitter power radiated by
the transmitting antenna, the power density at the receiving antenna is

where is the directivity of the transmitting antenna. The
power received by a matched load connected to the terminals of the receiving
antenna is then given by

(10.75)

where is the effective area of the receiving antenna. Thus, the ratio of to
is given by

(10.76)

Denoting to be the effective area of the transmitting antenna if it were re-
ceiving and using (10.74), we obtain

(10.77)

Equation (10.77) is the Friis transmission formula. It gives the maximum value
of for a given d and for a given pair of transmitting and receiving anten-
nas. If the antennas are not oriented to receive the maximum signal, or if a po-
larization mismatch exists, or if the receiving antenna is not matched to its load,

would be less than that given by (10.77). Losses in the antennas would
also decrease the value of 

An alternative formula to (10.77) is obtained by substituting for in
(10.76) in terms of the directivity of the receiving antenna if it were used for
transmitting. Thus, we obtain

(10.78)

K10.6. Receiving pattern; Reciprocity with transmitting pattern; Effective area; Com-
munication link; Friis transmission formula.

D10.10. A communication link in free space uses two linear antennas of equal lengths L,
oriented parallel to each other and normal to the line joining their centers. The
antennas are separated by a distance Find the maximum value of

for each of the following cases: (a) (b)
and (c)

Ans. (a) (b) (c) 27.25 * 10-8.6.8 * 10-8;12.8 * 10-6;
L = 2 m, f = 75 MHz.f = 150 MHz;

L = 1 m,L = 1 m, f = 10 MHz;PR>PT

d = 1 km.

PR

PT
=

DT DRl
2

16p2d2

DR

AeR

PR>PT.
PR>PT

PR>PT

PR

PT
=

AeT AeR

l2d2

AeT

PR

PT
=

DT AeR

4pd2

PT

PRAeR

PR =
PT DT

4pd2  AeR

DT1PT>4pd22 DT,

PT

Friis
transmission
formula
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716 Chapter 10 Principles of Radiation and Antennas

SUMMARY

In this chapter, we studied the principles of antennas. We first introduced the
Hertzian dipole, which is an elemental wire antenna, and derived the electro-
magnetic field due to the Hertzian dipole by using the retarded magnetic vector
potential. For a Hertzian dipole of length dl, oriented along the z-axis at the ori-
gin and carrying current

we found the complete electromagnetic field to be given by

where is the phase constant.
For or for the only important terms in the complete

field expressions are the 1/r terms since the remaining terms are negligible com-
pared to these terms.Thus, for the Hertzian dipole fields are given by

where is the intrinsic impedance of the medium. These fields, known
as the radiation fields, correspond to locally uniform plane waves radiating
away from the dipole and, in fact, are the only components of the complete
fields contributing to the time-average radiated power.We found the time-aver-
age power radiated by the Hertzian dipole to be given by

and identified the quantity inside the brackets to be its radiation resistance. The
radiation resistance, of an antenna is the value of a fictitious resistor that
will dissipate the same amount of time-average power as that radiated by the
antenna when a current of the same peak amplitude as that in the antenna is
passed through it. Thus, for the Hertzian dipole,

Rrad =
2ph

3
 adl

l
b2

Rrad,

8Prad9 =
1
2

 I0
2

 c2ph
3

 adl

l
b2 d

h = 1m>e  H = -  

bI0 dl sin u
4pr

  sin 1vt - br2 af
 E = -  

hbI0 dl sin u
4pr

  sin 1vt - br2 au

r � l>2p,

r � l>2p,br � 1
b = v1me H =
I0 dl sin u

4p
  c cos 1vt - br2

r2 -
b sin 1vt - br2

r
daf

 +
I0 dl sin u

4pev
  c sin 1vt - br2

r3 +
b cos 1vt - br2

r2 -
b2 sin 1vt - br2

r
dau

 E =
2I0 dl cos u

4pev
  c sin 1vt - br2

r3 +
b cos 1vt - br2

r2 dar

I1t2 = I0 cos vt
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10.7 Receiving Properties 717

We then examined the directional characteristics of the radiation fields of the
Hertzian dipole as indicated by the factor in the field expressions and
hence by the factor for the power density. We discussed the radiation
patterns and introduced the concept of the directivity of an antenna. The di-
rectivity, D, of an antenna is defined as the ratio of the maximum power den-
sity radiated by the antenna to the average power density. For the Hertzian
dipole,

