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Guided Wave Principles
for Electronics and
Optoelectronics

In Chapter 6, we introduced the transmission line and studied propagation and
bouncing of waves along a line, applicable to digital electronics. We devoted
Chapter 7 to sinusoidal steady-state analysis of waves on transmission lines. We
learned that wave propagation along a transmission line is characterized by the
waves sliding parallel to its conductors, with electric and magnetic fields entire-
ly transverse to the direction of propagation, and that these waves are known as
transverse electromagnetic (TEM) waves.

Another kind of waveguiding mechanism is one in which the waves
bounce obliquely between the parallel planes as they progress along the struc-
ture, resulting in transverse electric (TE) and transverse magnetic (TM) waves.
The arrangement is commonly referred to as a waveguide, although the trans-
mission line is also a waveguide. To continue our study of guided waves for
electronics, we introduce in this chapter TE and TM waves supported by plane
conductors, as in a parallel-plate transmission line, as well as those supported
by a plane dielectric slab, without the conductors. The latter arrangement is
particularly applicable to optoelectronics.

We first consider the parallel-plate waveguide, consisting of two parallel
plane conductors. To do this, we make use of the superposition of two uniform
plane waves propagating at an angle to each other. Hence, we begin the chapter
with a discussion of uniform plane wave propagation in an arbitrary direction
relative to the coordinate axes.

8.1 UNIFORM PLANE WAVE PROPAGATION IN AN ARBITRARY
DIRECTION

In Chapter 3, we introduced the uniform plane wave propagating in the z-direction
by considering an infinite plane current sheet lying in the xy-plane. If the current
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528 Chapter 8 Guided Wave Principles for Electronics and Optoelectronics

sheet lies in a plane making an angle to the xy-plane, the uniform plane wave
would then propagate in a direction different from the z-direction.Thus, let us first
consider the two-dimensional case of a uniform plane wave propagating in a per-
fect dielectric medium in the and making an angle with the negative
x-axis, as shown in Fig. 8.1. Let the electric field of the wave be entirely in the y-di-
rection. The magnetic field would then be directed as shown in the figure so that

points in the 
We can write the expression for the electric field of the wave as

(8.1)

where is the phase constant, that is, the rate of change of phase with
distance along the for a fixed value of time. From the construction
of Fig. 8.2(a), however, we have

(8.2)z¿ = -x cos u + z sin u
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Uniform plane wave propagating in the lying in the xz-plane and making an
angle with the negative x-axis.u
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FIGURE 8.2

Constructions pertinent to the formulation of the expressions for the fields of the uniform
plane wave of Fig. 8.1.
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8.1 Uniform Plane Wave Propagation in an Arbitrary Direction 529

so that

(8.3)

where and are the phase constants in the positive
x- and positive z-directions, respectively.

We note that and are less than the phase constant along the
direction of propagation of the wave.This can also be seen from Fig. 8.1 in which
two constant phase surfaces are shown by dashed lines passing through the
points O and A on the Since the distance along the x-direction between
the two constant phase surfaces (i.e., the distance OB) is equal to the
rate of change of phase with distance along the x-direction is equal to

The minus sign for signifies that, insofar as the x-axis is concerned, the wave
is progressing in the negative x-direction. Similarly, since the distance along the
z-direction between the two constant phase surfaces (i.e., the distance OC) is
equal to the rate of change of phase with distance along the z-direc-
tion is equal to

Since the wave is progressing along the positive z-direction, is positive. We
further note that

(8.4)

and that

(8.5)

where is the unit vector directed along the as shown in Fig. 8.2(b).
Thus, the vector

(8.6)

defines completely the direction of propagation and the phase constant along
the direction of propagation. Hence, the vector is known as the propagation
vector.

The expression for the magnetic field of the wave can be written as

(8.7)H = H0 cos 1vt - bz¿2

B

B = 1-b cos u2ax + 1b sin u2az = bxax + bzaz

z¿-direction,az¿

-cos u ax + sin u az = az
œ

b2
x + b2

z = 1-b cos u22 + 1b sin u22 = b2

bz

b  
OA

OC
=
b1OA2

OA>sin u
= b sin u

OA>sin u,

bx

b  
OA

OB
=
b1OA2

OA>cos u
= b cos u

OA>cos u,
z¿-axis.

b,ƒ bz ƒƒ bx ƒ

bz = b sin ubx = -b cos u

 = E0 cos 1vt - bx x - bz z2 ay

 = E0 cos [vt - 1-b cos u2x - 1b sin u2z] ay

 E = E0 cos [vt - b1-x cos u + z sin u2] ay
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530 Chapter 8 Guided Wave Principles for Electronics and Optoelectronics

where

(8.8)

since the ratio of the electric field intensity to the magnetic field intensity of a
uniform plane wave is equal to the intrinsic impedance of the medium. From the
construction in Fig. 8.2(b), we observe that

(8.9)

Thus, using (8.9) and substituting for from (8.2), we obtain

(8.10)

Generalizing the foregoing treatment to the case of a uniform plane wave
propagating in a completely arbitrary direction in three dimensions, as shown
in Fig. 8.3, and characterized by phase constants and in the x-, y-, andbzbx, by,

 = -  

E0

h
 1sin u ax + cos u az2 cos [vt - bx x - bz z]

 H = H01-sin u ax - cos u az2 cos [vt - b1-x cos u + z sin u2]
z¿

H0 = H01-sin u ax - cos u az2

ƒ H0 ƒ =
E02m>e =

E0

h

Generalization
to three 
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FIGURE 8.3

The various quantities associated with a uniform plane wave propagating in an
arbitrary direction.
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8.1 Uniform Plane Wave Propagation in an Arbitrary Direction 531

z-directions, respectively, we can write the expression for the electric field as

(8.11)

where

(8.12)

is the propagation vector,

(8.13)

is the position vector, and is the phase at the origin at We recall that
the position vector is the vector drawn from the origin to the point (x, y, z) and
hence has components x, y, and z along the x-, y-, and z-axes, respectively. The
expression for the magnetic field of the wave is then given by

(8.14)

where

(8.15)

Since E, H, and the direction of propagation are mutually perpendicular to each
other, it follows that

(8.16a)

(8.16b)

(8.16c)

In particular, should be directed along the propagation vector as il-
lustrated in Fig. 8.3, so that is directed along We can therefore com-
bine the facts (8.16) and (8.15) to obtain

(8.17)

 =
bab � E0

vm
=
B � E0

vm

 H0 =
ab � E0

h
=

ab � E02m>e =
v2me ab � E0

vm

H0.B � E0

B,E � H

 E0
# H0 = 0

 H0
# B = 0

 E0
# B = 0

ƒ H0 ƒ =
ƒ E0 ƒ
h

H = H0 cos 1vt - B # r + f02

t = 0.f0

r = xax + yay + zaz

B = bxax + byay + bzaz

 = E0 cos 1vt - B # r + f02
 = E0 cos [vt - 1bxax + byay + bzaz2 # 1xax + yay + zaz2 + f0]

 E = E0 cos 1vt - bx x - by y - bz z + f02
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532 Chapter 8 Guided Wave Principles for Electronics and Optoelectronics

where is the unit vector along Thus,

(8.18)

Returning to Fig. 8.3, we can define several quantities pertinent to the uni-
form plane wave propagation in an arbitrary direction. The apparent wave-
lengths and along the coordinate axes x, y, and z, respectively, are the
distances measured along those respective axes between two consecutive con-
stant phase surfaces between which the phase difference is as shown in the
figure, at a fixed time. From the interpretations of and as being the
phase constants along the x-, y-, and z-axes, respectively, we have

(8.19a)

(8.19b)

(8.19c)

We note that the wavelength along the direction of propagation is related to
and in the manner

(8.20)

The apparent phase velocities and along the x-, y-, and z-axes, re-
spectively, are the velocities with which the phase of the wave progresses with
time along the respective axes. Thus,

(8.21a)

(8.21b)

(8.21c) vpz =
v

bz
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v
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8.1 Uniform Plane Wave Propagation in an Arbitrary Direction 533

The phase velocity along the direction of propagation is related to 
and in the manner

(8.22)

The apparent wavelengths and phase velocities along the coordinate axes
are greater than the actual wavelength and phase velocity, respectively, along
the direction of propagation of the wave. This fact can be understood physically
by considering, for example, water waves in an ocean striking the shore at an
angle. The distance along the shoreline between two successive crests is greater
than the distance between the same two crests measured along a line normal to
the orientation of the crests. Also, to keep pace with a particular crest an ob-
server has to run faster along the shoreline than in a direction normal to the ori-
entation of the crests. We shall now consider an example.

Example 8.1 Verification of properties of uniform plane wave
propagating in free space

Let us consider a 30-MHz uniform plane wave propagating in free space and given by
the electric field vector

We wish to verify the properties and find the magnetic field vector H and other parame-
ters associated with the wave.

Comparing the given expression for E with the general expression (8.11), we have

Hence, (8.16a) is satisfied; is perpendicular to 

 l =
2p
b

=
2p

0.2p
= 10 m

 b = ƒB ƒ = 0.05p ƒ 3ax - 13ay + 2az ƒ = 0.05p29 + 3 + 4 = 0.2p

B.E0

 = 0.25p13 - 32 = 0

 B # E0 = 0.05p13ax - 13ay + 2az2 # 51ax + 13ay2
 B = 0.05p13ax - 13ay + 2az2

 = 0.05p13ax - 13ay + 2az2 # 1xax + yay + zaz2
 B # r = 0.05p13x - 13y + 2z2

 E0 = 51ax + 13ay2

E = 51ax + 13ay2 cos [6p * 107t - 0.05p13x - 13y + 2z2] V>m
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RaoCh08v3.qxd  12/18/03  5:10 PM  Page 533



534 Chapter 8 Guided Wave Principles for Electronics and Optoelectronics

This does correspond to a frequency of or 30 MHz, in free space. The
direction of propagation is along the unit vector

From (8.17),

Thus,

To verify the expression for H just derived, we note that

Hence, (8.16b), (8.16c), and (8.15) are satisfied.
Proceeding further, we find that

 bz = 0.05p * 2 = 0.1p

 by = -0.05p * 13 = -0.0513p

 bx = 0.05p * 3 = 0.15p

 =
10

1>12p
= 120p = h0

 
ƒ E0 ƒ
ƒ H0 ƒ

=
5 ƒ ax + 13ay ƒ
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48p
 1-13ax + ay + 213az2
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48p
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1

48p
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1

48p
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96p
 3 ax ay az

3  -13 2
1 13 0

3
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1
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=

3
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4
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1
2
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13 * 1082>10 Hz,
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8.1 Uniform Plane Wave Propagation in an Arbitrary Direction 535

We then obtain

Finally, to verify (8.20) and (8.22), we note that

and

K8.1. Uniform plane wave; Propagation in an arbitrary direction; Propagation vector;
Apparent wavelengths; Apparent phase velocities.

D8.1. For each of the following cases of a uniform plane wave propagating in free
space, find the frequency f: (a) wavelength along the direction of propagation
of the wave is 2 m; (b) the propagation vector is rad/m; and
(c) the apparent wavelengths along three mutually perpendicular directions
are 1 m, 1 m, and 2 m.
Ans. (a) 150 MHz; (b) 225 MHz; (c) 450 MHz.

D8.2. For a uniform plane wave of frequency 150 MHz propagating away from the
origin into the first octant in a nonmagnetic perfect dielectric medi-
um of the apparent wavelengths along the x- and y-directions are
found to be and respectively. Find (a) the phase constant along the
x-direction; (b) the apparent wavelength along the z-direction; (c) the apparent
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FIGURE 8.4

Superposition of two uniform plane waves propagating symmetrically with respect to
the z-axis.

phase velocity along the direction of the unit vector and
(d) the equation of the plane if the source of the wave is an infinite plane sheet of
uniform current density passing through the origin.
Ans. (a) (b) 2 m; (c) (d)

8.2 TE AND TM WAVES IN A PARALLEL-PLATE WAVEGUIDE

In the preceding section, we introduced uniform plane wave propagation in an
arbitrary direction. Let us now consider the superposition of two uniform plane
waves propagating symmetrically with respect to the z-axis, as shown in Fig. 8.4,
and having the electric fields entirely in the y-direction as given by

(8.23a)

(8.23b)

where with and being the permittivity and the permeability, re-
spectively, of the medium. The corresponding magnetic fields are given by

(8.24a)

(8.24b) H2 =
E0

2h
 1-sin u ax + cos u az2 cos 1vt - bx cos u - bz sin u2

 H1 =
E0

2h
 1sin u ax + cos u az2 cos 1vt + bx cos u - bz sin u2

meb = v1me, =
E0

2
 cos 1vt - bx cos u - bz sin u2 ay

 E2 =
E0

2
  cos 1vt - B2

# r2 ay

 = -  

E0

2
  cos 1vt + bx cos u - bz sin u2 ay

 E1 = -  

E0

2
  cos 1vt - B1

# r2 ay

4x + 3y + 5z = 0.3.25 * 108 m>s;0.8p rad>m;

1
1313ax - 4ay + 12az2;

TE waves
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8.2 TE and TM Waves in a Parallel-Plate Waveguide 537

where The electric and magnetic fields of the superposition of the
two waves are given by

(8.25a)

(8.25b)

In view of the factors and for the x-dependence
and the factors and for the z-dependence,
the composite fields have standing wave character in the x-direction and traveling
wave character in the z-direction. Thus, we have standing waves in the x-direction
moving bodily in the z-direction, as illustrated in Fig. 8.5, by considering the elec-
tric field for two different times. In fact, we find that the Poynting vector is given by

(8.26)

The time-average Poynting vector is given by

(8.27)

 =
E0

2

2h
   sin u sin2 1bx cos u2 az

  +
E0

2

4h
   cos u sin 12bx cos u28sin 21vt - bz sin u29 ax

 8P9 =
E0

2

h
  sin u sin2 1bx cos u28sin2 1vt - bz sin u29 az

  +
E0

2

4h
  cos u sin 12bx cos u2 sin 21vt - bz sin u2 ax

 =
E0

2

h
  sin u sin2

 1bx cos u2 sin2
 1vt - bz sin u2 az

 = -Ey Hxaz + Ey Hzax

 P = E � H = Eyay � 1Hxax + Hzaz2

cos 1vt - bz sin u2sin 1vt - bz sin u2 cos 1bx cos u2sin 1bx cos u2

  +
E0

h
  cos u cos 1bx cos u2 cos 1vt - bz sin u2 az

 = -  

E0

h
 sin u sin 1bx cos u2 sin 1vt - bz sin u2 ax

  + cos 1vt - bz sin u - bx cos u2] az

  +
E0

2h
  cos u 1cos 1vt - bz sin u + bx cos u2

   -  cos 1vt - bz sin u - bx cos u2] ax

 =
E0

2h
 sin u [cos 1vt - bz sin u + bx cos u2

 H = H1 + H2

 = E0 sin 1bx cos u2 sin 1vt - bz sin u2 ay

   -  cos 1vt - bz sin u - bx cos u2] ay

 = -  

E0

2
 [cos 1vt - bz sin u + bx cos u2

 E = E1 + E2

h = 1m>e.
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FIGURE 8.5

Standing waves in the x-direction moving bodily in the z-direction.

Thus, the time-average power flow is entirely in the z-direction, thereby verify-
ing our interpretation of the field expressions. Since the composite electric field
is directed entirely transverse to the z-direction, that is, the direction of time-
average power flow, whereas the composite magnetic field is not, the composite
wave is known as the transverse electric, or TE, wave.
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8.2 TE and TM Waves in a Parallel-Plate Waveguide 539

From the expressions for the fields for the TE wave given by (8.25a) and
(8.25b), we note that the electric field is zero for sin equal to zero, or

(8.28)

where

Thus, if we place perfectly conducting sheets in these planes, the waves will
propagate undisturbed, as though the sheets were not present, since the bound-
ary condition that the tangential component of the electric field be zero on the
surface of a perfect conductor is satisfied in these planes. The boundary condi-
tion that the normal component of the magnetic field be zero on the surface of
a perfect conductor is also satisfied since is zero in these planes.

