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In Chapter 6, we introduced the transmission line and studied propagation and
bouncing of waves along a line, a topic applicable to digital electronics. In this
chapter, we are concerned with the steady-state analysis of transmission-line
systems excited by sinusoidally time-varying sources, a topic that is generally
applicable to communication systems. We recall from Chapter 6 that the phe-
nomenon on a transmission line excited by a source connected to the line at a
certain instant of time, say, consists of the transient bouncing of and

waves along the line for In the steady state, the situation is equiva-
lent to the superposition of one wave, which is the sum of all the transient

waves, and one wave, which is the sum of all the transient waves.
Thus, the general solutions for the line voltage and line current in the sinu-
soidal steady state are superpositions of voltages and currents, respectively,
of sinusoidal and waves. We shall first write these general solutions
and then discuss several topics pertinent to sinusoidal steady-state analysis of
transmission-line systems.

We introduce the standing-wave concept by first considering the particu-
lar case of a short-circuited line and then the general case of a line terminated
by an arbitrary load. We discuss several techniques of transmission-line match-
ing. In this connection, we introduce the Smith chart, a useful graphical aid in
the solution of transmission-line problems. Finally, we extend our treatment of
sinusoidal steady-state analysis to lossy lines and also consider two special cases
of pulses on lossy lines.

Although the concepts and techniques discussed in this chapter are based
on the analysis of transmission-line systems, many of these are also applicable to
the analysis of other, analogous systems. Examples are uniform plane wave
propagation involving multiple media, as in Section 4.7, and discontinuities in
waveguides, considered in Chapters 8 and 9.

1-21+2

1-21-21+2 1+2t 7 0.1-2 1+2t = 0,
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440 Chapter 7 Transmission Lines for Communications

7.1 SHORT-CIRCUITED LINE

From (6.20a) and (6.20b), we write the general solutions for the line voltage and
line current in the sinusoidal steady state to be

(7.1a)

(7.1b)

The corresponding expressions for the phasor line voltage and phasor line cur-
rent are

(7.2a)

(7.2b)

where and and we have substituted for For sinu-
soidal steady-state problems, it is convenient to use a distance variable d that in-
creases as we go from the load toward the generator as opposed to z, which
increases from the generator toward the load, as shown in Fig. 7.1. The wave
that progresses away from the generator is still denoted as the wave, and
the wave that progresses toward the generator is still denoted as the wave.
In terms of d, the solutions for and are then given by

(7.3a)

(7.3b)

Let us now consider a lossless line short circuited at the far end as
shown in Fig. 7.2. We shall assume that sinusoidally time-varying traveling
waves exist on the line due to a source that is not shown in the figure and that
conditions have reached steady state. We wish to determine the characteristics

d = 0,

 I
 –1d2 =

1
Z0

 1V+ejbd - V-e-jbd2
 V1d2 = V+ejbd + V-e-jbd

IV
1-21+2

v>vp.bV- = BejfV+ = Aeju

 I
 –1z2 = 1

Z0
 1V+e-jbz - V-ejbz2

 V1z2 = V+e-jbz + V-ejbz

 I1z, t2 =
1

Z0
 eA cos cva t -

z
vp
b + u d - B cos cva t +

z
vp
b + f d f

 V1z, t2 = A cos cva t -
z
vp
b + u d + B cos cva t +

z
vp
b + f d

General
solution in
the sinusoidal
steady state

FIGURE 7.1

For illustrating the distance variable d used for sinusoidal steady state analysis
of traveling waves.
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7.1 Short-Circuited Line 441

I(d)

d d � 0

Z0, b V(d)

FIGURE 7.2

Transmission line short circuited at the far end.

of the waves satisfying the boundary condition at the short circuit. Since the
voltage across a short circuit has to be always equal to zero, this boundary con-
dition is given by

(7.4)

Applying it to the general solution for given by (7.3a), we obtain

or

(7.5)

Thus, we find that the short circuit gives rise to a or reflected wave whose
voltage is exactly the negative of the or incident wave voltage, at the short
circuit.

Substituting (7.5) into (7.3a) and (7.3b), we get the particular solutions for
the complex voltage and current on the short-circuited line to be

(7.6a)

(7.6b)

The real voltage and current are then given by

(7.7a)

(7.7b)

 = 2 
ƒV+ ƒ
Z0

  cos bd cos 1vt + u2

 = Rea2 
ƒV+ ƒ
Z0

 eju cos bd ejvtb
 I1d, t2 = Re[I

 –1d2ejvt]

 = -2 ƒV+ ƒ  sin bd sin1vt + u2
 = Re12ejp>2 ƒV+ ƒeju sin bd ejvt2

 V1d, t2 = Re[V1d2ejvt]

 I1d2 =
1

Z0
 1V+ejbd + V+e-jbd2 = 2 

V+

Z0
  cos bd

 V1d2 = V+ejbd - V+e-jbd = 2jV+ sin bd

1+2 1-2
V- = -V+

V102 = V+ejb102 + V-e-jb102 = 0

V1d2
V102 = 0
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442 Chapter 7 Transmission Lines for Communications

where we have replaced by and j by The instantaneous power
flow down the line is given by

(7.7c)

These results for the voltage, current, and power flow on the short-circuited
line are illustrated in Fig. 7.3, which shows the variation of each of these quantities
with distance from the short circuit for several values of time. The numbers

beside the curves in Fig. 7.3 represent the order of the curves corre-
sponding to values of equal to From (7.7a), (7.7b),
and (7.7c) and from the sketches of Fig. 7.3, we can infer the following:

1. The line voltage is zero for or or 
for all values of time. If we short circuit the line at these values of d,

there will be no effect on the voltage and current at any other value of d.
2. The line current is zero for or or

for all values of time. If we open circuit the line at
these values of d, there will be no effect on the voltage and current at any
other value of d.

3. The power flow is zero for or or
for all values of time.

Thus, the phenomenon on the short-circuited line is one in which the volt-
age, current, and power flow oscillate sinusoidally with time with different ampli-
tudes at different locations on the line, unlike in the case of traveling waves in
which a given point on the waveform progresses in distance with time. Since there
is no feeling of wave motion down the line, these waves are known as standing
waves. In particular, they represent complete standing waves in view of the zero
amplitudes of the voltage, current, and power flow at certain locations on the line,
as just discussed and as shown in Fig. 7.3. Complete standing waves are the result
of and traveling waves of equal amplitudes. Whatever power is incident
on the short circuit by the wave is reflected entirely in the form of the 
wave since the short circuit cannot absorb any power. Although there is instanta-
neous power flow at values of d between the voltage and current nodes, there is
no time-average power flow for any value of d, as can be seen from

 = 0

 =
v

2p
  
ƒV+ ƒ2
Z0

  sin 2bdL
2p>v

t = 0
 sin 21vt + u2 dt

 8P9 =
1
TL

T

t = 0
P1d, t2 dt =

v

2pL
2p>v

t = 0
 P1d, t2 dt

1-21+21-21+2

d = 0, l>4, l>2, Á ,
2bd = 0, p, 2p, Á ,sin 2bd = 0,

d = l>4, 3l>4, 5l>4, Á ,
bd = p>2, 3p>2, 5p>2, Á ,cos bd = 0,

l, Á ,
d = 0, l>2,bd = 0, p, 2p, Á ,sin bd = 0,

0, p>4, p>2, Á , 2p.1vt + u21, 2, 3, Á , 9

 = -  
ƒV+ ƒ2
Z0

  sin 2bd sin 21vt + u2
 = -  

4 ƒV+ ƒ2
Z0

  sin bd cos bd sin1vt + u2 cos1vt + u2
 P1d, t2 = V1d, t2I1d, t2

ejp>2.ƒV+ ƒejuV+
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7.1 Short-Circuited Line 443
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FIGURE 7.3

Time variations of voltage, current, and power flow associated with standing waves on a short-
circuited transmission line.
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From (7.6a) and (7.6b) or (7.7a) and (7.7b), or from Figs. 7.3(a) and 7.3(b),
we find that the amplitudes of the sinusoidal time variations of the line voltage
and line current as functions of distance along the line are

(7.8a)

(7.8b)

Sketches of these quantities versus d are shown in Fig. 7.4. These are known as
the standing-wave patterns. They are the patterns of line voltage and line cur-
rent one would obtain by connecting an ac voltmeter between the conductors
of the line and an ac ammeter in series with one of the conductors of the line
and observing their readings at various points along the line. Alternatively, one
can sample the electric and magnetic fields by means of probes. Standing-wave
patterns should not be misinterpreted as the voltage and current remaining
constant with time at a given point. On the other hand, the voltage and current
at every point on the line vary sinusoidally with time, as shown in the insets of
Fig. 7.4, with the amplitudes of these sinusoidal variations equal to the magni-
tudes indicated by the standing-wave patterns. Since the distance between suc-
cessive nodes of voltage or current is equal to a measurement of this
distance provides the knowledge of the wavelength. Furthermore, if the phase
velocity in the line is known, the frequency of the source can be computed, and
vice versa, since vp = lf.

l>2,

 ƒ I –1d2 ƒ =
2 ƒV+ ƒ

Z0
 ƒcos bd ƒ =

2 ƒV+ ƒ
Z0
` cos  

2p
l

 d `

 ƒV1d2 ƒ = 2 ƒV+ ƒ ƒsin bd ƒ = 2 ƒV+ ƒ ` sin  
2p
l

 d `
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Standing-wave patterns for voltage and current on a short-circuited line. The
insets show time variations of the voltage at points along the line.
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7.1 Short-Circuited Line 445

Since there is no power flow across a voltage node or a current node of the
standing-wave patterns, a constant amount of total energy is locked up in every

section between two such adjacent nodes with exchange of energy taking
place between the electric and magnetic fields. Thus, once the line is excited by
applying a source of energy, then each section of the line between the voltage
and current nodes acts as a resonator entirely independent of the remainder of
the line. In fact, the section can be removed from the line by cutting it, that is,
open circuiting it, at the current node and short circuiting it at the voltage node,
and still be made to maintain forever the oscillations of voltage and current.
Such oscillations are called natural oscillations. Similarly, sections of lengths
equal to multiples of can be removed by always cutting the line at current
nodes and short circuiting it at voltage nodes, without disturbing the oscillations.

For a fixed physical length of the line, its electrical length, that is, its length
in terms of wavelength, depends on the frequency.Thus, a line of length equal to
one-quarter wavelength at one frequency behaves as a line of length equal to a
different multiple of a wavelength at a different frequency. Let us now consider
a line of length l, one end of which is open-circuited and the other end short-
circuited, and assume that some energy is stored in this line. Suppose we now pose
the question: “What are all the possible standing-wave patterns on this line?” To
answer this, we note that the voltage across the short circuit must always be
zero, and, hence, the current there must have maximum amplitude. Similarly, the
current at the open-circuited end must always be zero, and, hence, the voltage
there must have maximum amplitude.We also know that the standing-wave pat-
terns are sinusoidal with the distance between successive nodes corresponding
to a half sine wave. Thus, the least possible variation is a quarter cycle of a sine
waveform. This corresponds to a wavelength, say, equal to 4l, and the corre-
sponding standing-wave patterns are shown in Fig. 7.5(a).

It is not possible to have a standing-wave pattern for which the wave-
length is greater than 4l since then the pattern on the line of length l will be less
than a quarter cycle of a sine wave. On the other hand, it is possible to have a
pattern for which the wavelength is less than 4l as long as the conditions of zero
voltage (maximum current) at the short circuit and zero current (maximum
voltage) at the open circuit are satisfied. Obviously, the next largest wavelength

less than for which this condition is satisfied corresponds to the patterns
shown in Fig. 7.5(b). For these patterns, or The next largest
wavelength, less than corresponds to the patterns shown in Fig. 7.5(c). For
these patterns, or 

We can continue in this manner and see that any standing-wave pattern for
which the length of the line is an odd multiple of one-quarter wavelength, that is,

(7.9)

is a valid standing-wave pattern. Alternatively, the wavelengths correspond-
ing to the valid standing-wave patterns, are given by

(7.10)ln =
4l

2n - 1
 n = 1, 2, 3, Á

ln,

l =
12n - 12ln

4
 n = 1, 2, 3, Á

l3 = 4l>5.l = 5l3>4,
l2,l3,

l2 = 4l>3.l = 3l2>4,
l1,l2,

l1,

l>4

l>4
l>4

l>4
Natural
oscillations
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446 Chapter 7 Transmission Lines for Communications

The corresponding frequencies are

(7.11)

where is the phase velocity. These frequencies are known as the natural fre-
quencies of oscillation.The standing-wave patterns are said to correspond to the
different natural modes of oscillation. The lowest frequency (corresponding to
the longest wavelength) is known as the fundamental frequency of oscillation,
and the corresponding mode is known as the fundamental mode. The quantity n
is called the mode number. In the most general case of nonsinusoidal voltage
and current distributions on the line, the situation corresponds to the superposi-
tion of some or all of the infinite number of natural modes.