For the general case of a power density pattern the directivity is given by

As an illustration of obtaining the radiation fields due to a wire antenna of
arbitrary length and arbitrary current distribution by representing it as a series
of Hertzian dipoles and using superposition, we considered the example of a
center-fed half-wave dipole of length oriented along the z-axis with
its center at the origin and having the current distribution given by

and found that the radiation fields are

From these, we sketched the radiation patterns and computed the radiation re-
sistance and the directivity of the half-wave dipole to be

We then extended the computation of these quantities to the case of a center-
fed linear antenna of length equal to an arbitrary number of wavelengths.

We discussed antenna arrays and introduced the technique of obtaining
the resultant radiation pattern of an array by multiplication of the unit and the
group patterns. For an array of two antennas having the spacing d and fed with
currents of equal amplitude but differing in phase by we found the group
pattern for the fields to be where is the angle mea-
sured from the axis of the array, and we investigated the group patterns for sev-
eral pairs of values of d and For example, for and the patterna = 0,d = l>2a.

cƒcos [1bd cos c + a2>2] ƒ ,
a,

 D = 1.642
 Rrad = 73 Æ for free space

 H = -  

I0

2pr
  

cos [1p>22 cos u]

sin u
  sin avt -

p

L
 rb  af

 E = -  

hI0

2pr
  

cos [1p>22 cos u]

sin u
  sin avt -

p

L
 rb  au

I1z2 = I0 cos  
pz

L
  cos vt for - L>2 6 z 6 L>2

L1=  l>22,

D = 4p  

[f1u, f2]max

1pu= 012p
f= 0f1u, f2 sin u du df

f1u, f2,
D = 1.5

sin2 u
sin u
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718 Chapter 10 Principles of Radiation and Antennas

corresponds to maximum radiation broadside to the axis of the array, whereas
for and the pattern corresponds to maximum radiation endfire
to the axis of the array. We generalized the treatment to a uniform linear array
of n antennas and briefly discussed the principle of a broadband array.

To take into account the effect of ground on antennas, we introduced the
concept of an image antenna in a perfect conductor and discussed the applica-
tion of the array techniques in conjunction with the actual and the image anten-
nas to obtain the radiation pattern of the actual antenna in the presence of the
ground. As another example of the image-antenna concept, we considered the
corner reflector.

Next we discussed the far-field determination for an aperture antenna by
recalling that it is equivalent to setting up the problem to solve for Fraunhofer
diffraction from the aperture, which consists of using the plane wave approxi-
mation. By considering the example of a rectangular aperture with uniform
field distribution in it, we illustrated the solution and studied the resulting radi-
ation pattern and its characteristics.

Finally, we discussed receiving properties of antennas. In particular, (1) we
discussed the reciprocity between the receiving and radiating properties of an
antenna by considering the simple case of a Hertzian dipole, (2) we considered
the loop antenna and illustrated the application of its directional properties for
locating the source of a radio signal, and (3) we introduced the effective area
concept and derived the Friis transmission formula.

REVIEW QUESTIONS

Q10.1. What is a Hertzian dipole? Discuss the time variations of the current and
charges associated with the Hertzian dipole.

Q10.2. Discuss the analogy between the magnetic vector potential due to an infinitesi-
mal current element and the electric scalar potential due to a point charge.

Q10.3. To what does the word retarded in the terminology retarded magnetic vector po-
tential refer? Explain.

Q10.4. Outline the derivation of the electromagnetic field due to the Hertzian dipole.
Q10.5. Discuss the characteristics of the electromagnetic field due to the Hertzian dipole.
Q10.6. What are radiation fields? Why are they important? Discuss their characteristics.
Q10.7. Define the radiation resistance of an antenna.
Q10.8. Why is the expression for the radiation resistance of a Hertzian dipole not valid

for a linear antenna of any length?
Q10.9. What is a radiation pattern?
Q10.10. Discuss the radiation pattern for the power density due to the Hertzian dipole.
Q10.11. Define the directivity of an antenna.What is the directivity of a Hertzian dipole?
Q10.12. How do you find the radiation fields due to an antenna of arbitrary length and

arbitrary current distribution?
Q10.13. Discuss the evolution of the half-wave dipole from an open-circuited transmis-

sion line.
Q10.14. Justify the approximations involved in evaluating the integrals in the determi-

nation of the radiation fields due to the half-wave dipole.

a = p,d = l>2

RaoCh10v3.qxd  12/18/03  5:39 PM  Page 718



Problems 719

Q10.15. What are the values of the radiation resistance and the directivity for a half-
wave dipole?