If we consider any two adjacent sheets, the situation is actually one of uni-
form plane waves bouncing obliquely between the sheets, as illustrated in Fig. 8.6
for two sheets in the planes and thereby guiding the
wave, and hence the energy, in the z-direction, parallel to the plates.Thus, we have
a parallel-plate metallic waveguide, as compared to the parallel-plate transmission
line in which the uniform plane wave slides parallel to the plates. We note from
the constant phase surfaces of the obliquely bouncing wave shown in Fig. 8.6 that

is simply one-half of the apparent wavelength of that wave in the x-di-
rection, that is, normal to the plates.Thus, the fields have one-half apparent wave-
length in the x-direction. If we place the perfectly conducting sheets in the planes

and the fields will then have m number of one-half ap-
parent wavelengths in the x-direction between the plates. The fields have no
variations in the y-direction. Thus, the fields are said to correspond to 
modes, where the subscript m refers to the x-direction, denoting m number of
one-half apparent wavelengths in that direction, and the subscript 0 refers to

TEm,0

x = ml>12 cos u2,x = 0

l>12 cos u2

x = l>12 cos u2,x = 0

Hx

l =
2p
b

=
2p

v2me =
1

f2me
x = ;  

mp

b cos u
= ;  

ml

2 cos u ’
 m = 0, 1, 2, 3, Á

bx cos u = ;mp, m = 0, 1, 2, 3, Á

1bx cos u2

Parallel-plate
waveguide

l

2 cos u
x =

x � 0

u u u u

x

z
y

u uu u

l

2

FIGURE 8.6

Uniform plane waves bouncing obliquely between two parallel plane perfectly conducting
sheets.
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540 Chapter 8 Guided Wave Principles for Electronics and Optoelectronics

(a)

x � 0

x � a

(c)

(e)

(b)

(d)

(f)

FIGURE 8.7

For illustrating the phenomenon of cutoff in a parallel-plate waveguide.

the y-direction, denoting zero number of one-half apparent wavelengths in
that direction.

Let us now consider a parallel-plate waveguide with perfectly conducting
plates situated in the planes and that is, having a fixed spacing a
between them, as shown in Fig. 8.7(a). Then, for waves guided by the
plates, we have from (8.28),

or

(8.29)

Thus, waves of different wavelengths (or frequencies) bounce obliquely be-
tween the plates at different values of the angle For very small wavelengths
(very high frequencies), is small, and the waves sim-
ply slide between the plates as in the case of the transmission line, as shown in
Fig. 8.7(b). As increases ( f decreases), increases, decreases, and the
waves bounce more and more obliquely, as shown in Figs. 8.7(c)–(e). Eventu-
ally, becomes equal to 2a/m, for which and the waves sim-
ply bounce back and forth normally to the plates, as shown in Fig. 8.7(f),
without any feeling of being guided parallel to the plates. For 

and has no real solution, indicating that propagation
does not occur for these wavelengths in the waveguide mode. This condition is
known as the cutoff condition.

uml>2a 7 1, cos u 7 1,
l 7 2a>m,

cos u = 1, u = 0°,l

uml>2al

cos u L 0, u L 90°,ml>2a
u.

cos u =
ml

2a
=

m

2a
  

1
f1me

a =
ml

2 cos u

TEm,0

x = a,x = 0
Cutoff
phenomenon

RaoCh08v3.qxd  12/19/03  12:41 PM  Page 540



8.2 TE and TM Waves in a Parallel-Plate Waveguide 541

The cutoff wavelength, denoted by the symbol is given by

(8.30)

This is simply the wavelength for which the spacing a is equal to m number of
one-half wavelengths. Propagation of a particular mode is possible only if is
less than the value of for that mode. The cutoff frequency is given by

(8.31)

Propagation of a particular mode is possible only if f is greater than the value of 
for that mode. Consequently, waves of a given frequency f can propagate in all
modes for which the cutoff wavelengths are greater than the wavelength or the
cutoff frequencies are less than the frequency. Note that since the cutoff phenom-
enon corresponds to the waves bouncing back and forth normal to the plates, that
is, transverse to the guide axis, the expressions for the cutoff wavelength and fre-
quency can be obtained directly from considerations of transverse resonance.

Substituting for 2a/m in (8.29), we have

(8.32a)

(8.32b)

(8.32c)

(8.32d)

We see from (8.32d) that the phase constant along the z-direction, that is,
is real for and imaginary for Since

an imaginary value of the phase constant does not correspond to wave propaga-
tion. This once again explains the cutoff phenomenon. We now define the guide
wavelength, to be the wavelength in the z-direction, that is, along the guide.
This is given by

(8.33)lg =
2p
bz

=
2p
b sin u

=
l21 - 1l>lc22 =

l21 - 1fc>f22

lg,

 = e ; ƒbz ƒz cos vt

 = Re1e ; ƒbz ƒzejvt2
 cos 1vt < j ƒ bz ƒ z2 = Re ej1vt < j ƒbz ƒz2

l 7 lc.l 6 lcbz1=  b sin u2,

 b sin u =
2p
l

  B1 - a l
lc
b2

 b cos u =
2p
l

  
l

lc
=

2p
lc

=
mp

a

 sin u = 21 - cos2 u = B1 - a l
lc
b2

= B1 - afc

f
b2

 cos u =
l

lc
=

fc

f

lc

fc

fc =
m

2a2melc

l

lc =
2a
m

lc,
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This is simply the apparent wavelength, in the z-direction, of the obliquely
bouncing uniform plane waves. The phase velocity along the guide axis, which is
simply the apparent phase velocity, in the z-direction, of the obliquely bouncing
uniform plane waves, is

(8.34)

Finally, substituting (8.32a)–(8.32d) in the field expressions (8.25a) and
(8.25b), we obtain

(8.35a)

(8.35b)

These expressions for the mode fields in the parallel-plate waveguide do
not contain the angle They clearly indicate the standing-wave character of the
fields in the x-direction, having m one-half sinusoidal variations between the
plates. We shall now consider an example.

Example 8.2 Finding propagating modes in an air–dielectric
parallel-plate waveguide

Let us assume the spacing a between the plates of an air-dielectric parallel-plate wave-
guide to be 5 cm and investigate the propagating modes for 

From (8.30), the cutoff wavelengths for modes are given by

This result is independent of the dielectric between the plates. Since the medium be-
tween the plates is free space, the cutoff frequencies for the modes are

For the propagating modes are 
and 

For each propagating mode, we can find and by using (8.32a), (8.33), and
(8.34), respectively. Values of these quantities are listed in the following:

Mode

10 3000 72.54 3.145

5 6000 53.13 3.75

3.33 9000 25.84 6.882 6.882 * 108TE3,0

3.75 * 108TE2,0

3.145 * 108TE1,0

vpz 1m>s2lg 1cm2u 1deg2fc 1MHz2lc 1cm2

vpzu, lg,
TE3,01fc = 9 * 109 Hz2.TE2,01fc = 6 * 109 Hz2,

TE1,01fc = 3 * 109 Hz2,f = 10,000 MHz = 1010 Hz,

fc =
3 * 108

lc
=

3 * 108

0.1>m = 3m * 109 Hz

TEm,0

lc =
2a

m
=

10
m

  cm =
1.0
m

  m

TEm,0

f = 10,000 MHz.TEm,0

TEm, 0

u.
TEm,0

 +
E0

h
  
l

lc
  cos ampx

a
b  cos 1vt - bzz2 az

 H = -  

E0

h
  
l

lg
 sin ampx

a
b  sin 1vt - bzz2 ax

 E = E0 sin ampx
a
b  sin 1vt - bzz2 ay

vpz =
v

bz
=

v

b sin u
=

vp21 - 1l>lc22 =
vp21 - 1fc>f22
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Field
expressions
for 
modes

TE m,0
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We have thus far considered transverse electric or TE waves in a parallel-
plate waveguide. In a similar manner, it is possible to have propagation of trans-
verse magnetic or TM waves, so called because the magnetic field is directed
entirely transverse to the direction of time-average power flow, whereas the
electric field is not.The field expressions for TM waves can be obtained by start-
ing with two uniform plane waves having their magnetic fields entirely in the y-
direction, and proceeding in a manner similar to the development of TE waves.
However, we shall not pursue that approach. Instead, we shall, by analogy with
(8.35a), write the expression for the magnetic field of the TM wave and then de-
rive the electric field by using one of Maxwell’s curl equations.

Thus, assuming the guide to be made up of parallel plates in the and
planes, and writing the expression for the magnetic field of the 

wave and using

we obtain the fields for the TM modes to be

(8.36a)

(8.36b)

Note that the x-variation of is cosinusoidal, which leads to sinusoidal varia-
tion for so that the boundary condition of zero tangential electric field is sat-
isfied on the two plates.The parameters and in (8.36a) and (8.36b) and the
other parameters and for the TM modes are the same as those for the TE
modes, given by (8.30), (8.33), (8.31), and (8.34), respectively.

We have in this section introduced the principle of metallic waveguides by
considering the parallel-plate waveguide. In practice, however, metallic wave-
guides are generally made up of a single conductor having rectangular or circu-
lar cross section. We shall defer the consideration of rectangular metallic
waveguides to Section 9.1 and discuss in Section 8.4 the important phenomenon
of dispersion, characteristic of propagation in parallel-plate as well as rectangu-
lar and circular waveguides and leading to the concept of group velocity.

But first we shall conclude this section with a brief description of a natu-
rally occurring waveguide, although of spherical geometry. This is the Earth-
ionosphere waveguide. The ionosphere is a region of the upper atmosphere
extending from approximately 50 km to more than 1000 km above Earth. In this
region, the constituent gases are ionized, mostly because of ultraviolet radiation
from the Sun, thereby resulting in the production of positive ions and electrons
that are free to move under the influence of the fields of a wave incident on the

vpzfc

lglc

Ez

Hy

 +
l

lc
 hH0 sin ampx

a
b  cos 1vt - bzz2 az

 E =
l

lg
 hH0 cos ampx

a
b  sin 1vt - bzz2 ax

 H = H0 cos ampx
a
b  sin 1vt - bzz2 ay

� � H =
0D
0t

TMm,0x = a
x = 0
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TM waves

Field
expressions
for 
modes

TM m,0

Earth-
ionosphere
waveguide
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544 Chapter 8 Guided Wave Principles for Electronics and Optoelectronics

medium. The positive ions are, however, heavy compared to the electrons, and
hence they are relatively immobile.The electron motion produces a current that
influences the wave propagation. The electron density in the ionosphere exists
in several layers known as the D, E, and F layers, in which the ionization
changes with the hour of the day, the season, and the sunspot cycle. However,
for the purpose of our discussion, it is sufficient to assume that the electron den-
sity increases continuously from zero at the lower boundary, reaching a peak at
some height, typically lying between 250 and 350 km, and then decreases con-
tinuously, as shown in Fig. 8.8(a). The wave propagation is influenced by the
electrons in such a manner that waves of very low frequencies are reflected at
the base. As the frequency is increased, the waves penetrate deeper into the re-
gion but still return to Earth after reflection. When their frequency exceeds a
certain value, typically between 20 and 40 MHz depending on the angle of inci-
dence, they penetrate through the maximum of the layer and hence do not re-
turn to Earth. Thus, for frequencies in the VLF range and lower, the lower
boundary of the ionosphere and Earth form a waveguide, thereby permitting a
waveguide mode of propagation, as shown in Fig. 8(b).

K8.2. Transverse electric wave; Transverse magnetic wave; Parallel-plate waveguide;
Cutoff frequency; Cutoff wavelength; Guide wavelength.

D8.3. The dimension a of an air-dielectric parallel-plate waveguide is 3 cm. Find the
values of and for each of the following cases: (a)
mode; (b) mode; and (c) mode.
Ans. (a) 33.56°, 9.045 cm; (b) 70.53°, 2.121 cm; (c) 48.19°, 2.683 cm.

D8.4. TE waves are excited in an air-dielectric parallel-plate waveguide having the
plates in the and planes by setting up at its input a field
distribution having

E = 40 sin3 20px sin 2 * 1010pt ay V>m

z = 0x = 5 cmx = 0

f = 15,000 MHz, TE2,0f = 15,000 MHz, TE1,0

f = 6000 MHz, TE1,0lgu

Electron Density

(a) (b)

Height

Ionosphere

Earth

FIGURE 8.8

(a) Variation of electron density with height for a simplified ionosphere. (b)
Depiction of waveguide mode of propagation in the Earth-ionosphere waveguide.
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8.3 Transmission-Line Equivalents 545

Noting that the electric field of a propagating mode is of the form
given by (9.35a), find for each of the following modes: (a) (b)
and (c)
Ans. (a) 30 V/m; (b) 0 V/m; (c)

8.3 TRANSMISSION-LINE EQUIVALENTS

Let us now consider reflection and transmission at a dielectric discontinuity in a
parallel-plate guide, as shown in Fig. 8.9. If a TE or TM wave is incident on the
junction from section 1, then it will set up a reflected wave into section 1 and a
transmitted wave into section 2, provided that mode propagates in that section.
The fields corresponding to these incident, reflected, and transmitted waves
must satisfy the boundary conditions at the dielectric discontinuity.

Considering first TE waves and denoting the incident, reflected, and trans-
mitted wave fields by the subscripts i, r, and t, respectively, we have from the
continuity of the tangential component of E at a dielectric discontinuity,

(8.37a)

and from the continuity of the tangential component of H at a dielectric dis-
continuity,

(8.37b)

We now define the guide characteristic impedance, of section 1 as

(8.38)

Recognizing that we note that is simply the ratio of the
transverse components of the electric and magnetic fields of the wave
that give rise to time-average power flow down the guide. From (8.35a) and
(8.35b) applied to section 1, we have

(8.39)hg1 = h1 

lg1

l1
=

h121 - 1l1>lc22 =
h121 - 1fc1>f22

TEm,0

hg1ay � 1-ax2 = az,

hg1 =
Eyi

-Hxi

hg1,

Hxi + Hxr = Hxt at z = 0

Eyi + Eyr = Eyt at z = 0

-10 V>m.
TE3,0.

TE2,0;TE1,0;E0

TEm,0

Parallel-plate
waveguide
discontinuity

x � 0

z � 0
x � a

Section 1 Section 2
Incident

Reflected

Reflected

e1, m1

zy

x

FIGURE 8.9

For consideration of reflection and transmission at a dielectric discontinuity in a
parallel-plate waveguide.
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546 Chapter 8 Guided Wave Principles for Electronics and Optoelectronics

The guide characteristic impedance is analogous to the characteristic imped-
ance of a transmission line, if we recognize that and are analogous to

and respectively. In terms of the reflected wave fields, it then follows
that

(8.40)

This result can also be seen from the fact that for the reflected wave, the power
flow is in the negative z-direction, and since is equal to

For the transmitted wave fields, we have

(8.41)

where

(8.42)

is the guide characteristic impedance of section 2.
Using (8.38), (8.40), and (8.41), (8.37b) can be written as

(8.43)

Solving (8.37a) and (8.43), we get

or the reflection coefficient at the junction is given by

(8.44)

This expression for the reflection coefficient is the same as that for the
voltage reflection coefficient at the load of a lossless transmission line of char-
acteristic impedance terminated by a resistive load It is also the same
as the voltage reflection coefficient at the junction between two transmission
lines 1 and 2 having the characteristic impedances and respectively, as
shown in Fig. 8.10, where line 2 is infinitely long and hence its input impedance
is equal to Thus, insofar as reflection and transmission at the discontinuity
are concerned, each waveguide section can be replaced by a transmission line

hg2.

hg2,hg1

hg2.hg1

≠ =
Eyr

Eyi
=
hg2 - hg1

hg2 + hg1

Eyi a1 -
hg2

hg1
b + Eyr a1 +

hg2

hg1
b = 0

Eyi

hg1
-

Eyr

hg1
=

Eyt

hg2

hg2 = h2 

lg2

l2
=

h221 - 1l2>lc22 =
h221 - 1fc2>f22

Eyt

-Hxt
= hg2

Eyr>Hxr.
ay � ax = -az, hg1

hg1 = - a Eyr

-Hxr
b =

Eyr

Hxr

I + ,V +
-HxiEyi
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8.3 Transmission-Line Equivalents 547

of characteristic impedance equal to the guide characteristic impedance given
for the TE modes by

(8.45)

It should be noted that unlike the characteristic impedance of a lossless line,
which is a constant independent of frequency, the guide characteristic impedance
of the lossless waveguide is a function of the frequency and the mode of propaga-
tion. Before considering TM modes, it should be pointed out that the power re-
flection coefficient is so that the reflected power is times the incident power
and the transmitted power into section 2 is times the incident power.

