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C H A P T E R  9

Several Topics for Electronics
and Photonics

In the previous chapter, we introduced the principles of guided waves and
learned that the mechanism of waveguiding is one in which the waves bounce
obliquely between parallel planes as they progress along the structure. We stud-
ied transverse electric (TE) and transverse magnetic (TM) waves supported by
plane conductors, as well as those supported by a plane dielectric slab. Thus, we
restricted our study of guided waves to one-dimensional structures. In this chap-
ter, we extend the treatment to two dimensions.

As in the previous chapter, we consider metallic waveguides, that is, those
in which the TE and TM waves propagate in the medium between and parallel
to the metallic boundaries of the guide, as well as optical fibers in which the sup-
porting structure for the guided waves is a cylindrical dielectric rod surrounded
by a dielectric cladding and without the presence of metallic boundaries.

We shall begin the chapter by introducing rectangular metallic wave-
guides, first by a geometrical extension of the parallel-plate waveguide arrange-
ment and then by solving Maxwell’s equations in two dimensions. We make use
of the latter approach to study cylindrical metallic waveguides and later optical
fibers. We shall also consider losses in metallic waveguides and resonators and
extend our discussion of dispersion in Chapter 8 to study the phenomenon of
pulse broadening, which is of particular importance in photonic systems. Finally,
we shall consider the topics of interference and diffraction, and wave propaga-
tion in an anisotropic medium.

9.1 RECTANGULAR METALLIC WAVEGUIDE AND CAVITY RESONATOR

To introduce the rectangular metallic waveguide, we begin with TE modes in a
parallel-plate waveguide.We recall that the parallel-plate waveguide is made up
of two perfectly conducting sheets in the planes and and that
the electric field of the mode has only a y-component with m numberTEm,0

x = a,x = 0

TE modes in
rectangular
waveguide
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FIGURE 9.1

Rectangular waveguide.

of one-half sinusoidal variations in the x-direction and no variations in the y-
direction. If we now introduce two perfectly conducting sheets in two constant-
y planes, say, and the field distribution will remain unaltered since
the electric field is entirely normal to the plates, and hence the boundary condi-
tion of zero tangential electric field is satisfied for both sheets.We then have the
rectangular waveguide, a metallic pipe with rectangular cross section in the xy-
plane, as shown in Fig. 9.1.

Since the mode field expressions derived for the parallel-plate
waveguide satisfy the boundary conditions for the rectangular waveguide, those
expressions as well as the entire discussion of the parallel-plate waveguide case
hold also for mode propagation in the rectangular waveguide case. We
learned that the modes can be interpreted as being due to uniform plane
waves having electric field in the y-direction and bouncing obliquely between
the conducting walls and and with the associated cutoff condition
characterized by bouncing of the waves back and forth normally to these walls,
as shown in Fig. 9.2(a). For the cutoff condition, the dimension a is equal to m
number of one-half wavelengths such that

(9.1)

In a similar manner, we can have uniform plane waves having electric field
in the x-direction and bouncing obliquely between the walls and 
and with the associated cutoff condition characterized by bouncing of the waves
back and forth normally to these walls, as shown in Fig. 9.2(b), thereby resulting
in modes having no variations in the x-direction and n number of one-half
sinusoidal variations in the y-direction. For the cutoff condition, the dimension
b is equal to n number of one-half wavelengths such that

(9.2)[lc]TE0,n
=

2b
n

TE0,n

y = b,y = 0

[lc]TEm,0
=

2a
m

x = a,x = 0

TEm,0

TEm,0

TEm,0

y = b,y = 0
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FIGURE 9.2

Propagation and cutoff of (a) (b) and (c) modes in a
rectangular waveguide.

TEm,nTE0,n,TEm,0,

We can even have modes having m number of one-half sinusoidal
variations in the x-direction and n number of one-half sinusoidal variations in
the y-direction, due to uniform plane waves having both x- and y-components of
the electric field and bouncing obliquely between all four walls of the guide and
with the associated cutoff condition characterized by bouncing of the waves back
and forth obliquely between the four walls as shown, for example, in Fig. 9.2(c).
For the cutoff condition, the dimension a must be equal to m number of one-half
apparent wavelengths in the x-direction, and the dimension b must be equal to n
number of one-half apparent wavelengths in the y-direction such that

or

(9.3)[lc]TEm,n
=

121m>2a22 + 1n>2b22

1

[lc]TEm,n

2 =
1

12a>m22 +
1

12b>n22

TEm,n
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The discussion thus far of modes in a rectangular waveguide has
been based on qualitative reasoning. We shall now derive the field expressions
for the TE modes. To do this, we shall first show, by making use of the expan-
sions for the Maxwell’s curl equations in Cartesian coordinates, that all trans-
verse (x and y) field components are derivable from the longitudinal field
component It is convenient to use the phasor forms of the field components
and differential equations. Since all components of the fields are then depen-
dent on t and z in the manner we can replace by and by

Furthermore, in view of TE modes and and are all zero
since the medium inside the waveguide is a perfect dielectric. Thus, the phasor
forms of (3.12a)–(3.12c) and of the component equations of (3.22) pertinent to
the discussion here are

(9.4a) (9.4d)

(9.4b) (9.4e)

(9.4c) (9.4f)

Solving (9.4a), (9.4b), (9.4d), and (9.4e), for and in terms of
we obtain

(9.5a)

(9.5b)

(9.5c)

(9.5d)

Furthermore, by substituting (9.5a) and (9.5b) into (9.4c) and rearranging, we
obtain a differential equation for as given by

(9.6)

Recall that so that 
To solve (9.6) for we make use of the separation of variables tech-

nique. This consists of assuming that the required function of the two variables
x and y is the product of two functions, one of which is a function of x only and

H
 –

z,
b2 = v2me.b = v1me,

02H
 –

z

0x2 +
02H

 –
z

0y2 - 1bz
2 - b22H –z = 0

H
 –

z

 H
 –

y = j 

bz

bz
2 - b2  

0H
 –

z

0y

 H
 –

x = j 

bz

bz
2 - b2  

0H
 –

z

0x

 E
 –

y = -  

jvm

bz
2 - b2  

0H
 –

z

0x

 E
 –

x =
jvm

bz
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0H
 –

z

0y

H
 –

z,
H
 –

yE
 –

x, E
 –

y, H
 –

x,

 
0H

 –
y
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-

0H
 –

x

0y
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0E
 –

y
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-

0E
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x

0y
= -jvmH

 –
z

 -jbz H
 –

x -
0H

 –
z

0x
= jveE
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 –
x = -jvmH

 –
y

 
0H

 –
z

0y
+ jbz H

 –
y = jveE

 –
x jbzE

 –
y = -jvmH

 –
x

JzJx, Jy,Ez = 0-jbz.
0>0zjv0>0tej [vt -bz z],

Hz.

TEm,n
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the second is a function of y only. Thus, denoting these functions to be and 
we have

(9.7)

Substituting (9.7) into (9.6), we then obtain

or

(9.8)

where the primes denote differentiation with respect to the respective variables.
Equation (9.8) says that a function of x only plus a function of y only is equal to
a constant. For this to be satisfied, both functions must be equal to constants.
Hence, we write

(9.9a)

and

(9.9b)

or

(9.10a)

and

(9.10b)

We have thus obtained two ordinary differential equations involving separately
the two variables x and y; hence, the technique is known as the separation of
variables technique.

The solutions to (9.10a) and (9.10b) are given by

so that

(9.11)H
 –

z = 1A –1 ejbx x + A
 –

2 e-jbx x21B –1 ejby y + B
 –

2 e-jby y2e-jbz z

 Y
 –1y2 = B

 –
1 ejby y + B

 –
2 e-jby y

 X
 –1x2 = A

 –
1 ejbx x + A

 –
2 e-jbx x

d2Y
 –

dy2 = -by
2Y

 –

d2X
 –

dx2 = -bx
2X

 –

Y
 – –
Y
 – = -by

2, a constant

X
 – –
X
 – = -bx

2, a constant

X
 – –
X
 – +

Y
 – –
Y
 – = bz

2 - b2

X
 – –1x2Y –1y2 + X

 –1x2Y – –1y2 - 1bz
2 - b22X –1x2Y –1y2 = 0

H
 –

z1x, y, z2 = X
 –1x2Y –1y2e-jbz z

Y
 –

,X
 –
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where and are constants. We also note from substitution of (9.9a)
and (9.9b) into (9.8) that

or

(9.12)

Now, to determine the constants in (9.11), we make use of the boundary
conditions that require that the tangential components of the electric-field in-
tensity on all four walls of the guide be zero. Thus, we have

To apply these boundary conditions to (9.11), we have to translate them into
boundary conditions involving From (9.5a) and (9.5b), these are

(9.13a)

(9.13b)

(9.13c)

(9.13d)

Using (9.13c) and (9.13a) in conjunction with (9.11), we get

which then simplifies (9.11) to

(9.14)

where is a constant. Using the remaining two boundary conditions (9.13d)
and (9.13b), we then obtain

(9.15a)

(9.15b) sin by b = 0 or by =
np

b
, n = 0, 1, 2, Á

 sin bx a = 0 or bx =
mp

a
, m = 0, 1, 2, Á

A
 –

H
 –

z = A
 –

 cos bx x cos by y e-jbz z

 B
 –

1 - B
 –

2 = 0 or  B
 –

2 = B
 –

1

 A
 –

1 - A
 –

2 = 0 or A
 –

2 = A
 –

1

 
0H

 –
z

0x
= 0 for x = a, 0 6 y 6 b

 
0H

 –
z

0x
= 0 for x = 0, 0 6 y 6 b

 
0H

 –
z

0y
= 0 for y = b, 0 6 x 6 a
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 –
z

0y
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H
 –

z.

 E
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y = 0 for x = a, 0 6 y 6 b

 E
 –

y = 0 for x = 0, 0 6 y 6 b

 E
 –

x = 0 for y = b, 0 6 x 6 a

 E
 –

x = 0 for y = 0, 0 6 x 6 a

bz
2 = b2 - bx

2 - by
2

-bx
2 - by

2 = bz
2 - b2

B
 –

2A
 –

1, A
 –

2, B
 –

1,
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Thus, the solution for for the mode is given by

(9.16)

We also note by substituting (9.15a) and (9.15b) in (9.12) that

(9.17)

For propagation to occur, the exponent in (9.16) must be real. Hence, the cut-
off condition is given by

(9.18)

or the cutoff frequency is given by

(9.19)

and the cutoff wavelength is

(9.20)

which is the same as given by (9.3). Now, from (9.17) and (9.20), we have

(9.21)

Substituting (9.16) and (9.21) into (9.5a)–(9.5d), we obtain the expressions for
the transverse field components:

(9.22a)

(9.22b) E
 –

y = -j 

vmlc
2

4p2   
mp

a
 A
 –

 sin  
mpx

a
  cos  

npy

b
  e-jbz z

 E
 –

x = j 

vmlc
2

4p2   
np

b
 A
 –

 cos  
mpx

a
 sin  

npy

b
  e-jbz z

 = - a2p
lc
b2

 = -12p22 c am

2a
b2

+ a n

2b
b2 d

 bz
2 - b2 = - amp

a
b2

- anp

b
b2

 =
121m>2a22 + 1n>2b22

 lc =
11me fc

fc =
11me  Bam

2a
b2

+ a n

2b
b2

v2me - amp
a
b2

- anp

b
b2

= 0

bz

bz
2 = b2 - amp

a
b2

- anp

b
b2

H
 –

z = A
 –

 cos  
mpx

a
 cos  

npy

b
 e-jbz z

TEm,nH
 –

z

606 Chapter 9 Several Topics for Electronics and Photonics

RaoCh09v3.qxd  12/18/03  5:19 PM  Page 606



(9.22c)

(9.22d)

Note that the sine terms in these field expressions satisfy the boundary condi-
tions of zero tangential electric field and zero normal magnetic field at the walls
of the waveguide. It can also be seen that if both m and n are equal to zero, then
all transverse field components go to zero. Therefore, for TE modes, either m or
n can be zero, but both m and n cannot be zero.

The entire procedure for the derivation of the field expressions can be
repeated for TM waves by starting with the longitudinal field component 
We shall not, however, pursue the derivation here; instead, we present the
final expressions. This is done in Table 9.1 together with the TE mode field ex-
pressions. The upper signs of the and signs in these expressions refer to
waves propagating in the whereas the lower signs refer to waves
propagating in the Note from the expression for in Table 9.1E

 –
z-z-direction.

+z-direction,
;<

E
 –

z.
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 –
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2

2plg
  
np
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npy
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 e-jbz z
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TABLE 9.1 Field Expressions and Associated Parameters for TE and TM Modes in a Rectangular Waveguide

Transverse electric (TE) waves Transverse magnetic (TM) waves

Field Expressions: Field Expressions:
(m, but not both zero) (m, )

hg = Ame  B1 - afc

f
b2

= Ame  B1 - a l
lc
b2

hg =
1m/e21 - 1fc/f22 =
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l21 - 1fc/f22

lc =
221m/a22 + 1n/b22lc =
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that the x- and y-variations of are sinusoidal, so that goes to zero on all
four walls of the waveguide. This arises because being longitudinal, is tan-
gential to all four walls, and the boundary conditions require that the tangen-
tial components of E be zero on the walls. It can also be seen that if either m or
n is equal to zero, then Therefore, for TM modes both m and n must be
nonzero.Also listed in Table 9.1 are the expressions for the cutoff frequency 
the cutoff wavelength the guide wavelength the phase velocity 
along the guide axis, and the guide characteristic impedance all of which
have the same interpretations as the corresponding quantities for the parallel-
plate waveguide case.

The foregoing discussion of the modes of propagation in a rectangular
waveguide points out that a signal of given frequency can propagate in several
modes, namely, all modes for which the cutoff frequencies are less than the sig-
nal frequency or the cutoff wavelengths are greater than the signal wavelength.
Waveguides are, however, designed so that only one mode, the mode with the
lowest cutoff frequency (or the largest cutoff wavelength), propagates. This is
known as the dominant mode. From Table 9.1, we can see that the dominant
mode is the mode or the mode, depending on whether the dimen-
sion a or the dimension b is the larger of the two. By convention, the larger di-
mension is designated to be a, and hence the mode is the dominant mode.
We shall now consider an example.

Example 9.1 Finding propagating modes in a rectangular waveguide

It is desired to determine the lowest four cutoff frequencies referred to the cutoff fre-
quency of the dominant mode for three cases of rectangular waveguide dimensions:

and Given it is then desired to find the propagating
mode(s) for for each of the three cases.