Q10.16. What is an antenna array?
Q10.17. Justify the approximations involved in the determination of the resultant field

of an array of two antennas.
Q10.18. What is an array factor? Provide a physical explanation for the array factor.
Q10.19. Discuss the concept of unit and group patterns and their multiplication to ob-

tain the resultant pattern of an array.
Q10.20. Distinguish between broadside and endfire radiation patterns.
Q10.21. Discuss the principle of a phased array.
Q10.22. Discuss the principle of a broadband array using as an example the log-periodic

dipole array.
Q10.23. Discuss the concept of an image antenna to find the field of an antenna in the

vicinity of a perfect conductor.
Q10.24. What determines the sense of the current flow in an image antenna relative to

that in the actual antenna?
Q10.25. How does the concept of an image antenna simplify the determination of the

radiation pattern of an antenna above a perfect conductor surface?
Q10.26. Discuss the application of the image-antenna concept to the 90° corner reflector.
Q10.27. Explain the distinguishing feature pertinent to the computation of radiation

from an aperture antenna.
Q10.28. Give examples of aperture antennas.
Q10.29. Discuss the determination of the far field for an aperture antenna.
Q10.30. Describe the radiation pattern for the far field of a rectangular aperture anten-

na with uniform field distribution in the aperture and discuss its characteristics.
Q10.31. Discuss the reciprocity associated with the transmitting and receiving properties

of an antenna. Can you think of a situation in which reciprocity does not hold?
Q10.32. What is the receiving pattern of a loop antenna? How should you orient a loop

antenna to receive (a) a maximum signal and (b) a minimum signal?
Q10.33. Discuss the application of the directional receiving properties of a loop antenna

in the location of the source of a radio signal.
Q10.34. How is the effective area of a receiving antenna defined?
Q10.35. Outline the derivation of the expression for the effective area of a Hertzian dipole.
Q10.36. Discuss the derivation of the Friis transmission formula.

PROBLEMS

Section 10.1

P10.1. Satisfaction of Maxwell’s curl equation for E by Hertzian dipole fields. Show
that (10.9) and (10.10) satisfy the Maxwell’s curl equation for E.

P10.2. Some characteristics of the Poynting vector for Hertzian dipole fields. For the
electromagnetic field due to the Hertzian dipole, show that (a) the time-average
value of the of the Poynting vector is zero and (b) the contribution
to the time-average value of the r-component of the Poynting vector is com-
pletely from the terms involving 1/r.

u-component
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720 Chapter 10 Principles of Radiation and Antennas

P10.3. Nonsatisfaction of Maxwell’s curl equations by Hertzian dipole quasistatic
fields. Show that the field expressions obtained by replacing in (10.11) and
(10.12) by do not satisfy Maxwell’s curl equations.

P10.4. RMS values of Hertzian dipole field components for current of two frequencies.
A Hertzian dipole of length 1 m situated at the origin and oriented along the
positive z-direction carries the current Find
the root-mean-square values of and at the point (10, 0). Assume
free space for the medium.

Section 10.2

P10.5. Nonsatisfaction of Maxwell’s curl equations by the radiation fields of a Hertzian
dipole. Show that the radiation fields given by (10.17a) and (10.17b) do not by
themselves satisfy simultaneously the Maxwell’s curl equations.

P10.6. Transition from near field to radiation field for of a Hertzian dipole. Find
the value of r at which the amplitude of the radiation field in the 
of E in (10.10) is equal to the resultant amplitude of the remaining two terms.

P10.7. Computation of Hertzian dipole current for producing a given electric field.
Find the amplitude of the current with which a Hertzian dipole of length 0.5
m has to be excited at a frequency of 10 MHz to produce an electric-field inten-
sity of amplitude 1 mV/m at a distance of 1 km broadside to the dipole, in free
space. What is the time-average power radiated for the computed value of 

P10.8. Computation of directivity of an antenna for a given power density radiation
pattern. The power density pattern for an antenna located at the origin is
given by

Find the directivity of the antenna.
P10.9. Current ratio for two antennas with equal maximum radiated power densities.