Considerations similar to those for the line open-circuited at one end and
short-circuited at the other end apply to natural oscillations on lines short-
circuited at both ends or open-circuited at both ends.

Returning now to the expressions for the phasor line voltage and the pha-
sor line current given by (7.6a) and (7.6b), respectively, we define the ratio of

vp

fn =
vp

ln
=
12n - 12vp

4l
 n = 1, 2, 3, Á

Input
impedance

Voltage

VoltageVoltage

Current

CurrentCurrent

Open 
Circuit

Short
Circuit

l

ll

(a)

(b) (c)

l1

l3l2

FIGURE 7.5

Standing-wave patterns corresponding to (a) one-quarter cycle, (b) three-quarters cycle, and (c) five-
quarters cycle of a sine wave for the voltage and current amplitude distributions for a line of length l
open-circuited at one end and short-circuited at the other end.
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7.1 Short-Circuited Line 447
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FIGURE 7.6

Variation of the input reactance
of a short-circuited transmission
line with frequency.

these two quantities as the line impedance at that point seen looking to-
ward the short circuit. Thus,

(7.12)

In particular, the input impedance of a short-circuited line of length l is
given by

(7.13)

We note from (7.13) that the input impedance of the short-circuited line is purely
reactive. As the frequency is varied from a low value upward, the input reac-
tance changes from inductive to capacitive and back to inductive, and so on, as
illustrated in Fig. 7.6. The input reactance is zero for values of frequency equal
to multiples of These are the frequencies for which l is equal to multiples
of so that the line voltage is zero at the input and hence the input sees a
short circuit. The input reactance is infinity for values of frequency equal to odd
multiples of These are the frequencies for which l is equal to odd multi-
ples of so that the line current is zero at the input and hence the input sees
an open circuit.

These properties of the input impedance of a short-circuited line (and,
similarly, of an open-circuited line) have several applications. We shall here dis-
cuss two of these applications.

1. Determination of the location of a short circuit (or open circuit) in a line.
The principle behind this lies in the fact that as the frequency of a generator

l>4,
vp>4l.

l>2,
vp>2l.

Z
 –

in = jZ0 tan bl = jZ0 tan 
2pf

vp
 l

Z
 –

in

Z
 –1d2 =

V1d2
I
 –1d2 =

2jV+ sin bd

21V+>Z02 cos bd
= jZ0 tan bd

Z
 –1d2

Location of
short circuit
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448 Chapter 7 Transmission Lines for Communications

connected to the input of a short-circuited (or open-circuited) line is varied con-
tinuously upward, the current drawn from it undergoes alternatively maxima
and minima corresponding to zero input reactance and infinite input reactance
conditions, respectively. Since the difference between a pair of consecutive fre-
quencies for which the input reactance values are zero and infinity is as
can be seen from Fig. 7.6, it follows that the difference between successive fre-
quencies for which the currents drawn from the generator are maxima and min-
ima is As a numerical example, if for an air–dielectric line, it is found that
as the frequency is varied from 50 MHz upward, the current reaches a minimum
for 50.01 MHz and then a maximum for 50.04 MHz, then the distance l of the
short circuit from the generator is given by

Since it follows that

Alternatively, if the length l is known, we can compute for the dielectric of
the line, from which the permittivity of the dielectric can be found, provided
that the value of (usually equal to ) is known.

2. Construction of resonant circuits at microwave frequencies. The princi-
ple behind this lies in the fact that the input reactance of a short-circuited line of
a given length can be inductive or capacitive, depending on the frequency, and
hence, two short-circuited lines connected together form a resonant system. To
obtain the characteristic equation for the resonant frequencies of such a system,
let us consider the system shown in Fig. 7.7, which is made up of two short-
circuited line sections of characteristic impedances and lengths and

and phase velocities and Denoting the voltages and currents just to thevp2.vp1l2,
l1Z02,Z01

m0m

vp

l =
3 * 108

4 * 3 * 104 = 2500 m = 2.5 km

vp = 3 * 108 m>s,

vp

4l
= 150.04 - 50.012 * 106 = 0.03 * 106 = 3 * 104

vp>4l.

vp>4l,

Resonant
system

V1

l1 l2

I1 I2

Y1

Z01, vp1 Z02, vp2V2
Y2

�

�

�

�

FIGURE 7.7

Resonant system formed by connecting together two short-circuited line sections.

RaoCh07v3.qxd  12/18/03  4:57 PM  Page 448



7.1 Short-Circuited Line 449

left and just to the right of the junction to be and and and respective-
ly, as shown in the figure, we write the boundary conditions at the junction as

(7.14a)

(7.14b)

Combining the two, we have

or

(7.15)

where and are the input admittances of the sections to the left and to the
right, respectively, of the junction and seen looking toward the short circuits.
Equation (7.15) is the condition for resonance of the system. To express it in
terms of the line parameters, we note that

(7.16a)

(7.16b)

Substituting (7.16a) and (7.16b) into (7.15) and simplifying, we obtain the char-
acteristic equation for the resonant frequencies to be

(7.17)

We shall illustrate the computation of the resonant frequencies by means of an
example.

Example 7.1 Finding the resonant frequencies for a transmission-line
resonant system

For the system of Fig. 7.7, let us assume and
and obtain the four lowest resonant frequencies of the system.

Substituting the numerical values of the parameters into the characteristic equa-
tion (7.17), we obtain

tan  
0.2pf

c
+

1
2

  tan  
0.08pf

c
= 0

vp1 = vp2 = c>2,
Z01 = 2Z02 = 60 Æ, l1 = 5 cm, l2 = 2 cm,

Z01 tan  
2pf

vp1
l1 + Z02 tan  

2pf

vp2
l2 = 0

 Y2 =
1

Z
 –

2
=

1
jZ02 tan b2 l2

=
1

jZ02 tan 12pf>vp22l2

 Y1 =
1

Z
 –

1
=

1
jZ01 tan b1 l1

=
1

jZ01 tan 12pf>vp12l1

Y2Y1

 Y1 + Y2 = 0

 
I
 –

1

V1
+

I
 –

2

V2
= 0

 I
 –

1 + I
 –

2 = 0

 V1 = V2

I
 –

2,V2I
 –

1V1
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450 Chapter 7 Transmission Lines for Communications

This equation is of the form

where and In general, an equation of this type can be
solved by plotting tan kx and tan x to scale versus x and finding the points of inter-
section. Alternatively, a programmable calculator or a computer can be used. Thus, the
first four solutions are x equal to and 

From the values of x obtained from the computer program, we obtain the lowest
four resonant frequencies to be and

Hz, or 1.1869, 2.0861, 3.1324, and 4.3676 GHz.

K7.1. Phasor line voltage and line current; General solutions; Short-circuited line;
Complete standing waves; Standing-wave patterns; Natural oscillations; Input
impedance; Resonant systems.

D7.1. For each of the following characteristics of standing waves on a lossless short-
circuited line, find the frequency of the source exciting the line: (a) the distance
between successive nodes of voltage amplitude is 50 cm and the dielectric is air;
(b) the distance between successive nodes of current amplitude is 50 cm and the
dielectric is nonmagnetic with and (c) the distance between successive
nodes of instantaneous power flow is 50 cm and the dielectric is air.
Ans. (a) 300 MHz; (b) 100 MHz; (c) 150 MHz.

D7.2. A lossless coaxial cable of characteristic impedance and having a nonmag-
netic perfect dielectric of permittivity is short-circuited at
the far end. Find the minimum length of the line for which the input impedance
is equal to the impedance of each of the following at (a) an in-
ductor of value equal to (b) an inductor of value equal to the induc-
tance per unit length of the line; and (c) an inductor of value equal to the
inductance of the line.
Ans. (a) 44.98 cm; (b) 40.19 cm; (c) 143.03 cm.

D7.3. A lossless transmission line of length characteristic impedance
and having a nonmagnetic perfect dielectric is short-cir-

cuited at its far end. A variable frequency voltage source in series with an inter-
nal impedance is connected at its input and the line voltage and line current
at the input terminals are monitored as the source frequency is varied. It is
found that the voltage reaches a maximum amplitude of 10 V at 157.5 MHz and
then the current reaches a maximum amplitude of 0.2 A at 165 MHz. Find the
following: (a) the maximum amplitude of the current in the standing-wave
pattern on the line at 157.5 MHz; (b) the maximum amplitude of the voltage in
the standing-wave pattern on the line at 165 MHz; (c) the magnitude of and
(d) the permittivity of the dielectric of the line.
Ans. (a) 0.1 A; (b) 20 V; (c) (d)

7.2 LINE TERMINATED BY ARBITRARY LOAD

We devoted the preceding section to the short-circuited line. In this section, we
consider a line terminated by an arbitrary load impedance as shown in Fig. 7.8.Z

 –
R,

4e0.50 Æ;

Z
 –

g;

Z
 –

g

1m = m02,Z0 = 100 Æ,
l = 5 m,

0.5 mH;
f = 100 MHz:

e = 2.25e01m = m02,
50 Æ

e = 9e0;

4.3676 * 109
1.1869 * 109, 2.0861 * 109, 3.1324 * 109,

1.1647p.0.3165p, 0.5563p, 0.8353p,

-m
x = 0.08pf>c.k = 2.5, m = 0.5,

tan kx + m tan x = 0
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7.2 Line Terminated by Arbitrary Load 451
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FIGURE 7.8

Line terminated by a
complex load impedance.

Then starting with the general solutions for the complex line voltage and line cur-
rent given by

(7.18a)

(7.18b)

and using the boundary condition at given by

(7.19)

we obtain

or

Thus, the ratio of the reflected wave voltage at the load, to the incident
wave voltage at the load, that is, the voltage reflection coefficient at the load, de-
noted by is given by

(7.20)

The solutions for and can then be written as

(7.21a)

(7.21b) I
 –1d2 =

1
Z0

 1V+ejbd - ≠R V+e-jbd2
 V1d2 = V+ejbd + ≠R V+e-jbd

I1d2V1d2

≠R =
V-

V+ =
Z
 –

R - Z0

Z
 –

R + Z0

≠R,

V+,V-,

V- = V+
 

Z
 –

R - Z0

Z
 –

R + Z0

V+ + V- =
Z
 –

R

Z0
 1V+ - V-2

V102 = Z
 –

RI
 –102

d = 0,

 I
 –1d2 =

1
Z0

 1V+ejbd - V-e-jbd2
 V1d2 = V+ejbd + V-e-jbd
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452 Chapter 7 Transmission Lines for Communications

We now define the generalized voltage reflection coefficient, that is,
the voltage reflection coefficient at any value of d, as the ratio of the reflected
wave voltage to the incident wave voltage at that value of d. From (7.21a), we
see that

(7.22)

so that

(7.23a)

and

(7.23b)

where is the phase angle of Thus, the magnitude of the generalized reflec-
tion coefficient remains constant along the line and equal to its value at the
load, whereas the phase angle varies linearly with d. In terms of we can
write the solutions for and as

(7.24a)

(7.24b)

To study the standing-wave patterns corresponding to (7.24a) and (7.24b),
we look at the magnitudes of and These are given by

(7.25a)

(7.25b)

To sketch and it is sufficient if we consider the quantities
and since is simply a constant, determined by

the boundary condition at the source end. Each of these quantities consists of
two complex numbers, one of which is a constant equal to and the other
of which has a constant magnitude but a variable phase angle To1u - 2bd2.ƒ ≠R ƒ

11 + j02
ƒV+ ƒƒ1 - ≠R e-j2bd ƒ ,ƒ1 + ≠R e-j2bd ƒ

ƒ I –1d2 ƒ ,ƒV1d2 ƒ

 =
ƒ V+ ƒ
Z0

 ƒ 1 - ≠R e-j2bd ƒ

 ƒ I –1d2 ƒ =
ƒV+ ƒ
Z0

 ƒejbd ƒ ƒ1 - ≠1d2 ƒ
 = ƒV+ ƒ ƒ1 + ≠R  e

-j2bd ƒ

 ƒV1d2 ƒ = ƒV+ ƒ ƒejbd ƒ ƒ1 + ≠1d2 ƒ
I
 –1d2.V1d2

 =
V+

Z0
 ejbd[1 - ≠1d2]

 I
 –1d2 =

V+

Z0
 ejbd11 - ≠R e-j2bd2

 = V+ejbd[1 + ≠1d2]
 V1d2 = V+ejbd11 + ≠R e-j2bd2

I
 –1d2V1d2 ≠1d2,

≠R.u

l≠1d2 = l≠R + le-j2bd = u - 2bd

ƒ ≠1d2 ƒ = ƒ≠R ƒ ƒe-j2bd ƒ = ƒ≠R ƒ

≠1d2 =
≠RV+e-jbd

V+ejbd = ≠R e-j2bd

≠1d2,Generalized
reflection
coefficient
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 1 � �R 

(�1, 0)
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u

d � 0, l/2, l, …

d

(a)

Im �

Re �
(�1, 0) u � p

d � 0, l/2, l, …

B d

(b)

 1 � �
R 

 �R  �R 

FIGURE 7.9

plane diagrams for sketching the voltage and current standing-wave patterns for the system
of Fig. 7.8.
≠

evaluate and we make use of the constructions in
the complex as shown in Fig. 7.9(a) and (b), respectively. In both dia-
grams, we draw circles with centers at the origin and having radii equal to For

the complex number is equal to or which is represent-
ed by point A in Fig. 7.9(a). To add and we simply draw a line from
the point to the point A. The length of this line gives which is
proportional to the amplitude of the voltage at As d increases, point A,
representing moves around the circle in the clockwise direction.The line
joining to the point A whose length is executes the motion
of a crank. To subtract from we locate point B in Fig. 7.9(b), which
is diametrically opposite to point A in Fig. 7.9(a), and draw a line from 
to point B. The length of the line gives which is proportional to the
amplitude of the current at As d increases, B moves around the circle in
the clockwise direction following the movement of A in Fig. 7.9(a). The line
joining to the point B whose length is executes the mo-
tion of a crank. From these constructions and assuming we note
the following facts:

1. Point A lies along the positive real axis and point B lies along the negative
real axis for or 
where Hence, at these values of d, the voltage amplitude is
maximum and equal to whereas the current amplitude is
minimum and equal to The voltage and current are in
phase.