From Table 9.1, the expression for the cutoff wavelength for a mode, where
and but not both m and n equal to zero, and for a

mode where and is given by

The corresponding expression for the cutoff frequency is

The cutoff frequency of the dominant mode is Hence,

fc

[fc]TE1,0

= Bm2 + an 
a

b
b2

1>2a1me.TE1,0

 =
1

2a1me  Bm2 + an 
a

b
b2

 fc =
vp

lc
=

11me  Bam

2a
b2

+ a n

2b
b2

lc =
121m>2a22 + 1n>2b22

n = 1, 2, 3, Á ,m = 1, 2, 3, ÁTMm,n

n = 0, 1, 2, 3, Ám = 0, 1, 2, 3, Á
TEm,n

f = 9000 MHz
a = 3 cm,b>a = 1

3.b>a = 1, b>a = 1
2,

TE1,0

TE0,1TE1,0

hg,
vpzlg,lc,
fc,

E
 –

z = 0.

E
 –

z,
E
 –

zE
 –
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fc

[ fc]TE1,0

b
a 55 4321
 � 1

TE1,0
TE0,1

TM1,1
TE1,1

TE2,0
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TM2,1
TM1,2
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fc

[ fc]TE1,0

b
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1
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 �
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TE2,0
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TE1,1
TM1,1

8

TE2,1
TM2,1

fc

[ fc]TE1,0
510 4321

FIGURE 9.3

Lowest four cutoff frequencies referred to the cutoff frequency of the dominant mode
for three cases of rectangular waveguide dimensions.

By assigning different pairs of values for m and n, the lowest four values of can
be computed for each of the three specified values of b/a.These computed values and the
corresponding modes are shown in Fig. 9.3.

For and assuming free space for the dielectric in the waveguide,

Hence, for a signal of frequency all the modes for which is less
than 1.8 propagate. From Fig. 9.3, these are

It can be seen from Fig. 9.3 that for the second lowest cutoff frequency which
corresponds to that of the mode is twice the cutoff frequency of the dominant
mode For this reason, the dimension b of a rectangular waveguide is generally
chosen to be less than or equal to a/2, in order to achieve single-mode transmission over
a complete octave (factor of 2) range of frequencies.

As in the case of the parallel-plate waveguide, reflection and transmission at
discontinuities in rectangular waveguides can be studied by using the transmission-
line analogy.We shall illustrate this by means of an example.

TE1,0.
TE2,0

b>a … 1
2,

TE1,0, TE0,1, TM1,1, TE1,1 for b>a = 1
TE1,0 for b>a = 1

2

TE1,0 for b>a = 1
3

fc>[fc]TE1,0
f = 9000 MHz,

[fc]TE1,0
=

1
2a1me =

3 * 108

2 * 0.03
= 5000 MHz

a = 3 cm,

fc>[fc]TE1,0

Transmission-
line analogy
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z � 0 za � 4 cm x

y
b � 2 cm

Section 2

m0, 9e0

Section 1

m0, e0

FIGURE 9.4

Rectangular waveguide discontinuity.

Example 9.2 Application of transmission-line analogy to a rectangular
waveguide system

A rectangular waveguide extending in the z-direction and having the dimensions
and has a dielectric discontinuity at as shown in Fig. 9.4. For

waves of frequency incident from section 1, we wish to find (a) the
transmission-line equivalent and (b) the length and the permittivity of a quarter-wave
section required to achieve a match between the two sections.

(a) First, we note that for the mode, for both sections. For
the wavelength in free space is and the wavelength in a

dielectric of permittivity is Since and are both less than the
mode propagates in both sections. Denoting the guide parameters associated

with sections 1 and 2 by subscripts 1 and 2, respectively, we then obtain

Thus, the transmission-line equivalent is as shown in Fig. 9.5.
(b) The characteristic impedance of a quarter-wave section required to achieve a

match between line 1 and line 2 must be equal to Denoting the parame-
ters associated with the quarter-wave section by subscript 3, we then have

or

 
e0>e3

1 - 16>8221e0>e32 =
570 * 129.8

137722 = 0.5205

 
h12e0>e321 - 1l1>lc221e0>e32 = 1hg1hg2

hg3 =
h321 - 1l3>lc22 = 1hg1hg2

1hg1hg2.

 hg2 =
h221 - 1l2>lc22 =

377>321 - 12>822 = 129.8 Æ

 hg1 =
h121 - 1l1>lc22 =

37721 - 16>822 = 570 Æ

TE1,0

lc,l2l1l2 = 2 cm.9e0

l1 = 6 cmf = 5000 MHz,
lc = 2a = 8 cmTE1,0

f = 5000 MHzTE1,0

z = 0,b = 2 cma = 4 cm

FIGURE 9.5

Transmission-line equivalent for the rectangular
waveguide discontinuity of Fig. 9.4 for waves
of frequency 5000 MHz.

TE1.0

hg1 � 570 � hg2 � 129.8 �
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solving which we obtain To find the length of the quarter-wave sec-
tion, we compute

Thus, the length of the quarter-wave section is or 1.0825 cm.

Let us now consider guided waves of equal amplitude propagating in the
positive z- and negative z-directions in a rectangular waveguide. This can be
achieved by terminating the guide by a perfectly conducting sheet in a constant-
z plane, that is, a transverse plane of the guide. Due to perfect reflection from
the sheet, the fields will then be characterized by standing wave nature along
the guide axis, that is, in the z-direction, in addition to the standing wave nature
in the x- and y-directions. The standing wave pattern along the guide axis will
have nulls of transverse electric field on the terminating sheet and in planes par-
allel to it at distances of integer multiples of from that sheet. Placing of per-
fect conductors in these planes will not disturb the fields, since the boundary
condition of a zero tangential electric field is satisfied in those planes.

Conversely, if we place two perfectly conducting sheets in two constant-z
planes separated by a distance d, then, for the boundary conditions to be satis-
fied, d must be equal to an integer multiple of We then have a rectangular
box of dimensions a, b, and d in the x-, y-, and z-directions, respectively, as shown
in Fig. 9.6. Such a structure is known as a cavity resonator and is the counterpart
of the low-frequency lumped parameter resonant circuit at microwave frequen-
cies, since it supports oscillations at frequencies for which the foregoing condi-
tion, that is,

(9.23)d = l 

lg

2
, l = 1, 2, 3, Á

lg>2.

lg>2

lg3>4,

 =
6 * 0.634511 - 19>162 * 0.4026

= 4.33 cm

 lg3 =
l321 - 1l3>lc22 =

l11e0>e321 - 1l1>lc221e0>e32

e3 = 2.484e0.

Cavity
resonator

b

d

z

a
x

y
FIGURE 9.6

Rectangular cavity resonator.
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is satisfied. Substituting for in (9.23) from Table 9.1 and rearranging, we
obtain

or

which upon substitution for gives

(9.24)

The expression for the frequencies of oscillation is thus given by

(9.25)

The modes are designated by three subscripts in the manner and 
Since m, n, and l can assume combinations of integer values, an infinite number of
frequencies of oscillation are possible for a given set of dimensions of the cavity
resonator.Also, a given frequency of oscillation may correspond to more than one
mode.We recall that for TE modes but not both zero, whereas
for TM modes For both TE and TM modes as
given in (9.23). In addition TM modes at cutoff ( and ) sat-
isfy the boundary conditions since then and both go to zero. Hence, for TM
modes is allowed.We shall now consider an example.

Example 9.3 Finding the frequencies of oscillation for a rectangular
cavity resonator

The dimensions of a rectangular cavity resonator with air dielectric are 
and It is desired to determine the three lowest frequencies of oscil-

lation and specify the mode(s) of oscillation, transverse with respect to the z-direction,
for each frequency.

By substituting and the given dimensions for a, b, and d in (9.25),
we obtain

 = 37502m2 + 4n2 + l2 MHz

 fosc = 3 * 108
 Ba m

0.08
b2

+ a n

0.04
b2

+ a l

0.08
b2

m = m0, e = e0,

d = 4 cm. b = 2 cm,
a = 4 cm,

l = 0
E
 –

yE
 –

x

hg = 0 lg = qbz = 0,
l = 1, 2, 3, Á ,m, n = 1, 2, 3, Á .

m, n = 0, 1, 2, Á ,

TMm,n,l.TEm,n,l

fosc =
vp

l
=

11me  Bam

2a
b2

+ a n

2b
b2

+ a l

2d
b2

 l =
121m>2a22 + 1n>2b22 + 1l>2d22

 
1

l2 = am

2a
b2

+ a n

2b
b2

+ a l

2d
b2

lc

1

l2 -
1

lc
2 = a l

2d
b2

2d

l
=

l21 - 1l>lc22

lg
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By assigning combinations of integer values for m, n, and l and keeping in mind the re-
strictions on these values as discussed, we obtain the three lowest frequencies of oscilla-
tion and the corresponding modes to be

K9.1. Rectangular waveguide; TE and TM modes; Dominant mode; Cavity resonator;
Frequency of oscillation.

D9.1. A generator of fundamental frequency 2000 MHz and rich in harmonics excites a
rectangular waveguide. Find all frequencies that propagate in only TE modes for
each of the following cases: (a) (b)

and (c) Assume that 
for all cases.
Ans. (a) 4000, 6000 MHz; (b) 2000, 4000 MHz; (c) None.

D9.2. For the rectangular waveguide discontinuity of Fig. 9.4, find the power reflec-
tion coefficient for incidence from section 1 for each of the following cases:
(a) wave of frequency (b) wave of frequency

and (c) wave of frequency 
Ans. (a) 0.2756; (b) 0.4649; (c) 0.0676.

D9.3. The frequencies of oscillation for an air-dielectric rectangular cavity resonator
of dimensions a, b, and d, in the x-, y-, and z-directions, respectively, are given for
three modes as follows:

Find the values of a, b, and d in cm.
Ans. 2.5 cm, 1 cm, 5 cm.

9.2 CYLINDRICAL METALLIC WAVEGUIDE AND CAVITY RESONATOR

Thus far in this chapter, we have been concerned with the guiding of waves be-
tween metallic boundaries involving rectangular geometries. We shall now ex-
tend the treatment to cylindrical geometry by considering the case of a
cylindrical waveguide, which is simply a hollow tube of circular cross section of
a radius a and extending along the z-direction, as shown in Fig. 9.7.Thus, for TM
waves in a cylindrical waveguide,

Hz = 0 Ez Z 0

 fosc = 3000130 MHz for TM1,1,1 mode

 fosc = 3000126 MHz for TE0,1,1 mode

 fosc = 300015 MHz for TE1,0,1 mode

f = 10,000 MHz.TM1,1f = 10,000 MHz;
TE1,1f = 10,000 MHz;TE1,0

m = m0a = 6 cm, b = 6 cm, e = e0. b = 1.5 cm, e = 4e0;
a = 4.5 cm,a = 5 cm, b = 2.5 cm, e = e0;

 3750 * 16 = 9186 MHz for TE1,1,1 and TM1,1,1 modes

 3750 * 15 = 8385 MHz for TE0,1,1, TE2,0,1, TE1,0,2, and TM1,1,0 modes

 3750 * 12 = 5303 MHz for TE1,0,1 mode
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z Cylindrical
Conductor

Axis

a

r
f

m, eFIGURE 9.7

A cylindrical waveguide
extending in the z-direction.

and all other field components can be expressed in terms of whereas for TE
waves,

and all other field components can be expressed in terms of 
To derive the field expressions for TM and TE modes in a cylindrical

waveguide, we begin with Maxwell’s curl equations in cylindrical coordinates
and proceed similarly to the rectangular waveguide case, using the phasor forms
of the field components in the manner where the upper and lower
signs represent wave propagation in the and respectively.
Thus, replacing by and by in the expansions for Maxwell’s curl
equations in cylindrical coordinates, we have for a perfect dielectric medium in-
side the waveguide,

(9.26a)

(9.26b)

(9.26c)

(9.26d)

(9.26e)

(9.26f) 
1
r

  
0
0r

 1rH
 –
f2 -

1
r

  

0H
 –

z

0f
= jveE

 –
z

 < jbzH
 –

r -
0H

 –
z

0r
= jveE

 –
f

 
1
r

  

0H
 –

z

0f
; jbz H

 –
f = jveE

 –
r

 
1
r

  
0
0r

 1rE
 –
f2 -

1
r

  

0E
 –

r

0f
= -jvmH

 –
z

 <jbz E
 –

r -
0E

 –
z

0r
= -jvmH

 –
f

 
1
r

  

0E
 –

z

0f
; jbz E

 –
f = -jvmH

 –
r

<jbz0>0zjv0>0t
-z-directions,+z-

ej [vt <bz z],

Hz.

Ez = 0 Hz Z 0

Ez,

Solution of
Maxwell’s
curl
equations in
cylindrical
coordinates
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Solving (9.26a), (9.26b), (9.26d), and (9.26e), we obtain

(9.27a)

(9.27b)

(9.27c)

(9.27d)

thereby expressing the transverse field components in terms of the longitudinal
field components. Recall that 

Now, setting and substituting for and in (9.26f), we obtain
the differential equation for for the TM-mode case

(9.28a)

Similarly, setting and substituting for and in (9.26c), we obtain the
differential equation for for the TE-mode case

(9.28b)

In view of the similarity of (9.28a) and (9.28b), we let stand for in the case
of TM waves and in the case of TE waves and consider the solution of the
differential equation

or

(9.29)

where

(9.30)

To solve this equation, we make use of the separation of variables technique as
in Section 9.1. Thus, letting

(9.31)c = R
 –1r2£1f2e < jbz z

bc
2 = b2 - bz

2

1
r

  
0
0r

 cr 

0c
0r
d +

1

r2  

02c

0f2 - bc
2c = 0

1
r

  
0
0r

 ar 

0c
0r
b +

1

r2  

02c

0f2 - 1bz
2 - b22c = 0

H
 –

z

E
 –

zc

1
r

  
0
0r

 cr 

0H
 –

z

0r
d +

1

r2  

02H
 –

z

0f2 - 1bz
2 - b22H –z = 0

H
 –

z

E
 –
fE

 –
rE

 –
z = 0

1
r

  
0
0r

 ar 

0E
 –

z

0r
b +

1

r2  

02E
 –

z

0f2 - 1bz
2 - b22E –z = 0

E
 –

z

H
 –
fH

 –
rH

 –
z = 0

b2 = v2me.

 H
 –
f =

1

bz
2 - b2 cjve 

0E
 –

z

0r
� j 

bz

r
  

0H
 –

z

0f
d

 H
 –

z = -  
1

bz
2 - b2 c jve

r
  

0E
 –

z

0f
� jbz 

0H
 –

z

0r
d

 E
 –
f = -  

1

bz
2 - b2 c � j 

bz

r
  

0E
 –

z

0f
+ jvm 

0H
 –

z

0r
d

 E
 –

r =
1

bz
2 - b2 c � jbz 

0E
 –

z

0r
+

jvm

r
  

0H
 –

z

0f
d
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and substituting into (9.29), we have

or

(9.32)

where the primes denote differentiation with respect to the respective variables,
thereby obtaining the two separate differential equations

(9.33a)

(9.33b)

The solution for (9.33a) is of the form

(9.34a)

where and are constants. Equation (9.33b) is a Bessel’s equation that has
the solution

(9.34b)

where and are constants, and

The variations of and with their argument x are shown for a few
values of n in Figs. 9.8(a) and (b), respectively.The function has the prop-
erty that for all orders. Since the fields must remain finite inside the
guide, which includes (the z-axis), it follows that must be zero. Hence,
the solution for pertinent to the cylindrical waveguide problem is given by

The solution for is thus given by

(9.35)

where we have absorbed into and This is the general solution for 
which we use for in the case of TM waves and the in the case of TE waves
to obtain their particular solutions satisfying the boundary conditions.