Turning now to TM waves, we observe from (8.36a) and (8.36b) that the
ratio of the transverse electric field component to the transverse magnetic
field component which together are responsible for time-average power
flow in the z-direction, is equal to and hence the guide characteristic im-
pedance for TM waves is given by

(8.46)

Thus, the transmission-line equivalent for reflection and transmission of TM
waves at the waveguide discontinuity is the same as in Fig. 8.10, except that 
and follow from (8.46). We shall now consider an example.

Example 8.3 Parallel-plate waveguide discontinuity

Let us consider the parallel-plate waveguide discontinuity shown in Fig. 8.11. We wish to
find the power reflection coefficients for and waves of frequency

incident on the junction from the free-space side.
For the mode or for the mode, independent of the

dielectric. For 

 l2 = wavelength on the dielectric side =
3 * 10819 * 5 * 109 =

6
3

= 2 cm

 l1 = wavelength on the free space side =
3 * 108

5 * 109 = 6 cm

f = 5000 MHz,
lc = 2a = 10 cm,TM1,0TE1,0

f = 5000 MHz
TM1,0TE1,0

hg2

hg1

[hg] TM = h21 - 1fc>f22

hl>lg,
Hy,

Ex

11 - ≠22 ≠2≠2

[hg] TE =
h21 - 1fc>f22

Line 1

hg1

Line 2

hg2

z � 0 z

FIGURE 8.10

Transmission-line equivalent of
parallel-plate waveguide
discontinuity.
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548 Chapter 8 Guided Wave Principles for Electronics and Optoelectronics

5 
cm e0, m0 9e0, m0

z � 0

FIGURE 8.11

For illustrating the computation of reflection and
transmission coefficients at a parallel-plate
waveguide discontinuity.

Since in both sections, and modes propagate in both sections. Thus,
for the mode,

For the mode,

K8.3. Parallel-plate waveguide discontinuity; Guide characteristic impedance; Trans-
mission-line equivalent.

D8.5. For a parallel-plate waveguide of spacing and filled with a dielectric of
and find the values of the guide characteristic impedance for

each of the following cases: (a) mode of (b) mode
of and (c) mode of 
Ans. (a) (b) (c)

8.4 DISPERSION AND GROUP VELOCITY

In Section 8.2, we learned that for the propagating range of frequencies, the
phase velocity and the wavelength along the axis of the parallel-plate wave-
guide are given by

(8.47)vpz =
vp21 - 1fc>f22

159.94 Æ.112.4 Æ;202.3 Æ;
f = 6000 MHz.TE1,0f = 3000 MHz;

TM1,0f = 3000 MHz;TE1,0

m = m0,e = 6.25e0

a = 3 cm

 ≠2 = ahg2 - hg1

hg2 + hg1
b2

= a123.12 - 301.59
123.12 + 301.59

b2

= 1-0.4222 = 0.176

 hg2 = h221 - 1l2>lc22 = 123.12 Æ

 hg1 = h121 - 1l1>lc22 = 301.59 Æ

TM1,0

 ≠2 = ahg2 - hg1

hg2 + hg1
b2

= a128.25 - 471.24
128.25 + 471.24

b2

= 1-0.57222 = 0.327

 hg2 =
h221 - 1l2>lc22 =

120p>1921 - 12>1022 =
40p21 - 0.04

= 128.25 Æ

 hg1 =
h121 - 1l1>lc22 =

120p21 - 16>1022 = 471.24 Æ

TE1,0

TM1,0TE1,0l 6 lc
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8.4 Dispersion and Group Velocity 549

and

(8.48)

where and is the cutoff frequency. We
note that for a particular mode, the phase velocity of propagation along the
guide axis varies with the frequency. As a consequence of this characteristic of
the guided wave propagation, the field patterns of the different frequency com-
ponents of a signal comprising a band of frequencies do not maintain the same
phase relationships as they propagate down the guide. This phenomenon is
known as dispersion for its similarity to the phenomenon of dispersion of colors
by a prism.

To discuss dispersion, let us consider a simple example of two infinitely
long trains A and B traveling in parallel, one below the other, with each train
made up of boxcars of identical size and having wavy tops, as shown in Fig. 8.12.
Let the spacings between the peaks (centers) of successive boxcars be 50 m and
90 m, and let the speeds of the trains be 20 m/s and 30 m/s, for trains A and B, re-
spectively. Let the peaks of the cars numbered 0 for the two trains be aligned at
time as shown in Fig. 8.12(a). Now, as time progresses, the two peaks get
out of alignment as shown, for example, for in Fig. 8.12(b), since train B
is traveling faster than train A. But at the same time, the gap between the peaks
of cars numbered decreases. This continues until at the peak of car

of train A having moved by a distance of 80 m aligns with the peak of car 
of train B, which will have moved by a distance of 120 m, as shown in Fig.
8.12(c). For an observer following the movement of the two trains as a group,
the group appears to have moved by a distance of 30 m, although the individual
trains will have moved by 80 m and 120 m, respectively. Thus, we can talk of a
group velocity, that is, the velocity with which the group as a whole is moving. In
this case, the group velocity is (30 m)/(4 s) or 7.5 m/s.

The situation in the case of the guided wave propagation of two different
frequencies in the parallel-plate waveguide is analogous to the two-train exam-
ple just discussed.The distance between the peaks of two successive cars is anal-
ogous to the guide wavelength, and the speed of the train is analogous to the
phase velocity along the guide axis. Thus, let us consider the field patterns cor-
responding to two waves of frequencies and propagating in the same
mode, having guide wavelengths and and phase velocities along the
guide axis and respectively, as shown, for example, for the electric
field of the mode in Fig. 8.13. Let the positive peaks numbered 0 of the
two patterns be aligned at as shown in Fig. 8.13(a). As the individual
waves travel with their respective phase velocities along the guide, these two
peaks get out of alignment, but some time later, say, the positive peaks num-
bered will align at some distance, say, from the location of the alignment
of the 0 peaks, as shown in Fig. 8.13(b). Since the peak of wave A will have
traveled a distance with a phase velocity and the peak of-1thvpzAlgA + ¢z

-1 th
¢z,-1

¢t,

t = 0,
TE1,0

vpzB,vpzA

lgB,lgA

fBfA

-1-1
t = 4 s,-1

t = 1 s
t = 0,

fcvp = 1>1me, l = vp>f = 1>f1me,lg =
l21 - 1fc>f22
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�2

�1 0

�100 �50 0 50 100 150 200 250 m

�100 �50 0 50 100 150 200 250 m

1 2

�1 0

50 m

90 m

(a)

(b)

(c)

1 2 3 4 20 m/s

t � 0

t � 1 s

t � 4 s

A

�2 �1 0 1 2 3 4 A

�3 �2 �1 0 1 2 3 A

30 m/sB

�1 0 1 2 B

�2 �1 0 1 B

FIGURE 8.12

For illustrating the concept of group velocity.

wave B will have traveled a distance with a phase velocity in this
time we have

(8.49a)

(8.49b) lgB + ¢z = vpzB ¢t

 lgA + ¢z = vpzA ¢t

¢t,
vpzBlgB + ¢z
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vpzA

t � 0

�1 0 1

(a)

(b)

2

�3 �2 �1 0

�2 �1 0

lgA

vpzB

vpzA

t � �t

vpzB

�1 0 1

lgB

�z

y z

x

FIGURE 8.13

For illustrating the concept of group velocity for guided wave propagation.

Solving (8.49a) and (8.49b) for and we obtain

(8.50a)

and

(8.50b)¢z =
lgAvpzB - lgBvpzA

vpza - vpzB

¢t =
lgA - lgB

vpzA - vpzB

¢z,¢t
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552 Chapter 8 Guided Wave Principles for Electronics and Optoelectronics

The group velocity, is then given by

or

(8.51)

where and are the phase constants along the guide axis, corresponding
to and respectively. Thus, the group velocity of a signal comprised of two
frequencies is the ratio of the difference between the two radian frequencies to
the difference between the corresponding phase constants along the guide axis.

If we now have a signal comprised of a number of frequencies, then a
value of group velocity can be obtained for each pair of these frequencies in ac-
cordance with (8.51). In general, these values of group velocity will all be differ-
ent. In fact, this is the case for wave propagation in the parallel-plate guide, as
can be seen from Fig. 8.14, which is a plot of versus corresponding to the
parallel-plate guide for which

(8.52)

Such a plot is known as the diagram or dispersion diagram. Note that
the dispersion diagram begins at on the since for propa-
gation does not occur.The phase velocity along the guide axis given for a partic-
ular frequency by

(8.53)

is equal to the slope of the line drawn from the origin to the point on the dis-
persion curve, corresponding to that frequency, as shown in the figure for the
three frequencies and The group velocity for a particular pair of fre-
quencies is given by the slope of the line joining the two points on the curve,
corresponding to the two frequencies, as shown in the figure for the two pairs

and Since the curve is nonlinear, it can be seen that the two group
velocities are not equal.We cannot then attribute a particular value of group ve-
locity for the group of the three frequencies and v3.v2,v1,

v3.v2,v2v1,

v3.v2,v1,

vpz =
v

bz

v 6 vc,v-axis,v = vc

v - bz

bz =
2p
lg

=
2p
l B1 - a l

lc
b2

= v2me B1 - afc

f
b2

bzv

fB,fA

bzBbzA

vg =
vB - vA

bzB - bzA

 =
fB - fA

11>lgB2 - 11>lgA2

 vg =
¢z

¢t
=
lgAvpzB - lgBvpzA

lgA - lgB
=

lgAlgBfB - lgBlgAfA

lgAlgB[11>lgB2 - 11>lgA2]

vg,

Dispersion
diagram
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8.4 Dispersion and Group Velocity 553

If, however, the three frequencies are very close, as in the case of a nar-
row-band signal, it is meaningful to assign a group velocity to the entire group
having a value equal to the slope of the tangent to the dispersion curve at the
center frequency. Thus, the group velocity corresponding to a narrow band of
frequencies centered around a predominant frequency is given by

(8.54)

For the parallel-plate waveguide under consideration, we have from (8.52)

and hence, from (8.54),

(8.55)

From (8.47) and (8.55), we note that and

vpzvg = vp
2

vpz 7 vp, vg 6 vp,

vg =
dv

dbz
=

11me B1 -
fc

2

f2
= vp B1 - afc

f
b2

 = 1me a1 -
fc

2

f2 b
-1>2

 = 1me a1 -
fc

2

f2 +
v

2p
 

fc
2

f3 b a1 -
fc

2

f2 b
-1>2

 
dbz

dv
= 1me B1 - afc

f
b2

+ v1me – 
1
2

 a1 -
fc

2

f2 b
-1>2 fc

2

pf3

vg =
dv

dbz

v

bz1 bz2 bz3
bz

v3

Slope � vpz

Slope � vg

v1

v2

v

vc

Slope �
me

1

FIGURE 8.14

Dispersion diagram for the parallel-plate
waveguide.
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For a numerical example, let us consider the air-dielectric parallel-plate wave-
guide of spacing and a narrow-band signal of center frequency

propagating in the mode. Then from Example 8.2,
and from (8.55),

as compared to found in Example 8.2.
An example of a narrow-band signal is an amplitude-modulated signal,

having a carrier frequency modulated by a low-frequency as given by

(8.56)

where m is the percentage modulation. Such a signal is actually equivalent to a
superposition of unmodulated signals of three frequencies and

as can be seen by expanding the right side of (8.56). Thus,

(8.57)

The frequencies and are the side frequencies. When the am-
plitude-modulated signal propagates in a dispersive channel, such as the paral-
lel-plate waveguide under consideration, the different frequency components
undergo phase changes in accordance with their respective phase constants.
Thus, if and are the phase constants corresponding to

and respectively, assuming linearity of the dispersion
curve within the narrow band, the amplitude-modulated wave is given by

(8.58)

This indicates that although the carrier-frequency phase changes in accordance
with the phase constant the modulation envelope, and hence the informa-
tion, travels with the group velocity as shown in Fig. 8.15. In view of¢v>¢bz,

bz,

 = Ex0[1 + m cos 1¢v – t - ¢bz – z2] cos 1vt - bzz2
 = Ex0 cos 1vt - bzz2 + mEx0 cos 1vt - bzz2 cos 1¢v – t - ¢bz – z2

 + cos [1vt - bzz2 + 1¢v – t - ¢bz – z2]6
 +

mEx0

2
 5cos [1vt - bzz2 - 1¢v – t - ¢bz – z2]

 = Ex0 cos 1vt - bzz2
 + cos [1v + ¢v2t - 1bz + ¢bz2z]6
 +

mEx0

2
 5cos [1v - ¢v2t - 1bz - ¢bz2z]

 Ex1z, t2 = Ex0 cos 1vt - bzz2

v + ¢v,v - ¢v, v,
bz + ¢bzbz - ¢bz, bz,

v + ¢vv - ¢v

 = Ex0 cos vt +
mEx0

2
 [cos 1v - ¢v2t + cos 1v + ¢v2t]

 Ex1t2 = Ex0 cos vt + mEx0 cos vt cos ¢v–t

v + ¢v,
v - ¢v, v,

Ex1t2 = Ex011 + m cos ¢v–t2 cos vt

¢v � vv

vpz = 3.145 * 108 m>s
 = 2.862 * 108 m>s

 vg = 3 * 10821 - 13>1022
fc = 3000 MHz,

TE1,0f = 10,000 MHz
a = 5 cm

Amplitude
modulated
signal
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�v
�bz

v
bz

FIGURE 8.15

For illustrating that the modulation envelope travels with the group velocity.

1T. Van Duzer, Wave Velocities, Dispersion and the Omega—Beta Diagram (Newton, MA: Educa-
tional Development Center).

this, and since is less than the fact that is greater than is not a viola-
tion of the theory of relativity. Since it is always necessary to use some modula-
tion technique to convey information from one point to another, the
information always takes more time to reach from one point to another in a dis-
persive channel than in the corresponding nondispersive medium. For further
understanding of the concept of group velocity, the reader is advised to view a
movie narrated by Van Duzer.1

K8.4. Dispersion; Group velocity; Dispersion diagram; Narrow-band signal.
D8.6. The curve for a dispersive channel can be approximated by

in the vicinity of where k is a positive constant. Find (a) the phase
velocity for a signal of (b) the phase velocity for a signal of

(c) the group velocity for a signal composed of two radian frequen-
cies and and (d) the group velocity for a narrow-band signal having
the center radian frequency 
Ans. (a) (b) (c)
(d)

8.5 REFLECTION AND REFRACTION OF PLANE WAVES

Let us now consider a uniform plane wave that is incident obliquely on a plane
boundary between two different perfect dielectric media at an angle of inci-
dence to the normal to the boundary, as shown in Fig. 8.16. To satisfy the
boundary conditions at the interface between the two media, a reflected wave
and a transmitted wave will be set up. Let be the angle of reflection and be
the angle of transmission.Then without writing the expressions for the fields, we

utur

ui

1.41421kv0.
1.40711kv0;2.06561kv0;2.21361kv0;

1.5v0.
1.6v0;1.4v0

v = 1.6v0;
v = 1.4v0;

v = 1.5v0,

v = v0 + kbz
2

v-bz

vpvpzvp,vg
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ui ur

ut

Incident
Wave

Transmitted
Wave

Reflective
Wave

Medium 1
e1, m1

Medium 2
e2, m2

FIGURE 8.16

Reflection and transmission of an
obliquely incident uniform plane wave
on a plane boundary between two
different perfect dielectric media.

can find the relationship among and by noting that for the incident, re-
flected, and transmitted waves to be in step at the boundary, their apparent
phase velocities parallel to the boundary must be equal; that is,

(8.59)

where and are the phase velocities along the
directions of propagation of the waves in medium 1 and medium 2, respectively.