2. Point A lies along the negative real axis and point B lies along the positive
real axis for or 

where Hence, at these values of d, the volt-
age amplitude is minimum and equal to whereas the currentƒV+ ƒ11 - ƒ≠R ƒ2,

n = 1, 2, 3, 4, Á .12n - 12p],
d = 1l>4p2[u +  1u - 2bd2 = -p, -3p, -5p, -7p, Á ,

1 ƒV+ ƒ>Z0211 - ƒ≠R ƒ2.
ƒV+ ƒ11 + ƒ≠R ƒ2,

n = 0, 1, 2, 3, Á .
d = 1l>4p21u + 2np2,1u - 2bd2 = 0, -2p, -4p, -6p, Á ,

-p … u 6 p,
ƒ1 - ≠R e-j2bd ƒ1-1, 02

d = 0.
ƒ1 - ≠R ƒ ,

1-1, 02
11 + j02,≠R

ƒ1 + ≠R e-j2bd ƒ1-1, 02
≠R e-j2bd,

d = 0.
ƒ1 + ≠R ƒ ,1-1, 02

≠R,11 + j02 ƒ ≠R ƒeju,≠R≠R e-j2bdd = 0,
ƒ ≠R ƒ .

≠-plane,
ƒ1 - ≠R e-j2bd ƒ ,ƒ1 + ≠R e-j2bd ƒ
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FIGURE 7.10

Voltage and current standing wave patterns for the system of Fig. 7.8. The insets show time
variations of voltage at points along the line.

amplitude is maximum and equal to The voltage and
current are in phase.

3. Between maxima and minima, the voltage and current vary in accordance
with the lengths of the line joining to the points A and B, respec-
tively, as they move around the circles. These variations are not sinusoidal
with distance. The variations near the minima are sharper than are those
near the maxima; hence, the minima can be located more accurately than
can the maxima. Also, the voltage and current are not in phase.

From the preceding discussion, we now sketch the standing-wave patterns
for the line voltage and current, as shown in Fig. 7.10.These patterns correspond
to partial standing waves, as compared to complete standing waves in the case
of the short-circuited line.There are three parameters associated with the stand-
ing-wave patterns as follows.

1. The standing-wave ratio, abbreviated as SWR. This is the ratio of the maxi-
mum voltage amplitude to the minimum voltage amplitude in
the standing-wave pattern. Thus

(7.26)SWR =
Vmax

Vmin
=

ƒV+ ƒ11 + ƒ≠R ƒ2
ƒV+ ƒ11 - ƒ≠R ƒ2 =

1 + ƒ≠R ƒ
1 - ƒ≠R ƒ

VminVmax

1-1, 02

1 ƒV+ ƒ>Z0211 + ƒ≠R ƒ2.

Standing-
wave
parameters
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7.2 Line Terminated by Arbitrary Load 455

Note also that SWR is equal to the ratio of the maximum current ampli-
tude to the minimum current amplitude in the standing-wave pat-
tern, since

The SWR is a measure of standing waves on the line. It is an easily mea-
surable parameter. We note the following special cases:

(a) For and the standing-wave pattern is simply a line
representing constant amplitude.This is the case for a semi-infinitely
long line or for a line terminated by its characteristic impedance.

(b) For and the standing-wave pattern possesses
perfect nulls. This is the case for complete standing waves.

2. The distance of the first voltage minimum from the load, denoted by
The voltage minimum nearest to the load occurs when the phase angle of

is equal to that is, for equal to Thus,

(7.27)

or

(7.28)

where If which occurs when is purely real and
greater than and a voltage maximum exists right at the
load. If which occurs when is purely real and less than

and a voltage minimum exists right at the load.
3. The wavelength Since the distance between successive voltage minima

is equal to the wavelength is twice the distance between successive
voltage minima.

For a numerical example involving a complex let us consider 
and Then

 = 0.593e-j0.74p

 = 0.593l -133.16°

 =
-7 - j4

13 - j4
=

8.06l -150.26°

13.60l -17.10°

 ≠R =
Z
 –

R - Z0

Z
 –

R + Z0
=
115 - j202 - 50

115 - j202 + 50

Z0 = 50 Æ.115 - j202 Æ
Z
 –

R =  Z
 –

R,

l>2,
l.

Z0, dmin = 0
Z
 –

Ru = -p,
Z0, dmin = l>4 Z

 –
Ru = 0,-p … u 6 p.

dmin =
u + p

2b
=
l

4p
 1u + p2

u - 2bdmin = -p

-p.1u - 2bd2-p,≠1d2 = ≠R e-j2bd

dmin.

ƒ ≠R ƒ = 1, SWR = q

≠R = 0, SWR = 1

Imax

Imin
=
1 ƒV+ ƒ>Z0211 + ƒ≠R ƒ2
1 ƒV+ ƒ>Z0211 - ƒ≠R ƒ2 =

1 + ƒ≠R ƒ
1 - ƒ≠R ƒ

IminImax
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456 Chapter 7 Transmission Lines for Communications

Conversely to the computation of standing-wave parameters for a given
load impedance, an unknown load impedance can be determined from stand-
ing-wave measurements on a line of known characteristic impedance. An appli-
cation in practice is the determination of the input impedance of an antenna by
making standing-wave measurements on the line feeding the antenna. To out-
line the basis, we note that by rearranging (7.26) and (7.28), we obtain

(7.29)

and

(7.30)

Thus, the measurement of SWR, and provides both the magnitude and
phase angle of Then, since from (7.20)

(7.31)

we can compute the value of 
A traditional method of performing standing-wave measurements in the

laboratory is by using a slotted line. The slotted line is essentially a rigid coaxial
line with air dielectric and having a length of about 1 meter (or at least a half-
wavelength long).The center conductor is supported by dielectric inserts.A nar-
row longitudinal slot is cut in the outer conductor, as shown in Fig. 7.11(a). The

Z
 –

R.

Z
 –

R = Z0 

1 + ≠R

1 - ≠R

≠R.
ldmin,

u =
4pdmin

l
- p

ƒ ≠R ƒ =
SWR - 1
SWR + 1

 = 0.065l

 dmin =
l

4p
 1u + p2 =

l

4p
 1-0.74p + p2

 SWR =
1 + ƒ≠R ƒ
1 - ƒ≠R ƒ

=
1 + 0.593
1 - 0.593

= 3.914

Slotted-line
measure-
ments

(a) (b)

Outer
Conductor

Slot

Inner
Conductor

To Detector
Probe

FIGURE 7.11

(a) Slotted line. (b) Cross-
sectional view of the
slotted-line illustrating the
probe arrangement.

Determination
of unknown
load 
impedance
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7.2 Line Terminated by Arbitrary Load 457

width of the slot is so small that it has negligible influence on the current flow
on the outer conductor and, hence, on the field configurations between the con-
ductors. A probe of small length, shown in Fig. 7.11(b), intercepts a portion of
the electric field between the inner and outer conductors, and a small voltage
proportional to the line voltage at the probe’s location is developed between
the probe and the outer conductor.The signal frequency voltage thus developed
is detected by some sort of detector, and the resulting output is used as an indi-
cator of the amplitude of the line voltage at the probe’s location.The amount of
energy picked up by the probe is small enough not to disturb appreciably the
fields within the line. The probe and the associated detector components are
mounted on a carriage arranged to slide mechanically along the longitudinal
slot. As the probe is moved along the slot, the detector indication provides a
measure of the variation of the voltage as a function of position on the line.
Since the SWR is the ratio of to the quantity of interest is the ratio of
the two readings rather than the absolute values of the readings themselves.
Therefore, absolute calibration of the detector is not required, provided that the
detector response is linear in the range of voltages to be measured.

Since it is not always possible to measure the distances of the standing-
wave pattern minima from the location of the load, the following procedure is
employed. First, the line is terminated by a short circuit in the place of the load.
One of the nulls in the resulting standing-wave pattern is taken as the reference
point, as shown in Fig. 7.12(a).This establishes that the location of the load is an
integral multiple of half-wavelengths from the reference point. Next, the short
circuit is removed and the load is connected. The voltage minimum then shifts
away from the reference point, as shown in Fig. 7.12(b). By measuring this shift,
either away from the load or toward the load, the value of can be established.
If the shift away from the load is measured, then we can see from Fig. 7.12(b)da

dmin

Vmin,Vmax

Reference
Point Load

l/2

l/2

da dt dmin

(a)

(b)

FIGURE 7.12

For illustrating the procedure employed for the determination of the distance of
the first voltage minimum of the standing-wave pattern from the load, by making
measurements away from the load.

dmin,
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458 Chapter 7 Transmission Lines for Communications

that is simply equal to On the other hand, if the shift toward the load
is measured, then is equal to where is given by the distance
between consecutive nulls either in the case of short circuit or with the un-
known load as the termination.

We shall illustrate the computation of from standing-wave measure-
ments by means of an example.

Example 7.2 Finding the load impedance for a transmission line from
standing-wave measurements

Let us assume that measurements performed on a slotted line of characteristic imped-
ance provided the following data. First, with the short circuit as the termina-
tion, voltage minima were found to be 20 cm apart. Next, with one of the minima marked
as the reference point and the short circuit replaced by the unknown load, the SWR was
found to be 3.0 and a voltage minimum was found to be at 5.80 cm from the reference
point on the side toward the load. We wish to compute the value of the unknown load
impedance.

From the value of the SWR, we obtain by using (7.29)

Since the distance between successive voltage minima is 20 cm, is equal to 20 cm, or
is equal to 40 cm. Since the voltage minimum shifted toward the load from the refer-

ence point, is equal to minus the shift, or Then, from (7.30),
we get

Thus

Finally, using (7.31), we compute the value of the load impedance to be

 = 137.45 + j48.3652 Æ
 = 61.17l52.248°

 = 50  
1.2242l23.303°

1.0007l -28.945°

 = 50  
1.1243 + j0.4843

0.8757 - j0.4843

 Z
 –

R = 50  
1 + 0.5ej0.42p

1 - 0.5ej0.42p

≠R = 0.5ej0.42p

u =
4p
40

* 14.2 - p = 0.42p

20 - 5.8 = 14.2 cm.l>2dmin

l

l>2
ƒ ≠R ƒ =

3 - 1
3 + 1

= 0.5

Z0 = 50 Æ

Z
 –

R

l>2l>2 - dt,dmin

dtda.dmin
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7.2 Line Terminated by Arbitrary Load 459

Line
impedance

Returning now to the solutions for the complex line voltage and current
given by (7.24a) and (7.24b), respectively, we find that the line impedance

that is, the impedance at any value of d seen looking toward the load, is
given by

(7.32)

The following properties of the line impedance are of interest:

1. At the location of a voltage maximum of the standing-wave pattern,
and are purely real and equal to their maximum and

minimum magnitudes and respectively. Hence, is
purely real and maximum, say, equal to 
or (SWR).