For TM modes, and Hence,

(9.36)E
 –

z = Jn1bc r21A –n cos nf + B
 –

n sin nf2e < jbz z

c = E
 –

z.H
 –

z = 0

H
 –

zE
 –

z

c,B
 –

n.A
 –

nCn

c = Jn1bc r21A –n cos nf + B
 –

n sin nf2e < jbz z

c

R
 –1r2 = Cn Jn1bc r2

R
 –1r2 D

 –
nr = 0

Nn102: q
Nn1x2

Nn1x2Jn1x2
 Nn1bc r2 = Bessel function of the second kind of order n and argument bc r

 Jn1bc r2 = Bessel function of the first kind of order n and argument bc r

D
 –

nCn

R
 –1r2 = Cn Jn1bc r2 + D

 –
n Nn1bc r2

B
 –

nA
 –

n

£1f2 = A
 –

n cos nf + B
 –

n sin nf

R
 –– +

1
r

 R
 –¿ + abc

2 -
n2

r2 bR
 – = 0

£– + n2
 £ = 0

r

R
 –  1R –¿ + rR

 ––2 + bc
2r2 = -  

£–
£

= n2, a constant

£   
1
r

  
0
0r

 ar  

0R
 –

0r
b +

R
 –

r2  
02£
0f2 + bc

2
 R
 –

 £ = 0
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(a)

0 2 4 6 8 10 12
�0.6

0

1.0

x

Jn(x)

J0

J1
J2

J3

(b)

0 2 4 6 8 10 12

�1.0

0

0.6

x

Nn(x)

N0

N1 N2
N3

FIGURE 9.8

Variations of (a) and (b) with the argument x for a few values of n.Nn1x2,Jn1x2

Since for a cylindrical waveguide, and must be a single-valued
function, the solution must be periodic in with a period This requires that
n be an integer. Thus,

n = 0, 1, 2, 3, Á

2p.f

E
 –

z0 … f … 2p
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The boundary condition at requires that the tangential component of 
be zero. Since is tangential, it follows that for all giving us

or

(9.37)

Note that this also makes the remaining tangential component equal to zero
at since from (9.27b), Equation (9.37) tells us that only cer-
tain values of and hence of are allowed. These are the values for which
the Bessel function goes to zero, that is, they are the roots of the equation

(9.38)

For a given value of n, there are an infinite number of roots as can be seen from
Fig. 9.8(a). Denoting the number of the root to be m, we list in Table 9.2 the low-
est three nonvanishing roots for the first five values of 

With the understanding that the values of are given by those in Table 9.2,
we can obtain the expressions for the transverse-field components by noting that

and substituting (9.36) into (9.27a)–(9.27d):

(9.39a)

(9.39b)

(9.39c)

(9.39d)

In (9.39a), the prime associated with denotes differentiation with respect to
the argument 

The allowed values of may be written as where the first sub-
script refers to the order of the Bessel function and the second subscript de-
notes the mth root of the nth order Bessel function. The corresponding modes
are designated as modes. In terms of the field configurations, the firstTMn,m

1bc a2n,m,bc a
bc r.

Jn

 H
 –
f = ;  

ve

bz
 E
 –

r

 H
 –

r = <  
ve

bz
 E
 –
f

 E
 –
f = ; j 

bz n

bc
2r

 Jn1bc r21A –n sin nf - B
 –

n cos nf2e < jbz z

 E
 –

r = < j 

bz

bc
 Jn

œ 1bc r21A –n cos nf + B
 –

n sin nf2e < jbz z

H
 –

z = 0

bc a
2, 3, 42. n1n = 0, 1,1m = 1, 2, 32

Jn1x2 = 0

bcbc a
E
 –
f r 0E

 –
z>0f.r = a

E
 –
f

Jn1bc a2 = 0

0 = Jn1bc a21A –n cos nf + B
 –

n sin nf2e < jbz z

f,[E
 –

z]r = a = 0E
 –

z

Er = a
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TABLE 9.2 Roots of 

m
n

0 1 2 3 4

1 2.40 3.83 5.14 6.38 7.59

2 5.52 7.02 8.42 9.76 11.06

3 8.65 10.17 11.62 13.02 14.37

Jn1x2
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subscript refers to the number of complete sinusoidal variations of the field
components in the direction. For example, means that the field compo-
nents have no variations in means that they have one sinusoidal varia-
tion in and so on. The second subscript refers to the number of quasi
half-cycle variations (except that in the case of the first one is a one-
quarter cycle) of the field components in the r direction in accordance with the
behavior of the Bessel functions, as shown in Fig. 9.8(a), and their derivatives,
depending upon the component.

For TE modes, and Hence,

(9.40)

Again, n must be an integer as in the case of TM modes, since the solution must
be periodic in with period in order that is single-valued. Thus,

The boundary condition at requires that the tangential component of 
be zero. Since for TE modes, we need to consider which is the re-
maining tangential component of From (9.27b), we note that 
Thus, we have

or

where the prime associated with denotes the derivative of the Bessel func-
tion. It follows that

(9.41)

Equation (9.41) tells us that again in this case, only certain values of and
hence of are allowed. These are the values for which the derivative of the
Bessel function goes to zero, that is, they are the roots of the equation

(9.42)

It can be seen by visualizing the derivatives of the graphs of the Bessel functions in
Fig. 9.8(a) that for a given value of n, there are infinite number of roots for (9.42),
corresponding to the points at which the slopes of the Bessel functions are zero.
Denoting the number of the root to be m, we list in Table 9.3 the lowest three

nonvanishing roots for the first five values of 
With the understanding that the values of are given by those in Table 9.3,

we can obtain the expressions for the transverse field components by noting that
bc a

n1n = 0, 1, 2, 3, 42.1m = 1, 2, 32

Jn
œ 1x2 = 0

bc,
bc a,

Jn
œ 1bc a2 = 0

Jn

0 = Jn
œ 1bc a21A –n cos nf + B

 –
n sin nf2e < jbz z

c 0H
 –

z

0r
d

r = a
= 0

E
 –
f r 0H

 –
z>0r.E.

E
 –
f,E

 –
z K 0

Er = a

n = 0, 1, 2, 3, Á

H
 –

z2pf

H
 –

z = Jn1bc r21A –n cos nf + B
 –

n sin nf2e < jbz z

c = H
 –

z.E
 –

z = 0

n = 0,
f,

f, n = 1
n = 0f
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and substituting (9.40) into (9.27a)–(9.27b):

(9.43a)

(9.43b)

(9.43c)

(9.43d)

The allowed values of may once again be written as and the modes
designated as modes. As in the case of modes, the first subscript
refers to the number of complete sinusoidal variations of the field components
in the direction. The second subscript refers to the number of quasi-half-cycle
variations (except that for the first one is a one-quarter cycle) of the field
components in the r direction.

Let be the values of for the (n,m)th mode found from the roots
of for TM modes and of for TE modes. Then recalling that

and that the cutoff condition occurs for equal to zero, we note that the cutoff
frequencies are given by

(9.44)

and the cutoff wavelengths are given by

(9.45)
 =

2p
1bc2n,m

 1lc2n,m =
11me1fc2n,m

1fc2n,m =
1bc2n,m

2p1mev2me = 1bc2n,m
2

bz

bc
2 = b2 - bz

2 = v2me - bz
2

Jn
œ 1bc a2Jn1bc a2 bc1bc2n,m

n Z 0,
f

TMn,mTEn,m

1bc a2n,mbc a

 H
 –
f = ;  

bz

vm
 E
 –

r

 H
 –

r = <  

bz

vm
 E
 –
f

 E
 –
f = j  

vm

bc
 Jn

œ 1bc r21A –n cos nf + B
 –

n sin nf2e < jbz z

 E
 –

r = j  

vmn

bc
2r

 Jn1bc r21A –n sin nf - B
 –

n cos nf2e < jbz z

E
 –

z = 0
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Characteristics
of TM and TE
modes

TABLE 9.3 Roots of 

m
n

0 1 2 3 4

1 3.83 1.84 3.05 4.20 5.32

2 7.02 5.33 6.71 8.02 9.28

3 10.17 8.54 9.97 11.35 12.68

Jn
œ 1x2
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Proceeding further, for the propagating range of frequencies for a given mode,
we have from (9.30),

or

(9.46)

The phase velocity along the guide axis is given by

(9.47)

Finally, by taking the ratios of appropriate pairs of transverse electric- and
magnetic-field components given by (9.39a)–(9.39d) for TM modes and (9.43a)–
(9.43d) for TE modes, we obtain the guide characteristic impedances to be

(9.48a)

and

(9.48b)

Note that the expressions (9.46)–(9.48b) are the same as the corresponding ex-
pressions for the rectangular waveguide case.We shall now consider an example.

Example 9.4 Finding propagating modes and their characteristics 
for a cylindrical waveguide

The radius of an air-dielectric cylindrical waveguide is given by It is desired
to find the propagating modes and their characteristics for a signal of frequency
f = 3 GHz.

a = 5 cm.

 =
1m>e21 - 1fc>f22 =

1m>e21 - 1l>lc22

 [hg]TE =
E
 –

r

;H
 –
f

=
E
 –
f

<H
 –

r
=
vm

bz
=
vmlg

2p
= Ame   

lg

l

 = Ame  B1 - afc

f
b2

= Ame  B1 - a l
lc
b2

 [hg]TM =
E
 –

r

;H
 –
f

=
E
 –
f

<H
 –

r
=
bz

ve
=

2p
lgve

= Ame   
l

lg

vpz = lg f =
11me   

121 - 1fc>f22 =
11me   

121 - 1l>lc22

lg =
l21 - 1fc>f22 =

l21 - 1l>lc22

 = a2p
l
b2

 c1 - a l
lc
b2 d

 = a2p
l
b2

 c1 - afc

f
b2 d

 bz
2 = b2 - bc

2
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From Tables 9.2 and 9.3, we note that the lowest root is 1.84, corresponding to the
mode. Thus, mode is the dominant mode and its cutoff frequency is given by

In fact, by choosing the roots in increasing order of value from Tables 9.2 and 9.3 and di-
viding them by a and substituting in (9.44), we can find the cutoff frequencies in the in-
creasing order.The four lowest cutoff frequencies and the corresponding modes found in
this manner are listed in Table 9.4. For any given frequency f, propagation occurs in all
modes for which Thus, for a signal of frequency 3 GHz, the propagating modes
are and The corresponding values of and computed by
using (9.45)–(9.48b), are also listed in Table 9.4.

hg,lc, lg, ypz,TE2,1.TE1,1, TM0,1,
f 7 fc.

 = 1.757 GHz

 [fc]TE1,1 =
[1bc a21,1]>a
2p1m0e0

=
1.84

5 * 10-2 *
3 * 108

2p

TE1,1TE1,1
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Cylindrical
cavity
resonator

TABLE 9.4 The Four Lowest Cutoff Frequencies and the Corresponding Modes for an 
Air-Dielectric Cylindrical Waveguide of Radius and the Parameters for the Propagating
Modes for 

Mode(s) (GHz) (cm) (cm) (m/s) (ohms)

1.84 1.757 17.074 12.337 465.10

2.40 2.292 13.090 15.500 243.24

3.05 2.913 10.300 41.827 1576.84
3.83 3.657 8.203 — — —TE0,1, TM1,1

12.548 * 108TE2,1

4.650 * 108TM0,1

3.701 * 108TE1,1

hgypzlglcfcbc a

f = 3 GHz
a = 5 cm

As in the case of the rectangular waveguide, by placing two perfectly con-
ducting sheets in two constant-z planes separated by a distance d, we can have a
cylindrical cavity resonator that supports oscillations at frequencies for which

(9.49)

Substituting for from (9.46), we have

(9.50)

The modes are designated and where n and m are allowed values
as discussed earlier. For both TE and TM modes, as given by
(9.49). In addition, as for the rectangular waveguide case, TM modes at cutoff
( and ) satisfy the boundary conditions, since both and

go to zero. Hence, for TM modes is allowed. Let us consider an example.l = 0E
 –
f

E
 –

rhg = 0bz = 0, lg = q

l = 1, 2, 3, Á ,
TMn,m,l,TEn,m,l

 fosc =
vp

l
=

11me  B 1

lc
2 + a l

2d
b2

 
1

l2 =
1

lc
2 + a l

2d
b2

 
2d

l
=

l21 - 1l>lc22

lg

d = l 

lg

2
, l = 1, 2, 3, Á
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Example 9.5 Finding the frequencies of oscillation for a cylindrical
cavity resonator

A cylindrical cavity resonator is formed by placing two perfectly conducting sheets 5 cm
apart in the cross-sectional planes of the cylindrical waveguide of Example 9.4, so that

It is desired to find the four lowest frequencies of oscillation and identify the
mode(s) of oscillation for each frequency.

By substituting and in (9.50), we obtain

By using the results of Table 9.4 and assigning values to l, as discussed, we obtain the four
lowest frequencies of oscillation and the corresponding modes to be

K9.2. Cylindrical waveguide; Bessel functions; TM and TE modes; Cylindrical cavity
resonator.

D9.4. An air-dielectric waveguide with the z-axis as its axis has a semicircular cross
section of radius as shown in Fig. 9.9. Find the mode with the lowest
cutoff frequency and the corresponding value of the cutoff frequency for (a) TE
waves and (b) TM waves.
Ans. (a) 1.757 GHz; (b) 3.657 GHz.

D9.5. The resonant frequencies for the mode and the mode of an air-
dielectric cylindrical cavity resonator are both known to be 3000 MHz. Find the
values of the dimensions a and d of the resonator.
Ans. 3.82 cm; 7.79 cm.