From (8.59), we have

(8.60a)

(8.60b)

or

(8.61a)

(8.61b)

Equation (8.61a) is known as the law of reflection and (8.61b) is known as the law
of refraction, or Snell’s law. Snell’s law is commonly cast in terms of the refractive
index, denoted by the symbol n and defined as the ratio of the velocity of light in
free space to the phase velocity in the medium. Thus, if and

are the (phase) refractive indices for media 1 and 2, respectively, then

(8.62)ut = sin-1 an1

n2
  sin uib

n21=  c>vp22
n11=  c>vp12

 ut = sin-1 aAm1e1

m2e2
 sin uib

 ur = ui

 sin ut =
vp2

vp1
 sin ui = Am1e1

m2e2
 sin ui

 sin ur = sin ui

vp21=  1>1m2e22vp11=  1>1m1e12

vp1

sin ui
=

vp1

sin ur
=

vp2

sin ut

utui, ur,

Laws of
reflection and
refraction
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For two dielectrics having which is usually the case, (8.62)
reduces to

(8.63)

We shall now consider the derivation of the expressions for the reflection
and transmission coefficients at the boundary.To do this, we distinguish between
two cases: (1) the electric field vector of the wave linearly polarized parallel to
the interface and (2) the magnetic field vector of the wave linearly polarized par-
allel to the interface. The law of reflection and Snell’s law hold for both cases
since they result from the fact that the apparent phase velocities of the incident,
reflected, and transmitted waves parallel to the boundary must be equal.

The geometry pertinent to the case of the electric field vector parallel to
the interface is shown in Fig. 8.17, in which the interface is assumed to be in the

plane and the subscripts i, r, and t associated with the field symbols de-
note incident, reflected, and transmitted waves, respectively. The plane of inci-
dence, that is, the plane containing the normal to the interface and the
propagation vectors, is assumed to be in the xz-plane, so that the electric field
vectors are entirely in the y-direction. The corresponding magnetic field vectors
are then as shown in the figure so as to be consistent with the condition that E, H,
and form a right-handed mutually orthogonal set of vectors. Since the electric
field vectors are perpendicular to the plane of incidence, this case is also said to
B

x = 0

ut = sin-1 aAe1

e2
  sin uib

m1 = m2 = m0,

u1 u1

u2

x � 0

Ei

Hi
Hr

Ht

Et

Er

Medium 1
e1, m1

Medium 2
e2, m2

y

x

z

�r

�i

�t

FIGURE 8.17

For obtaining the reflection and transmission coefficients for an obliquely
incident uniform plane wave on a dielectric interface with its electric field
perpendicular to the plane of incidence.

Perpendicular
polarization
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558 Chapter 8 Guided Wave Principles for Electronics and Optoelectronics

correspond to perpendicular polarization. The angle of incidence is assumed to
be From the law of reflection (8.61a), the angle of reflection is then also 
The angle of transmission, assumed to be is related to by Snell’s law, given
by (8.61b).

The boundary conditions to be satisfied at the interface are that (1)
the tangential component of the electric field intensity be continuous and (2)
the tangential component of the magnetic field intensity be continuous. Thus,
we have at the interface 

(8.64a)

(8.64b)

Expressing the quantities in (8.64a) and (8.64b) in terms of the total fields, we
obtain

(8.65a)

(8.65b)

We also know from one of the properties of uniform plane waves that

(8.66a)

(8.66b)

Substituting (8.66a) and (8.66b) into (8.65b) and rearranging, we get

(8.67)

Solving (8.65a) and (8.67) for and we have

(8.68a)

(8.68b)

We now define the reflection coefficient and the transmission coeffi-
cient as

(8.69a)

(8.69b) t� =
Et

Ei
=

Eyt

Eyi

 ≠� =
Er

Ei
=

Eyr

Eyi

t�

≠�

 Er =
Et

2
  a1 -

h1

h2
  

cos u2

cos u1
b

 Ei =
Et

2
  a1 +

h1

h2
  

cos u2

cos u1
b

Er,Ei

Ei - Er = Et  

h1

h2
  

cos u2

cos u1

 
Et

Ht
= h2 = Am2

e2

 
Ei

Hi
=

Er

Hr
= h1 = Am1

e1

 Hi cos u1 - Hr cos u1 = Ht cos u2

 Ei + Er = Et

 Hzi + Hzr = Hzt

 Eyi + Eyr = Eyt

x = 0

x = 0

u1u2,
u1.u1.
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where the subscript refers to perpendicular polarization. From (8.68a) and
(8.68b), we then obtain

(8.70a)

(8.70b)

Equations (8.70a) and (8.70b) are known as the Fresnel reflection and transmis-
sion coefficients, respectively, for perpendicular polarization.

Before we discuss the result given by (8.70a) and (8.70b), we shall derive
the corresponding expressions for the case in which the magnetic field of the
wave is parallel to the interface. The geometry pertinent to this case is shown in
Fig. 8.18. Here again the plane of incidence is chosen to be the xz-plane, so that
the magnetic field vectors are entirely in the y-direction. The corresponding
electric field vectors are then as shown in the figure so as to be consistent with
the condition that E, H, and form a right-handed mutually orthogonal set of
vectors. Since the electric field vectors are parallel to the plane of incidence, this
case is also said to correspond to parallel polarization.

Once again the boundary conditions to be satisfied at the interface
are that (1) the tangential component of the electric field intensity bex = 0

B

 t� =
2h2 cos u1

h2 cos u1 + h1 cos u2

 ≠� =
h2 cos u1 - h1 cos u2

h2 cos u1 + h1 cos u2

�

Parallel
polarization

u1 u1

u2

x � 0

Ei

Hi
Hr

Ht

Et

Er

Medium 1
e1, m1

Medium 2
e2, m2

y

x

z

�r

�i

�t

FIGURE 8.18

For obtaining the reflection and transmission coefficients for an obliquely
incident uniform plane wave on a dielectric interface with its electric field
parallel to the plane of incidence.
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continuous and (2) the tangential component of the magnetic field intensity
be continuous. Thus, we have at the interface 

(8.71a)

(8.71b)

Expressing the quantities in (8.71a) and (8.71b) in terms of the total fields and
also using (8.66a) and (8.66b), we obtain

(8.72a)

(8.72b)

Solving (8.72a) and (8.72b) for and we have

(8.73a)

(8.73b)

We now define the reflection coefficient and the transmission coeffi-
cient as

(8.74a)

(8.74b)

where the subscript refers to parallel polarization. From (8.73a) and (8.73b),
we then obtain

(8.75a)

(8.75b)

Note from (8.74a) and (8.74b) that

(8.76a)

(8.76b)

Equations (8.75a) and (8.75b) are known as the Fresnel reflection and transmis-
sion coefficients, respectively, for parallel polarization.

 
Ezt

Ezi
=

-Et cos u2

-Ei cos u1
= t7  

cos u2

cos u1

 
Ezr

Ezi
=

Er cos u1

-Ei cos u1
= -  

Er

Ei
= ≠7

 t7 =
2h2 cos u1

h2 cos u2 + h1 cos u1

 ≠7 =
h2 cos u2 - h1 cos u1

h2 cos u2 + h1 cos u1

7
 t7 =

Et

Ei

 ≠7 = -  

Er

Ei

t7
≠7

 Er =
Et

2
 ah1

h2
-

cos u2

cos u1
b

 Ei =
Et

2
 ah1

h2
+

cos u2

cos u1
b

Er,Ei

 Ei + Er = Et  

h1

h2

 Ei - Er = Et  

cos u2

cos u1

 Hyi + Hyr = Hyt

 Ezi + Ezr = Ezt

x = 0,
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We shall now discuss the results given by (8.70a), (8.70b), (8.75a), and
(8.75b) for the reflection and transmission coefficients for the two cases:

1. For that is, for the case of normal incidence of the uniform
plane wave upon the interface, and

Thus, the reflection coefficients as well as the transmission coefficients for the
two cases become equal as they should, since for normal incidence there is no
difference between the two polarizations except for rotation by 90° parallel to
the interface.

2. and if that is,

or

(8.77)

where we have used Snell’s law given by (8.61b) to express in terms of
If we assume as is usually the case, (8.77) has real solu-

tions for for Thus, for that is, for transmission from a dielec-
tric medium of higher permittivity into a dielectric medium of lower
permittivity, there is a critical angle of incidence given by

(8.78)

for which is equal to 90° and and For becomes
greater than 1, becomes imaginary, and and become complex, but
with their magnitudes equal to unity, and total internal reflection occurs; that is,
the time-average power of incident wave is entirely reflected, the boundary con-
dition being satisfied by an evanescent field in medium 2.To explain the evanes-
cent nature, we note with reference to the geometry of Fig. 8.17 or Fig. 8.18 that

or

bx2
2 = v2m2e2 - bz2

2

bx2
2 + bz2

2 = bt
2 = v2m2e2

≠7≠�cos u2

u1 7 uc, sin u2ƒ ≠7 ƒ = 1.ƒ ≠� ƒu2

uc = sin-1
 Ae2

e1

uc

e2 6 e1,e2 6 e1.u1

m2 = m1 = m0,sin u1.
sin u2

sin u1 = Am2e2

m1e1

21 - sin2 u2 = A1 -
m1e1

m2e2
  sin2 u1 = 0

cos u2 = 0;≠7 = -1≠� = 1

 t� =
2h2

h2 + h1
, t7 =

2h2

h2 + h1

 ≠� =
h2 - h1

h2 + h1
, ≠7 =

h2 - h1

h2 + h1

u2 = 0
u1 = 0,

Total internal
reflection
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For and Therefore, for
and Thus, should be

replaced by corresponding to exponential decay of the field in the x-di-
rection without a propagating wave character. The phenomenon of total inter-
nal reflection is the fundamental principle of optical waveguides, since if we
have a dielectric slab of permittivity sandwiched between two dielectric
media of permittivity then by launching waves at an angle of incidence
greater than the critical angle, it is possible to achieve guided wave propagation
within the slab, as we shall learn in the next section.

3. for that is, for

or

(8.79)

For the usual case of transmission between two dielectric materials, that is, for
and this equation has no real solution for and hence there is

no angle of incidence for which the reflection coefficient is zero for the case of
perpendicular polarization.

4. for that is, for

or

(8.80)

If we assume this equation reduces to

which then gives

and

tan u1 = Ae2

e1

cos2 u1 = 1 - sin2 u1 =
e1

e1 + e2

sin2
 u1 =

e2

e1 + e2

m2 = m1,

sin2 u1 =
h2

2 - h1
2

h2
21m1e1>m2e22 - h1

2 = e2 

1m2>m12e1 - e2

e1
2 - e2

2

h2 A1 -
m1e1

m2e2
  sin2 u1 = h121 - sin2 u1

h2 cos u2 = h1 cos u1;≠7 = 0

u1,e2 Z e1,m2 = m1

sin2 u1 =
h2

2 - h1
2

h2
2 - h1

21m1e1>m2e22 = m2 

m2 - m11e2>e12
m2

2 - m1
2

h221 - sin2 u1 = h1 A1 -
m1e1

m2e2
  sin2 u1

h2 cos u1 = h1 cos u2;≠� = 0

e2 6 e1,
e1

-jax2,
bx2bx2

2 6 0.u1 7 uc, bz2 = bz1 = v2m1e1 sin2 u1 7 v2m2e2,
bx2

2 = 0.u1 = uc, bz2 = bz1 = v2m1e1 sin2 uc = v2m2e2,
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8.5 Reflection and Refraction of Plane Waves 563

Thus, there exists a value of the angle of incidence given by

(8.81)

for which the reflection coefficient is zero, and hence there is complete trans-
mission for the case of parallel polarization.

5. In view of cases 3 and 4, for an elliptically polarized wave incident on
the interface at the angle the reflected wave will be linearly polarized per-
pendicular to the plane of incidence. For this reason, the angle is known as
the polarizing angle. It is also known as the Brewster angle.The phenomenon as-
sociated with the Brewster angle has several applications. An example is in gas
lasers in which the discharge tube lying between the mirrors of a Fabry–Perot
resonator is sealed by glass windows placed at the Brewster angle, as shown in
Fig. 8.19, to minimize reflections from the ends of the tube so that the laser be-
havior is governed by the mirrors external to the tube.

We shall now consider an example.

Example 8.4 Oblique incidence of uniform plane wave onto a dielectric
medium

A uniform plane wave having the electric field

is incident on the interface between free space and a dielectric medium of and
as shown in Fig. 8.20. We wish to obtain the expressions for the electric fields of

the reflected and transmitted waves.
m = m0,

e = 1.5e0

Ei = E0 a13
2

  ax -
1
2

  azb  cos [6p * 109t - 10p1x + 13z2]

up

up,

up = tan-1 Ae2

e1

up,

Brewster
angle

Gas Discharge Tube

MirrorMirror

Glass Window Glass Window

FIGURE 8.19

For illustrating the application of the Brewster angle effect in gas lasers.
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x � 0

Ei

Medium 1
e0, m0

Medium 2
1.5e0, m0

y

x

z

�i

60

FIGURE 8.20

For Example 8.4.

First, we note from the given that the propagation vector of the incident wave is
given by

the direction of which is consistent with the angle of incidence of 60°. We also note that
the electric field vector (which is perpendicular to ) is entirely in the plane of inci-
dence. Thus the situation corresponds to one of parallel polarization, as in Fig. 8.18.

To obtain the required fields, we first find, by using (8.63) and with reference to the
notation of Fig. 8.18, that

or Then from (8.75a)–(8.75b) and (8.76a)–(8.76b), we have

Finally, noting with the aid of Fig. 8.21 that

Br = 20pa -  
1
2

 ax +
13
2

 azb = 10p1-ax + 13az2

 
Et

Ei
= 0.758

 
Er

Ei
= -0.072

 =
212

2 + 13
= 0.758

 t7 =
21h0>11.52 cos 60°

1h0>11.52 cos 45° + h0 cos 60°

 =
2 - 13
2 + 13

= 0.072

 ≠7 =
1h0>11.52 cos 45° - h0 cos 60°

1h0>11.52 cos 45° + h0 cos 60°

u2 = 45°.

sin u2 = A e0

1.5e0
  sin 60° =

112

Bi

Bi = 10p1ax + 13az2 = 20pa1
2

 ax +
13
2

 azb

Ei
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x � 0

Ei

Er

Et

1.5e0, m0

e0, m0

y

x

z

�i

�t

�r

60 60

45

FIGURE 8.21

For writing the expressions for the
reflected and transmitted wave electric
fields for Example 8.4.

and

we write the expressions for the reflected and transmitted wave fields to be

and

Note that for and so that the fields do in-
deed satisfy the boundary conditions.

K8.5. Oblique incidence of uniform plane waves; Plane interface; Law of reflection;
Snell’s law; Perpendicular and parallel polarizations; Total internal reflection;
Brewster angle.

D8.7. Consider a plane boundary between medium and medium
Find the value of for each of the following cases of

uniform plane waves incident on the boundary from medium 1: (a) Total in-
ternal reflection occurs for (b) the reflection coefficient for parallel
polarization is zero for and (c) the critical angle of incidence for
total internal reflection is the same as the Brewster angle for incidence from
medium 2.
Ans. (a) 0.75; (b) 3; (c) 0.618.

D8.8. In Figs. 8.17 and 8.18, assume that and
Find (a) and for the case of perpendicular polarization

(Fig. 8.17) and (b) and for the case of parallel polarization (Fig. 8.18).
Ans. (a) (b) 0.146, 0.662.-0.382, 0.618;

Et>EiEr>Ei

Et>EiEr>Eiui = 45°.
e1 = 3e0, e2 = 9e0, m1 = m2 = m0,

ui = 60°;
ui Ú 60°;

e2>e12 1e = e2, m = m02.
1 1e = e1, m = m02

Exi + Exr = 1.5Ext,x = 0, Ezi + Ezr = Ezt

Et = 0.758E0 a 112
 ax -

112
 azb  cos [6p * 109t - 1013p1x + z2]

Er = -0.072E0 a13
2

 ax +
1
2

 azb  cos [6p * 109t + 10p1x - 13z2]

Bt = 20p11.5 a 112
 ax +

112
 azb = 1013p1ax + az2
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Description

8.6 DIELECTRIC SLAB GUIDE

In the preceding section, we learned that for a wave that is incident obliquely
from a dielectric medium of permittivity onto another dielectric medium of
permittivity total internal reflection occurs for angles of incidence 
exceeding the critical angle given by

(8.82)

where it is assumed that everywhere. In this section, we shall consider
the dielectric slab waveguide, which forms the basis for thin-film waveguides,
used extensively in integrated optics.

A. Wave-Bounce Approach

The dielectric slab waveguide consists of a dielectric slab of permittivity 
sandwiched between two dielectric media of permittivities less than For sim-
plicity, we shall consider the symmetric waveguide, that is, one for which the
permittivities of the dielectrics on either side of the slab are the same and equal
to as shown in Fig. 8.22. Then by launching waves at an angle of incidence

where is given by (8.82), it is possible to achieve guided wave propa-
gation within the slab, as shown in the figure. For a given thickness d of the slab
and for a given frequency of the waves, there are only discrete values of for
which the guiding can take place. In other words, guiding of a wave of a given
frequency is not ensured simply because the condition for total internal reflec-
tion is met.