2. At the location of a voltage minimum of the standing-wave pattern,
and are purely real and equal to their minimum and

maximum magnitudes and respectively. Hence, is
purely real and minimum, say, equal to or

3. Between voltage maxima and minima, and are both
complex and out of phase. Hence, is complex, with magnitude lying
between (SWR) and 

4. Since 
repeats at intervals of and hence, repeats at intervals of 

5. The product of the line impedances at two values of d separated by is
given by

 = Z0
2 c1 + ≠1d2

1 - ≠1d2 d c
1 - ≠1d2
1 + ≠1d2 d

 = Z0
2 c1 + ≠1d2

1 - ≠1d2 d c
1 + ≠1d2e � jp

1 - ≠1d2e � jp d

 = Z0
2 c1 + ≠1d2

1 - ≠1d2 d c
1 + ≠1d2e � j2bl>4
1 - ≠1d2e � j2bl>4 d

 [Z
 –1d2] cZ –ad �

l

4
b d = cZ0  

1 + ≠1d2
1 - ≠1d2 d cZ0  

1 + ≠1d � l>42
1 - ≠1d � l>42 d

l>4
l>2.Z

 –1d2l>2,≠1d2 n = 1, 2, 3, Á ,≠1d � nl>22 = ≠1d2e � j2bnl>2 = ≠1d2e � j2np = ≠1d2,
Z0>1SWR2.Z0

Z
 –1d2 1 - ≠1d21 + ≠1d2

Z0>1SWR2.
Z0[11 - ƒ≠R ƒ2>11 + ƒ≠R ƒ2],Rmin,

Z
 –1d21 + ƒ≠R ƒ ,1 - ƒ≠R ƒ

1 - ≠1d21 + ≠1d2
Z0

Z0[11 + ƒ≠R ƒ2>11 - ƒ≠R ƒ2],Rmax,
Z
 –1d21 - ƒ≠R ƒ ,1 + ƒ≠R ƒ

1 - ≠1d21 + ≠1d2

 = Z0 
1 + ≠1d2
1 - ≠1d2

 Z
 –1d2 =

V1d2
I
 –1d2 =

V+ejbd[1 + ≠1d2]
1V+>Z02ejbd[1 - ≠1d2]

Z
 –1d2,
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ZR � (30 � j40) �

Zg � (10 � j10) �

Vg � 100   0   V

Z0 � 50 �

0.725l

d � l d � 0

�
�

FIGURE 7.13

Transmission-line system for illustrating the computation of power flow from input
impedance considerations.

or

(7.33)

This is a useful property, as we shall learn in the following section.
For a line of length l, as in Fig. 7.8, the input impedance is given from

(7.32) by

(7.34)

The input impedance is a useful parameter, because, for a given generator
voltage and internal impedance, the power flow down the line can be com-
puted by considering the line voltage and current at any value of d, since the
line is lossless; in particular, it is convenient to do this at the input end of the
line from input impedance considerations. We shall illustrate this by means of
an example.

Example 7.3 Finding the power delivered to the load from
considerations of line input impedance

Let us consider the system shown in Fig. 7.13, and find the time-average power delivered
to the load from input impedance considerations.

We proceed with the solution in the following step-by-step manner:

(a) Compute the reflection coefficient at the load.

≠R =
Z
 –

R - Z0

Z
 –

R + Z0
=
130 + j402 - 50

130 + j402 + 50
= 0.5l90°

Z
 –

in = Z
 –1l2 = Z0  

1 + ≠1l2
1 - ≠1l2

[Z
 –1d2] cZ –ad �

l

4
b d = Z0

2

Input
impedance
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7.2 Line Terminated by Arbitrary Load 461

�
�

Zin � (39.86 � j50.54) �

Zg � (10 � j10) �

Vg

Ig

d � l

FIGURE 7.14

Equivalent circuit at the input end
for the system of Fig. 7.13.d = l

(b) Compute the reflection coefficient at the input end 

(c) Compute the input impedance.

(d) We now have the equivalent circuit at the input, as shown in Fig. 7.14, from which
we compute the current drawn from the generator. Thus, we obtain

(e) The voltage across the input impedance is then given by

 = 100.159l -12.624° V

 = 64.361l -51.738° * 1.5562l39.114°

 V1l2 = Z
 –

inI
 –1l2

 = 1.5562l39.114° A

 =
100l0°

49.86 - j40.54
=

100l0°

64.261l -39.114°

 I
 –1l2 = I

 –
g =

Vg

Z
 –

g + Z
 –

in
=

100l0°

110 + j102 + 139.86 - j50.542

I
 –

g = I
 –1l2,

 = 139.86 - j50.542 Æ
 = 50  

1.2486l -22.385°

0.970l29.353°
= 64.361l -51.738°

 = 50  
1 + 0.5l -72°

1 - 0.5l -72°
= 50  

1 + 10.1545 - j0.47552
1 - 10.1545 - j0.47552

 Z
 –

in = Z
 –1l2 = Z0 

1 + ≠1l2
1 - ≠1l2

 = 0.5l -72°
 = 0.5l90° * 1l -162°

 = 0.5l90° * e-j14p>l210.725l2
 ≠1l2 = ≠R e-j2bl

d = l.≠1l2
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462 Chapter 7 Transmission Lines for Communications

(f) Finally, the time-average power delivered to the input, and hence to the load, is
given by

Returning to (7.32), we now define the normalized line impedance as
the ratio of the line impedance to the line characteristic impedance. Thus,

(7.35)

Conversely,

(7.36)

Finally, the line admittance is given by

or

(7.37)

where is the characteristic admittance of the line. The normalized
line admittance is

(7.38)

and, conversely,

(7.39)

We shall use these relationships in the following sections.

≠1d2 =
1 - y1d2
1 + y1d2

y1d2 =
Y1d2

Y0
=

1 - ≠1d2
1 + ≠1d2

Y0 = 1>Z0

Y1d2 = Y0  

1 - ≠1d2
1 + ≠1d2

Y1d2 =
1

Z
 –1d2 =

1
Z0

  

1 - ≠1d2
1 + ≠1d2

≠1d2 =
z1d2 - 1

z1d2 + 1

z1d2 =
Z
 –1d2

Z0
=

1 + ≠1d2
1 - ≠1d2

z1d2

 = 48.26 W

 = 1
2 * 100.159 * 1.5562 *  cos 51.738°

 = 1
2 Re[100.159l -12.624° * 1.5562l -39.114°]

 8P9 = 1
2 Re[V1l2I –*1l2]

Normalized
impedance
and
admittance
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7.3 Transmission-line matching 463

K7.2. Arbitrary load; Generalized reflection coefficient; Partial standing waves;
Standing-wave ratio; Standing-wave parameters; Standing-wave measure-
ments; Line impedance; Power flow; Normalized line impedance; Normalized
line admittance.

D7.4. A line of characteristic impedance is terminated by a load consisting of the
series combination of and Find the values
of SWR and for each of the following radian frequencies of the source:
(a) (b) and (c)
Ans. (a) 2, 0; (b) (c)

D7.5. Standing-wave measurements are performed on a line of characteristic imped-
ance terminated by a load For each of the following sets of standing-
wave data, find (a) a voltage minimum right at the load;
(b) two successive voltage minima at 3 cm and 9 cm from the
load; and (c) two successive voltage minima at 3 cm and 7 cm
from the load.
Ans. (a) (b) (c)

D7.6. An air-dielectric line of characteristic impedance is terminated by a
load impedance Find the input impedance of the line for each of
the following pairs of values of the frequency f and the length l of the line:
(a) (b) and (c)

Ans. (a) (b) (c)

7.3 TRANSMISSION-LINE MATCHING

In the preceding section, we discussed standing waves on a line terminated by
an arbitrary load. In the presence of standing waves, that is, when the load im-
pedance is not equal to the characteristic impedance, it follows from (7.34) that
the input impedance of the line will vary with frequency, because the electrical
length of the line and, hence, changes. This sensitivity to fre-
quency increases with the electrical length of the line. To show this, let the
length of the line be If the frequency is changed by an amount then
the change in n is given by

(7.40)

Thus the change in the number of wavelengths corresponding to the line
length, is proportional to n. The variation of the input impedance with frequency
puts a limitation on the performance of a transmission-line system from the point
of view of communication. For this and other reasons pertaining to power flow, it
is desirable to eliminate standing waves on the line by connecting a matching
device near the load such that the line views an effective impedance equal to its
own characteristic impedance on the generator side of the matching device as
shown in Fig. 7.15. The matching device should not at the same time absorb any
power. It should be noted that matching, as referred to here, is not related to max-
imum power transfer since the condition for maximum power transfer is that the

¢n,

¢n = ¢ a l

l
b = ¢ a lf

vp
b =

l
vp

 ¢f =
nl
vp

 ¢f = n  

¢f

f

¢f,l = nl.

≠1l2 = ≠R e-j2bl,

1225 + j02 Æ.145 + j602 Æ;145 - j602 Æ;
l = 5 m.

f = 37.5 MHz,f = 50 MHz, l = 3 m;f = 15 MHz, l = 5 m;

145 + j602 Æ.
Z0 = 75 Æ
148 + j362 Æ.1180 + j02 Æ;140 + j02 Æ;

SWR = 2.0,
SWR = 3.0,

SWR = 1.5,Z
 –

R:
Z
 –

R.60 Æ

3.324, 0.115l.14.94, 0.309l;
v = 0.8 * 108.v = 2 * 108;v = 108;

dmin

C = 100 pF.R = 30 Æ, L = 1 mH,
60 Æ
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�R

ZR
Z2Z1

Z0 Zq Z0

dql/4

FIGURE 7.16

For illustrating the quarter-wave transformer matching technique.

line input impedance must be the complex conjugate of the generator internal
impedance. In the following, we discuss three techniques of matching.

A. Quarter-Wave Transformer Matching

The quarter-wave transformer, or QWT, matching technique makes use of a sec-
tion of length of a line of characteristic impedance different from that of
the main line, as shown in Fig. 7.16.The principle is based on the property of line
impedance given by (7.33). With reference to the notation of Fig. 7.16, we first
note that to achieve a match, must be equal to Then, since, from (7.33),

must be purely real. We recall from the dis-
cussion of line impedance in Section 7.2 that the line impedance is purely real at
locations of voltage maxima and minima of the standing-wave pattern. There-
fore, within the first half-wavelength from the load, there are two solutions for

and hence for 
If we choose a voltage minimum for the first solution, then from (7.28)

(7.41)dq
112 =

l

4p
 1u + p2

Zq.dq

Z
 –

1Z
 –

2 = Zq
2, Z

 –
2 = Zq

2>Z –1 = Zq
2>Z0

Z0.Z
 –

1

Zql>4

Matching
Device

Z0 Z0
Z0

Source

Load

FIGURE 7.15

For illustrating the principle behind transmission-line matching.

Quarter-wave
transformer
matching
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7.3 Transmission-line matching 465

where is the phase angle of and the superscript (1) refers to solution 1.The
value of the line impedance is Hence, the value of 
is given by

or

(7.42)

For the second solution, the value of corresponds to the location of a voltage
maximum that occurs at from the location of the voltage minimum. Thus,

(7.43)

whichever is positive and less than The corresponding line impedance is
so that

(7.44)

B. Single-Stub Matching

Another technique of transmission-line matching known as stub matching con-
sists of connecting small sections of short-circuited lines (stubs) of appropriate
lengths in parallel with the line, at appropriate distances from the load. In the
single-stub matching technique, one stub is used and a match is achieved by
varying the location of the stub and the length of the stub. We shall assume the
characteristic impedance of the stub to be the same as that of the line and use
the notation shown in Fig. 7.17, in which is the normalized load impedance,
and are the normalized line admittances just to the left and just to the right,
respectively, of the stub, and b is the normalized input susceptance of the stub.
The solution to the single-stub matching problem then consists of finding the
values of and for a given value of and hence of 

First, we observe that to achieve a match, must be equal to 
Then proceeding to the right of the stub, we can write the following steps:

(7.45a)

(7.45b) ≠œ
1 =

1 - yœ
1

1 + yœ
1

=
jb

2 - jb

 yœ
1 = 1 - jb

11 + j02.y1

≠R.zRlsds

yœ
1

y1zR

Zq
122 = Z0 B1 + ƒ≠R ƒ

1 - ƒ≠R ƒ

Z011 + ƒ≠R ƒ2>11 - ƒ≠R ƒ2,
l>2.

dq
122 = dq

112 ;
l

4

;l>4 dq

Zq
112 = Z0B1 - ƒ≠R ƒ

1 + ƒ≠R ƒ

Z0 – Z0 

1 - ƒ≠R ƒ
1 + ƒ≠R ƒ

= Zq
2

ZqZ011 - ƒ≠R ƒ2>11 + ƒ≠R ƒ2.
≠R,u

Single-stub
matching
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(7.45c)

where n is an integer (positive or negative). Thus,

(7.46a)

(7.46b)

so that

(7.47)

(7.48)

Thus, two solutions are possible for b as given by (7.47) and the corresponding
solutions for are given by (7.48), where the integer value for n is chosen such
that Finally, to find the solutions for the stub length, we note0 … ds 6 l>2.

ds

 ds =
l

4p
 au <

p

2
- tan-1

  
b

2
- 2npb for b 	 0

 b = ;  

2 ƒ ≠R ƒ21 - ƒ≠R ƒ2

 u = ;
p

2
+ tan-1

 
b

2
+ 2bds + 2np for b 	 0

 ƒ ≠R ƒ =
ƒb ƒ24 + b2

 =
ƒb ƒ24 + b2

  ej1;p>2 + tan-1b>2 + 2bds + 2np2 for b 	 0

 ≠R = ≠1
¿  ej2bds =

jb

2 - jb
 ej2bds

�1
 �R

ls

ds

jb

zRy1 y1


FIGURE 7.17

For illustrating the single-
stub matching technique.