TE1,1,1TM0,1,0

TM1,1,TE1,1,

a = 5 cm,

 3000Ba 10
13.09

b2

+ 1 = 3775 MHz for TM0,1,1 mode

 3000 *
10

8.203
= 3657 MHz for TM1,1,0 mode

 3000Ba 10
17.074

b2

+ 1 = 3477 MHz for TE1,1,1 mode

 3000 *
10

13.09
= 2292 MHz for TM0,1,0 mode

 = 3000Ba0.1
lc
b2

+ l2 MHz

 fosc = 3 * 108
 B 1

lc
2 + a l

0.1
b2

d = 5 cm,m = m0, e = e0,

d = 5 cm.

az

r

f

FIGURE 9.9

For Problem D9.4.
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9.3 LOSSES IN METALLIC WAVEGUIDES AND RESONATORS

In this section, we shall extend our discussion of waveguides and resonators to
consider the effects of lossy materials. Power dissipation in the imperfect dielec-
tric of a guide results in loss that follows simply from the attenuation constant
for the case of a uniform plane wave propagating in the dielectric. If, for the pur-
pose of illustration, we consider the TE or TM wave in a parallel-plate wave-
guide, then we know that progress of the composite TE or TM wave along the
guide by a distance d involves travel of the component uniform plane waves 
obliquely to the plates by a distance Thus, if is the atten-
uation constant for uniform plane wave propagation in the dielectric, then
the attenuation constant for the TE or TM wave along the guide axis is

and the attenuation is equal to From
Section 4.5, we recall that for a slightly imperfect dielectric 

Unlike the case of the imperfect dielectric, attenuation of the wave due to
power flow into the imperfect conductors of a guide as the wave propagates
down the guide involves an elaborate treatment. Since the conductors are only
slightly imperfect the procedure is based on considering the situa-
tion as though a plane wave having the same magnetic field components as
those given by the appropriate tangential magnetic field components on that
wall for the perfect conductor case propagates normally into the conductor and
then computing the power flow into the wall (assumed to be of infinite depth in
view of the rapid attenuation of fields as they propagate into a good conductor).
Now, for a tangential magnetic field on a given wall, the electric-field vector
of a uniform plane wave propagating into the wall (designated to be in the di-
rection ) is where is the intrinsic impedance of the conductor.
The complex Poynting vector is

(9.51)

The time-average power flowing into the conductor of conductivity for a
length along the guide is given by

(9.52)

 =
¢z

2sdLl
 Ht

# Ht
* dl

 = Ll
 Rea1

2
  hc  Ht

# Ht
*b  dl ¢z

 ¢8Pd9 = Ll
1Re P2 # dl ¢z an

¢z
s

 = 1
2 hc Ht

# Ht
* an

 = 1
2 hc[an1Ht

# Ht
*2 - Ht1an

# Ht
*2]

 P = 1
2 � � H* = 1

2 hc1Ht � an2 � Ht
*

hchc Ht � an,an

Ht

1s>ve � 12,

ad
œ L
s

2
 Ame  a1 -

s2

8v2e2 b L
s

2
 Ame 1s>ve � 12,

e<[ad
œ>21 -1fc>f22]z.e<ad zad

œ >21 - 1fc>f22
ad

ad
œd>21 - 1fc>f22.

624 Chapter 9 Several Topics for Electronics and Photonics

Loss in
dielectric

Basis for
analysis of
loss in
conductors

RaoCh09v3.qxd  12/18/03  5:19 PM  Page 624



where is the skin depth at the frequency of operation f, dl is the
differential length element along the transverse dimension, and denotes in-
tegration performed along the transverse dimension. We shall illustrate the ap-
plication of (9.52) by means of an example.

Example 9.6 Attenuation constant for mode in a rectangular
guide with imperfect conductors

Let us consider the propagation of mode in a rectangular waveguide and obtain
the expression for the attenuation constant associated with it due to imperfect, but
good, conductors making up the walls of the guide.

To obtain the attenuation constant we note that since for a given mode the
fields are attenuated in the manner where the z-direction is assumed to be the guide
axis, the time-average power flow down the guide varies in the manner The
time-average power dissipated over an infinitesimal distance at any value of z along
the guide is then given by

so that

(9.53)

Thus, the attenuation constant is one-half the ratio of the time-average power dissipated
per unit distance at any value of z along the guide to the time-average power flow down
the guide at that value of z. In fact, this is a general result applicable for any lossy travel-
ing wave. The procedure for computing for a given mode therefore consists of evalu-
ating and for that mode.

To find we consider the different walls of the waveguide separately. For
each wall, we compute the time-average power flowing into the conductor over a surface
made up of distance along the guide axis and the entire transverse dimension of that
wall by using (9.52). To proceed further, we substitute and in the TE mode
field expressions given in Table 9.1, and considering the wave only, we obtain the

mode field components in a lossless waveguide to be

(9.54a)

(9.54b)

(9.54c)

(9.54d)

where a and b are the dimensions of the guide in the x- and y-directions, respectively, as
shown in Fig. 9.10. For the lossy case, the field components are multiplied by Sincee-ac z.
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626 Chapter 9 Several Topics for Electronics and Photonics

we compute the quantities and at some particular value of z, say, we can
absorb the factors and into the constant Also, each nonzero tangential
component of magnetic field on a given wall will be accompanied by a tangential electric
field perpendicular to it so as to produce power flow into the conductor. Since some of
these tangential electric-field components are longitudinal, the mode is no longer exact-
ly TE mode. However, these components are very small in magnitude; hence, the mode is
almost a TE mode.

We shall now consider the different walls and compute the corresponding values
of with the aid of Fig. 9.10.

RIGHT SIDE WALL

(9.55a)

LEFT SIDE WALL

Same as for the right side wall.

(9.55b)
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FIGURE 9.10

Rectangular waveguide with imperfectly conducting walls
and showing the tangential magnetic field components on
the walls for the mode.TE1,0
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(9.55c)

TOP WALL

Same as for the bottom wall.

(9.55d)

Adding up the contributions from all four walls, we obtain the total time-average power
dissipated over an infinitesimal length along the guide to be

(9.56)

Now, to find the time-average power transmitted down the guide, we note that the
time-average Poynting vector is given by

(9.57)

The time-average power transmitted down the guide is then given by

(9.58)
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Finally, the attenuation constant is given by

or

(9.59)

Note that for For so that for 
Thus, as f varies from to infinity, varies from infinity to some minimum

value and then increases to infinity. The minimum value of occurs for

(9.60)

For example, for the minimum value occurs for 

To proceed further, let us now consider the walls of a cavity resonator to
be imperfect but good conductors. Then we can talk of the quality, or Q factor,
of the resonator and derive the expression for it. The Q factor, which is a mea-
sure of the frequency selectivity of the resonator, is defined as

(9.61)

Since the conductors are good conductors, the power dissipated in them can be
computed by analysis, as in Example 9.6 for the waveguide case. As for the en-
ergy stored in the cavity, it is distributed between the electric and magnetic
fields at any arbitrary instant of time. But there are particular values of time at
which the electric field is maximum and the magnetic field is zero, and vice
versa.At these values of time, the entire energy is stored in one of the two fields.
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This can be taken advantage of to obtain the stored energy. We shall illustrate
the determination of the Q factor by means of an example.

Example 9.7 Q factor for mode in a rectangular cavity resonator
with imperfect conductors

Let us consider the mode of oscillation in the rectangular cavity resonator of
Fig. 9.6 and obtain the expression for the Q factor associated with it due to imperfect,
but good, conductors making up the walls of the resonator.

First, we obtain the expressions for mode field components by superimpos-
ing the and wave field components for the waves from Table 9.1 and sat-
isfying the boundary conditions of zero tangential electric fields at the ends and

Thus, we have

(9.62a)

(9.62b)

(9.62c)

(9.62d)

(9.63)

so that

(9.64a)

(9.64b)

giving us the required field components

(9.65a)

(9.65b)

(9.65c)

(9.65d)

where and we have also substituted and 
To find the energy stored in the cavity, we shall make use of the electric field. Not-

ing that the amplitude of the only electric field component which is the value of at
the instant of time the magnetic field throughout the cavity is zero, is given by
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630 Chapter 9 Several Topics for Electronics and Photonics

and integrating the energy density throughout the volume of the cavity, we obtain the en-
ergy stored in the cavity to be

(9.67)

To find the time-average power dissipated in the walls of the cavity, we note from
the application of (9.51) that for a given wall, the time-average power dissipated is

(9.68)

where S is the surface of the wall. Applying this result to the different walls of the cavity,
we compute the corresponding values of with the aid of Fig. 9.11.
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Rectangular cavity resonator with imperfectly
conducting walls and showing the tangential magnetic
field components on the walls for the mode.TE1,0,1
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LEFT SIDE WALL

Same as for right side wall.

(9.69b)

BOTTOM WALL

(9.69c)

TOP WALL

Same as for bottom wall.

(9.69d)

FRONT WALL

(9.69e)

BACK WALL

Same as for front wall.
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Adding up the contributions from all six walls, we obtain the total time-average power
dissipated to be

(9.70)

Substituting (9.67) and (9.70) into (9.61), we obtain

(9.71)

From (9.25), the resonant frequency for the mode is, however, given by

(9.72)

Thus, (9.71) reduces to

(9.73)

For a numerical example, for the mode of Example 9.3 and with the walls of
the cavity made of copper and the value of
Q is about 11,020.

K9.3. Attenuation constant; mode in a rectangular waveguide; Q factor;
mode in a rectangular cavity resonator.

D9.6. For each of the following cases of waves propagating in a rectangular
waveguide with copper walls, find the frequency of operation for which the at-
tenuation constant is a minimum and the minimum value of (a)

and air-dielectric and (b) and dielectric of 
and 
Ans. (a) 12.0711 GHz, 0.00653; (b) 7.4045 GHz, 0.0047.

D9.7. Find Q for mode for each of the following cases of a rectangular cavity res-
onator with copper walls: (a) air-dielectric; (b)

air-dielectric; (c) dielectric with
and 

Ans. (a) 16,434; (b) 10,160; (c) 13,417.
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9.4 Optical Fiber 633

9.4 OPTICAL FIBER

Thus far in this chapter, we have discussed the guiding of waves between metal-
lic boundaries. We now turn our attention to the optical fiber. An optical fiber,
so called because of its filamentary appearance, consists typically of a core and
a cladding with circular cross sections, as shown in Fig. 9.12(a).The core is made
up of a material of permittivity greater than that of the cladding, so that a criti-
cal angle exists for waves inside the core incident on the interface between the
core and the cladding, and hence waveguiding is made possible in the core by
total internal reflection.The phenomenon of guiding may be visualized by consid-
ering a longitudinal cross section of the fiber through its axis, shown in Fig. 9.12(b),
and comparing it with that of the slab waveguide, shown in Fig. 8.22.Whereas this
situation corresponds to meridional rays, skewed rays whose paths lie in planes
offset from the fiber axis also explain the guiding mechanism. Although the
cladding is not essential for the purpose of waveguiding in the core since the
permittivity of the core material is greater than that of free space, the cladding
serves two useful purposes: (1) It avoids scattering and field distortion by the
supporting structure of the fiber since the field decays exponentially outside the
core and hence is negligible outside the cladding; (2) it allows a single-mode
propagation for a larger value of the radius of the core than permitted in the ab-
sence of the cladding.

To simplify analysis of waveguiding in an optical fiber, we shall consider
the cladding region to extend to infinity, so that the geometry is one of a cylin-
drical dielectric rod of permittivity greater than that of the surrounding medi-
um, as shown in Fig. 9.13. In addition, we shall consider the permittivity of the
core to be uniform, thereby corresponding to the case of a step-index fiber. To
carry out the field analysis, we make use of our previous experience with the
cylindrical metallic waveguide and the dielectric slab waveguide. First, we know
that the transverse field components can be expressed in terms of the longitudi-
nal field components and We shall, however, find that the modes do not
all separate into TE and TM modes and that the situation leads to the so-called
hybrid modes. Second, we know in analogy with the case of the slab guide that
radially decaying fields can be expected outside the core.

Hz.Ez

Description

(b)

Cladding e2 	 e1

Core

Cladding

Core e1

Cladding e2 	 e1

(a)

FIGURE 9.12

(a) Transverse and (b) longitudinal cross sections of an optical fiber.
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FIGURE 9.13

(a) Cross section of a cylindrical dielectric rod surrounded by a cladding region extending to
infinity. (b) Permittivity profile for the arrangement of (a).

We recall from Section 9.2 that the differential equation to be satisfied by
the fields for the cylindrical geometry is that given by (9.29)

(9.74)

where stands for or and

(9.75)

We also learned that (9.74) is separable into a differential equation involving r
only and one involving only.The solution for the r-variation is a superposition
of the Bessel functions and whereas the solutions for the

are sinusoidal ( and ). The sinusoidal variations in re-
quire l to be an integer.The behaviors of the Bessel functions for real arguments
are shown in Fig. 9.8.

Inside the core, and is real.The
solutions for the r-variation are and with real arguments. But since has
the property that for all orders, we rule it out. Thus,
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where we consider only the wave, for simplicity. Defining we can
write the longitudinal components and then the transverse field components by
using (9.27a)–(9.27d) as follows:

(9.77a)

(9.77b)

(9.77c)

(9.77d)

(9.77e)

(9.77f)

In (9.77a)–(9.77f), the upper functions and signs go together and the lower func-
tions and signs go together. Note that when This is
because when a given transverse component is proportional to (or ), it is
proportional to (or ).

In the cladding, and is imagi-
nary. The solutions for the r-variations are and with imaginary arguments

where It is common practice then to represent the solution
in terms of the modified Bessel functions and with real arguments 
The behaviors of these functions for a few values of l are shown in Fig. 9.14.
Since has the property that for all orders, we rule it out. We can
thus write the solutions for the field components as follows:

(9.78a)

(9.78b)

(9.78c)

(9.78d)

(9.78e)

(9.78f) H
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FIGURE 9.14

Behaviors of the modified Bessel functions (a) and (b) Kn1x2.In1x2

To obtain the guidance condition, we need to satisfy the boundary condi-
tions for the field components. We now see that, for the set of equations
separates into two groups: and involving the constants and

and and involving the constants and The first group
corresponds to the TM case, and the characteristic equation obtained by setting

at is

(9.79)

where we have used the property that and 
The second group corresponds to the TE case, and the characteristic equation
obtained by setting at is

(9.80)

For the boundary conditions cannot be satisfied by the two separate
groups, and hence the fields can no longer be separated into TM and TE modes,
but instead are known as hybrid modes.The characteristic equation obtained by
setting and at

is then given by (see Problem P9.20)

(9.81)

 =
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2l2V4
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where

(9.82)

Note that

(9.83)

where

(9.84)

is known as the numerical aperture, an important parameter of physical signifi-
cance (see Problem P9.22).