The allowed values of are dictated by the self-consistency condition,
which can be explained with the aid of the construction in Fig. 8.23, as follows. If
we consider a point A on a given wavefront designated 1 and follow that wave-
front as it moves to position passing through point B, reflects at the interface

giving rise to wavefront designated 2, then moves to position passing2¿x = d>2 1¿

ui

ui

ucui 7 uc,
e2,

e1.
e1,

m = m0

uc = sin-1Ae2

e1

uc

uie2 6 e1,
e1

Self-
consistency
condition for
guidance

ui � uc

m0, e2 � e1

m0, e2 � e1

m0, e1

FIGURE 8.22

Total internal reflection in a dielectric slab waveguide.
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ui ui

ui
ui

1 1� 2 2�

3�3

C

A

B

e2

e1

e2

x � d/2

x � �d/2

x

y z

FIGURE 8.23

For explaining the self-consistency condition for waveguiding in a dielectric slab guide.

through point C, reflects at the interface giving rise to wavefront des-
ignated 3, and finally moves to position passing through A, then we see that
the total phase shift undergone must be equal to an integer multiple of If 
is the wavelength in free space corresponding to the wave frequency, the self-
consistency condition is given by

(8.83)

where and are the reflection coefficients at the interfaces and
respectively, and We recall that under conditions of total

internal reflection, the reflection coefficients (8.70a) and (8.75a) become com-
plex with their magnitudes equal to unity. For the symmetric waveguide,

Thus, substituting for and and 2d for we
write (8.83) as

or

(8.84)
2pd1er1

l0
  cos ui + l≠ = mp, m = 0, 1, 2, Á

4pd1er1

l0
  cos ui + 2l≠ = 2mp, m = 0, 1, 2, Á

1AB + BC + CA2,≠B≠A≠≠A = ≠B.

er1 = e1>e0.x = d>2,
x = -d>2≠B≠A

+l≠A + 2p1er1

l0
 1CA cos ui2 = 2mp, m = 0, 1, 2, Á

2p1er1

l0
 1AB cos ui2 + l≠B + 2p1er1

l0
 1BC cos ui2

l02p.
3¿
x = -d>2
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To proceed further, we need to distinguish between the cases of perpen-
dicular and parallel polarizations as defined in the preceding section, since the
reflection coefficients for the two cases are different. We shall here consider
only the case of perpendicular polarization. The situation then corresponds to
TE modes, since the electric field has no longitudinal or z-component. Thus,
substituting

and

in (8.70a), we obtain

(8.85)

so that

(8.86)

Substituting (8.86) into (8.84), we then obtain

or

or

(8.87)tan [f1ui2] = c g1ui2, m = 0, 2, 4, Á

-  
1

g1ui2, m = 1, 3, 5, Á

tan apd1er1

l0
  cos ui -

mp

2
b =

2sin2 ui - 1e2>e12
cos ui

, m = 0, 1, 2, Á

2pd1er1

l0
  cos ui - 2 tan-1

  

2sin2 ui - 1e2>e12
cos ui

= mp, m = 0, 1, 2, Á

 = -2 tan-1
  

2sin2 ui - 1e2>e12
cos ui

 l≠� = -2 tan-1
  

h121e1>e22 sin2 ui - 1

h2 cos ui

≠� =
h2 cos ui - jh121e1>e22 sin2 ui - 1

h2 cos ui + jh121e1>e22 sin2 ui - 1

 = jAe1

e2
 sin2 ui - 1

 = j2sin2 u2 - 1

 cos u2 = 21 - sin2 u2

cos u1 = cos ui

Characteristic
equation for
TE modes
and solution
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where

(8.88a)

(8.88b)

Equation (8.87) is the characteristic equation for the guiding of TE waves
in the dielectric slab. For given values of d, and the solutions for can
be obtained by plotting the two sides of (8.87) versus and finding the points of
intersection. The nature of this construction is shown in Fig. 8.24. Each solution
corresponds to one mode. It can be seen from (8.88a) and Fig. 8.24 that for a
given set of values of and fewer solutions are obtained for as the ratio

becomes smaller, since the number of branches of the plot of 
between and become fewer. It can also be seen that there is al-
ways one solution for a given d, even for arbitrarily low values of —that
is, for large values of or low frequencies.

Alternative to the graphical solution, we can use a computer to solve
(8.87) for the allowed values of for specified values of d, and Com-
puted values of for values of and are
listed in Table 8.1.

Returning now to Fig. 8.24, we designate the modes associated with the
solutions as modes, where correspond to the values of m
on the plot. We note from the plot that the solution for a given mode forTEm

m = 0, 1, 2, ÁTEm

l0 = 5 mmd = 10 mm,er2 = 1,er1 = 4,ui

l0.er2,er1,ui

l0

1d>l02
ui = ucui = p>2 tan [f1ui2]1d>l02

uie2,e1

ui

uil0,e2,e1,

 g1ui2 =
2sin2 ui - 1e2>e12

cos ui

 f1ui2 = pd1er1

l0
  cos ui

8.6 Dielectric Slab Guide 569

tan [ f(ui)]

m � 0

m � 1
m � 3

m � 2
m � 4

g(ui)
1

� m � 5

g(ui)

p	2

ui uc

FIGURE 8.24

Graphical construction pertinent to the solution of Eq. (8.87).

Cutoff
frequencies
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570 Chapter 8 Guided Wave Principles for Electronics and Optoelectronics

Finding
propagating
modes

does not exist if Therefore, the cutoff condition is
given by

(8.89)

where we have used (8.82). The cutoff frequency is given by

The fundamental mode, has no cutoff frequency. Thus,

(8.90)

Example 8.5 Finding the number of propagating TE modes in a
symmetric dielectric slab waveguide

For the symmetric dielectric slab waveguide of Fig. 8.23, let and
We wish to find the number of TE modes that can propagate by guidance in

the slab.
From (8.90),

Thus, for and the modes are cut off. Therefore, the number of propagat-
ing TE modes is 25, corresponding to m = 0, 1, 2, Á , 24.

fc 7 fm 7 24,

 =
mf

24.98
, m = 0, 1, 2, Á

 fc =
mc

20l022.56 - 1

d = 10l0.
e2 = e0,e1 = 2.56e0,

fc =
mc

2d2er1 - er2

, m = 0, 1, 2, Á

TE0,

fc =
c

l0
=

mc

2d2er1 - er2

l0 7
2d2er1 - er2

m

pd1er1

l0
  A1 -

e2

e1
6

mp

2

pd1er1

l0
  cos uc 6

mp

2

f1uc2 6 mp>2.m 7 1

TABLE 8.1 Allowed Values of for
Dielectric Slab Guide Example

m

0 83.42783
1 76.77756
2 69.96263
3 62.87805
4 55.38428
5 47.28283
6 38.30225

ui 1deg2

ui
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8.6 Dielectric Slab Guide 571

TM modesThe entire discussion for guided waves in the dielectric slab guide can
be repeated for TM modes by using in the place of in (8.84) to derive
the characteristic equation for guidance. We shall include the derivation as
Problem 8.27.

B. Wave-Field Approach

A formal approach to the investigation of guided modes in the dielectric slab
involves the derivation of the field expressions. This is done by recognizing
with reference to the geometry in Fig. 8.23 that (a) in the slab the fields have
standing wave character in the x-direction and traveling wave character in the
z-direction; (b) outside the slab, the fields are evanescent, that is, they decay
exponentially away from it in the x-direction and have traveling wave charac-
ter in the z-direction; and (c) from symmetry considerations, the fields should
be even or odd with respect to x.

Let us first consider even TE modes—that is, modes with the transverse
field components having even symmetry with respect to x. We write the expres-
sion for the (only) electric field component to be

(8.91)

where and are constants. Note that subscripts 1 and 2 denote regions of
permittivities and respectively, and that the phase constant does not
have a subscript 1 or 2, since it must be the same in all three regions, in view of
the requirement that the fields be in phase at the boundaries for all z.
Continuity of at further requires that

so that

(8.92)

and hence

(8.93)E
 –

y = e
A
 –

 cos bx1x e-jbzz for ƒ x ƒ 6 d>2
A
 –

 cos bx1 
d

2
  e-ax21x - d>22e-jbzz for x 7 d>2

A
 –

 cos bx1 
d

2
  eax21x + d>22e-jbzz for x 6 -d>2

B
 – = A

 –
eax2d>2 cos bx1 

d

2

A
 –

 cos bx1 
d

2
= B

 –
e-ax2d>2

x = ;d>2E
 –

y

x = ;d>2
bze2,e1

B
 –

A
 –

E
 –

y = c A
 –

 cosbx1x e-jbzz for ƒ x ƒ 6 d>2
B
 –

e-ax2x e-jbzz for x 7 d>2
B
 –

eax2x e-jbzz for x 6 -d>2

E
 –

y

≠�≠7

Field
behavior for
guided modes

Field
expressions
for even 
TE modes
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572 Chapter 8 Guided Wave Principles for Electronics and Optoelectronics

To obtain the corresponding magnetic field components, we use the phasor
forms of (3.12a)–(3.12c) with the understanding that 

and 

(8.94a)

(8.94b)

Thus

(8.95)

(8.96)

Now, continuity of at requires that

(8.97)

We also know that and are not independent, since together the field
components must also satisfy the component equations of (3.22) in phasor form
with 

(8.98)

Substitution of (8.93), (8.95), and (8.96) gives us

(8.99a)

(8.99b)

or

(8.100)
ax2

bx1
= Bv2m01e1 - e22

bx1
2

- 1

 -ax2
2 + bz

2 = v2m0e2

 bx1
2 + bz

2 = v2m0e1

-jbzH
 –

x -
0H

 –
z

0x
= c jve1E

 –
y for ƒ x ƒ 6 d>2

jve2E
 –

y for  x 7 d>2
jve2E

 –
y for x 6 -d>2

J = 0:

ax2bz,bx1,

tan bx1 
d

2
=
ax2

bx1

x = ;d>2H
 –

z

 H
 –

z = f
-  

jbx1

vm0
 A
 –

 sin bx1x e-jbzz for ƒ x ƒ 6 d>2
-  

jax2

vm0
 A
 –

 cos bx1 
d

2
  e-ax21x - d>22e-jbzz for x 7 d>2

jax2

vm0
 A
 –

 cos bx1 
d

2
  eax21x + d>22e-jbzz for x 6 -d>2

 H
 –

x = -  

bz

vm0
 E
 –

y

 
0E

 –
y

0x
= -jvB

 –
z

 jbzE
 –

y = -jvB
 –

x

Ex = Ez = 0:10>0z2: -jbz

10>0t2: jv, 10>0y2 = 0,
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(a) (b) (c)

x � d
2

x � 0

x � �d
2

FIGURE 8.25

Variations of with x for the mode in the symmetric dielectric slab waveguide for (a) near
cutoff; (b) far from cutoff; and (c) intermediate to (a) and (b).

TE2Ey

Combining (8.97) and (8.100), we obtain the characteristic equation for guid-
ance to be

(8.101)

which is the same as (8.87) for 
Proceeding further, we can interpret the mode number m in terms of the

field variations with x in the following manner. For a given value of m, we ob-
serve from Fig. 8.24 that Thus, from

to varies from cos 0º to some value between
and Near cutoff,

and The variation of with x is as illustrated in Fig. 8.25(a) for 
At high frequencies far from cutoff,
and The variation of with x is as illustrated in Fig. 8.25(b). Figure
8.25(c) illustrates the situation intermediate to those near cutoff and far from
cutoff. Thus, within the thickness of the slab, the behavior of the field compo-
nents varies from m half-sine variations near cutoff toward half-sine1m + 12

Eyax2 : q .
bx1d>2 : 1m + 12p>2, tan bx1d>2 : q ,

m = 2.Eyax2 : 0.
bx1d>2 : mp>2, tan 1bx1d>22: 0,cos 1m + 12p>2.cos mp>2 x = ;d>2, cos bx1xx = 0

mp>2 6 bx1d>2 [=  f1ui2] 6 1m + 12p>2.

m = 0, 2, 4, Á .

tan [f1ui2] = g1ui2
 tan apd1er1

l0
  cos uib =

2sin2 ui - 1e2>e12
cos ui

 tan a b1d

2
 cos uib = Bv2m01e1 - e22

v2m0e1 cos2 ui

- 1

 tan abx1 
d

2
b = Bv2m01e1 - e22

bx1
2

- 1
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574 Chapter 8 Guided Wave Principles for Electronics and Optoelectronics

variations far from cutoff, with the evanescence outside the dielectric slab dic-
tated by near cutoff toward far from cutoff.

The field expressions for the odd TE modes, that is, modes with the trans-
verse field components having odd symmetry with respect to x, can be obtained
by writing the expression for to be

(8.102)

where and are constants and proceeding in a manner similar to that for the
even modes. We shall omit the details and write down the final results:

(8.103)

(8.104)

(8.105)

Continuity of at requires that

(8.106)

where we have used (8.100). Thus, the characteristic equation for guidance is

(8.107)

which is the same as (8.87) for 
Proceeding further, we observe from Fig. 8.24 that for a given value of

Thus, from to 
varies from sin 0° to some value between and 

Near cutoff, and At high frequencies
far from cutoff, and Thus,ax2 : q .bx1d>2 : 1m + 12p>2, cot 1bx1d>22: q ,

ax2 : 0.bx1d>2 : mp>2, cot 1bx1d>22: 0,
sin 1m + 12p>2.sin mp>2 sin bx1x

x = ;d>2,x = 0m, mp>2 6 bx1d>2 [=  f1ui2] 6 1m + 12p>2.

m = 1, 3, 5, Á .

tan f1ui2 = -  
1

g1ui2

 = -Bv2m01e1 - e22
bx1

2 - 1

 cot bx1 
d

2
= -  

ax2

bx1

x = ;d>2Hz
–

H
 –

z = f
jbx1

vm0
  C
 –

 cos bx1x e-jbzz for ƒ x ƒ 6 d>2
-  

jax2

vm0
  C
 –

 sin bx1 
d

2
 e-ax21x - d>22e-jbzz for x 7 d>2

-  

jax2

vm0
  C
 –

 sin bx1 
d

2
 eax21x + d>22e-jbzz for x 6 -d>2

H
 –

x = -  

bz

vm0
 E
 –

y

E
 –

y = e C
 –

 sin bx1x e-jbzz for ƒ x ƒ 6 d>2
C
 –

 sin bx1 
d

2
 e-ax21x - d>22e-jbzz for x 7 d>2

-C
 –

 sin bx1 
d

2
 eax21x + d>22e-jbzz for x 6 -d>2

D
 –

C
 –

E
 –

y = c C
 –

 sin bx1x e-jbzz for ƒ x ƒ 6 d>2
D
 –

e-ax2xe-jbzz for x 7 d>2
-D

 –
eax2xe-jbzz for x 6 -d>2

E
 –

y

ax2 : qax2 : 0
Field
expressions
for odd TE
modes
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(a) (b) (c)

x � d
2

x � 0

x � �d
2

FIGURE 8.26

Variations of with x for mode in the symmetric dielectric slab waveguide for (a) near
cutoff; (b) far from cutoff; and (c) intermediate to (a) and (b).

TE1Ey

the variation of with x for is illustrated in Fig. 8.26 for three situations:
(a) near cutoff, (b) far from cutoff, and (c) intermediate to (a) and (b). As in the
case of the even modes, the behavior of the field components varies from m
half-sine variations near cutoff toward half-sine variations far from
cutoff.

Let us now investigate the time-average power flow down the symmetric
slab waveguide for TE modes. First, we write the complex Poynting vector asso-
ciated with the TE mode fields as given by

(8.108)

Then, noting from (8.93), (8.95), and (8.96) that is real, whereas is
imaginary, we obtain the time-average Poynting vector as given by

(8.109)

where we have used the even mode field expression. For the odd modes, the
terms will be replaced by terms and the final result will be the same.sin2cos2

 =
bz ƒ A – ƒ 2

2vm0
e

cos2 bx1x az for ƒ x ƒ 6 d>2
cos2 bx1 

d

2
  e-2ax21x - d>22 az for x 7 d>2

cos2 bx1 
d

2
  e2ax21x + d>22 az for x 6 -d>2

 =
bz

2vm0
ƒ E –y ƒ 2 az

 8P9 = Re P

E
 –

y H
 –

z
*E

 –
y H

 –
x
*

 = 1
21E –yH

 –
z
* ax - E

 –
yH

 –
x
* az2

 P = 1
2 E � H*

1m + 12

m = 1Ey

Power flow
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x � 
d
2

x � d
2

1
ax2

x �� �d
2

1
ax2

x � 0

x � �d
2

Effective

Actual

FIGURE 8.27

For illustrating the effective boundaries for waveguiding along the symmetric
dielectric slab guide.