RaoCh07v3.qxd  12/18/03  4:58 PM  Page 466



7.3 Transmission-line matching 467

Double-stub
matching

�R

l2

jb2 jb1

zR

y2 y2


�2
 �1

l1

y1 yRy1


Stub 2 Stub 1

d12 d1

FIGURE 7.18

For illustrating the double-stub matching technique.

from (7.13) that the normalized input impedance of a short-circuited line of
length is j tan so that

(7.49)

C. Double-Stub Matching

In the single-stub matching technique, it is necessary to vary the distance between
the stub and the load, as well as the length of the stub, in order to achieve a
match for different loads or for different frequencies. This can be inconve-
nient for some arrangements of lines. When two stubs are used, it is possible
to fix their locations and achieve a match for a wide range of loads by adjust-
ing the lengths of the stubs. To discuss the principle behind this double-stub
matching technique, we make use of the notation shown in Fig. 7.18, in which
all admittances and susceptances are normalized quantities with respect to
the characteristic admittance of the line. The solution to the double-stub

ls = d l2p  c tan-1 a -  
1
b
b d +

l

2
 for b 7 0

l

2p
 ctan-1 a -  

1
b
b d   for b 6 0

 tan bls = -  
1
b

 
1
jb

= j tan bls

bls,ls
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matching problem then consists of finding the values of and for a given set
of values of (and hence, of ), and 

First, we observe that to achieve a match, must be equal to 
Then proceeding to the right in a step-by-step manner, we obtain an expression
for in terms of and as follows:

(7.50a)

(7.50b)

(7.50c)

(7.50d)

(7.50e)

For given values of and can be computed in the usual manner,
and the real and imaginary parts can be equated to the real and imaginary parts,
respectively, on the right side of (7.50e). Noting that does not appear in the
real part expression, we can first compute by solving the equation for the real
parts. Thus, letting the real part of as computed from and to be we
have

(7.51)

Rearranging and solving for we obtain

or

(7.52)b2 =
cos bd12 ; 21>g¿ - sin2 bd12

sin bd12

b2 =
sin 2bd12 ; 2sin2 2bd12 - 411 - 1>g¿2 sin2 bd12

2 sin2 bd12

b2,

1

1 - b2 sin 2bd12 + b2
2 sin2 bd12

= g¿

g¿,d1zRyœ
1

b2

b1

d1, y
œ
1zR

+ ja b2
2 sin 2bd12 - 2b2 cos 2bd12

2 - 2b2 sin 2bd12 + 2b2
2 sin2 bd12

- b1b

 =
1

1 - b2 sin 2bd12 + b2
2 sin2 bd12

 yœ
1 = y1 - jb1

 =
4 - j14b2 cos 2bd12 - 2b2

2 sin 2bd122
4 - 4b2 sin 2bd12 + 4b2

2 sin2 bd12

 y1 =
1 - ≠1

1 + ≠1

 ≠1 = ≠œ
2 ej2bd12 =

jb2

2 - jb2
 ej2bd12

 ≠œ
2 =

1 - yœ
2

1 + yœ
2

=
jb2

2 - jb2

 yœ
2 = y2 - jb2 = 1 - jb2

d12b1, b2,yœ
1

11 + j02.y2

d12.d1,≠RzR

l2l1
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7.3 Transmission-line matching 469

TABLE 7.1 Solutions for Transmission-Line Matching Example

Technique Solution Number Solution

QWT 1
QWT 2

Single stub 1
Single stub 2

Double stub 1
Double stub 2 l1 = 0.05614l, l2 = 0.05996l

l1 = 0.13483l, l2 = 0.32726l

ds = 0.04167l, ls = 0.11359l
ds = 0.20833l, ls = 0.38641l

dq = 0.375l, Zq = 86.60254 Æ
dq = 0.125l, Zq = 28.86751 Æ

We now see that a solution does not exist for if and
hence, it is not possible to achieve a match for loads that result in the real
part of being greater than A simple way to get around this prob-
lem is to increase by (see Problem 7.24). Assuming that the condition

is achieved, we then compute two possible values for as
given by (7.52). From the equation for the imaginary parts of the corre-
sponding values of are then given by

(7.53)

where is the imaginary part of as computed from and Finally, the
lengths of the two stubs are computed from and as in the case of the single-
stub matching technique.

To consider a numerical example for the solution of all three types of
matching techniques, let and for the double-stub
matching case, and Then the solutions obtained by using
the appropriate equations for the three techniques are listed in Table 7.1.

Note that is an odd multiple of Values of odd multiples
of are commonly used for Also, if the specified value of is such that

then the value of is increased by and the double-stub
matching is continued.

For any transmission-line matched system, the match is disturbed as the
frequency is varied from that at which the various electrical lengths and dis-
tances are equal to the computed values for achieving the match. For example,
in the QWT matched system, the electrical length of the QWT departs from
one-quarter wavelength as the frequency is varied from that at which the match
is achieved, and the system is no longer matched even if the load does not vary
with frequency. A plot of the SWR in the main line to the left of the QWT ver-
sus frequency is typically of the shape shown in Fig. 7.19, where is the design
frequency at which the system is matched, and hence the frequency at which the
SWR is unity. One can then specify a tolerable value of SWR, say, S, so that
there exists an acceptable bandwidth of operation, Similar considera-
tions apply to the single-stub and double-stub matched systems.

f2 - f1.

f0

l>4d1g¿ 7 1>sin2 bd12,
ZRd12.l>8 l>8.d12 = 0.375l

d12 = 0.375l.d1 = 0
RL = 30 Æ, XL = -40 Æ,

b2b1

d1.zRyœ
1b¿

b1 =
b2

2 sin 2bd12 - 2b2 cos 2bd12

2 - 2b2 sin 2bd12 + 2b2
2 sin2 bd12

- b¿

b1

yœ
1,

b2g¿ 6 1>sin2 bd12

l>4d1

1>sin2 bd12.yœ
1

g¿ 7 1>sin2 bd12,b2

Bandwidth
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470 Chapter 7 Transmission Lines for Communications

To discuss a procedure by means of which the SWR versus frequency
curve can be computed for all three types of matching techniques discussed, let
us consider a transmission-line system having n discontinuities, as shown for

in Fig. 7.20. At each discontinuity, there can exist a stub and a change in
characteristic impedance.We shall consider a specification of zero for the length
of the stub to mean no stub is present instead of a stub of zero length. This does
not result in a conflict, since, for any matched system using short-circuited stubs,
values of zero cannot be obtained for stub lengths, because then the value of
SWR would be infinity. With this understanding, Fig. 7.20 can be used to repre-
sent all three types of matching systems by specifying values for the various
parameters, as shown in Table 7.2.

n = 2

SWR versus
frequency
computation

Bandwidth

SWR

f0f1 f2
1

S

f

FIGURE 7.19

The SWR versus frequency curve illustrating the bandwidth
between the two frequencies and on either side of the
design frequency at which the SWR is a specified value
S 1712.

f0,
f2,f1

l2

ZR

l1

Z02Z0 Z01

Z0 Z0

d2 d1

Section 1Section 2

FIGURE 7.20

Transmission-line system for computing the SWR versus frequency curve for QWT, single-stub,
and double-stub matched systems.
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7.3 Transmission-line matching 471

Then to compute the SWR in the main line at a given frequency, we first
note that, since the electrical length of a line section or of a stub is pro-
portional to f. Thus, at a frequency f, the electrical length is equal to times
its value at For a given the procedure consists of starting at the load and
computing in succession the line admittance to the left of the stub at each dis-
continuity, from a knowledge of the line admittance at the output of the line sec-
tion to the right of that stub, until the line admittance to the left of the last
discontinuity is found and used to compute the required SWR. In carrying out
this procedure, we observe the following:

1. To compute the normalized admittance, say, at the input (left) end of a
line section of length l from the normalized admittance, say, at the out-
put (right) end of that section, we use the formula

or

(7.54)

where and are the reflection coefficients at the input and output
ends, respectively.

2. To compute the line admittance to the left of a stub, we add the input ad-
mittance of the stub to the line admittance to the right of the stub.

The computation of SWR versus can be done by using a computer
program. For values of the input parameters pertinent to the first of the two so-
lutions for the double-stub matching case in Table 7.1, the computed values of
SWR are listed in Table 7.3.The frequency variation of is taken into account
by assuming to be the series combination of a single resistor and a single re-
active element.

ZR

ZR

f>f0

≠o≠i

yi =
j sin bl + yo cos bl

cos bl + j yo sin bl

 =
1 - [11 - yo2>11 + yo2]e-j2bl

1 + [11 - yo2>11 + yo2]e-j2bl

 yi =
1 - ≠i

1 + ≠i
=

1 - ≠o e-j2bl

1 + ≠o e-j2bl

yo,
yi,

f>f0,f0.
f>f0

l r 1>f,

TABLE 7.2 Values of Parameters for Using the System of Fig. 7.20 for Three
Different Cases

System n

QWT 2 1/4
Single stub 1 — — —
Double stub 2

Value of zero means no stub present.a

l2d12Z0l1d1Z0

lsdsZ0

0aZq0adqZ0

l2d2Z02l1d1Z01
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472 Chapter 7 Transmission Lines for Communications

1P. H. Smith, “Transmission-Line Calculator,” Electronics, January 1939, pp. 29–31.
2See, for example, M. Felton, “Moving the Smith Chart to a Low-Cost Computer,” Microwave Jour-
nal, October 1983, pp. 131–133, and N. N. Rao, “PC-Assisted Instruction of Introductory Electro-
magnetics,” IEEE Transactions on Education, February 1990, pp. 51–59.

K7.3. Matching; Quarter-wave transformer; Single stub; Double stub; Bandwidth.
D7.7. For a line of characteristic impedance find the location nearest to the load

and the characteristic impedance of a quarter-wave transformer required to
achieve a match for each of the following values of (a) 1/9; (b) and
(c) j1/3.
Ans. (a) 0; (b) (c)

D7.8. For each of the following values of terminating a line of characteristic im-
pedance find the lowest value of and the corresponding smallest value
of the length of a single short-circuited stub of characteristic impedance 
required to achieve a match between the line and the load: (a) and
(b)
Ans. (a) (b)

D7.9. For each of the following sets of values of and associated with the
double-stub matching technique, determine whether or not it is possible to
achieve a match between the line and the load: (a)

(b) and (c)

Ans. (a) Yes; (b) yes; (c) no.

7.4 THE SMITH CHART: 1. BASIC PROCEDURES

In the preceding section, we considered transmission-line matching techniques
and computer solutions of matching problems. In this section, we discuss some
basic procedures using the Smith chart. Introduced in 1939 by P. H. Smith,1 the
Smith chart continues to be a popular graphical aid in the solution of transmission-
line problems, including simulation on personal computers.2

zR = 2.5 - j5.0.
d1 = l>4, d12 = 5l>8,d1 = l>8, d12 = 3l>8, zR = 0.5;0.3 + j0.4;

zR =d1 = 0, d12 = 3l>8,

zR,d1, d12,
0, 0.074l.0.098l, 0.348l;

ZR = 112 - j242 Æ.
Z
 –

R = 30 Æ
60 Æls

ds60 Æ,
Z
 –

R

106.07 Æ, 0.125l.43.30 Æ, 0.125l;83.85 Æ,

-j0.5;≠R:

75 Æ,

TABLE 7.3 Computed Values of SWR
Versus Frequency

SWR

0.90 1.9249
0.92 1.7124
0.94 1.5117
0.96 1.325
0.98 1.1543
1.00 1.0006
1.02 1.1583
1.04 1.3459
1.06 1.5663
1.08 1.8236
1.10 2.1216

f>f0
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7.4 The Smith Chart: 1. Basic Procedures 473

ConstructionThe Smith chart is a transformation from the complex (or )
to the complex To discuss the basis behind the construction of the Smith
chart, we begin with the relationship for the reflection coefficient in terms of the
normalized line impedance as given by

(7.55)

Letting we have

and

for positive values of r. Thus, for the passive line impedances, the reflection co-
efficient lies inside or on the circle of unit radius in the We will here-
after call this circle the unit circle. Conversely, each point inside or on the unit
circle represents a possible value of reflection coefficient corresponding to a
unique value of passive normalized line impedance. Hence, all possible values
of passive normalized line impedances can be mapped onto the region bounded
by the unit circle.

To determine how the normalized line impedance values are mapped onto
the region bounded by the unit circle, we note that

so that

(7.56a)

(7.56b)

Let us now discuss different cases:

1. is purely real; that is, Then

Purely real values of are represented by points on the real axis. For exam-
ple, and are represented by and 1, respec-
tively, as shown in Fig. 7.21(a).