Determination of the characteristics of the modes for a given value of l re-
quires the solution of (9.79) or (9.80) for (TM and TE modes) and (9.81)
for (hybrid modes), all with the constraint (9.82), from a knowledge of the
values of and a. It is convenient to replace the derivatives of the Bessel
functions by the Bessel functions themselves, using the recursive formulas

(9.85a)

(9.85b)
(9.85c)

(9.85d)

and express (9.81) in the manner (see Problem P9.23)

(9.86)

where

(9.87)

Let us first consider the hybrid modes. A method of solution consists of
plotting (9.82) and (9.86) in the -plane and looking for the points of intersec-
tion. To do this, we note that (9.82) is simply the equation of a circle in the uw-
plane, whereas (9.86) results in many branches.The approximate plot of Fig. 9.15
shows the nature of the first three branches for and the circle for 
The designations and for the hybrid modes denote that, althoughEHl,mHEl,m

V = 2.l = 1

uw

J ; =
Jl ; 11u2
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2J- - b2

2K-2 + 1J- - K-21b1
2J + + b2

2K +2 = 0

 Kl - 11x2 - Kl + 11x2 =
2l
x
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u
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w
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FIGURE 9.15

For illustrating the nature of solution of
the characteristic equation for guided
modes in an optical fiber.

hybrid, is predominant for HE modes and is predominant for EH modes.
The subscript m denotes the number of the solution for the particular value of l.
It can be seen that for the situation shown in Fig. 9.15 and are cut
off, whereas a solution exists for In fact, since the branch for origi-
nates at (0, 0), that mode has no cutoff.Thus, mode is the dominant mode.
As increases, V increases, and more and more points of intersection with the
V-circle occur, corresponding to higher-order modes.

The modes with the lowest nonzero cutoff frequency are the TM and TE
modes governed by the characteristic equations (9.79) and (9.80), respectively.
Therefore, to determine the condition for single-mode operation, we consider
these equations. Since the cutoff occurs for (condition of fields extending
to infinity in medium 2) and for we get or

for both modes. Also for Thus, for sin-
gle-mode operation, V must be less than 2.405.

Example 9.8 Minimum free-space wavelength for single-mode
propagation in an optical fiber

A fiber with core and cladding refractive indices and respectively,
has a core radius of We wish to find the minimum free-space wavelength,
for single-mode operation.

For and 

Thus, is given by

 = 11.1033 mm

 =
2p * 25 * 0.17

2.405
 mm

l0 7
2pa1NA2

2.405

V  =
2pa

l0
 1NA2 6 2.405

l0

NA = 211.4522 - 11.4422 = 0.17

n2 = 1.44,n1 = 1.45

l0,a = 25 mm.
n2 = 1.44,n1 = 1.45

V = 2u2 + w2 = u.w = 0,u = 2.405
J11u2 = 0w = 0,K1>K0 = q

w = 0

v

HE1,1

HE1,1HE1,1.
EH1,1HE1,2

EzHz

Single-mode
operation
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For most practical fibers, the refractive indices of the core and the
cladding are nearly equal corresponding to weak guidance. The rays
are then paraxial and the longitudinal components of the fields are much small-
er than the transverse components, so that the waves are almost TEM, the sim-
plest such waves being linearly polarized along two orthogonal axes. The
associated modes are designated as modes, formed in general by superpo-
sitions of the exact modes. The mode, which corresponds to just the 
mode, is the dominant mode with no cutoff. Thus, in terms of LP modes, single-
mode operation refers to the mode and it is ensured for 

K9.4. Core; Cladding; Field solutions; Hybrid modes; mode; LP modes.

D9.8. A fiber has core radius Find the following for single-mode propa-
gation at (a) maximum allowable value of the numerical aperture;
(b) minimum allowable value of the cladding refractive index if the core re-
fractive index and (c) maximum allowable value of the core refrac-
tive index if the difference between the core and cladding refractive indices
is 0.04.
Ans. (a) 0.3828; (b) 1.4503; (c) 1.8513.

9.5 PULSE BROADENING IN DISPERSIVE MEDIUM

In Section 8.4, we introduced the phenomenon of dispersion resulting from the
variation of phase velocity of a wave with frequency. We learned that for a sig-
nal comprising a band of frequencies, the field patterns of the different frequen-
cy components do not maintain the same phase relationships as they travel
down the propagation medium, and hence they disperse. For the case of a nar-
row-band signal, it is then meaningful to associate a group velocity, which deter-
mines the travel time of the signal. In this section, we consider another
consequence of dispersion, which is the broadening of a pulse as it travels down
the propagation medium.Although this characteristic is pertinent to any disper-
sive medium, it is particularly important for propagation of pulses in an optical
fiber, because of its predominant contribution to the limitations in signal band-
widths that can be transmitted over long distances.

A heuristic explanation of pulse broadening can be provided by consider-
ing the dispersion diagram of Fig. 8.14. The slope of the curve at a point on the
dispersion curve represents the group velocity at the frequency corresponding
to that point. If we consider two frequencies and then we note
that the group velocity at the higher frequency is greater than that at the lower
frequency. Thus, a positive group velocity differential exists between the two
frequencies. Now, we know that a signal having a pulse envelope has a certain
bandwidth associated with it. The narrower the pulse, the greater is the band-
width. For a given distance, the lower frequencies undergo a greater group delay
than for the higher frequencies, or the higher frequencies “run away” from the
lower frequencies, thereby causing loss of bandwidth and hence broadening of
the pulse. In fact, the wider the bandwidth of the signal, the greater is the group

v2 17  v12,v1

n1,
n1 = 1.5;

n2,
l0 = 10 mm:

a = 10 mm.

HE1,1

V 6 2.405.LP0,1

HE1,1LP0,1

LPl,m

1e1 L e22,

9.5 Pulse Broadening in Dispersive Medium 639
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Signal with
Gaussian
envelope

delay spread within the bandwidth, so that the narrower the pulse envelope of
the signal, the more pronounced is the pulse broadening.

For a quantitative discussion of pulse broadening due to dispersion, we
shall consider the propagation of an amplitude-modulated signal consisting of a
carrier frequency signal modulated by a pulse having a Gaussian distribution
with time, that is, a carrier frequency signal with a Gaussian envelope. Thus, let
the electric field at the input of the dispersive channel be

(9.88)

where is the carrier frequency, so that the phasor electric field is

(9.89)

In (9.89), the function corresponds to Gaussian distribution with 1/e
half-width equal to as shown in Fig. 9.16(a).

To analyze the propagation of the pulse, we need to use the Fourier tech-
nique, which consists of following the Fourier spectrum of (9.89) as it propa-
gates down the medium and examine the inverse Fourier transform at the
distant location. The Fourier transform of (9.89) is given by

or

(9.90)E
 –10, v2 = 1pE0 T0 e

-11>421v-v022T0
2

 = 2E0L
q

0
e-1t>T022 cos1v - v02t dt

 = E0L
q

-q
e-1t>T022 e-j1v-v02t dt

 E
 –10, v2 = L

q

-q
 E
 –10, t2 e-jvt dt

T0,
e-1t>T022

E
 –10, t2 = E0 e

-1t>T022 ejv0 t

v0

E10, t2 = E0 e
-1t>T022 cos v0 t

1z = 02

Analysis for
signal with
Gaussian
envelope

v

(b)(a)

v0

E(0, v)

4/T0

t

E(0, t)

2T0

FIGURE 9.16

(a) Amplitude-modulated signal with Gaussian envelope, and (b) its Fourier spectrum.

RaoCh09v3.qxd  12/18/03  5:19 PM  Page 640



Note that the Fourier transform is also Gaussian, with half-width and cen-
tered at the carrier frequency as shown in Fig. 9.16(b).

In traveling by a distance z from the input, each frequency component of
the Fourier spectrum undergoes a phase change where it is understood
that the phase constant along the direction of propagation, is a function of 
Assuming lossless medium, the Fourier transform of the signal at that location is
then given by

(9.91)

Taking the inverse Fourier transform of (9.91), we obtain the propagated signal
to be

(9.92)

To evaluate (9.92), we consider the pulse to be narrow-band and to be
a slowly varying function of so that we can expand in Taylor’s series about
the carrier frequency and keep the first three terms:

(9.93)

where and are and respectively, evaluated
at Substituting (9.93) into (9.92), we have

(9.94)

where
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and Proceeding further, we obtain

or

(9.96)

where

(9.97)

The result that we have obtained for the transmitted pulse tells us that the
pulse envelope is Thus, it reaches a peak at which is sim-
ply the group delay at the carrier frequency and its half-width is broadened
from the initial value to The quantity S, which has the
physical meaning given by (9.97), is known as the “pulse broadening parame-
ter.” It is of interest to discuss this further since it governs the pulse spread. In
fact, for the pulse half-width is approximately equal to From
(9.97), it can be seen that the value of S is influenced by three factors: (1) the
bandwidth, of the input pulse; (2) dispersion, through the factor and
(3) the distance, z, traveled by the signal. Figure 9.17 depicts the pulse broaden-
ing as a function of distance. Note from the plot of T versus z that for large dis-
tances the half-width of the pulse increases approximately linearly with distance
at the rate of or which is inversely proportional to the initial
half-width T0.
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2

FIGURE 9.17

Broadening of the Gaussian envelope of a signal as a function of distance in a
dispersive medium.

Example 9.9 Broadening of a signal with Gaussian envelope 
in a dispersive medium

Consider the propagation of a signal with Gaussian pulse envelope of half-width in a
dispersive medium having the dispersion relation

where and a are constants. It is desired to investigate the broadening of the transmit-
ted pulse.

For the given dispersion relation,

From (9.97), the pulse broadening parameter is given by

and the half-width of the transmitted pulse is

Note that for large distances from the input, the half-width is approximately equal to

Having discussed the phenomenon of pulse spreading due to dispersion, we
shall now turn to causes of dispersion in optical waveguides. In optical waveguides,

12>T02vp
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T0
2 vp

2a2zb2

 2T0
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Dispersion
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dispersion is influenced by three factors: (1) waveguide dispersion, (2) intermodal
dispersion, and (3) material dispersion.Waveguide dispersion is due to the fact that
the phase velocity of propagation of the wave along the guide axis is a function of
the wave frequency.This is the same as in metallic waveguides, which led to the in-
troduction of the topic of dispersion in Section 8.4. Intermodal dispersion results
from different travel times of rays corresponding to different modes, as discussed
in Section 8.7. Material dispersion results from the frequency dependence of the
refractive index of optical materials.We shall here elaborate on this.

For a plane wave propagating in a uniform material medium having the
refractive index n, the phase constant is given by

(9.98)

To investigate pulse broadening due to material dispersion, we need to evaluate
First, we note that

Since it is common practice to deal with n as a function of free-space wave-
length we make use of the relationship

and obtain

so that

Note that the group velocity is

(9.99)

The quantity denoted N, is known as the group refractive index.
Proceeding further, we obtain

(9.100)
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9.5 Pulse Broadening in Dispersive Medium 645

The pulse broadening parameter is given by

(9.101)

where is the half-bandwidth of the pulse and is the
half-spectral width, that is, the half-bandwidth in the wavelength domain.

The quantity is known as the dispersion coefficient, de-
noted usually given in units of ps/km-nm, where the pulse broadening is
measured in picoseconds, the length of the medium in kilometers, and the
source spectral width in nanometers. The wavelength dependences of n, N, and

for fused silica are shown plotted in Fig. 9.18. For 
and the dispersion is normal. For and the dispersion is
anomalous. For is zero and dispersion is negligible.Dll0 L 1.312 mm,
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K9.5. Signal with Gaussian envelope; Pulse broadening parameter; Dispersion in opti-
cal guides; Material dispersion; Dispersion coefficient.

D9.9. The phase refractive index of an optical material used in a single-mode fiber can
be approximated as

Obtain the following for equal to (a) the phase refractive index; (b) the
group refractive index; and (c) the dispersion coefficient.
Ans. (a) 1.6384; (b) 1.7552; (c) 2,336 ps/km-nm.

9.6 INTERFERENCE AND DIFFRACTION

In this section, we turn our attention to two related topics that are based on the
superposition of waves. When two or more waves are superimposed, the result-
ing distribution of intensity is in general not merely the sum of the distributions
of the intensities of the individual waves; instead, it varies between maxima,
which exceed the sum of the individual intensities, and minima, which may go to
zero. This phenomenon is called interference. In the terminology of light, inten-
sity means the time-average power crossing a unit area perpendicular to the di-
rection of power flow, that is, the time-average Poynting vector, which is
proportional to the square of the amplitude of the electric field. Thus, denoting
intensity by the symbol I, we have

(9.102)

where k is the constant of proportionality, dependent on the medium. For free
space, k is equal to 

Let us now consider two uniform plane waves whose electric fields at a point
P are and respectively.Then the intensities of the individual waves are

(9.103)

The intensity of the superposition of the two waves is

(9.104)

where is the angle between the directions of and The third term on the
right side is seen to be the interference term. Depending on the sign of this
term, it can be seen that the intensity of the composite wave can be greater than
or less than the sum of the individual intensities. It is equal to the sum of the two
intensities only if is equal to zero, which occurs when and are per-
pendicular. Thus, two waves whose fields are polarized perpendicular to each
other do not produce interference.

E2E1cos a

E2.E1a

 = I1 + I2 + 2k8E1 E2 cos a9
 = k8E1

29 + k8E2
29 + 2k8E1

# E29
 I = k81E1 + E22 # 1E1 + E229

I1 = k8E1
29 and I2 = k8E2

29
E2,E1

1>2h0.

I = k8E # E9 = k8E29

0.5 mm:l0

n1l02 = 1.58 +
1.46 * 10-14

l0
2

Interference
explained

RaoCh09v3.qxd  12/18/03  5:19 PM  Page 646



9.6 Interference and Diffraction 647

An experimental demonstration of interference of light was first per-
formed by Thomas Young. Young’s experiment consisted of light from a mono-
chromatic point source behind a screen containing two pinholes separated
by a distance on the order of a millimeter, passing through the pinholes, thereby
giving rise to two light beams creating an interference pattern on an observa-
tion screen located at a distance R of the order of several meters beyond the
pinholes, as shown in Fig. 9.19.

The two waves generated at the pinholes are spherical waves and in phase.
At a point P on the observation screen, the waves can be approximated as plane
waves.The interference phenomenon can therefore be analyzed by superimpos-
ing two traveling waves propagating at the angles and to the vertical. Be-
cause of the large value of R, the difference between these angles is small so
that the two lines and can be considered to be parallel and

As the point P moves vertically on the observation screen,
the path difference varies and hence the phase difference between the
two waves varies, creating the interference pattern.

Assuming equal amplitudes and zero phase angle at the slits, the individ-
ual electric fields of the two beams can be written as

(9.105a)

(9.105b) E2 =
A
r2

  cos 1vt - br22

 E1 =
A
r1

  cos 1vt - br12

d cos u
1r2 - r12 L d cos u.

S2PS1P

u2u1

S0,

Two-beam
interference

Screen
Observation

Screen

Intensity

S0

S2

S1

u2

u1

u
d

x

R

r

P

r2

r1

FIGURE 9.19

Experimental arrangement of Thomas Young to demonstrate interference of light.
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648 Chapter 9 Several Topics for Electronics and Photonics

Setting in the amplitude factors, we obtain the total electric field to be

(9.106)

The intensity of the beam on the screen is therefore given by

(9.107)

Thus, the intensity varies between zero and In terms of the distance x,
we can write Furthermore, for we can set

so that we obtain

(9.108)

Thus, the maxima of the intensity occur for and
the minima occur for The separation
between the maxima and the minima is a constant, equal to For a
numerical example, for and 

Conversely to the preceding, if is unknown, it can be computed from a
measurement of and the known values of R and d. For two beams, the sharp-
ness of the interference fringes is not sufficient to permit accurate measurement
of but by using a large number of beams the sharpness can be increased.We
shall not pursue the multiple-source problem here, but we will consider it in
connection with antenna arrays in Section 10.4. We shall, however, include here
an example of a similar phenomenon resulting form multiple reflections and
transmissions of waves from a single source.