Find the ratio of the currents in two antennas having directivities and and
radiation resistances and for which the maximum time-average radi-
ated power densities are equal.

P10.10. Computation of time-average power radiated by a Hertzian dipole. For the
Hertzian dipole of Problem P10.4, calculate the time-average power radiated by
the dipole.

Section 10.3

P10.11. Magnetic vector potential and radiation fields for a half-wave dipole. For the
half-wave dipole of Section 10.3, find the magnetic vector potential for the radi-
ation fields and show that the radiation fields obtained from it are the same as
those given by (10.31a) and (10.31b).

P10.12. Computation of a linear dipole current for producing a given electric field. Find
the maximum amplitude of the current with which a linear dipole of length 15
m has to be excited at a frequency of 10 MHz in order to produce an electric-field
intensity of amplitude 1 mV/m at a distance of 1 km broadside to the dipole, in
free space.What is the time-average power radiated for the computed value of I0?

I0

Rrad2Rrad1

D2D1

f1u, f2 = e csc2 u for p>6 … u … p>2
0 otherwise

I0?

I0

u -component
Eu

p>3,HfEr, Eu,
10 cos 2p * 106t cos 6p * 106t A.

1vt - br2
vt
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P10.13. Computation of a linear dipole current for producing a given electric field. Re-
peat Problem P10.12 for a linear dipole of length 15 m at a frequency of 50 MHz.

P10.14. Derivation of radiation fields and characteristics for a short dipole. A short di-
pole is a center-fed straight-wire antenna having a length small compared to a
wavelength. The amplitude of the current distribution can then be approximated
as decreasing linearly from a maximum at the center to zero at the ends.Thus, for
a short dipole of length L lying along the z-axis between and 
the current distribution is given by

(a) Obtain the radiation fields of the short dipole. (b) Find the radiation resis-
tance and the directivity of the short dipole.

P10.15. Derivation of radiation fields for a circular loop antenna. Consider a circular
loop antenna of radius a such that the circumference is small compared to the
wavelength.Assume the loop antenna to be in the xy-plane with its center at the
origin and the loop current to be in the sense of increasing 
Show that for obtaining the radiation fields, the magnetic vector potential due
to the loop antenna is given by

where Then show that the radiation fields are

P10.16. Radiation resistance and directivity of a circular loop antenna. Find the radia-
tion resistance and the directivity of the circular loop antenna of Problem
P10.15. Compare the dependence of the radiation resistance on the electrical
size (circumference/wavelength) to the dependence of the radiation resistance
of the Hertzian dipole on its electrical size (length/wavelength).

Section 10.4

P10.17. Group patterns for several cases of an array of two antennas. For the array of
two antennas of Example 10.3, find and sketch the group pattern for each of the
following cases: (a) and (b)

P10.18. Resultant pattern for an array of two Hertzian dipoles in the plane of the array.
For the array of two Hertzian dipoles of Fig. 10.11, find and sketch the resultant
pattern in the xz-plane for each of the following cases: (a) and
(b) d = l>4, a = -p>2.

d = l>2, a = p;

d = 2l, a = 0.d = l, a = p>2;

 H = -  

I0pa2b2 sin u

4pr
   cos 1vt - br2 au

 E =
hI0pa2b2 sin u

4pr
   cos 1vt - br2 af

b = v>vp.

A =
m0 I0pa2b sin u

4pr
   sin 1vt - br2 af

f.I = I0 cos vt

I1z2 = d I0 a1 +
2z

L
b  cos vt for -L>2 6 z 6 0

I0 a1 -
2z

L
b  cos vt for 0 6 z 6 L>2

z = L>2,z = -L>2
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722 Chapter 10 Principles of Radiation and Antennas

P10.19. Group pattern for a linear binomial array. For a linear binomial array of n an-
tennas, the amplitudes of the currents in the elements are proportional to the
coefficients in the polynomial Show that the group pattern is

where d is the spacing between the elements and 
is the progressive phase shift.