≠ = -1, -1
2, 0, 12qr = 0, 13, 1, 3,

z

Re1≠2 =
r - 1
r + 1
 and Im1≠2 = 0

x = 0.z

 Im1≠2 =
2x

1r + 122 + x2

 Re1≠2 =
r2 - 1 + x2

1r + 122 + x2

≠ =
r + jx - 1

r + jx + 1
=

r2 - 1 + x2

1r + 122 + x2 + j 
2x

1r + 122 + x2

≠-plane.

ƒ ≠1d2 ƒ = c 1r - 122 + x2

1r + 122 + x2 d
1>2

… 1

≠1d2 =
r + jx - 1

r + jx + 1
=
1r - 12 + jx

1r + 12 + jx

z1d2 = r + jx,

≠1d2 =
z1d2 - 1

z1d2 + 1

≠-plane.
Y-planeZ

 –
-plane
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Im �

Re �
r � 0 311/3 �

(a)

Im �

Re �
x � 0 x � � 

x � 1

x � �1

(b)

Im �

Re �
r � 0 311/3

(c)

311/3

1/2
1

2

0

�1/2
�1

�2

�

(e)

Im �

Re �
x � 0

x � 1/2

x � �1/2

x � 1

x � �1

x � 2

x � �2

x � �

(d)

FIGURE 7.21

Development of the Smith chart by transformation from to ≠.z

2. is purely imaginary; that is, Then

and

l≠ = tan-1
  

2x

x2 - 1

ƒ ≠ ƒ = ` x2 - 1

x2 + 1
+ j 

2x

x2 + 1
` = 1

r = 0.z
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7.4 The Smith Chart: 1. Basic Procedures 475

Purely imaginary values of are represented by points on the unit circle.
For example, and are represented by 

and respectively, as shown in Fig. 7.21(b).

3. is complex, but its real part is constant. Then

This is the equation of a circle with center at and
and radius equal to Thus, loci of constant r are cir-

cles in the with centers at and radii For
example, for and the centers of the circles are (0, 0),

and (1, 0), respectively, and the radii are and 0,
respectively. These circles are shown in Fig. 7.21(c).

4. is complex, but its imaginary part is constant. Then

This is the equation of a circle with center at and 
and radius equal to Thus, loci of constant x are circles in the 
with centers at (1, 1/x) and radii equal to For example, for 

and the centers of the circles are 
and (1, 0), respectively, and the radii are and 0, respec-

tively. Portions of these circles that fall inside the unit circle are shown in
Fig. 7.21(d). Portions that fall outside the unit circle represent active
impedances.

Combining Figs. 7.21(c) and (d), we obtain the chart of Fig. 7.21(e). In a
commercially available form shown in Fig. 7.22, the Smith chart contains cir-
cles of constant r and constant x for very small increments of r and x, respec-
tively, so that interpolation between the contours can be carried out accurately.
We now consider an example to illustrate some basic procedures using the
Smith chart.

q , 2, 1, 12,11, ;1
22,

11, ;12,11, ;22,11, q2,; q ,;2,;1,
x = 0, ;1

2,1> ƒx ƒ .
≠-plane1> ƒx ƒ .

Im1≠2 = 1>xRe1≠2 = 1

= c r2 - 1 + x2

1r + 122 + x2 - 1 d2 + c 2x

1r + 122 + x2 -
1
x
d2 = a 1

x
b2

[Re1≠2 - 1]2 + cIm1≠2 -
1
x
d2

z

1, 34, 12, 14,114, 02, 112, 02, 134, 02,
q ,r = 0, 13, 1, 3,

1>1r + 12.[r>1r + 12, 0]≠-plane
1>1r + 12.Im1≠2 = 0

Re1≠2 = r>1r + 12

 = c r2 - 1 + x2

1r + 122 + x2 -
r

r + 1
d2 + c 2x

1r + 122 + x2 d
2

= a 1
r + 1

b2

 cRe1≠2 -
r

r + 1
d2 + [Im1≠2]2

z

1l2p,1lp>2, 1l0°, 1l - p>2,
≠ = 1lp,- qx = 0, 1, q , -1,

z
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476 Chapter 7 Transmission Lines for Communications

Example 7.4 For illustrating several basic procedures using the Smith
chart

A transmission line of characteristic impedance is terminated by a load impedance
It is desired to find the following quantities by using the Smith chart.

1. Reflection coefficient at the load
2. SWR on the line
3. Distance of the first voltage minimum of the standing-wave pattern from the load
4. Line impedance at 
5. Line admittance at 
6. Location nearest to the load at which the real part of the line admittance is equal

to the line characteristic admittance

d = 0.05l
d = 0.05l

ZR = 115 - j202 Æ.
50 Æ
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FIGURE 7.22

The Smith chart. (Copyrighted by and reproduced with the permission of Kay Elemetrics Corp., Pine
Brook, N.J.)

Some basic
procedures
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FIGURE 7.23

For illustrating the various procedures to be followed in using the Smith chart.

We proceed with the solution of the problem in the following step-by-step manner
with reference to Fig. 7.23.

(a) Find the normalized load impedance.

(b) Locate the normalized load impedance on the Smith chart at the intersection of
the 0.3 constant normalized resistance circle and constant normalized reac-
tance circle (point A).

(c) Locating point A actually amounts to computing the reflection coefficient at the
load since the Smith chart is a transformation in the The magnitude of the
reflection coefficient is the distance from the center (O) of the Smith chart (origin
of the ) to the point A based on a radius of unity for the outermost circle.
For this example, The phase angle of is the angle measured from the
horizontal axis to the right of O (positive real axis in the ) to the line OA in
the counterclockwise direction. This angle is indicated on the chart along its cir-
cumference. For this example, Thus,

(d) To find the SWR, we recall that at the location of a voltage maximum, the line im-
pedance is purely real and given by

(7.57)Rmax = Z01SWR2

≠R = 0.6ej1.261p

l≠R = 227°.

≠-plane
≠Rƒ ≠R ƒ = 0.6.

≠-plane

≠-plane.

-0.4

zR =
Z
 –

R

Z0
=

15 - j20

50
= 0.3 - j0.4
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478 Chapter 7 Transmission Lines for Communications

Thus, the normalized value of is equal to the SWR. We therefore move along
the line to the location of the voltage maximum, which involves going around the
constant circle to the point on the positive real axis. To do this on the Smith
chart, we draw a circle passing through A and with center at O.This circle is known
as the constant SWR circle, since, for points on the circle, and, hence,

are constants. Impedance values along this circle are normal-
ized line impedances as seen moving along the line. In particular, since point B
(the intersection of the constant SWR circle with the horizontal axis to the right of
O) corresponds to voltage maximum, the normalized impedance value at point B,
which is purely real and maximum, is equal to the SWR. Thus, for this example,

(e) Just as point B represents the position of a voltage maximum on the line, point C
(intersection of the constant SWR circle with the horizontal axis to the left of O,
i.e., the negative real axis of the ) represents the location of a voltage min-
imum. Hence, to find the distance of the first voltage minimum from the load, we
move along the constant SWR circle starting at point A (load impedance) toward
the generator (clockwise direction on the chart) to reach point C. Distance moved
along the constant SWR circle in this process can be determined by recognizing
that one complete revolution around the chart ( diagram) constitutes
movement on the line by However, it is not necessary to compute in this
manner since distance scales in terms of are provided along the periphery of the
chart for movement in both directions. For this example, the distance from the
load to the first voltage Conversely, if the
SWR and the location of the voltage minimum are specified, we can find the load
impedance by following the foregoing procedures in reverse.

(f) To find the line impedance at we start at point A and move along the
constant SWR circle toward the generator (in the clockwise direction) by a dis-
tance of to reach point D. This step is equivalent to finding the reflection co-
efficient at knowing the reflection coefficient at and then
computing the normalized line impedance by using (7.35). Thus, from the coordi-
nates corresponding to point D, the normalized line impedance at is

and hence the line impedance at is or

(g) To find the line admittance at we recall that

so that

or

(7.58)y1d2 = zad +
l

4
b

[z1d2] czad +
l

4
b d = 1

[Z
 –1d2] cZ –ad +

l

4
b d = Z0

2

d = 0.05l,
113 - j4.52 Æ.

5010.26 - j0.092d = 0.05l10.26 - j0.092,
d = 0.05l

d = 0d = 0.05l
0.05l

d = 0.05l,

minimum = 10.5 - 0.4352l = 0.065l.

l

0.5l.
≠-plane

≠-plane

SWR = 4.

11 + ƒ≠ ƒ2>11 - ƒ≠ ƒ2
SWR =  ƒ ≠ ƒ

ƒ≠ ƒ

Rmax
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7.5 The Smith Chart: 2. Applications 479

Thus, the normalized line admittance at point D is the same as the normalized line
impedance at a distance from it. Hence, to find we start at point D
and move along the constant SWR circle by a distance to reach point E (we
note that this point is diametrically opposite to point D) and read its coordinates.
This gives We then have 

(h) Relationship (7.58) permits us to use the Smith chart as an admittance chart in-
stead of as an impedance chart. In other words, if we want to find the normalized
line admittance at a point Q on the line, knowing the normalized line admit-
tance at another point P on the line, we can simply locate by entering
the chart at coordinates equal to its real and imaginary parts and then moving
along the constant SWR circle by the amount of the distance from P to Q in the
proper direction to obtain the coordinates equal to the real and imaginary parts of

Thus, it is not necessary first to locate diametrically opposite to 
on the constant SWR circle, then move along the constant SWR circle to locate

and then find diametrically opposite to To find the location near-
est to the load at which the real part of the line admittance is equal to the line char-
acteristic admittance, we first locate at point F, diametrically opposite to
point A, which corresponds to We then move along the constant SWR circle
toward the generator to reach point G on the circle corresponding to constant real
part equal to unity. (We call this circle the unit conductance circle.) Distance
moved from F to G is read off the chart as This is the
distance closest to the load at which the real part of the normalized line admit-
tance is equal to unity and, hence, the real part of the line admittance is equal to
line characteristic admittance.

K7.4. Unit circle; Transformation from (or ) to Smith chart; Constant
SWR circle; Unit conductance circle.

D7.10. Find the values of in polar form onto which the following normalized imped-
ances are mapped: (a) (b) (c) (d)
Ans. (a) (b) (c) (d)

D7.11. Find the following using the Smith chart: (a) the normalized input impedance of
a line of length and terminated by a normalized load impedance 
(b) the normalized input admittance of a short-circuited stub of length 
and (c) the shortest length of an open-circuited stub having the normalized
input admittance j0.4.
Ans. (a) (b) (c)

7.5 THE SMITH CHART: 2. APPLICATIONS

In the preceding section, we introduced the Smith chart and discussed some
basic procedures. In this section, we first consider by means of examples graph-
ical solutions of transmission-line matching problems using the Smith chart and
then discuss further applications.

0.06l.-j0.55;1.4 - j1.1;

0.17l;
12 + j12;0.1l

1.414l45°.0.721l19.44°;1l233.13°;0.6l180°;
-1 + j2.3 + j3;0 - j0.5;0.25 + j0;

≠

≠;yz≠-plane;

10.325 - 0.1852l = 0.14l.

z102.
y102

z1Q2.y1Q2z1Q2,
y1P2z1P2y1Q2.

y1P2y1P2
y1Q2

13.4 + j1.22 * 1>50 = 10.068 + j0.0242 S.
Y10.05l2 = y10.05l2 * Y0 =  y10.05l2 = 13.4 + j1.22.
l>4

y10.05l2,l>4
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480 Chapter 7 Transmission Lines for Communications

Example 7.5 Solution of a single-stub matching problem by using the
Smith chart

Let us consider a transmission line of characteristic impedance terminated by
a load impedance and illustrate the solution of the single-stub
matching problem by using the Smith chart, assuming of the stub to be 

With reference to the notation in Fig. 7.17, we recall that to achieve a match, the
stub must be located at a point on the line at which the real part of the normalized line
admittance is equal to unity; the imaginary part of the line admittance at that point is
then canceled by appropriately choosing the length of the stub. Hence, we proceed with
the solution in the following step-by-step manner with reference to Fig. 7.24.

(a) Find the normalized load impedance.

Locate the normalized load impedance on the Smith chart at point A.
(b) Draw the constant SWR circle passing through point A. This is the locus of the

normalized line impedance as well as the normalized line admittance. Starting at
point A, go around the constant SWR circle by half a revolution to reach point B
diametrically opposite to point A. Point B corresponds to the normalized load
admittance.

(c) Starting at point B, go around the constant SWR circle toward the generator
until point C on the unit conductance circle is reached. This point corresponds

zR =
Z
 –

R

Z0
=

30 - j40

50
= 0.6 - j0.8

50 Æ.Z0

Z
 –

R = 130 - j402 Æ,
Z0 = 50 ÆSingle-stub

matching
solution

–0.8
–1.16

0.363l

0.3335l

0.125l 0.137l

0.1665l

0.25l

C

D

A

G

B

E

F

Toward
Generator

�
0.6 1

1.16

0

FIGURE 7.24

Solution of single-stub matching problem by
using the Smith chart.