The time-average power flow along the guide per unit length in the y-direction
(because of the independence of the fields with y) is then given by

(8.110)

Using (8.97) and substituting

we obtain

(8.111)

Besides giving the expression for the time-average power flow along the
guide, (8.111) leads to the definition of fictitious effective boundaries at

where

(8.112)

as shown in Fig. 8.27. The physical interpretation of the placement of these ef-
fective boundaries relates to the phase shift that the waves experience upon
being total internally reflected at the actual boundaries.

d eff = d +
2
ax2

x = ;d eff>2,

 =
bz ƒ A – ƒ 2

4vm0
 ad +

2
ax2
b

 8P9 =
bz ƒ A – ƒ 2

vm0
 ad

4
+

1
2ax2
b

 =
2bx1

ax2
  sin2 bx1 

d

2

 sin bx1d = 2 sin bx1 
d

2
   cos bx1 

d

2

 =
bz ƒ A – ƒ 2

vm0
 cd

4
+

sin bx1d

4bx1
+

cos2 bx1d>2
2ax2

d

 =
bz ƒ A – ƒ 2

vm0
cL

d>2

0
 cos2 bx1x dx + L

q

d>2
 cos2 bx1 

d

2
 e-2ax21x - d>22 dx d

 8P9 = L
1

y = 0L
q

x = -q
8P9 # dx dy az
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8.6 Dielectric Slab Guide 577

The entire solution for the field components can be repeated for TM modes
by starting with the expression for the (only) magnetic field component and
proceeding in a manner similar to that used for the TE mode case. We shall not,
however, pursue these details here, but we include them as Problems P8.29 and
P8.30.

We have thus far discussed modes that are guided within the slab. Anoth-
er type of mode that is possible for the dielectric slab guide is that for which the
field variations with x are sinusoidal not only in the slab but also outside it. The
situation can be visualized by locating perfectly conducting plates on either side
of the slab and parallel to it, as in Fig. 8.28, and displacing the conductors to in-
finity, thereby obtaining the slab waveguide in the limiting case. Waves that are
incident from medium 1 on the interface at angles of incidence less than the crit-
ical angle for total internal reflection are transmitted into medium 2 and are re-
flected at the conductor, giving rise to ray paths such as the one shown. The
modes established when the associated self-consistency condition is satisfied
are known as the radiation modes.These modes are important in the coupling of
energy in and out of the dielectric slab.

H
 –

y

TABLE 8.2 For Example 8.6

Mode

83.42783 2157.47 10.927
76.77756 2099.27 10.953
69.96263 1998.97 11.001TE2

TE1

TE0

d eff1mm2ax21m-12ui 1deg2

TM modes

Radiation
modes

Example 8.6 Computation of effective thickness for modes in a
symmetric dielectric slab waveguide

For the values of d, and used for Table 8.1, it is desired to find for the first
three modes.

From (8.99b),

Substituting and we have

From Table 8.1, we can then compute and hence for the first three modes, as list-
ed in Table 8.2.

deffax2

ax2 =
2p

5 * 10-324 sin2 ui - 1

er2 = 1,l0 = 5 mm, er1 = 4,

 ax2 =
2p
l0
2er1 sin2 ui - er2

 = v2m0e01er1 sin2 ui - er22
 = v2m0e1 sin2 ui - v2m0e2

 ax2
2 = bz

2 - v2m0e2

deffl0er1, er2,
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578 Chapter 8 Guided Wave Principles for Electronics and Optoelectronics

K8.6. Dielectric slab waveguide; Guiding by total internal reflection; Self-consistency
condition; Characteristic equation for guidance; Propagating modes; Derivation
of field expressions; Characteristic equation for guidance; Mode behavior;
Power flow; Radiation modes.

D8.9. For a symmetric dielectric slab waveguide, and Find the fol-
lowing for TE modes: (a) the lowest value of for which an allowed value of

is 60°; (b) the lowest value of for which an allowed value of is 75°; and
(c) the second lowest value of for which an allowed value of is 75°.
Ans. (a) 0.3545; (b) 0.9972; (c) 2.2852.

D8.10. For a symmetric dielectric slab waveguide, and Find the value
of for the mode for each of the following values of (a) 2; (b) 5;
and (c) 0.5.
Ans. (a) 1.0927; (b) 1.0368; (c) 1.4047.

8.7 RAY TRACING AND GRADED-INDEX GUIDE

For the dielectric slab waveguide of the preceding section, the permittivity under-
goes an abrupt discontinuity from a uniform value of in the slab to a uniform
value of on either side of the slab.When the permittivity varies within the thick-
ness of the slab, the arrangement is known as a graded-index guide, as compared
to the step-index guide of the previous section, where the word “index” refers to
the refractive index n ( for a nonmagnetic dielectric).To extend our
discussion of guided wave propagation to a graded-index slab waveguide, we first
introduce the general topic of geometrical optics and ray tracing.

Geometrical optics is that branch of optics that allows us to study wave phe-
nomena by tracing “rays,” which are paths normal to the wavefronts, from the local
application of the laws of reflection and refraction (Snell’s law). Whenever the
wavefront extends and is uniform over many wavelengths and when the bound-
aries are large compared to the wavelength, ray tracing can be usefully employed.
Also, as long as the radii of curvature are large in comparison to the wavelength,
the boundaries as well as the wavefronts can be nonplanar. In fact, we have already

=  c>vp = 1er

e2

e1

d>l0:TE0deff>d
er2 = 1.er1 = 4

uid>l0

uid>l0ui

d>l0

e2 = e0.e1 = 2.25e0

Geometrical
optics
approximation
explained

e2

Perfect
Conductor

Perfect
Conductor

e1

x

y
z

e2

FIGURE 8.28

For explaining the mechanism pertinent to radiation modes in a dielectric slab guide.
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Ray tracing
formulation

made use of geometrical optics concepts to introduce the cutoff phenomenon in a
parallel-plate waveguide in Section 8.2 and to derive the characteristic equation
for guidance in the dielectric slab guide in Section 8.6. In all of these cases, the
media were uniform and the boundaries were planar and abrupt, so that the ray
paths were all straight lines. For nonuniform media, the ray paths become curved.

To formulate the ray tracing procedure, let us consider the arrangement
shown in Fig. 8.29, in which a medium of continuously varying refractive index
n(x) is approximated by a series of plane slabs of uniform refractive indices

Let a wave be incident from the medium of refractive index at
an angle from the vertical. Then assuming the ray
path bends more and more away from the vertical in accordance with Snell’s
law applied at the interfaces

(8.113)

with the path in each layer being a straight line. In the limit that the thickness of
each layer goes to zero, the refractive index varies continuously with x and the ray
path becomes curved. To trace the path of the ray, let us consider a differential
segment ds along the ray path, having the components dx and dz in the x- and z-
directions, respectively, as shown in Fig. 8.30. Then

(8.114)

From (8.113), or Substituting in (8.114),
we obtain

(8.115)

For a given refractive index profile n(x), the solution of (8.115) gives the ray tra-
jectory in the xz-plane. In general, the solution has to be carried out numerically.
For certain functions for n(x), an analytical solution is possible. We shall illus-
trate by means of an example.

dz

dx
=

n0 sin u02n2 - n0
2 sin2 u0

sin u = 1n0>n2 sin u0.n sin u = n0 sin u0,

dz

dx
= tan u =

sin u21 - sin2 u

n0 sin u0 = n1 sin u1 = n2 sin u2 = Á

n0 6 n1 6 n2 6 n3 6 Á ,u0

n0n1, n2, n3, Á .

n4

n3 x

n2

n1

n0

u3

u2

u1

u0
FIGURE 8.29

The bending of ray paths in a series of plane
dielectric slabs of uniform refractive indices.
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Example 8.7 Finding the ray trajectory in a dielectric medium with
linear profile of permittivity

Let us consider a variation of refractive index as given by

where Note that for a nonmagnetic dielectric medium, this corresponds to a linear
profile of permittivity.We wish to find the ray trajectory in the medium in the xz-plane for a
wave entering the medium at and at an angle from the vertical (x-direction).

From (8.115), we have

The ray trajectory is given by

Rearranging, we have

or

Thus, the ray trajectory is parabolic, with the parabola having its apex at 
and Note that at or 
and consistent with the solution obtained.u = 90°,

n = n0 sin u0,x = 1cos2 u02>a, n2 = n0
211 - cos2 u02z = 1sin 2u02>a.

x = 1cos2 u02>a
x =

cos2 u0

a
- a cos u01a -

1a
2 sin u0

 zb2

cos2 u0 - ax = a -  
az

2 sin u0
+ cos u0b

2

 = -  

2 sin u0

a
  [2cos2 u0 - ax - cos u0]

 = -  sin u0 c 2
a
2cos2 u0 - ax d

0

x

 z1x2 = L
x

0

sin u02cos2 u0 - ax
  dx
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=
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FIGURE 8.30

For the formulation of ray
tracing for continuous
variation of retractive index.
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8.7 Ray Tracing and Graded-Index Guide 581

When the ray trajectories are nearly along the propagation axis, the rays
are known as paraxial rays. For paraxial rays, the angle that the ray
makes with the propagation axis, which here is the z-axis as shown in Fig. 8.31, is
small such that approximations of and can be used.

Example 8.8 Paraxial rays in a dielectric medium with parabolic
refractive index profile

An important example of a graded refractive index profile is given by

(8.116)

For sufficiently small that which is usually the case,

(8.117)

corresponds to a parabolic variation. We wish to investigate paraxial rays for this profile.
Let us consider a ray making an angle with the z-axis at the point Then

from (8.115),

or

(8.118)x =
d0

a
  sin az

 =
1
a

  sin-1
  
ax

d0

 = c 1
a

  sin-1
 a a
d0

xb d
0

x

 z = L
x

0

dx2d0
2 - a2x2

 L
1

d0
2 - a2x2

 =
cos d02sin2 d0 - a2x2

 =
n0 cos d02n0

211 - a2x22 - n0
2 cos2 d0

 
dz

dx
=

n0 sin u02n2 - n0
2 sin2 u0

=
n0 cos d02n2 - n0

2 cos2 d0

x = 0.d0

n1x2 = n021 - a2x2 L n011 - 1
2 a2x22

ax � 1,a

n2 = n0
211 - a2x22

cos d L 1sin d L d

d1=  90° - u2

Paraxial rays
in parabolic
index profile

z

x

u

d FIGURE 8.31

Geometry pertinent to the paraxial ray
approximation.

Paraxial 
ray approxi-
mation
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x

n

d
2

0

d
2

n2

n1(x)
u(x) e1(x)

e2 � e(x � d/2)

x � d/2

x � �d/2

x� xa

x � �xa

x � 0

e2

(b)(a)

�

FIGURE 8.33

(a) Refractive index profile for a symmetrical graded-index guide. (b) Ray path within the graded-
index region.

The ray oscillates about the axis with a period of known as the pitch, independent
of and a peak amplitude as shown in Fig. 8.32 for a few values of 

We may now discuss wave guidance in a graded-index guide. To do this, let
us consider, for simplicity, the symmetric refractive index profile of the shape
shown in Fig. 8.33(a). Then for those waves that are total internally reflected
within a sketch of the ray path can be drawn, as in Fig. 8.33(b),
with apex points at where From Snell’s law,

since at Using the same reasoning as for writ-
ing (8.83), we can write the self-consistency condition for guidance to be

(8.119)

In view of symmetry, (8.119) reduces to

(8.120)

where ≠a = [≠]x = xa
.

4p
l0 L

xa

x = 0
2er11x2 cos u1x2 dx + l≠a = mp, m = 0,1,2, Á

+l[ ≠ ]x = -xa = 2mp, m = 0,1,2, Á
L

xa

x = -xa

2p
l0
2er11x2 cos u1x2 dx + l[≠ ]x = xa + L

-xa

x = xa

 
2p
l0
2er11x2 cos u1x2 dx

x = ;xa.u = 90°n11x2 sin u1x2, n1;xa2 =xa 6 d>2.x = ;xa,
-d>2 6 x 6 d>2,

d0.d0>a,d0,
2p>a,

Guidance
condition for
graded-index
guide

z

x

FIGURE 8.32

Paraxial rays in a parabolic index profile.
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8.7 Ray Tracing and Graded-Index Guide 583

To proceed further, we consider the TE case and find by using (8.86).
We first write as

(8.121)

where we have inserted primes so as not to confuse with the notation of Fig. 8.33.
Now we note that for the situation under consideration,

so that

(8.122)

In view of the continuous variation of we now have to take the limit of the
right side of (8.122) as and tend to We note however that this re-
sults in a situation of zero divided by zero. To avoid this, we write that in the
vicinity of 

Thus,

(8.123)

 =
1 - j

1 + j
= 1l -p>2

 ≠a = Lim
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de

dx
- j  A - ¢x  
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de

dx

 e1xa-2 - e1xa2 L e1xa2 - ¢x  
de

dx
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dx
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dx
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dx
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œ - e1
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 e1
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 sin2 90° = e1xa2
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so that The same result can be shown to hold for the TM case,
which makes use of (see Problem P8.35).

Finally, substituting and also

(8.124)

into (8.120), we obtain the characteristic equation for guidance to be

(8.125)

or in terms of refractive index

(8.126)

As in the case of the step-index guide, each value of m corresponds to a mode.
For a given value of m and for a given profile (8.126) must in general be
solved numerically.There are however certain refractive index profiles that per-
mit analytical solution. An example is in order.

Example 8.9 Guided waves in a parabolic index dielectric slab waveguide

Let us consider the refractive index profile of Example 8.8 given by

(8.127)

where is such that and investigate guided waves in the slab.
Substituting for in (8.126), we have

(8.128)xa
2 =
12m + 12l0

2pn0a
, m = 0, 1, 2, Á

 
2pn0a

l0
  cx2xa

2 - x2 + xa
2  sin-1

  
x

xa
d

x = 0

xa
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1
2
bp, m = 0, 1, 2, Á
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l0 L
xa

x = 0
2xa

2 - x2 dx = am +
1
2
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4p
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211 - a2xa
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2
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n1
21x2

[n1]x = ;d>2 Ú n2,a
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2 [1 - a2x2]

n11x2,

4p
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xa
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2n1
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1
2
bp, m = 0, 1, 2, Á

4p
l0 L

xa

x = 0
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 = 2er11x2 - er11xa2
 2er11x2 cos u = 2er11x2 - er11x2 sin2 u

l≠a = -p>2
≠7

l≠a = -p>2.

Modes in
parabolic-
index guide
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8.7 Ray Tracing and Graded-Index Guide 585

The value of increases with the mode number m, as can also be seen in general from
(8.126). Recall that For paraxial modes, the ray trajectories are given by

(8.129)

In contrast with the modes of the step-index guide in which the ray paths for all modes
extend to the boundaries of the slab with varying values of the pitch, for these modes the
ray paths possess amplitudes increasing with m but with a fixed pitch.

The numerical solution of (8.126) involves an iterative procedure. For a
given refractive index profile and specified values of d and the iterative proce-
dure consists of starting with and computing that satisfies (8.126).To do
this, is set equal to d/2 and the integral on the left side is evaluated numerically.
If this results in a value of less than for the left side of (8.126), then it means
that a solution does not exist for any value of m and the computation is terminat-
ed. If the value is greater than then an interval-bisection procedure is used it-
eratively, beginning with the interval from 0 to d/2, until a value of that satisfies
(8.126) to a desired accuracy is found.The value of m is then increased in steps of
unity and the computation repeated for each value of m, beginning with the
search interval extending from the solution for found for the previous value of
m to d/2. The entire computation is terminated when a value of m is reached for
which the left side of (8.126) yields a value of less than 

Returning now to the result of (8.129), we consider its consequence in in-
termodal dispersion, the type of dispersion resulting from different travel times
of rays corresponding to different modes. Because rays of higher modes travel
farther but with greater velocities (lower refractive index), the travel times of
the different rays are nearly equalized, thereby almost eliminating intermodal
dispersion. To discuss in quantitative terms, we note that the phase constant
along the guide axis is given by
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=
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ut

u3

u1

n0 u0

n0

n5

n4

n3

n2

n1

FIGURE 8.34

For Problem D8.11.