Example 9.10 Multiple-beam interference in a plane dielectric slab

Let us consider a uniform plane wave of electric field and wavelength incident at
an angle on a plane dielectric slab of thickness d and refractive index n, as shown in
Fig. 9.20. For simplicity, we shall consider the medium on either side of the dielectric slab

ui

l0,Ei

¢x,

¢x
l

¢x = 1 cm.l = 0.5 mm,R = 2 m,d = 0.1 mm,
¢x = lR>d.

x = 12n + 12lR>d, n = 0, ;1, ;2, Á .
x = nlR>d, n = 0, ;1, ;2, Á ,

I L
2kA2

R2    cos2
   
pdx

lR

2R2 + x2 L R,
x � R,cos u = x>r = x>2R2 + x2.

2kA2>r2.

 =
2kA2

r2   cos2
  
bd cos u

2

 =
2kA2

r2   cos2  
b1r2 - r12

2

 =
KA2

r2   c1
2

+
1
2

+ cos b1r2 - r12 d
 + 2  cos 1vt - br12 cos 1vt - br229

 =
kA2

r2  8cos2 1vt - br12 + cos2 1vt - br22
 I = k8E29

E = E1 + E2 L
A
r

 [cos 1vt - br12 + cos 1vt - br22]

r1 L r2 L r

Multiple-
beam
interference

RaoCh09v3.qxd  12/18/03  5:19 PM  Page 648



9.6 Interference and Diffraction 649

to be free space. We wish to investigate the interference resulting from the (infinite)
number of waves produced by reflections and transmissions at the two interfaces, a few
of which are shown in Fig. 9.20.

With reference to the notation shown in Fig. 9.20, and denoting and to be the
reflection and transmission coefficients, respectively, for incidence from free space on to
the dielectric, and and to be the reflection and transmission coefficients, respective-
ly, for incidence from the dielectric on to free space, we can write the expressions for the
successively reflected and transmitted wave electric fields as follows:

(9.109a) (9.109d)

(9.109b) (9.109e)

(9.109c) (9.109f)

where

(9.110)

 =
4pnd

l0
  cos ut

 =
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l0
  

d
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FIGURE 9.20

Multiple reflections and transmissions for plane wave incidence on a plane dielectric slab.
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650 Chapter 9 Several Topics for Electronics and Photonics

is the additional phase shift undergone by successive reflected (or transmitted) waves.
Summing up all the reflected wave fields, we obtain the total reflected wave field to be

(9.111a)

Similarly, the total transmitted wave field is given by

(9.111b)

Although the specific expressions for and depend on the polarization of
and are given in Section 8.5 by the Fresnel coefficients, we can write, regardless of po-

larization (see Problem P9.28), that

(9.112a)

and

(9.112b)

Substituting (9.112a) and (9.112b) into (9.111a) and (9.111b), we obtain

(9.113a)

(9.113b)

The fractions of the incident intensity that are reflected and transmitted are given, re-
spectively, by

(9.114a)

(9.114b)

where

(9.115)

is called the finesse. Note that the sum of right sides of (9.114a) and (9.114b) is equal to
unity, as it should be.
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FIGURE 9.21

Plots of the transmission characteristics of
the arrangement of Fig. 9.20 for several
values of F.

The transmission characteristic of the arrangement of Fig. 9.20, a model for the
Fabry–Perot etalon, or interferometer, can now be discussed with the aid of the plot of
the right side of (9.114b) versus which is shown in Fig. 9.21, for several values of F and
hence It can be seen that maximum transmission of unity occurs for

(9.116)

with the sharpness of the maxima increasing with F. For given values of d, and n, the
plot can be thought of as variation of with (and hence ), thereby corresponding
to the interference pattern. For fixed values of d, n, and the peaks in Fig. 9.21 corre-
spond to two adjacent frequencies at which is unity. From (9.116), this frequency
separation can be seen to be equal to Also, for given values of d and n, dif-
ferent values of (and hence f) give rise to interference patterns of different periodici-
ties, thereby allowing resolution of closely spaced frequencies for high values of F (see
Problem P9.29).

When an object is placed between a source of light and an observation
screen, the shadow on the screen contains a fine structure of interference
fringes in the vicinity of the boundary separating the dark shadow from the rest
of the brightly illuminated screen, as compared to a simple sharp boundary be-
tween the dark and bright regions. This phenomenon, which occurs due to the
bending of a portion of the beam, is known as diffraction. Just as interference is
a manifestation of the superposition of light beams, diffraction is also a manifes-
tation of the superposition of light beams. Interference usually applies to the in-
teraction of only a few beams with one another, whereas diffraction usually
pertains to the superposition of a large number, even a continuous distribution
of beams, although the distinction is not sharp. The phenomenon of diffraction
is in contrast to the principle of geometrical optics, which has to do with light
traveling in straight lines, except for bending by reflection and refraction, and
which is strictly valid under certain conditions: (a) The dimensions of the object
in the path of light are very large compared to the wavelength and (b) the re-
gion of importance is not close to the boundary of the shadow.

l0
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652 Chapter 9 Several Topics for Electronics and Photonics

Although the exact treatment of the phenomenon of diffraction involves
solution as a boundary value problem and is very difficult, it can be studied in
approximate but sufficiently accurate terms by using the Huygens–Fresnel prin-
ciple, as long as the distance from the diffracting object to the point of observa-
tion is more than about ten wavelengths. To explain this principle, let us
consider a plane monochromatic wave that is incident normally on a screen in
the xy-plane with an aperture cut into it, as shown in Fig. 9.22. Then, according
to this principle, the incident wave may be thought of as giving rise to secondary
(spherical) waves that emanate from every point in the aperture and interfere
with one another to the right of the screen. The scalar field at a point P is ap-
proximately given by

(9.117)

where S is the area of the aperture, and is the scalar field in the
aperture. We shall illustrate the application of (9.117) by means of an example.

Example 9.11 Diffraction of a uniform plane wave by a circular
aperture

Let us assume that the aperture of Fig. 9.22 is a circular hole of radius a having its center
at the origin and illuminated by a uniform plane wave of electric-field intensity at the
aperture, as shown in Fig. 9.23.We wish to investigate the diffracted field along the z-axis.
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FIGURE 9.22

Geometry pertinent to
diffraction by an aperture
on a screen.
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Fresnel
principle

Diffraction
by a circular
aperture
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Applying (9.117) to the geometry in Fig. 9.23 and noting the circular symmetry
about the z-axis, we obtain

(9.118)

Making the change of variable and hence we obtain

(9.119)

Proceeding further, the intensity is given by

(9.120)

For (9.120) reduces to

(9.121)
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FIGURE 9.23

Geometry pertinent to diffraction by a
circular aperture illuminated by a plane
wave.
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FIGURE 9.24

Variation of the intensity along the z-axis for the arrangement of Fig. 9.23.

A sketch of the result given by (9.121) is shown in Fig. 9.24. It can be seen that
for the intensity fluctuates between maxima of and minima of zero,
corresponding to constructive and destructive interference, respectively, of the spheri-
cal waves. The situation is said to correspond to Fresnel diffraction. For the
intensity decreases monotonically. For the diffraction is known as
Fraunhofer diffraction, and the evaluation of the integral in (9.117) becomes easier, be-
cause waves arriving at P from the aperture approach plane waves, thereby permitting
the simplifying plane wave approximation in the integrand. We shall not pursue the
topic here, however; instead, we defer the consideration to Section 10.6, where the de-
termination of the far field due to an aperture distribution is identical to that of the so-
lution for Fraunhofer diffraction. In practice, the boundary between the Fresnel and
Fraunhofer diffraction regions is taken to be where D is the diameter of the cir-
cular aperture, or in the case of a noncircular aperture it is its maximum linear dimen-
sion. (See Problem P9.30.)

K9.6. Intensity; Two-beam interference; Multiple-beam interference; Finesse; Fabry–
Perot etalon; Diffraction; Huygens–Fresnel principle; Circular aperture; Fresnel
diffraction; Fraunhofer diffraction.

D9.10. For a uniform plane wave incident from free space onto a plane dielectric slab
of thickness and refractive index at an angle find F
and for each of the two polarizations: (a) perpendicular and (b) parallel.
Ans. (a) 6.034, 0.2113; (b) 1.226, 0.8665.

9.7 WAVE PROPAGATION IN ANISOTROPIC MEDIUM

In Section 4.2, we learned that for certain dielectric materials known as anisotropic
dielectric materials, D is not in general parallel to E and the relationship between D
and E is expressed by means of a permittivity tensor consisting of a matrix.3 * 3

It>Ii

ui = 60°,n = 4d = 5.1l0
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9.7 Wave Propagation in Anisotropic Medium 655

Let us consider an anisotropic dielectric medium characterized by the simple D
to E relationship given by

(9.122)

and having the permeability It is easy to see that the characteristic polariza-
tions for this case are all linear directed along the coordinate axes and having the
effective permittivities and for the x-, y-, and z-directed polarizations, re-
spectively.These axes are then known as the principal axes. Let us consider a uni-
form plane wave propagating along one of the principal axes, say, the z-direction.
The wave will then generally contain both x- and y-components of the fields. It
can be decomposed into two waves, one having an x-directed electric field and the
other having a y-directed electric field.These component waves travel individual-
ly in the anisotropic medium as though it is isotropic, but with different phase ve-
locities since the effective permittivities are different. In view of this, the phase
relationship between the two waves, and hence the polarization of the composite
wave, changes with distance along the direction of propagation. Also, when they
encounter a discontinuity, the component waves undergo reflection and transmis-
sion by different amounts.We shall illustrate by means of an example.

Example 9.12 Propagation of a uniform plane wave along a principal
axis of an anisotropic dielectric

Let us consider a uniform plane wave of frequency 1500 MHz incident from free space
normally onto an anisotropic perfect dielectric medium characterized

by the permittivity matrix

and We wish to discuss the reflected and transmitted waves for several cases of
incident waves.

Case 1. The incident wave has only an x-component of E as given by

Then the effective permittivity of the anisotropic medium is and from (4.146) and
(4.147), and The reflected and transmitted wave electric fields are

where we have made use of the fact that for the transmitted wave, the phase constant is
v1m0 – 4e0 = 2v1m0e0 = 2 * 10p = 20p.
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656 Chapter 9 Several Topics for Electronics and Photonics

Case 2. The incident wave has only a y-component of E as given by

Then the effective permittivity of the anisotropic medium is and from (4.146) and
(4.147), and The reflected and transmitted wave electric fields are

where we have made use of the fact that for the transmitted wave, the phase constant is

Case 3. The incident wave has both x- and y-components of E and is linearly po-
larized, as given by

Then from superposition of cases 1 and 2, the reflected and transmitted wave electric
fields are given by

Note that is linearly polarized, although along a direction making an angle to that of
the direction of polarization of The polarization of on the other hand, varies with
z, since the phase difference between the x- and y-components of the electric field is

As the transmitted wave propagates in the z-direction, changes from
zero at to at to at and so on. Thus, the polarization
changes from linear at to elliptical for becoming linear again at 
but rotated by an angle as shown in Fig. 9.25, and so on.
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FIGURE 9.25

Change in polarization versus z of the transmitted wave electric field of Example 9.12.
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9.7 Wave Propagation in Anisotropic Medium 657

The simple form of permittivity tensor given by (9.122) can be realized for
certain anisotropic crystals by an appropriate choice of the coordinate system. If
the permittivities and are all different, then the crystal is said to be
biaxial. If two of the three are equal, then it is said to be uniaxial.

To generalize the observation in Example 9.12, the phase difference between
the x- and y-components of E in the anisotropic medium can be expressed as

(9.123)

where is the free-space wavelength, and and are the refractive indices.
The result given by (9.123) is the basis behind wave plates or retardation plates.
The word retardation refers to the fact that the phase of one of the two compo-
nents lags that of the second component. If where m is an integer,
the plate is called a full-wave plate. If reflections from the surfaces of the plate
are considered to be negligible, as is usually the case, then it can be seen that the
state of polarization of the wave at the output plane of the plate is the same as
that at the input plane. For and the arrange-
ment corresponds to half-wave plate and quarter-wave plate, respectively. A half-
wave plate results in a rotation of the direction of linear polarization, as
illustrated in Fig. 9.25, which corresponds to Note that the direction has
shifted by twice the angle that it initially makes with the x- (or y-) direction. A
quarter-wave plate can transform a linearly polarized wave into a circularly po-
larized wave.

For a different example of an anisotropic medium than that characterized
by (9.122), let us consider the D to E relationship of the form

(9.124)

which is exhibited by certain materials when placed in a static magnetic field B,
where is a constant depending on the material. For a uniform plane wave
propagating in the z-direction, and we have

To find the characteristic polarizations, we set Thus,
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Solving for we get

This result corresponds to equal amplitudes of and and phase differences
of Thus, the characteristic polarizations are both circular, rotating in op-
posite senses as viewed along the z-direction.

The effective permittivities of the medium corresponding to the charac-
teristic polarizations are

(9.125)

The phase constants associated with the propagation of the characteristic waves are

(9.126)

where the subscripts and refer to and respectively.
Let us now consider the electric field of the wave to be linearly polarized

in the x-direction at that is,

(9.127)

Then we can express (9.127) as the superposition of two circularly polarized
fields having opposite senses of rotation in the xy-plane in the manner

(9.128)

The circularly polarized field inside the first pair of parentheses on the right
side of (9.128) corresponds to
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9.7 Wave Propagation in Anisotropic Medium 659

Assuming propagation in the positive z-direction, the field at an arbitrary
value of z is then given by

(9.129)

The result given by (9.129) indicates that the x- and y-components of the
field are in phase at any given value of z. Hence, the field is linearly polarized for
all values of z.The direction of polarization is, however, a function of z since 

the angle made by the field vector with the x-axis, is 
Thus, the direction of polarization rotates linearly with z at a rate of 
This phenomenon is known as Faraday rotation and is illustrated with the aid of
the sketches in Fig. 9.26. The sketches in any given column correspond to a fixed
value of z whereas the sketches in a given row correspond to a fixed value of t. At

the field is linearly polarized in the x-direction and is the superposition of
two counterrotating circularly polarized fields, as shown by the time series of
sketches in the first column. If the medium is isotropic, the two counterrotating cir-
cularly polarized fields undergo the same amount of phase lag with z and the field
remains linearly polarized in the x-direction, as shown by the dashed lines in the
second and third columns. For the case of the anisotropic medium, the two circu-
larly polarized fields undergo different amounts of phase lag with z. Hence, their
superposition results in a linear polarization making an angle with the x-direction
and increasing linearly with z, as shown by the solid lines in the second and third
columns.