RaoCh07v3.qxd  12/18/03  4:58 PM  Page 480
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Double-stub
marching
solution

to the normalized line admittance having the real part equal to unity; hence, it
corresponds to the location of the stub. The distance moved from point B to
point C (not from point A to point C) is equal to the distance from the load at
which the stub must be located. Thus, the location of the stub from the 

(d) Read off the Smith chart the normalized susceptance value corresponding to point
C. This value is 1.16 and it is the imaginary part of the normalized line admittance
at the location of the stub. The imaginary part of the line admittance is equal to

The input susceptance of the stub must therefore be
equal to 

(e) This step consists of finding the length of a short-circuited stub having an input
susceptance equal to We can use the Smith chart for this purpose
since this simply consists of finding the distance between two points on a line (the
stub in this case) at which the admittances (purely imaginary in this case) are
known. Thus, since the short circuit corresponds to a susceptance of infinity, we
start at point D and move toward the generator along the constant SWR circle
through D (the outermost circle) to reach point E corresponding to which
is the input admittance of the stub normalized with respect to its own characteris-
tic admittance. The distance moved from D to E is the required length of the stub.
Thus, length of the short-circuited 

(f) The results obtained for the location and the length of the stub agree with one of
the solutions found analytically in Section 7.3. The second solution can be ob-
tained by noting that in step (c), we can go around the constant SWR circle from
point B until point F on the unit conductance circle is reached, instead of stopping
at point C. The stub location for this solution is The
required input susceptance of the stub is (1.16/50) S. The length of the stub is the
distance from point D to point G in the clockwise direction. This is 

These values are the same as the second solution obtained in
Section 7.3.

Example 7.6 Solution of a double-stub matching problem by using the
Smith chart

For the line of characteristic impedance and load impedance 
of Example 7.5, it is desired to solve the double-stub matching problem by

using the Smith chart and assuming of both stubs to be the first stub to be lo-
cated at the load, and distance between stubs equal to 

With reference to the notation of Fig. 7.18, we first note that to achieve a match,
must fall on the unit conductance circle. Now since and correspond to

locations at the end points of the line section between the stubs, for a given can be
obtained by drawing the constant SWR circle through and going toward the generator
(clockwise direction) by the distance from Conversely, to obtain for a given 
we start at and go toward the load (counterclockwise direction) by the distance 
along the constant SWR circle. Hence, for to fall on the unit conductance circle,
must fall on a circle that is obtained by pivoting the unit conductance circle at the center
of the Smith chart (point O) and rotating it toward the load by the distance as shown
in Fig. 7.25 for We shall call this circle the auxiliary circle. Thus, the auxiliary
circle is the locus of for possible match.y1

d12 = 3l>8.
d12,

y1y2
œ

d12y2
œ

y2
œ ,y1y1.d12

y1

y1, y2
œ

y1y2
œy2

œ = 1 - jb2

0.375l.
50 Æ,Z0

j402 Æ
Z
 –

R = (30 -Z0 = 50 Æ

0.252l = 0.387l.
10.137 +

10.3335 - 0.1252l = 0.2085l.

stub = 10.363 - 0.252l = 0.113l.

-j1.16,

-11.16>502 S.

-11.16>502 S.
1.16 * Y0 = 11.16>502 S.

10.1665 - 0.1252l = 0.0415l.
load =  
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482 Chapter 7 Transmission Lines for Communications

The matching procedure consists of first locating on the Smith chart and then
moving along the constant SWR circle through toward the generator by the distance

between the load and the first stub, thereby locating The right amount of suscep-
tance is then added to to reach a point on the auxiliary circle. This point corresponds
to and determines a new constant SWR circle. By going along this new constant SWR
circle toward the generator by the distance is located on the unit conductance cir-
cle.The amount of susceptance added to is the required normalized input susceptance
of the first stub, whereas the negative of the imaginary part of is the required normal-
ized input susceptance of the second stub.

Considering now the numerical values of 
and we proceed with the solution in the following step-by-step

manner with reference to Fig. 7.26.

(a) Locate at point A and draw the constant SWR circle through A.
(b) Locate point B on the constant SWR circle and diametrically opposite to point A.

This point corresponds to Since is equal to zero, it also corresponds to If
is not equal to zero, then has to be located by going along the constant SWR

circle toward the generator by the distance from point B.
(c) Draw the auxiliary circle, which is the circle obtained by pivoting the unit conduc-

tance circle at the center of the chart and rotating it by the distance 
toward the load.

d12 = 0.375l

d1

y1
œd1

y1
œ .d1yR.

zR = 10.6 - j0.82

d12 = 0.375l,d1 = 0,
zR = 130 - j402>50 = 10.6 - j0.82,

y2
œ

y1
œ

d12, y2
œ

y1

y1
œ

y1
œ .d1

yR

yR

d12

d12

O

d12
d12

3l
8

Auxiliary
Circle

Unit
Conductance

Circle
Toward

Load

FIGURE 7.25

Rotation of the unit conductance circle by toward the load about O
for illustrating the construction of the auxiliary circle, that is, the locus of for
possible match for the double-stub matching arrangement of Fig. 7.18.

y1

d121=  3l>82

RaoCh07v3.qxd  12/18/03  4:58 PM  Page 482



7.5 The Smith Chart: 2. Applications 483

C

D


D

A

B

Auxiliary
Circle

Toward
GeneratorC 


0.6

� 0.09

� 0.53

� 0.8

�1.92

2.5

0.8

FIGURE 7.26

Solution of the double-stub matching problem by using the Smith chart.

(d) This step consists of adding the right amount of susceptance to to get to a point
on the auxiliary circle. Hence, starting at point B, go along the constant conduc-
tance circle to reach point C on the auxiliary circle. This point corresponds to 
The required normalized input susceptance of the first stub can now be found by
noting that and, hence,

(e) Starting at point C, go along the constant SWR circle through C toward the genera-
tor by to reach point D on the unit conductance circle. This point cor-
responds to Note that the SWR on the portion of the line between the stubs is
different from the SWR to the right of the first stub because of the discontinuity in-
troduced by the stub.The required normalized input susceptance of the second stub
can now be found by reading the imaginary part of and taking its negative. Thus,

(f) This step consists of finding the lengths of the two stubs having the normalized
input susceptances found in steps (d) and (e), by using the procedure discussed in
Example 7.5. Thus, we obtain

which agree with one of the solutions found analytically in Section 7.3.

 l2, length of second stub = 10.077 + 0.252l = 0.327l
 l1, length of first stub = 10.385 - 0.252l = 0.135l

jb2 = -j[Im1y2
œ2] = j0.53

y2
œ

y2
œ .

d12 = 0.375l

jb1 = y1 - y1
œ = 10.6 - j0.092 - 10.6 + j0.82 = -j0.89

y1 = y1
œ + jb1,

y1.

y1
œ
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y1

Y1 Y2Yd

�1 �2

y2

Line 1
Y01

Line 2
Y02

FIGURE 7.27

Transmission-line system for deriving the transformation of across a discontinuity.≠

(g) Finally, the second solution can be obtained by going from point B to point on
the auxiliary circle and then to point on the unit conductance circle, and com-
puting and as in steps (d) and (e). Thus, we obtain

giving us

These values are the same as the second solution obtained in Section 7.3.

Before proceeding further, we recall from Section 7.3 that in the double-
stub matching technique, it is not possible to achieve a match for loads that
result in the real part of being greater than For 

and a match cannot be achieved if the real part of is greater
than 2. This is easily evident from the Smith chart construction in Fig. 7.26,
since if point B falls inside the shaded region (real part ), it is not possible
to reach a point on the auxiliary circle by moving on the constant conductance
circle through B. The shaded region is therefore called the forbidden region of

for possible match. As pointed out in Section 7.3, a solution to the problem
is to increase by This effectively rotates the forbidden region by 180°
about the center of the chart, thereby making possible a match.

To illustrate the application of the Smith chart further, we shall now dis-
cuss a very useful property of the reflection coefficient and, hence, of the
Smith chart. This has to do with the transformation of the reflection coefficient
from one side of a discontinuity to the other side of the discontinuity. Let us, for
example, consider the system shown in Fig. 7.27, which consists of a junction

l>4.d1

y1
œ

7 2

y1
œ1>sin2 bd12 = 2,

d12 = 3l>8,1>sin2 bd12.y1
œ

 l2 = 10.31 - 0.252l = 0.06l

 l1 = 10.306 - 0.252l = 0.056l

 jb2 = -j2.5

 jb1 = 10.6 - j1.922 - 10.6 + j0.82 = -j2.72

jb2jb1

D¿
C¿

Transforma-
tion across a
discontinuity
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7.5 The Smith Chart: 2. Applications 485

between two lines of characteristic admittances and and in addition, an
admittance connected across the junction. If then the system reduces
to a simple junction between two lines. If then the system reduces to
an admittance discontinuity in the same line.

Let and be the normalized admittances to the left
and to the right, respectively, of the junction, and let the corresponding reflec-
tion coefficients be and respectively, as shown in Fig. 7.27. Then, since

we have

(7.59)

where is the ratio of the characteristic admittances of the two lines
and is the normalized value of with respect to Substituting
for and in (7.59) in terms of and respectively, we have

(7.60)

Rearranging (7.60), we obtain

(7.61)

Equation (7.61) is of the form of the so-called bilinear transformation
between two complex planes, a property of which is that circles in one plane
are transformed into circles in the second plane. Consequently, loci of 
which are circles in the are mapped on to loci of which are also
circles in the and vice versa. Since the Smith chart is a transforma-
tion (also bilinear) from or to this means that loci of which are cir-
cles, are mapped on to loci of which are also circles. Since a circle is
defined completely by three points, it is therefore sufficient if we use any
three points on the locus of and find the corresponding three points for 
By locating the center at the intersection of the perpendicular bisectors of
lines joining any two pairs of these three points, we can then draw the circle
passing through these points, that is, the locus of Although we have
demonstrated this property by considering the discontinuity of the form
shown in Fig. 7.27, it can be shown that the property holds for the case of any

y1.

y1.y2

y1,
y2,≠,yz

≠-plane,
≠1,≠-plane,

≠2,

≠1 =
11 + a - ayd2≠2 + 11 - a - ayd2
11 - a + ayd2≠2 + 11 + a + ayd2

1 - ≠1

1 + ≠1
= aa1 - ≠2

1 + ≠2
+ ydb

≠2,≠1y2y1

Y02.Ydyd = Yd>Y02

a = Y02>Y01

 = a1y2 + yd2
 =

Y02

Y01
 a Y2

Y02
+

Yd

Y02
b

 y1 =
Y1

Y01
=

Y2

Y01
+

Yd

Y01

Y1 = Y2 + Yd,
≠2,≠1

y2 = Y2>Y02y1 = Y1>Y01

Y01 = Y02,
Yd = 0,Yd

Y02Y01
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yR � 0.6 � j0.8

y1 y2

jb � j0.8

FIGURE 7.28

Transmission-line system in which a susceptance of fixed value sliding along the
line forms a discontinuity.

linear, passive, bilateral network serving as the discontinuity. We shall now
consider an example.

Example 7.7 Application of the Smith chart to transformation across a
discontinuity

Let us consider the system shown in Fig. 7.28, in which a line is terminated by a normal-
ized admittance and a normalized susceptance of value con-
nected between the two conductors of the line forms the discontinuity. We wish to find
the locus of the normalized admittance to the left of the discontinuity as the suscep-
tance slides along the line, and then determine the location, nearest to the load, of the
susceptance for which the SWR to the left of it is minimized.

To construct the locus of we first locate on the Smith chart
at point A and draw the constant SWR circle passing through A, as shown in Fig. 7.29.
This circle is the locus of the normalized admittance just to the right of the discon-
tinuity as the distance between the load and the discontinuity is varied, that is, as the
susceptance slides along the line. We then choose any three points on the locus of 
and locate the corresponding three points for Here, we choose the
points A, B, and C. Following the constant conductance circles through these points
by the amount of normalized susceptance we obtain the points D, E, and F,
respectively. We then draw the circle passing through these points to obtain the locus
of 

Proceeding further, we note that each point on the locus of corresponds to a
value of SWR to the left of the susceptance, obtained by following the constant SWR cir-
cle through that point to the r value at the point. In particular, it can be seen that
minimum SWR is achieved to the left of the susceptance for lying at point G, which is
the closest point to the center of the chart, and the minimum SWR value is 1.35. The dis-
tance from the load at which the susceptance must be connected to achieve this mini-
mum SWR can be found by locating the corresponding to the at G by following the
constant conductance circle through G by the amount to reach point H. The dis-
tance from point A to point H toward the generator is the required distance. It is equal to

or 0.221l.10.346 - 0.1252l,
-0.8

y1y2

y1

Vmax

y1

y1.