Thus, the group velocity along the guide axis is given by

independent of m.

K8.7. Ray tracing; paraxial rays; parabolic index profile; graded-index guide; inter-
modal dispersion.

D8.11. In Fig. 8.34, a medium of continuously varying refractive index is approximated
by a series of plane slabs of uniform refractive indices. If and 
find the following: (a) if (b) if and (c)
Ans. (a) 35.26°; (b) (c) 30°.

D8.12. In Example 8.9, let and Compute the follow-
ing: (a) for (b) the maximum value of m; and (c) the paraxial angle 
for the value of m computed in (b).
Ans. (a) (b) 5; (c) 13.88°.

SUMMARY

In this chapter, we studied the principles of waveguides. To introduce the wave-
guiding phenomenon, we first learned how to write the expressions for the elec-
tric and magnetic fields of a uniform plane wave propagating in an arbitrary
direction with respect to the coordinate axes. These expressions are given by

where and r are the propagation and position vectors given by

 r = xax + yay + zaz

 B = bxax + byay + bzaz

B

 H = H0 cos 1vt - B # r + f02
 E = E0 cos 1vt - B # r + f02

1.4567l0;

d0m = 0;xa

d = 10l0.n0 = 1.5, a = 0.05>l0,
13;

ut.u3 = 30°;n3n1 = 1.5;u1

u0 = 60°,n0 = 1

vgz =
dv

dbz
=

c
n0

RaoCh08v3.qxd  12/18/03  5:11 PM  Page 586



Summary 587

and is the phase of the wave at the origin at The magnitude of is equal
to the phase constant along the direction of propagation of the wave.The
direction of is the direction of propagation of the wave.We learned that

that is, and are mutually perpendicular, and that

Also, since should be directed along the propagation vector it then
follows that

The quantities and are the phase constants along the x-, y-, and z-
axes, respectively. The apparent wavelengths and the apparent phase velocities
along the coordinate axes are given, respectively, by

By considering the superposition of two uniform plane waves having
only y-components of electric fields and propagating at an angle to each other
and placing perfect conductors in two constant-x planes such that the bound-
ary condition of zero tangential electric field is satisfied, we introduced the
parallel-plate waveguide. We learned that the composite wave is a transverse
electric, or TE, wave, since the electric field is entirely transverse to the direc-
tion of time-average power flow, that is, the guide axis, but the magnetic field
is not. In terms of the uniform plane wave propagation, the phenomenon is
one of waves bouncing obliquely between the conductors as they progress
down the guide. For a fixed spacing a between the conductors of the guide,
waves of different frequencies bounce obliquely at different angles such that
the spacing a is equal to an integer, say, m number of one-half apparent wave-
lengths normal to the plates and hence the fields have m number of one-half
sinusoidal variations normal to the plates. These are said to correspond to

modes, where the subscript 0 implies no variations of the fields in the
direction parallel to the plates and transverse to the guide axis. When the fre-
quency is such that the spacing a is equal to m one-half wavelengths, the waves
bounce normally to the plates without the feeling of being guided along the

TEm,0

 vpi =
v

bi
, i = x, y, z

 li =
2p
bi

, i = x, y, z

bzbx, by,

H =
1
vm

 B � E

B,E � H

ƒ E0 ƒ
ƒ H0 ƒ

= h = AmeBE0, H0,

 E0
# H0 = 0

 H0
# B = 0

 E0
# B = 0

B

v2me, Bt = 0.f0
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588 Chapter 8 Guided Wave Principles for Electronics and Optoelectronics

axis, thereby leading to the cutoff condition. Thus, the cutoff wavelengths cor-
responding to modes are given by

and the cutoff frequencies are given by

A given frequency signal can propagate in all modes for which or
For the propagating range of frequencies, the wavelength along the

guide axis, that is, the guide wavelength, and the phase velocity along the guide
axis are given, respectively, by

As compared to TE modes, the transverse magnetic, or TM, modes have
their magnetic fields entirely transverse to the direction of time-average power
flow. They are obtained by considering two uniform plane waves having only y-
components of magnetic fields and propagating at an angle to each other and
placing two perfect conductors in two constant-x planes.The expressions for the
propagation parameters and for the TM modes are the same as
those for the TE modes.

We discussed the solution of problems involving reflection and transmis-
sion at a discontinuity in a waveguide by using the transmission-line analogy.
This consists of replacing each section of the waveguide by a transmission line
whose characteristic impedance is equal to the guide characteristic impedance,
and then computing the reflection and transmission coefficients as in the trans-
mission-line case. The guide characteristic impedance, is the ratio of a trans-
verse electric-field component to the corresponding transverse magnetic-field
component, which together with the electric-field component gives rise to time-
average power flow down the guide. It is given for TE modes by

and for TM modes by

[hg] TM = h B1 - a l
lc
b2

= h B1 - afc

f
b2

[hg] TE =
h21 - 1l>lc22 =

h21 - 1fc>f22

hg,

vpzlc, fc, lg,

 vpz =
vp21 - 1l>lc22 =

vp21 - 1fc>f22

 lg =
l21 - 1l>lc22 =

l21 - 1fc>f22

f 7 fc.
l 6 lc

fc =
vp

lc
=

m

2a2me
lc =

2a
m

TEm,0
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Summary 589

We then discussed the phenomenon of dispersion arising from the fre-
quency dependence of the phase velocity along the guide axis, and we intro-
duced the concept of group velocity. Group velocity is the velocity with which
the envelope of a narrow-band modulated signal travels in the dispersive chan-
nel, and hence it is the velocity with which the information is transmitted. It is
given by

where is the phase constant along the guide axis. On the dispersion diagram
or the diagram, the group velocity is equal to the slope of the tangent to
the dispersion curve at the center frequency of the narrow-band signal. For the
parallel-plate waveguide, it is given by

To extend the discussion of waveguides to integrated optics, we then con-
sidered oblique incidence of a uniform plane wave on the boundary between
two perfect dielectric media. We derived the laws of reflection and refraction,
given, respectively, by

where and are the angles of incidence, reflection, and transmission, re-
spectively, of a uniform plane wave incident from medium 1 onto medi-
um 2 The law of refraction is also known as Snell’s law.We then derived
the expressions for the reflection and transmission coefficients for the cases of
perpendicular and parallel polarizations. An examination of these expressions
revealed the following, under the assumption of (1) for incidence from
a medium of higher permittivity onto one of lower permittivity, there is a critical
angle of incidence given by

beyond which total internal reflection occurs, and (2) for the case of parallel polar-
ization, there is an angle of incidence, known as the Brewster angle and given by

for which the reflection coefficient is zero.

up = tan-1 Ae2

e1

uc = sin-1 Ae2

e1

m1 = m2:

1e2, m22.
1e1, m12

utui, ur,

 ut = sin-1 aAm1e1

m2e2
  sin uib

 ur = ui

vg = vp A1 - afc

f
b2

v-bz

bz

vg =
dv

dbz
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590 Chapter 8 Guided Wave Principles for Electronics and Optoelectronics

Next, we introduced the dielectric slab waveguide, consisting of a dielectric
slab of permittivity sandwiched between two dielectric media of permittivities

We learned that by launching waves at an angle of incidence greater
than the critical angle for total internal reflection, it is possible to achieve guided
wave propagation within the slab. For a given frequency, several modes are pos-
sible corresponding to values of that satisfy the self-consistency condition as-
sociated with the bouncing waves. We derived the characteristic equation for
computing these values of for the TE case and discussed its solution. The
modes are designated modes and their cutoff frequencies are given by

where d is the thickness of the slab. The fundamental mode, has no cutoff
frequency. We also discussed the guided modes by using the approach of deriv-
ing the field expressions, based on the behavior that (a) in the transverse (x-) di-
rection, the fields have standing wave character inside the slab and are
evanescent outside the slab, and (b) in the longitudinal (z-) direction, the fields
have traveling wave character both inside and outside the slab. Dividing the
modes into even and odd modes with respect to x from symmetry considera-
tions, we derived the field expressions for the TE modes and (a) obtained the
associated characteristic equation for guidance to be the same as that obtained
from the wave-bounce approach, (b) discussed the field behavior from near cut-
off to far from cutoff, and (c) investigated power flow down the guide.

To extend the treatment of dielectric waveguide to one of graded-index
guide, that is, one in which the refractive index varies within the thickness of the
slab, we first introduced the topic of ray tracing, making use of the geometrical
optics concept. The ray tracing procedure involves the application of Snell’s law
in conjunction with the geometry associated with the problem.Although in gen-
eral the solution has to be carried out numerically, for certain functions for the
refractive index variation, analytical solutions are possible, as illustrated by con-
sidering (a) a linear profile of permittivity, and (b) paraxial rays, that is, rays that
make small angles to the propagation axis, in a parabolic index profile. For the
latter case, we found that the ray oscillates about the axis with a pitch indepen-
dent of the angle of takeoff from the axis at the starting point. We then consid-
ered the graded-index guide having a symmetric refractive index profile and
derived the condition for guidance. Applying the guidance condition to investi-
gate modes in a parabolic index guide, we showed that, for paraxial rays in the
parabolic index guide, intermodal dispersion is nearly eliminated.

REVIEW QUESTIONS

Q8.1. What is the propagation vector? Interpret the significance of its magnitude and
direction.

Q8.2. Discuss how the phase constants along the coordinate axes are less than the
phase constant along the direction of propagation of a uniform plane wave
propagating in an arbitrary direction.

TE0,

fc =
mc

2d2er1 - er2

, m = 0, 1, 2, Á

TEm

ui

ui

uie2 6 e1.
e1

RaoCh08v3.qxd  12/18/03  5:11 PM  Page 590



Review Questions 591

Q8.3. Write the expressions for the electric and magnetic fields of a uniform plane
wave propagating in an arbitrary direction, and list all the conditions to be satis-
fied by the electric field, magnetic field, and propagation vectors.

Q8.4. What are apparent wavelengths? Why are they longer than the wavelength
along the direction of propagation?

Q8.5. What are apparent phase velocities? Why are they greater than the phase veloc-
ity along the direction of propagation?

Q8.6. Discuss how the superposition of two uniform plane waves propagating at an
angle to each other gives rise to a composite wave consisting of standing waves
traveling bodily transverse to the standing waves.

Q8.7. What is a transverse electric wave? Discuss the reasoning behind the nomencla-
ture modes.

Q8.8. Compare the phenomenon of guiding of uniform plane waves in a parallel-plate
waveguide with that in a parallel-plate transmission line.

Q8.9. Discuss how the cutoff condition arises in a parallel-plate waveguide. Explain
the relationship between the cutoff wavelength and the spacing between the
plates of a parallel-plate waveguide based on the phenomenon at cutoff.

Q8.10. Is the cutoff wavelength dependent on the dielectric in the waveguide? Is the
cutoff frequency dependent on the dielectric in the waveguide?

Q8.11. What is guide wavelength?
Q8.12. Provide a physical explanation for the frequency dependence of the phase ve-

locity along the guide axis.
Q8.13. What is a transverse magnetic wave? Compare and contrast TE and TM waves

in a parallel-plate waveguide.
Q8.14. Discuss the phenomenon of guiding of waves in the Earth-ionosphere waveguide.
Q8.15. How is guide characteristic impedance defined? Discuss guide characteristic

impedance for both TE and TM modes.
Q8.16. Discuss the use of the transmission-line analogy for solving problems involving

reflection and transmission at a waveguide discontinuity.
Q8.17. Why are the reflection and transmission coefficients for a given mode at a loss-

less waveguide discontinuity dependent on frequency, whereas the reflection
and transmission coefficients at the junction of two lossless lines are indepen-
dent of frequency?

Q8.18. Discuss the phenomenon of dispersion.
Q8.19. Discuss the concept of group velocity with the aid of an example.
Q8.20. What is a dispersion diagram? Explain how the phase and group velocities can

be determined from a dispersion diagram.
Q8.21. When is it meaningful to attribute a group velocity to a signal comprised of

more than two frequencies? Why?
Q8.22. Discuss the propagation of a narrow-band amplitude-modulated signal in a dis-

persive channel.
Q8.23. Discuss the condition required to be satisfied by the incident, reflected, and

transmitted waves at the interface between two dielectric media.
Q8.24. What is Snell’s law?
Q8.25. What is meant by the plane of incidence? Distinguish between the two different

linear polarizations pertinent to the derivation of the reflection and transmis-
sion coefficients for oblique incidence on a dielectric interface.

TEm,0
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592 Chapter 8 Guided Wave Principles for Electronics and Optoelectronics

Q8.26. Briefly discuss the determination of the Fresnel reflection and transmission co-
efficients for an obliquely incident wave on a dielectric interface.

Q8.27. What is total internal reflection? Discuss the nature of the reflection coefficient
and the manner in which the boundary condition is satisfied for an angle of in-
cidence greater than the critical angle for total internal reflection.

Q8.28. What is the Brewster angle? What is the polarization of the reflected wave for
an elliptically polarized wave incident on a dielectric interface at the Brewster
angle? Discuss an application of the Brewster angle effect.

Q8.29. Discuss the principle of optical waveguides by considering the dielectric slab
waveguide.

Q8.30. Explain the self-consistency condition for waveguiding in a dielectric slab wave-
guide.

Q8.31. Discuss the dependence of the number of propagating modes in a dielectric slab
waveguide on the ratio of the thickness d of the dielectric slab to the wavelength 

Q8.32. Considering TE modes in a dielectric slab guide, specify the fundamental mode
and discuss the associated cutoff condition.

Q8.33. Outline the considerations that come into play in deriving the field expressions
for the modes in a dielectric slab guide.

Q8.34. Discuss the mode designation for a dielectric slab guide with reference to the
field variations in the guide. Further discuss the behavior of the even and odd
modes as the situation changes from near cutoff to far from cutoff.

Q8.35. Discuss the concept of effective boundary for waveguiding along a dielectric
slab guide.

Q8.36. Explain radiation modes with reference to a dielectric slab guide.
Q8.37. What is geometrical optics approximation? Under what conditions is it valid?
Q8.38. Outline the formulation of the procedure for ray tracing in a plane-stratified

medium of continuously varying refractive index.
Q8.39. What is paraxial ray approximation? Discuss paraxial rays in a medium of para-

bolic index profile.
Q8.40. Outline the derivation of the self-consistency condition for wave guidance in a

graded-index dielectric slab guide.
Q8.41. Compare and contrast the ray trajectories associated with modes in a graded-

index guide with those associated with modes in a step-index guide.
Q8.42. What is intermodal dispersion? Why is it minimized for the case of paraxial rays

in a parabolic index guide?

PROBLEMS

Section 8.1

P8.1. Finding the parameters for a uniform plane wave from a specified electric field.
The electric field of a uniform plane wave propagating in a perfect dielectric
medium having and is given by

E = 1012ax + ay - 2az2 cos [3p * 107t - 0.1p12x - 2y + z2]
m = m0e = 9e0

l0.
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Problems 593

Find: (a) the frequency; (b) the direction of propagation; (c) the wavelength
along the direction of propagation; (d) the apparent wavelengths along the x-, y-,
and z-axes; and (e) the apparent phase velocities along the x-, y-, and z-axes.

P8.2. Finding whether a given E represents that of a uniform plane wave in free
space. Given

(a) Determine if the given E represents the electric field of a uniform plane
wave propagating in free space. (b) If the answer is “yes,” find the correspond-
ing magnetic-field vector H.

P8.3. Finding whether a given E-H pair represents that of a uniform plane wave in a
dielectric. Given

(a) Perform all necessary tests and determine if these fields represent a uniform
plane wave propagating in a perfect dielectric medium. (b) If the answer is
“yes,” find the permittivity and the permeability of the medium.

P8.4. Properties of a uniform plane wave from specified apparent phase velocities.
The apparent phase velocities of a uniform plane wave propagating in a perfect
dielectric medium are measured in three directions as follows: along
the x-direction, along the direction of the unit vector 
and along the direction of the unit vector Find
the direction of propagation of the wave and the phase velocity along the direc-
tion of the unit vector 

P8.5. Finding the parameters for a uniform plane wave from specified phasor electric
field. The electric field of a uniform plane wave propagating in free space is
given in phasor form by

(a) Determine the frequency of the wave. (b) What is the direction of propaga-
tion? (c) Obtain the associated magnetic field in phasor form. (d) Discuss the
polarization of the wave. (e) Find the time-average power flow per unit area
normal to the direction of propagation.