P10.20. Beam width between first nulls for the radiation pattern of a large uniform lin-
ear array. For the uniform linear array of n isotropic antennas of Fig. 10.15, as-
sume that so that the group pattern is a broadside pattern. Show that for
large n and for the beam width between the first nulls (BWFN), that is,
the angular spacing between the nulls on either side of the main lobe of the
group pattern, is approximately equal to where L is the length of the
array.

P10.21. Synthesis of an array for a given group pattern using pattern multiplication
technique. Use the pattern multiplication technique in reverse to synthesize an
array of isotropic elements for the group pattern

P10.22. Synthesis of an array for a given group pattern using pattern multiplication
technique. Repeat Problem P10.21 for the group pattern

Section 10.5.

P10.23. Radiation patterns for a horizontal half-wave dipole quarter wavelength above
ground. For a horizontal half-wave dipole at a height above a plane, perfect
conductor surface, find and sketch the radiation pattern in (a) the vertical plane
perpendicular to the axis of the antenna and (b) the vertical plane containing
the axis of the antenna.

P10.24. Radiation characteristics for a vertical quarter-wavelength antenna above
ground. For a vertical antenna of length above a plane, perfect conductor
surface, find (a) the radiation pattern in the vertical plane and (b) the directivity.

P10.25. A Hertzian dipole in the presence of a 90° corner reflector. A Hertzian dipole
is situated parallel to one side and perpendicular to the other side of a 90° cor-
ner reflector, as shown in Fig. 10.29. Find the expression for the radiation pat-
tern in the plane of the paper as a function of the angle and the distances 
and d2.

d1u

l>4

l>4

cos2 16p cos c2
9 cos2 12p cos c2

cos2
 ap

2
 cos cb ` sin ap

2
 cos cb `

2l>L,

nd � l,
a = 0

aƒcos [1bd cos c + a2>2] ƒn - 1,
11 + x2n - 1.

u

d1

d2
FIGURE 10.29

For Problem P10.25.
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P10.26. A quarter-wavelength monopole in the presence of a 90° corner reflector. A
monopole is situated parallel to one side and perpendicular to the other

side of a 90° corner reflector, as shown in Fig. 10.30. Find the radiation pattern
in the plane of the paper as a function of the angle u.

l>4

30 kl

30
FIGURE 10.31

For Problem P10.27.

u

l/4

l/4
FIGURE 10.30

For Problem P10.26

P10.27. A Hertzian dipole in the presence of a 60° corner reflector. A corner reflector
is made up of two semi-infinite, plane, perfect conductors at an angle of 60°, as
shown by the cross-sectional view in Fig. 10.31. A Hertzian dipole is situated
parallel to the conductors at a distance of from the corner along the bisector
of the two conductors. Find the ratio of the radiation field at a point broadside
to the dipole and along the bisector of the conductors to the radiation field at
the same point in the absence of the corner reflector, for the following values of
k: (a) (b) and (c) 1.1

2;1
4;

kl

Section 10.6

P10.28. Far field for a rectangular aperture antenna with nonuniform field distribution.
For the rectangular aperture antenna of Example 10.5, assume that the field dis-
tribution in the aperture is nonuniform as given by

Obtain the expression for the far field and hence the expressions for the follow-
ing: (a) BWFN in the plane; (b) BWFN in the plane; (c) HPBW
in the plane; and (d) the directivity.

P10.29. Far field for a rectangular aperture antenna with nonuniform field distribution.
Repeat Problem P10.28 for

E1x, y, 02 = E0 cos2
  
px

a
  ay  for  -a>2 6 x 6 a>2, -b>2 6 y 6 b>2

f = 0
f = 90°f = 0

E1x, y, 02 = E0 cos  
px

a
  ay  for  -a>2 6 x 6 a>2, -b>2 6 y 6 b>2
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724 Chapter 10 Principles of Radiation and Antennas

P10.30. Far field radiation pattern for a circular aperture with uniform field distribu-
tion. Consider a circular aperture of radius a in the xy-plane and centered at
the origin. For uniform field distribution in the aperture, show that
the far-field radiation pattern is in accordance with Fur-
ther, given that the first nonzero root of is 3.83, show that in any con-
stant- the BWFN is approximately equal to 

P10.31. Radiation pattern for a large uniform linear array of isotropic antennas. Con-
sider the uniform linear array of n isotropic antennas of Fig. 10.15 for the case of

so that the group pattern is a broadside pattern. Show that for large n and
for the radiation pattern is the same as that in one of the coordinate
planes ( or ) for the rectangular aperture antenna with uniform
field distribution of Example 10.5, and hence the BWFN is approximately equal
to where L is the length of the array.