The phenomenon of Faraday rotation that we have just discussed forms
the basis for a number of devices. A simple example is illustrated by the magne-
to-optical switch. The magneto-optical switch is a device for modulating a laser
beam by switching an electric current on and off. The electric current generates

z = 0,
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z � z0 > 0z � 0

t � 0

t � p
4v

z � 2z0

t �
x

y

p
2v

t � 3p
4v

t � p
v

FIGURE 9.26

For illustrating the phenomenon of Faraday rotation.
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9.7 Wave Propagation in Anisotropic Medium 661

a magnetic field that rotates the magnetization vector in a magnetic iron-garnet
film on a substrate of garnet in the plane of the film through which a light wave
passes. When it enters the film, the light wave field is linearly polarized normal to
the plane of the film. If the current in the electric circuit is off, the magnetization
vector is normal to the direction of propagation of the wave and the wave emerges
out of the film without change of polarization, as shown in Fig. 9.27(a). If the cur-
rent in the electric circuit is on, the magnetization vector is parallel to the direction
of propagation of the wave, and the light wave undergoes Faraday rotation and
emerges out of the film with its polarization rotated by 90°, as shown in Fig. 9.27(b).
After it emerges out of the film, the light beam is passed through a polarizer, which
has the property of absorbing light of the original polarization but passing through
the light of the 90°-rotated polarization. Thus, the beam is made to turn on and off
by the switching on and off of the current in the electric circuit. In this manner, any
coded message can be made to be carried by the light beam.

K9.7. Anisotropic dielectric materials; Characteristic polarizations;Wave plates; Fara-
day rotation.

D9.11. At the refractive indices of mica are given by (fast
axis) and (slow axis). Find the following: (a) the minimum thickness
of a mica sheet to act as a half-wave plate; (b) the number of wavelengths under-
gone by the wave in the thickness of the plate for the x-polarization; and (c) the
number of wavelengths undergone by the wave in the thickness of the plate for
the y-polarization.
Ans. (a) (b) 159.4; (c) 159.9.63.3 mm;

ny = 1.599
nx = 1.594l0 = 0.633 mm,

Polarization

Film

Light
Beam

Light
Beam

Magnetization
Vector

Magnetization
Vector

(a)

Polarization

Film

(b)

FIGURE 9.27

For illustrating the
principle of operation of
a magneto-optical switch.
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SUMMARY

In this chapter, we extended the treatment of the parallel-plate waveguide to
the rectangular waveguide, which is a metallic pipe of rectangular cross section.
By considering a rectangular waveguide of cross-sectional dimensions a and b,
we discussed transverse electric, or TE, modes, as well as transverse magnetic or
TM modes, and learned that although modes can include values of m or n
equal to zero, modes require that both m and n be nonzero, where m and
n refer to the number of one-half sinusoidal variations of the fields along the di-
mensions a and b, respectively. The cutoff wavelengths for the or 
modes are given by

The mode that has the largest cutoff wavelength or the lowest cutoff frequency
is the dominant mode, which here is the mode.

By placing perfect conductors in two transverse planes of a rectangular
waveguide separated by an integer multiple of one-half the guide wavelength,
we introduced the cavity resonator, which is the microwave counterpart of the
lumped parameter resonant circuit encountered in low-frequency circuit theory.
For a rectangular cavity resonator having dimensions a, b, and d, the frequencies
of oscillation for the or modes are given by

where l refers to the number of one-half sinusoidal variations of the fields along
the dimension d.

Next we introduced the cylindrical waveguide, which is a metallic pipe of
cylindrical cross section. We learned that guided modes in the cylindrical wave-
guide are characterized by field variations in the radial direction in accordance
with Bessel functions and sinusoidal variations in the angular direction. The
modes are designated as and where the first subscript refers to
the angular variations and the second to the radial variations.The mode is
the dominant mode. We also discussed the cylindrical cavity resonator formed
by placing perfect conductors in two transverse planes of the guide, as in the
case of the rectangular cavity resonator.

We then considered losses in waveguides and resonators and discussed by
means of examples the determination of the attenuation constant for a propa-
gating mode in a waveguide and the Q factor, a measure of frequency selectivity,
for an oscillating mode in a resonator.

Proceeding further, we introduced the optical fiber, which consists typi-
cally of a core and a cladding having circular cross sections. By assuming the
cladding region to extend to infinity so that the situation corresponds to one of
a cylindrical dielectric rod, we carried out the field analysis and learned that in
addition to and modes, the fields correspond to theTM 1Hz = 02TE 1Ez = 02

TE1,1

TMn,m,TEn,m

fosc =
11me  Bam

2a
b2

+ a n

2b
b2

+ a l

2d
b2

TMm,n,lTEm,n,l

TE1,0

lc =
121m>2a22 + 1n>2b22

TMm,nTEm,n

TMm,n

TEm,n
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so-called hybrid modes, designated HE and EH. For the hybrid modes, both 
and are not equal to zero; however, for the HE modes, is predominant,
whereas for the EH modes, is predominant. In fact, the dominant mode is the

mode, having no cutoff. For single-mode operation at a given wavelength
the condition is given by

where a is the radius of the core, and NA is the numerical aperture given by

and being the refractive indices of the core and the cladding, respectively.
For weak guidance the modes are designated LP, with mode
corresponding to the mode.

We then extended our discussion of dispersion in the previous chapter to
the propagation of a signal with a pulse envelope, to study the phenomenon of
pulse broadening in a dispersive medium. In particular, we considered a signal
with a Gaussian pulse envelope and derived the expression for the pulse broad-
ening parameter, which governs the pulse spread with distance in the medium.
Following a brief discussion of the types of dispersion in optical waveguides, we
derived the expression for the pulse broadening parameter for the case of ma-
terial dispersion and discussed dispersion characteristics due to material disper-
sion in fused silica.

Next we turned our attention to two related topics, interference and dif-
fraction, which are both based on superposition of waves. Although the distinc-
tion is not sharp, interference usually applies to the interaction of only a few
light beams with one another, whereas diffraction usually pertains to the super-
position of a large number, even a continuous distribution, of beams. We dis-
cussed interference by considering (a) the two-beam interference experiment of
Thomas Young and (b) multiple-beam interference due to plane wave incidence
obliquely on a plane dielectric slab, the latter arrangement constituting a model
for the Fabry–Perot etalon or interferometer. For diffraction, we introduced the
Huygens–Fresnel principle, according to which each point on a wavefront gen-
erates a spherical wave, and illustrated its application by considering the exam-
ple of a plane wave incident on a circular aperture in a screen. By investigating
diffraction along the axis of the aperture, we discussed briefly Fresnel versus
Fraunhofer diffraction.

Finally, we discussed the topic of wave propagation in an anisotropic
medium. By considering the example of a uniform plane wave that is incident
normally along a principal axis of a uniaxial crystal, thereby resulting in the char-
acteristic polarizations to be linear, we illustrated the principle behind wave
plates or retardation plates. By means of another example of an anisotropic medi-
um for which the characteristic polarizations are circular, we introduced Faraday
rotation, which is the phenomenon of rotation of the direction of polarization of

HE1,1

LP0,11n1 L n22,
n2n1

NA = 2n1
2 - n2

2

V =
2pa

l0
 1NA2 6 2.405

l0,
HE1,1

Ez

HzHz

Ez
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a linearly polarized wave as it propagates in the medium, and discussed the op-
eration of a magneto-optical switch, a device employing Faraday rotation for
modulating a light beam.

REVIEW QUESTIONS

Q9.1. Discuss the nomenclature associated with the modes of propagation in a rectan-
gular waveguide.

Q9.2. Explain the relationship between the cutoff wavelength and the dimensions of a
rectangular waveguide based on the phenomenon at cutoff.

Q9.3. Briefly outline the procedure for deriving the expressions for TE mode fields in
a rectangular waveguide.

Q9.4. Compare and contrast TE and TM modes in a rectangular waveguide.
Q9.5. What is the dominant mode? Which one of the rectangular waveguide modes is

the dominant mode?
Q9.6. Why is the dimension b of a rectangular waveguide generally chosen to be less

than or equal to one-half the dimension a?
Q9.7. What is a cavity resonator?
Q9.8. How do the dimensions of a rectangular cavity resonator determine the fre-

quencies of oscillation of the resonator?
Q9.9. Briefly outline the procedure for deriving the expressions for the TE and TM

mode fields in a cylindrical waveguide.
Q9.10. Compare and contrast TE and TM modes in a cylindrical waveguide.
Q9.11. Which one of the cylindrical waveguide modes is the dominant mode?
Q9.12. Discuss the basis for the computation of power loss associated with slightly im-

perfect conductors making up the walls of a waveguide.
Q9.13. Briefly outline the procedure for determining the attenuation constant for a

propagating mode in a waveguide with slightly imperfect conductors.
Q9.14. How is the Q factor of a resonator defined? Briefly outline the procedure for

the determination of the Q factor of a cavity resonator with slightly imperfect
conductors.

Q9.15. Provide a brief description of the optical fiber.
Q9.16. Outline the steps involved in obtaining the guidance condition for a wave

along a cylindrical dielectric rod surrounded by a cladding region extending to
infinity.

Q9.17. What are hybrid modes? Why do they arise for guided waves in an optical fiber
but not for those in a cylindrical metallic waveguide?

Q9.18. Discuss the condition for single-mode operation of an optical fiber.
Q9.19. Discuss the heuristic explanation for pulse broadening in a dispersive medium.
Q9.20. Outline the analysis for a signal with a Gaussian envelope for studying pulse

broadening in a dispersive medium.
Q9.21. Discuss the pulse broadening parameter associated with the propagation of a

signal with Gaussian envelope in a dispersive medium.
Q9.22. Briefly discuss the types of dispersion in optical waveguides.
Q9.23. Outline the derivation of the pulse broadening parameter for material dispersion.
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Q9.24. Discuss the dispersion coefficient associated with material dispersion, by consid-
ering the example of fused silica.

Q9.25. What is interference? Under what condition(s) do two waves not produce
interference?

Q9.26. Describe Young’s two-beam interference experiment.
Q9.27. Discuss the phenomenon of multiple-beam interference resulting from the inci-

dence of a uniform plane wave obliquely on a plane dielectric slab and its appli-
cation to the Fabry–Perot etalon.

Q9.28. What is diffraction? Compare and contrast the phenomenon of diffraction with
the principle of geometrical optics.

Q9.29. Describe the Huygens–Fresnel principle for the solution of a diffraction problem.
Q9.30. Using the example of diffraction along the axis of a circular aperture in a plane

screen, discuss Fresnel versus Fraunhofer diffraction.
Q9.31. When does a wave propagate in an anisotropic medium without change in its

polarization?
Q9.32. Discuss the principle behind wave plates, providing specific examples.
Q9.33. What is Faraday rotation? When does Faraday rotation take place in an

anisotropic medium?
Q9.34. Consult appropriate reference books and list three applications of Faraday rotation.
Q9.35. What is a magneto-optical switch? Discuss its operation.

PROBLEMS

Section 9.1

P9.1. Finding propagating modes and their characteristics for a rectangular waveguide.
For a rectangular waveguide of dimensions and and
having a dielectric of and find all propagating modes for

and, for each mode, find the values of and 
P9.2. Design of a square waveguide for mode propagation. Consider propaga-

tion of TM waves of frequency in an air-dielectric waveguide of
square cross section Find the range of a for which the mode
propagates with a 20% safety factor but also such that f is at least
20% below the of the next higher-order mode.

P9.3. Application of transmission-line analogy to a rectangular waveguide system. A
rectangular waveguide of dimensions and has a dielectric
discontinuity, as shown in Fig. 9.28.A wave of frequency 6000 MHz is inci-
dent on the discontinuity from the free-space side. (a) Find the SWR in the free-
space section. (b) Find the length and the permittivity of a quarter-wave section
required to achieve a match between the two media. Assume for the
quarter-wave section.

m = m0

TE1,0

b = 1.5 cma = 3 cm

fc

1f 7 1.20fc2
TM1,11b = a2.

f = 6000 MHz
TM1,1

hg.bz, lg, vpz,f = 5000 MHz,
m = m0,e = 6.25e0

b = 1.25 cm,a = 3.75 cm

3 cm

1.5 cm
y

Section 1
m0, e0

Section 2
m0, 4e0

x z
FIGURE 9.28

For Problem P9.3.
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4 cm

2 cm
y

Section 1
m0, e0

Section 2
m0, 9e0

x z

FIGURE 9.29

For Problem P9.4.

P9.4. Application of transmission-line analogy to a rectangular waveguide system. A
rectangular waveguide of dimensions and has dielectric dis-
continuity, as shown in Fig. 9.29. A wave of frequency 10,000 MHz is inci-
dent on the discontinuity form the free-space side. (a) Find the SWR in the
free-space section. (b) Find the length and the permittivity of a quarter-wave
section required to achieve a match between the two media.Assume for
the quarter-wave section.

m = m0

TM1,1

b = 2 cma = 4 cm

P9.5. Alternated-section transformer matching arrangement in a rectangular wave-
guide system. Consider the use of the alternated-section transformer arrange-
ment (see Problem P7.23) to achieve a match between two sections of a
rectangular waveguide, as shown in Fig. 9.30. Find the minimum values of and

in centimeters to achieve the desired match for mode at a frequency
f = 6000 MHz.

TE1,0l3

l2

3 cm

1.5 cm
y

Section 1
m0, e0

Section 2
m0, 4e0

Section 3
m0, e0

x z

Section 4
m0, 4e0

l2 l3

FIGURE 9.30

For Problem P9.5.

P9.6. Transparency of dielectric slab in an air–dielectric rectangular waveguide. A
dielectric slab of thickness 4 cm and permittivity exists in an air-di-
electric rectangular waveguide of dimensions and as
shown in Fig. 9.31. Find the lowest frequency for which the dielectric slab is

b = 1.5 cm,a = 3 cm
2.25e0

3 cm

1.5 cm
y

x z4 cm

m0, e0 m0, e02.25e0, m0

FIGURE 9.31

For Problem P9.6.
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transparent (i.e., allows complete transmission) for mode propagation in
the waveguide.

P9.7. Finding the frequencies of oscillation for a rectangular cavity resonator. For a
rectangular cavity resonator having the dimensions and

and filled with a dielectric of and find the five
lowest frequencies of oscillation. Identify the mode(s) for each frequency.

P9.8. Finding the frequencies of oscillation for a cubical cavity resonator. For an air-
dielectric cubical cavity resonator having the dimensions 
find the three lowest frequencies of oscillation. Identify the mode(s) for each
frequency.