Section 8.2

P8.6. Finding the spacing for the plates of a parallel-plate waveguide for a given con-
dition. Find the spacing a for a parallel-plate waveguide having a dielectric of

and such that 6000 MHz is 20 percent above the cutoff frequen-
cy of the dominant mode, that is, the mode with the lowest cutoff frequency.

m = m0P = 9P0

E = 101ax + j0.4ay + j0.3az2ej10.6y - 0.8z2

1
312ax + 2ay - az2.

1
31ax - 2ay + 2az2.12 * 108 m>s

1
514ax + 3ay2,2 * 108 m>s

4 * 108 m>s

 H =
1

60p
 1ax - 2ay + 13az2 cos [15p * 106t - 0.05p113x - z2]

 E = 1ax + 2ay + 13az2 cos [15p * 106t - 0.05p113x - z2]

E = 1014ax + 5ay - 3az2 cos [3p * 107t - 0.02p13x + 4z2]
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594 Chapter 8 Guided Wave Principles for Electronics and Optoelectronics

P8.7. Finding propagating modes and their characteristics in a parallel-plate wave-
guide. The dimension a of a parallel-plate waveguide with a dielectric of

and is 3 cm. Determine the propagating modes for a wave of
frequency 6000 MHz. For each propagating mode, find and 

P8.8. Finding propagating modes in a parallel-plate waveguide for a given excitation.
Transverse electric modes are excited in an air dielectric parallel-plate wave-
guide of dimension by setting up at its mouth a field distribution
having

Determine the propagating mode(s) and obtain the expression for the electric
field of the propagating wave.

P8.9. Finding E for the propagating wave in a parallel-plate waveguide for a given ex-
citation. TE modes are excited in an air-dielectric parallel-plate waveguide
having the plates in the and planes by setting up at its input

a field distribution such that

Find the expression for the electric field of the propagating wave.
P8.10. Finding fields for the propagating wave in a parallel-plate waveguide from the

excitation. TM mode is excited in a parallel-plate waveguide filled with a di-
electric of and and having the plates in the and 
planes by setting up at its input the magnetic field distribution

Find the expressions for the electric and magnetic fields of the propagating wave.

Section 8.3

P8.11. Power reflection coefficient at a parallel-plate waveguide discontinuity for sev-
eral cases. For the parallel-plate waveguide discontinuity of Example 8.3, find
the power reflection coefficient for for each of the following
cases: (a) TEM mode; (b) mode; and (c) mode.

P8.12. Power reflection coefficient at a parallel-plate waveguide discontinuity for sev-
eral cases. The left half (section 1) of a parallel-plate waveguide of dimensions

is filled with a dielectric of and The right half (section
2) is filled with a dielectric of and For waves of frequency 2500
MHz incident on the discontinuity from the left, find the power reflection coef-
ficient for each of the following cases: (a) mode; (b) mode; (c)
mode; and (d) mode.

P8.13. Finding the dielectric permittivity at an air–dielectric interface in a parallel-
plate guide. Assume that the permittivity of the dielectric to the right side of
the parallel-plate waveguide discontinuity of Fig. 8.11 is unknown. If the reflec-
tion coefficient for waves of frequency 5000 MHz incident on the junction
from the free space side is find the permittivity of the dielectric.-0.2643,

TE1,0

TM2,0

TM1,0TE2,0TE1,0

m = m0.e = 16e0

m = m0.e = 9e0a = 5 cm

TM1,0TE1,0

f = 7500 MHz

H = H0 cos 40px sin 8p * 109t ay

z = 0
x = 5 cmx = 0m = m0e = 4e0

E = E0 sin3 20px cos 5p * 109t cos 15p * 109t ay

z = 0
x = 5 cmx = 0

E = 101sin 20px + 0.5 sin 60px2 sin 1010pt ay

a = 5 cm

vpz.lc, fc, u, lg,
m = m0e = 4e0
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Section 8.4

P8.14. Finding the group velocity for a group of two trains. For the two-train example
of Fig. 8.12, find the group velocity if the speed of train B is (a) 36 m/s and (b) 40
m/s, instead of 30 m/s. Discuss your results with the aid of sketches.

P8.15. Finding phase and group velocities from a dispersion curve. The curve for
a dispersive channel can be approximated by

in the vicinity of where k is a constant. Find the following: (a) the
phase velocity for a signal of (b) the group velocity for a signal com-
posed of two frequencies and and (c) the group velocity for a narrow-
band signal having the center frequency 

P8.16. Finding group velocities of signals propagating in a parallel-plate waveguide.
For a parallel-plate waveguide of dimension and having a perfect
dielectric of and find the group velocity for: (a) a signal com-
posed of the two frequencies and and (b) a
narrow-band signal having the center frequency 2500 MHz.

P8.17. Finding group velocities of signals propagating in a parallel-plate waveguide.
Find the group velocity of propagation of a TE wave in a parallel-plate wave-
guide filled with a perfect dielectric of and and having the
plates in the and planes for each of the following cases of elec-
tric field distribution at its input 

(a)

(b)

P8.18. A geometric interpretation of the group velocity in a parallel-plate waveguide.
By considering the parallel-plate waveguide, show that a point on the obliquely
bouncing wavefront, traveling with the phase velocity along the oblique direc-
tion, progresses parallel to the guide axis with the group velocity.

Section 8.5

P8.19. Fresnel coefficients for the case of interface between two perfect dielectric media.
For the case of two nonmagnetic perfect dielectric media, show that the
Fresnel coefficients for perpendicular polarization (8.70a) and (8.70b) reduce to

respectively, and the Fresnel coefficients for parallel polarization (8.75a) and
(8.75b) reduce to

respectively.

≠7 =
tan 1u2 - u12
tan 1u2 + u12 and t7 =

2 cos u1 sin u2

sin 1u1 + u22 cos 1u1 - u22

≠� =
sin 1u2 - u12
sin 1u2 + u12 and t� =

2 cos u1 sin u2

sin 1u2 + u12

1m = m02,

E0 sin 10px11 + 0.5 cos 104pt2 cos 4 * 109pt ay

E0 sin 10px cos 109pt cos 4 * 109pt ay

z = 0:
x = 10 cmx = 0

m = m0e = 2.25e0

f2 = 3000 MHz;f1 = 2500 MHz
m = m0,e = 9e0

a = 2.5 cm

0.5v0.
0.6v0;0.4v0

v = 0.5v0;
v = 0.5v0,

1

v2 =
1

v0
2 +

k2

b2

v–b
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596 Chapter 8 Guided Wave Principles for Electronics and Optoelectronics

P8.20. Oblique incidence of uniform plane wave onto a dielectric medium. In Exam-
ple 8.4, assume that

and the angle of incidence is 45°. Obtain the expressions for the electric fields of
the reflected and transmitted waves.

P8.21. Oblique incidence of uniform plane wave onto a dielectric medium. Repeat
Problem P8.20 for

P8.22. Oblique incidence of uniform plane wave onto a dielectric medium at Brewster
angle. In Example 8.4, assume that the permittivity of medium 2 is unknown
and that

(a) Find the value of for which the reflected wave is linearly polarized.
(b) For the value of found in (a), find the expressions for the reflected and

transmitted wave electric fields.

P8.23. Consistency of Fresnel coefficients with power flow normal to the interface.
For oblique incidence of a uniform plane wave on a dielectric interface, show
that the Fresnel reflection and transmission coefficients are consistent with the
condition that for power flow normal to the interface, the sum of the reflected
power and the transmitted power be equal to the incident power, for each of the
two cases: (a) perpendicular polarization and (b) parallel polarization.

Section 8.6

P8.24. Minimum bouncing angle for total internal reflection in a thin-film waveguide.
A thin-film waveguide employed in integrated optics consists of a substrate on
which a thin film of refractive index greater than that of the substrate is
deposited. The medium above the film is air. For relative permittivities of the
substrate and the film equal to 2.25 and 2.4, respectively, find the minimum
bouncing angle of total internally reflected waves in the film. Assume 
for both substrate and film.

P8.25. TE modes in a symmetric dielectric slab waveguide. For a symmetric dielectric
slab waveguide, and (a) Find the number of propagating
TE modes for (b) Find the maximum value of for which the
waveguide supports only one TE mode.

P8.26. Design of a symmetric dielectric slab waveguide. Design a symmetric dielectric
slab waveguide, with and by finding the value of such
that the mode operates at 20% above its cutoff frequency.TE1

d>l0er2 = 2.13,er1 = 2.25

d>l0d>l0 = 10.
e2 = e0.e1 = 2.25e0

m = m0

1c>vp2

e2

e2

+ E0 ay sin [6p * 109t - 10p1x + 13z2]
Ei = E0a13

2
 ax -

1
2

 azb  cos [6p * 109t - 10p1x + 13z2]

e2

Ei = E0 ay cos [6p * 108t - 12p1x + z2]

Ei = E01ax - az2 cos [6p * 108t - 12p1x + z2]
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P8.27. Guiding of waves in a symmetric dielectric slab waveguide for parallel polariza-
tion. Consider the derivation of the characteristic equation for guiding of
waves in the symmetric dielectric slab waveguide for the case of parallel polar-
ization, which corresponds to TM modes. Noting that in Fig. 8.18,

where is given by (8.75a), show that the characteristic equation
is given by

where

P8.28. Power confinement factor for dielectric slab waveguide. The ratio of the power
associated with the region of the slab to the total power

is known as the power confinement factor. Show that for a
given frequency, the power confinement factor is the highest for the dominant
mode. Find the power confinement factors for the three modes in Example 8.6.

P8.29. Even TM modes in a symmetric dielectric slab waveguide. Beginning with an
expression for analogous to that of for even TE modes given by (8.91),
derive the field expressions for even TM modes for the symmetric dielectric
slab waveguide and obtain the characteristic equation for guidance.

P8.30. Odd TM modes in a symmetric dielectric slab waveguide. Repeat Problem
P8.29 for odd TM modes, beginning with an expression for analogous to that
of for odd TE modes given by (8.102).

P8.31. Dispersion relation for the mode in a symmetric dielectric slab waveguide.
For the symmetric dielectric slab guide, show that the versus or the disper-
sion relation for the mode, is given by

Then find the value of for which the phase velocity along the guide axis
is equal to where and for the fun-

damental mode, if and Note that since is always posi-
tive, or as it should be.

Section 8.7

P8.32. Derivation of the laws of geometrical optics from Fermat’s principle. The laws
of geometrical optics can be derived from Fermat’s principle, which states that the
optical path length of a ray of light from point A to point B is an1AB n ds

vp2 7 vpz 7 vp1,v2m0e2 6 bz
2 6 v2m0e1,

tan2er2 = 2.25.er1 = 4.0
vp2 = 1>1m0e2,vp1 = 1>1m0e11vp1vp2,vpz

d>l0

tan2 ad

2
2v2m0e1 - bz

2 -
mp

2
b =

bz
2 - v2m0e2

v2m0e1 - bz
2

TEm

bz,v

TEm

E
 –

y

H
 –

y

E
 –

yH
 –

y

1- q 6 x 6 q2
1 ƒ x ƒ 6 d>22

 g1ui2 =
2sin2 ui - 1e2>e12
1e2>e12 cos ui

 f1ui2 = pd1er1

l0
 cos ui

tan [f1ui2] = c g1ui2, m = 0, 2, 4, Á

-  
1

g1ui2, m = 1, 3, 5, Á

≠7Er>Ei = -≠7,
Hr>Hi =

RaoCh08v3.qxd  12/18/03  5:11 PM  Page 597



598 Chapter 8 Guided Wave Principles for Electronics and Optoelectronics

extremum, so that the variation in the optical path length, is equal to
zero. Derive from this property the laws of reflection and refraction for oblique
incidence on a plane boundary between two different perfect dielectric media.

P8.33. Ray tracing in spherical geometry. Consider ray tracing in spherical geometry,
as shown in Fig. 8.35, in which n is a function of r, the radial distance from the
center of a spherical interface (radius ).A ray is incident on the interface at an
angle from a medium of uniform refractive index Show that the ray path
for is governed by a modified form of Snell’s law given by

and hence by the solution of the differential equation

du

dr
=

n0r0 sin u

r2n2r2 - n0
2r0

2 sin2 u0

nr sin u = constant = n0r0 sin u0

r 7 r0

n0.u0

r0

d1ABn ds,

u0

u

rr0
n0

n(r)

FIGURE 8.35

For Problem P8.33.

P8.34. Paraxial rays in a dielectric medium with linear refractive index profile. In Ex-
ample 8.8, assume

Obtain the solution for z(x) for paraxial rays and find the approximate peak
amplitude and the approximate pitch in terms of 

P8.35. Guidance condition for the graded-index guide for the TM case. Show that the
guidance condition for the graded-index guide for the TM case is the same as
that given by (8.125) or (8.126) for the TE case by showing that for the TM
case is Note that to be used for the TM case is (see Problem
P8.27), where is given by (8.75a).

P8.36. Graded-index guide with linear profile of dielectric permittivity. In Example
8.9, assume

Obtain the expression for for the mth mode.xa

n1
21x2 = n0

211 - a ƒ x ƒ 2

≠7
-≠7≠1l -p>2.

≠a

d0.

n1x2 = n011 - a ƒ x ƒ 2
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REVIEW PROBLEMS

R8.1. Application of information on apparent phase velocities of a uniform plane
wave. The apparent phase velocities of a uniform plane wave of frequency

propagating in a nonmagnetic perfect dielectric medium are
given for three directions as follows: along the direction of the
unit vector along the direction of the unit vec-
tor and along the direction of the unit vector

Find (a) the permittivity of the medium and (b) the apparent
wavelength along the direction of the unit vector 

R8.2. TM wave reflection and transmission at a parallel-plate waveguide discontinu-
ity. The left half of a parallel-plate waveguide having the plates in the

and planes is filled with a dielectric of and 
whereas the right half is filled with a dielectric of and

A TM wave having the magnetic field at given by

is incident on the discontinuity from the left. Find the expressions for the
electric and magnetic fields as functions of z and t for the incident and reflected
waves for and the transmitted wave for 

R8.3. Finding the ratio of group velocity to phase velocity for an interval on a disper-
sion curve. The curve for a certain dispersive channel is such that at a fre-
quency the group and phase velocities are equal, and the group velocity
is proportional to in a certain frequency interval around Find the
ratio in that frequency interval.

R8.4. Oblique incidence of uniform plane wave onto a dielectric medium at Brewster
angle. Region is free space, whereas region is a perfect di-
electric of and For an elliptically polarized uniform plane
wave incident from free space onto the boundary it is found that the re-
flected wave is linearly polarized with electric-field amplitude and the trans-
mitted wave is circularly polarized with electric-field magnitude (a) Find

(b) Find the axial ratio of the polarization ellipse for the incident wave.
R8.5. Design of a symmetric dielectric slab waveguide. Design a symmetric dielectric

slab waveguide with and by finding the value of such
that for the mode is 88°. Then find the value of for the mode and
the number of remaining propagating TE and TM modes.

R8.6. Paraxial rays in a graded-index guide with linear profile of dielectric permittivity.
For a graded-index guide with the refractive index profile given by

obtain the solution for z(x) for paraxial rays and find the approximate ampli-
tude and approximate pitch in terms of Then find the approximate value of

in terms of mode number.d0

d0.

n1
21x2 = n0

211 - a ƒ x ƒ 2

TE0uiTM0ui

d>l0er2 = 1.00er1 = 2.25

E2>E1.
E2.

E1

x = 0,
m = m0.e = 16e0

2 1x 7 021 1x 6 02
vg>vp

v = v0.v

v = v0,
v–b

z 7 0.z 6 0

z = 0

Hi = H0 cos3 40px cos 3p * 1010t ay

z = 0m = m0.
e = 2.25e01z 7 02

m = m0,e = 4e0x = 2.5 cmx = 0
1z 6 02

1
312ax + 2ay - az2.

ay - 2az2.1
312ax +

18 * 108 m>s2ay + az2;1
312ax -

1
312ax + ay + 2az2; 4.5 * 108 m>s

2.25 * 108 m>s
1m = m02,109 Hz
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