Section 10.7

P10.32. Application of a turnstile antenna for responding to clockwise circular polariza-
tion. An arrangement of two identical Hertzian dipoles situated at the origin
and oriented along the x- and y-axes, known as the turnstile antenna, is used for
receiving circularly polarized signals arriving along the z-axis. Determine how
you would combine the voltages induced in the two dipoles so that the turnstile
antenna is responsive to circular polarization rotating in the clockwise sense as
viewed by the antenna, but not to that of the counterclockwise sense of rotation.

P10.33. Ambiguity in the application of an interferometer for angle-of-arrival measure-
ment. A uniform plane wave is incident on an interferometer consisting of an
array of two identical antennas with spacing at an angle to the
axis of the array, producing a phase difference between the voltages induced in
the two antennas. Find all possible values of that result in a phase
difference equal to where n is an integer, between the two induced
voltages.

P10.34. A communication link involving a half-wave dipole and a small loop antenna.
A communication link at a frequency of 30 MHz uses a half-wave dipole for the
transmitting antenna and a small loop for the receiving antenna, involving a dis-
tance of 100 km.The antennas are oriented so as to receive maximum signal and
the receiving antenna is matched to its load. If the received time-average power
is to be find the minimum required value of the maximum amplitude 
of the current with which the transmitting antenna has to be excited. Assume
the antennas to be lossless.

REVIEW PROBLEMS

R10.1. Locus of circular polarization for the radiation field of a turnstile antenna. Two
identical current elements are located at the origin, one directed along the posi-
tive x-axis and the other directed along the positive z-axis. They carry currents
equal in amplitude and 90° out of phase. Find the expression for the locus of all

I01 mW,

¢f ; 2np,
0° 6 c 6 180°

¢f
c = 50°d = 3l

2l>L,

f = 90°f = 0
nd � l,

a = 0

cNote: 
1

2pL
2p

0
ejx cos a da = J01x2 and LxJ01x2 dx = xJ11x2 d

1.22l>a.f-plane,
J11x2 = 0

J11ba sin u2>1ba sin u2.
E = E0 ax
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u

d

FIGURE 10.32

For Problem R10.5.

points at which the polarization of the field is circular on the surface of a sphere
of radius r, where 

R10.2. Three-dimensional power density pattern of an array of two Hertzian dipoles.
For the array of two Hertzian dipoles in Fig. 10.11, assume that and

Obtain an approximate expression for the three-dimensional power
density pattern and find the directivity and the radiation resistance.

R10.3. Radiation pattern of a center-fed antenna an odd multiple of half-wavelengths
long. Show that the radiation pattern for a center-fed linear antenna of length
equal to an odd-integer number of half-wavelengths, n, obtained by setting

in (10.41), agrees with the one obtained by considering the antenna as
an array of n half-wave dipoles of currents of equal amplitudes and appropriate
progressive phase shift.

R10.4. Synthesis of an array for a given group pattern using pattern multiplication
technique. Synthesize an array of isotropic elements for the group pattern

R10.5. A Hertzian dipole in the presence of a 90° corner reflector. A Hertzian dipole is
situated at a distance d from the corner along the bisector of the two conductors
of a 90° corner reflector and oriented normal to the bisector in the cross-section-
al plane, as shown in Fig. 10.32. Obtain the expression for the radiation pattern in
the cross-sectional plane, as a function of the angle u.

sin 12p cos c2
sin [1p>22 cos c]

  cos2
 
 ap

2
 cos cb

k = n>2

f1u, f2
a = p.

d � l

br � 1.

R10.6. Radiation pattern for a large uniform linear array of isotropic antennas. Con-
sider the uniform linear array of n isotropic antennas of Fig. 10.15 for the case of

so that the group pattern is an endfire pattern. Show that for large n
and for the BWFN is approximately equal to 28l>L.nd � l,
a = -bd,
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