Section 9.2

P9.9. Finding propagating modes and their characteristics for a cylindrical wave-
guide. For a cylindrical waveguide of radius and having a dielectric
of and find the propagating modes for a signal of frequency
5.0 GHz. For each of the propagating modes, find and tabulate the values of

and as in Table 9.4.
P9.10. Finding cutoff frequencies for a cylindrical sector waveguide. An air-dielectric

waveguide has the cross section shown in Fig. 9.32. For the radius 
determine the lowest two cutoff frequencies and identify the corresponding
modes.

a = 3 cm,

hg,fc, lc, lg, vpz,

m = m0,e = 2.25e0

a = 3 cm

d = 5 cm,a = b =

m = m0,e = 2.25e0d = 5 cm,
a = 2.5 cm, b = 2 cm,

TE1,0

P9.11. Alternated-section transformer matching arrangement in a cylindrical wave-
guide system. Consider the use of the alternated-section transformer arrange-
ment (see Problem P7.23) to achieve a match between two sections of a
cylindrical waveguide, as shown in Fig. 9.33. Find the minimum values of andl2

5 cm

z

l3l2

Section 2
m0, 4e0

Section 3
m0, e0

Section 4
m0, 4e0

Section 1
m0, e0

�

FIGURE 9.33

For Problem P9.11.

60

a

FIGURE 9.32

For Problem P9.10.
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in centimeters to achieve the desired match for mode at a frequency

P9.12. Alternated-section transformer matching arrangement in a cylindrical wave-
guide system. Repeat Problem P9.11 for mode.

P9.13. Finding the frequencies of oscillation for a cylindrical cavity resonator. A cylin-
drical cavity resonator is formed by placing two perfectly conducting sheets 4
cm apart in the cross-sectional planes of the cylindrical waveguide of Problem
P9.9. Find the five lowest frequencies of oscillation and identify the mode(s) of
oscillation for each frequency.

P9.14. A cylindrical cavity resonator with three sections. Consider modes bounc-
ing between the walls and of a cylindrical cavity resonator of radius a
with the end regions and filled with a nonmagnetic

perfect dielectric of permittivity and the region 
filled with a nonmagnetic, perfect dielectric of permittivity (a) Obtain the condi-
tion for oscillation. (b) Compute the lowest resonant frequency for 

and 

Section 9.3

P9.15. Attenuation constant for TEM wave in a parallel-plate guide with imperfect
conductors. For a parallel-plate waveguide with imperfect but good conductors
of conductivity and spacing a, show that the attenuation constant for TEM
wave propagation along the guide is Compute the value of for

copper plates, and air-dielectric.

P9.16. Attenuation constant for TE wave in a parallel-plate guide with imperfect con-
ductors. Repeat Problem P9.15 for TE wave propagation to show that is
equal to and compute the value of for the data
specified in that problem and for the mode.

P9.17. Q factor of parallel-plate resonator with imperfect conductors. For a parallel-
plate resonator consisting of two infinite, plane, perfectly conducting plates in

TE1,0

ac21fc>f22>[sdah21 - 1fc>f22]
ac

f = 5000 MHz,a = 5 cm,
ac1>sdah.

acs

e2 = e0.d = 2 cm, t = 1 cm, e1 = 4e0,
a = 5 cm,

e2.
t 6 z 6 12d - t2e1,1m = m02,

12d - t2 6 z 6 2d0 6 z 6 t
z = 2dz = 0

TEn,m

TM0,1

f = 3 GHz.
TE1,1l3

m, e

E

H z

Perfect
Conductor

z z � lz � 0

y

x

FIGURE 9.34

For Problem P9.17.
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the and planes and separated by a perfect dielectric, as shown in
Fig. 9.34, the electric and magnetic fields are given by

where (a) Show that the energy stored in the resonator per unit
area of the plates is (b) If the plates are made of imperfect but good con-
ductors, show that the Q of the resonator is (c) Compute the value of Q for
the fundamental mode of oscillation for assuming air-dielectric
and copper plates.

P9.18. Q factor of parallel-plate resonator with lossy dielectric and imperfect conduc-
tors. For the parallel-plate resonator of Problem P9.17, assume that the dielec-
tric is slightly lossy with conductivity (a) Assuming the plates to be
perfect conductors, show that the Q of the resonator is given by 
(b) If in addition to the slightly lossy dielectric, the plates are made up of imper-
fect but good conductors, show that the Q of the resonator is given by

where is as given in part (a) and is equal to as in Problem P9.17.
P9.19. Q factor for mode in a cubical cavity resonator. Obtain the expression

for the Q factor for mode in a cubical cavity resonator of sides a
and show that it is equal to 

Section 9.4

P9.20. Derivation of characteristic equation for guidance of hybrid modes in an optical
fiber. Supply the missing steps in the derivation of the characteristic equation
(9.81) for the case of from the boundary conditions 

and at 
P9.21. Consistency of guidance conditions for optical fiber modes with boundary con-

ditions. Show that the guidance conditions (9.79)–(9.81) are consistent with the
boundary conditions for r-components of the fields given by (9.77c), (9.77d),
(9.78c), and (9.78d).

P9.22. Numerical aperture of an optical fiber. Assume that a wave is incident from air
onto the core of an optical fiber at an angle as shown by the cross-sectional
view in Fig. 9.35. Show that the maximum allowable value of for guiding of
the wave in the core by total internal reflection is given by

which is defined to be the numerical aperture (NA) of the optical fiber. This
provides the physical interpretation for NA.

sin [ua]max = 2n1
2 - n2

2

ua
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r = a.E
 –
f1>H –z1 = E

 –
f2>H –z2 E
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 –
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a>4d.
TMm,n,l 1l Z 02
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P9.23. Alternate characteristic equation for guidance of hybrid modes in an optical
fiber. Supply the missing steps in the derivation of (9.86) from (9.81) by using
(9.85a)–(9.85d). [Hint: Use (9.85b) and (9.85c) for the left side of (9.81) and
(9.85a) and (9.85d) for the right side of (9.81).]

P9.24. Maximum value of core radius for single-mode propagation in an optical fiber.
For an optical fiber with core and cladding refractive indices and

find the maximum value of for single-mode operation.

Section 9.5

P9.25. Minimizing pulse half-width for a Gaussian-enveloped signal in a dispersive
medium. With reference to the result given by (9.96), show that there is an op-
timum pulse half-width for which the transmitted pulse half-width at a given
value of z is minimized. Find the expression for this optimum pulse half-width
and the corresponding transmitted pulse half-width.

P9.26. Pulse spread due to intermodal dispersion in an optical fiber. A measure of the
pulse spread due to intermodal dispersion is provided by the difference in trav-
el times between the longest ray path and the shortest ray path. Show that this
difference per unit distance along the fiber is approximately equal to 
where 

P9.27. Propagation of a signal with Gaussian envelope in an optical fiber. A signal
with a Gaussian pulse envelope of half-width 5 ps propagates in an optical fiber
made of fused silica with the characteristics shown in Fig. 9.18. If the wavelength
of the signal is obtain approximate values for (a) the time taken by the
signal to propagate 1 km and (b) the half-width of the Gaussian pulse envelope
of the signal at the distance of 1 km.

Section 9.6

P9.28. Satisfaction of certain relations by Fresnel coefficients. Verify that the Fres-
nel coefficients given in Section 8.5 satisfy (9.112a) and (9.112b) for both
cases of the polarization of (a) perpendicular and (b) parallel. Further
show that (9.112b) is consistent with conservation of power flow normal to
the dielectric slab.

P9.29. Limiting frequency resolution of Fabry–Perot etalon. Assume that the limit-
ing frequency resolution of the Fabry–Perot etalon is defined as the separa-
tion between the two frequencies at which is Then, assuming further1

2.It>Ii

Ei:

0.8 mm,

¢ = 1n1 - n22.
¢>c,

a>l0n2 = 1.40,
n1 = 1.50

ua

Claddinge2 	 e1

e2 	 e1

Core

Cladding

e1

FIGURE 9.35

For Problem P9.22.
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that this frequency difference is small compared to the frequency range,
between two adjacent peaks of the interference pattern for

fixed d and show that it is equal to 

P9.30. Boundary between Fresnel and Fraunhofer diffraction regions. The bound-
ary between the Fresnel and Fraunhofer diffraction regions is determined by
the maximum allowable departure of the phase of the waves emanating from
the aperture and arriving at the observation point (and hence, vice versa)
from that of a plane wave. For a maximum allowable departure of which
is the value used in practice, show by considering the circular aperture that
the boundary between the two regions is where D is the diameter of
the hole.

Section 9.7

P9.31. Propagation of a uniform plane wave along a principal axis of an anisotropic di-
electric. For all three cases in Example 9.12, find the expressions for the inci-
dent, reflected, and transmitted wave magnetic fields.

P9.32. Angle between E and H for plane-wave propagation in an anisotropic medium.
Show that for plane wave propagation in an anisotropic medium, the angle be-
tween E and H is not in general equal to 90°. For the anisotropic medium of Ex-
ample 9.12, find the angle between E and H at for in
case 3.

P9.33. Normal incidence of a uniform plane wave on an anisotropic perfect dielectric.
Medium 1 is free space, whereas medium 2 is a nonmagnetic

anisotropic perfect dielectric characterized by

For a uniform plane wave having the electric field

incident on the interface from medium 1, find the following: (a) the re-
flected wave electric and magnetic fields; and (b) the transmitted wave electric
and magnetic fields.

P9.34. Normal incidence of a uniform plane wave on an anisotropic perfect dielectric.
Medium 1 is free space, whereas medium 2 is a nonmagnetic

anisotropic perfect dielectric characterized by

[e] = e0 C8 2 0
2 5 0
0 0 4

S
1m = m02

1z 7 02,1z 6 02

z = 0

Ei = E0[cos 16p * 108t - 2pz2 ax + sin 16p * 108t - 2pz2 ay]

[e] = e0 C6.25 0 0
0 2.25 0
0 0 6.25

S
1m = m02,

1z 7 021z 6 02

E2 = E1 = E0z = 0+ , 

2D2>l,
p>8,

¢f>F.ut,
c>12nd cos ut2,

¢f =
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672 Chapter 9 Several Topics for Electronics and Photonics

A uniform plane wave having the electric field

is incident on the interface from medium 1. Obtain the reflected and
transmitted wave electric and magnetic fields.

P9.35. Uniform plane-wave propagation through an anisotropic perfect dielectric slab.
In Fig. 9.36, medium 2 is a nonmagnetic anisotropic perfect dielectric
characterized by

A circularly polarized uniform plane wave having the electric field

is incident normally onto medium 2 from medium 1. (a) Find the minimum value
of L, the thickness of medium 2, for which the reflected wave is linearly polar-
ized. (b) Find the reflected wave electric field for the value of L in (a). (c) Find
the minimum value of L for which there is no reflected wave.

Ei = E0[cos 16p * 109t - 2pz2 ax + sin 16p * 109t - 2pz2 ay]

[e] = e0 C4 0 0
0 16 0
0 0 4

S

1m = m02,

z = 0

Ei = E0 cos 16p * 109t - 20pz2 ax

P9.36. Faraday rotating power of anisotropic medium with circular characteristic polar-
izations. Show that for the Faraday rotating power of
the medium characterized by (9.124) is approximately equal to 

REVIEW PROBLEMS

R9.1. Number of propagating modes in a square waveguide. Show that for a wave-
guide of square cross section the number of propagating modes at a
frequency f many times the cutoff frequency of the dominant mode is approxi-
mately equal to 2pmef2a2.

1a = b2,

pgB0>1l0 2e>e02.
1b- - b +2>2gB0 � e>e0,

Medium 2
m0, [e]

Medium 3
m0, e0

Medium 1
m0, e0

(
)

L
FIGURE 9.36

For Problem P9.35.
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4 cm

2 cm
y

Section 1
m0, e0

Section 2
m0, 9e0

x z

FIGURE 9.37

For Problem R9.2.

R9.2. Minimizing SWR in a rectangular waveguide system using a quarter-wave sec-
tion. A rectangular waveguide system consisting of two sections is shown in
Fig. 9.37. For waves of frequency 5000 MHz incident from Section 1 onto
the discontinuity, find the SWR in Section 1. It is desired to minimize the SWR
in Section 1 by placing a section of and at a distance d to
the left of the discontinuity. (a) What is the length of the section? (b) Using
the Smith chart, find the minimum value of d and the value of the minimum
SWR to the left of the section.lg>4

lg>4
m = m0e = 4e0lg>4

TE1,0

R9.3. Frequencies of oscillation for a cylindrical sector cavity resonator. Consider an air-
dielectric cavity resonator made up by placing conductors in the and 
planes of the waveguide of Problem P9.10. Determine the two lowest frequencies
of oscillation for and and identify the corresponding modes.

R9.4. Attenuation constant for TM wave in a parallel-plate guide with imperfect con-
ductors. Repeat Problem P9.15 for TM wave propagation to show that is
equal to and compute the value of for the data speci-
fied in that problem and for the mode.

R9.5. Maximum value of core radius for single-mode propagation in an optical fiber.
For an optical fiber with core and cladding refractive indices and

find the maximum value of the core radius for single-mode operation
at 

R9.6. Pulse broadening due to material dispersion in a single-mode optical fiber. A
light-emitting diode at the wavelength with spectral width 25 nm excites
a single-mode fiber made of fused silica with the characteristics shown in Fig.
9.18. Find the approximate pulse width after broadening due to material disper-
sion over a distance of 1 km.

R9.7. Diffraction of a uniform plane wave by a circular disk. Consider the arrange-
ment complementary to that in Example 9.11, that is, a circular disk of radius a
having its center at the origin and illuminated by a plane wave of electric field in-
tensity Obtain the expression for the diffracted field along the axis of the disk
and show that the intensity is a constant, independent of distance from the center
of the disk. (Hint: Use the fact that for two complementary screens placed to-
gether in the same plane, no aperture exists so that no diffraction results.)

R9.8. Uniform plane wave propagation through an anisotropic perfect dielectric slab.
In Fig. 9.38, medium 2 is a nonmagnetic anisotropic perfect dielectric
characterized by

[e] = e0C8 2 0
2 5 0
0 0 9

S

1m = m02,

E0.

0.9 mm

l0 = 1.2 mm.
n2 = 3.5,

n1 = 3.503

TM1,0

ac2>[sdah21 - 1fc>f22]
ac

d = 5 cm,a = 3 cm

z = dz = 0
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For a uniform plane wave with the electric field

incident on medium 2 normally on medium 1, find the following: (a) the re-
flected wave electric and magnetic fields if the thickness l of medium 2 is 
and (b) the minimum value of l for which medium 2 is transparent for the inci-
dent wave.

1
4 m

Ei = E0 ax cos 16p * 108t - 2pz2

Medium 2
m0, [e]

Medium 3
m0, e0

Medium 1
m0, e0

(
)

l
FIGURE 9.38

For Problem R9.8.
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