+0.8,

y1 = y2 + j0.8.
y2

y2,

yR = 10.6 + j0.82y1,

y1

b = 0.8yR = 10.6 + j0.82
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Toward
Generator

Locus of
y1

0.8 0.125l

0.346l

1.6

1.350.6

�0.8

A

B

C

D

EF

G

H

Locus of
y2

FIGURE 7.29

Construction of the locus of for the system of Fig. 7.28 as the susceptance b
slides along the line and determination of the minimum SWR that can be achieved
to the left of the susceptance and the location of the susceptance to achieve the
minimum SWR.

y1

Together with the basic procedures discussed in the previous section, the
methods that we have discussed in this section can be extended to solve many
other problems using the Smith chart.We include some of these in the problems.

K7.5. Single-stub matching; Double-stub matching; Auxiliary circle; Forbidden region
of for possible match; Transformation of across a discontinuity.

D7.12. A line of characteristic impedance is terminated by a load of impedance
Find the following using the Smith chart: (a) the SWR on the

line; (b) the minimum SWR that can be achieved on the line by connecting a
stub in parallel with the line at the load; and (c) the minimum SWR that can be
achieved on the line by connecting a stub in series with the line at the load.
Ans. (a) 3.0; (b) 1.33; (c) 2.0.

150 + j652 Æ.
100 Æ

≠y1
œ
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488 Chapter 7 Transmission Lines for Communications

D7.13. A line of characteristic impedance is terminated by a load of impedance
Find the following by using the Smith chart: (a) the minimum

distance at which a reactance of value must be connected in parallel with
the line to minimize the SWR to the left of the reactance and the minimum
SWR achieved; (b) the minimum length of a line section of characteristic im-
pedance between the main line and the load required to minimize the
SWR on the main line and the minimum SWR achieved; and (c) the character-
istic impedance of a section of line inserted between the main line and the
load to minimize the SWR on the main line and the minimum SWR achieved.
Ans. (a) 1.63; (b) 1.30; (c) 2.42.

7.6 THE LOSSY LINE

Thus far, we have been concerned with lossless lines. We learned in Section 6.1
that the distributed equivalent circuit for a lossless line consists of series induc-
tors and shunt capacitors, representing energy storage in magnetic and electric
fields, respectively. A lossy line is characterized by imperfect but good conduc-
tors and imperfect dielectric giving rise to power dissipation, thereby modifying
the distributed equivalent circuit. The power dissipation in the conductors is
taken into account by a resistance in series with the inductor, whereas the
power dissipation in the dielectric is taken into account by a conductance in
parallel with the capacitor. In addition, the magnetic field inside the conductors
is taken into account by an additional inductance in the series branch. Thus, the
distributed equivalent circuit for the lossy line is as shown in Fig. 7.30, where 
includes the additional inductance just mentioned. Note that the notation for
the series resistance and for the shunt conductance is not to be confused to
mean that is the reciprocal of 

To discuss wave propagation on a lossy line, we first obtain the transmission-
line equations by applying Kirchhoff’s voltage and current laws to the circuit of
Fig. 7.30. Thus, we have

(7.62a)

(7.62b) I1z + ¢z, t2 - I1z, t2 = -g ¢z V1z, t2 - c ¢z 

0V1z, t2
0t

 V1z + ¢z, t2 - V1z, t2 = -r ¢z I1z, t2 - l ¢z 

0I1z, t2
0t

r.g
g

r
l

83.7 Æ,0.338l,0.204l,

l>4
100 Æ

50 Æ
1100 + j1002 Æ.

50 Æ

Distributed
equivalent
circuit

Transmission-
line equations
and solution

I(z, t)

V(z, t) V(z � �z, t)

I(z � �z, t)

z � �zz

    �z     �z

    �z     �z

�

�

�

�
FIGURE 7.30

Distributed equivalent circuit for a
lossy transmission line.
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7.6 The Lossy Line 489

Dividing both sides of (7.62a) and (7.62b) by and letting we obtain
the transmission-line equations

(7.63a)

(7.63b)

The corresponding equations in terms of phasor voltage and current are

or

(7.64a)

(7.64b)

where and are understood to be functions of z.
Combining the two transmission-line equations (7.64a) and (7.64b) by

eliminating we obtain the wave equation

or

(7.65)

where

(7.66)

The solution for is given by

(7.67)V1z2 = A
 –

e-g
q

z + B
 –

egqz

V1z2
 = 21r + jvl21g + jvc2

 g = a + jb

02V

0z2 = g2V

 = 1r + jvl21g + jvc2V
 
02V

0z2 = -  1r + jvl2 

0 I
 –

0z

I
 –

,

I
 –

V

 
0 I

 –

0z
= -1g + jvc2V

 
0V

0z
= -1r + jvl2I –

 
0 I

 –1z2
0z

= -gV1z2 - jvcV1z2

 
0V1z2

0z
= -rI

 –1z2 - jvlI
 –1z2

 
0I1z, t2

0z
= -gV1z, t2 - c 

0V1z, t2
0t

 
0V1z, t2

0z
= -rI1z, t2 - l 

0I1z, t2
0t

¢z : 0,¢z
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490 Chapter 7 Transmission Lines for Communications

where and are arbitrary constants. It then follows that

Noting that the first and second terms on the right side correspond to waves
propagating in the respectively, we write (7.67) as

(7.68)

where the superscripts and denote and waves, respectively. The
quantity which is the imaginary part of is, of course, the phase constant,
that is, the rate of change of phase with z for a fixed time, for either wave. The
quantity which is the real part of is the attenuation constant, denoting that
the waves get attenuated by the factor per unit distance as they propagate in
their respective directions. Thus, the quantity is the propagation
constant associated with the wave. We recall that the units of are nepers per
meter. Proceeding further, we obtain the corresponding solution for the phasor
line current by substituting (7.68) into one of the transmission-line equations.
Thus, using (7.64a), we obtain

or

(7.69)

where

(7.70)

is the characteristic impedance of the line, which is now complex.
Equations (7.68) and (7.69) are the general solutions for the phasor line

voltage and current, respectively, with the associated propagation constant and
characteristic impedance given by (7.66) and (7.70), respectively. Although it is
possible to obtain explicit expressions for and as well as for the real and
imaginary parts of in terms of and such expressions are often
not meaningful since and are themselves functions of frequency.
Hence, in practice, these quantities are obtained from experimental determination

cr, l, g,
c,v, r, l, gZ

 –
0

b,a

Z
 –

0 = Ar + jvl
g + jvc

I
 –1z2 =

1
Z0

 1V+e- g
q

z - V-egqz2

 = -  
1

r + jvl
 [-gV+e-g

q
z + g V-egqz]

 I
 –1z2 = -  

1
r + jvl

  
0V

0z

a

g1=  a + jb2ea
g,a,

g,b,
1-21+2-+

V1z2 = V+e- g
q

z + V-egqz

-z-directions,+z-and

 = Ae-az cos 1vt - bz + u2 + Beaz cos 1vt + bz + f2
 V1z, t2 = Re[Aejue-aze-jbzejvt + Bejfeazejbzejvt]

B
 – = BejfA

 – = Aeju

Low-loss line
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7.6 The Lossy Line 491

Experimental
determination
of and gZ

 –
0

of characteristic impedance and propagation constant. However, for the special
case of the low-loss line, that is, for and we have

so that

(7.71a)

(7.71b)

(7.71c)

Similarly,

(7.71d)

Thus, for the low-loss line, the expressions for and are essentially the
same as those for a lossless line. Note that the low-loss conditions and

are valid for very high frequencies or for very small values of and 
at lower frequencies.

As already pointed out, for the general case it is more convenient to de-
termine experimentally the values of and than it is to compute them ana-
lytically.The experimental technique is based on the measurements of the input

gZ
 –

0

grvc  g
vl  r

Z
 –

0b

 L Alc L Alc  c1 +
1
2

 a r
jvl

-
g

jvc
b d

 L BlcBa1 +
r

jvl
-
g

jvc
b

 L BlcBa1 +
r

jvl
b a1 -

g

jvc
b

 Z
 –

0 = Bjvl11 + r>jvl2
jvc11 + g>jvc2

 vp =
v

b
L

12lc b L v2lc a L
1
2

 arAcl + gAlc b
 L

1
2

 arAcl + gAlc b + jv2lc L jv2lc c1 +
1
2

 a r
jvl

+
g

jvc
b d

 L jv2lcA1 +
r

jvl
+
g

jvc

 g = Bjvla1 +
r

jvl
bjvca1 +

g

jvc
b

vc  g,vl  r
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impedance of the line for two values of load impedance. To obtain the expres-
sion for the input impedance, we first write the general solutions for the phasor
line voltage and current given by (7.68) and (7.69), respectively, in terms of the
distance variable d, measured from the load toward the generator, as opposed
to z, measured from the generator toward the load. Thus, we have

(7.72a)

(7.72b)

or

(7.73a)

(7.73b)

where

(7.74)

is the voltage reflection coefficient at any value of d, and is the voltage re-
flection coefficient at the load.

The line impedance is given by

(7.75)

The input impedance of a line of length l terminated by a load impedance as
shown in Fig. 7.31, is then given in terms of by

 = Z
 –

0  

Z
 –

R cosh gl + Z
 –

0 sinh gl

Z
 –

R sinh gl + Z
 –

0 cosh gl

 = Z
 –

0  

1Z –R + Z
 –

02 + 1Z –R - Z
 –

02e-2
q
gl

1Z –R + Z
 –

02 - 1Z –R - Z
 –

02e-2
q
gl

 = Z
 –

0  

1 + [1Z –R - Z
 –

02>1Z –R + Z
 –

02]e-2
q
gl

1 - [1Z –R - Z
 –

02>1Z –R + Z
 –

02]e-2
q
gl

 Z
 –

in = Z
 –1l2 = Z

 –
0  

1 + ≠R e-2
q
gl

1 - ≠R e-2
q
gl

Z
 –

R

Z
 –

R,

 = Z
 –

0  

1 + ≠R e-2
q
gd

1 - ≠R e-2
q
gd

 Z
 –1d2 =

V1d2
I
 –1d2 = Z

 –
0  

1 + ≠1d2
1 - ≠1d2

≠R

 = ≠R e-2
q
gd = ≠R e-2ade-j2bd

 ≠1d2 =
V-1d2
V+1d2 =

V-e -g
q

d

V+egqd

 I
 –1d2 =

V+

Z
 –

0
 egqd[1 - ≠1d2]

 V1d2 = V+egqd[1 + ≠1d2]

 I
 –1d2 =

1
Z
 –

0
 1V+egqd - V-e-g

q
d2

 V1d2 = V+egqd + V-e-gqd
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7.6 The Lossy Line 493

or

(7.76)

Let us now consider two values of in particular, and 
corresponding to a short circuit and an open circuit, respectively.Then, denoting
the corresponding input impedances to be and respectively, we have
from (7.76),

(7.77a)

(7.77b)

from which we obtain

(7.78)

and

(7.79)

To illustrate the computation of and by means of a numerical exam-
ple, let us assume that at a certain frequency, measurements indicated

Then from (7.78),

Z
 –

0 = 2130 - j402130 + j402 = 50 Æ

 Z
 –

in
o = 130 + j402 Æ

 Z
 –

in
s = 130 - j402 Æ

gZ
 –

0

tanh gl = CZ
 –

in
s

Z
 –

in
o

Z
 –

0 = 2Z
 –

in
s Z

 –
in
o

 Z
 –

in
o = Z

 –
0 coth gl

 Z
 –

in
s = Z

 –
0 tanh gl

Z
 –

in
o ,Z

 –
in
s

Z
 –

R = q ,Z
 –

R = 0Z
 –

R;

Z
 –

in = Z
 –

0  

Z
 –

R + Z
 –

0 tanh gl

Z
 –

R tanh gl + Z
 –

0

ZRZ0, gZin

d � l d � 0d

FIGURE 7.31

Lossy line of length 1 terminated
by ZR.
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494 Chapter 7 Transmission Lines for Communications

From (7.79),

Using the identity

we then have

Thus,

whereas

where is ruled out since it gives negative value for Note that can
only be determined to within However, if the approximate value of is
known, then the correct value of n, and hence of can be determined.

In practice, since a perfect open-circuited termination can often be diffi-
cult to achieve, it may be desirable to consider the second value of to be ar-
bitrary instead of being equal to Denoting the corresponding input
impedance to be we then have from (7.76) and (7.77a)

(7.80)Zin = Z0
2

  

ZR + Zin
s

ZRZin
s + Z0

2

Zin,
q .

ZR

b,
bnp.
bb.n = 0

bl = np - p>4 n = 1, 2, Á

 a = 0.3466>l
 al = 0.3466

 = 0.3466 + j1np - p>42 n = 0, 1, 2, Á

 =
1
2

 [ln 2 + j12np - p>22]
 =

1
2

  ln  2l -90° =
1
2

  ln [2ej12np-p>22]

 gl =
1
2

  ln  
1.6 - j0.8

0.4 + j0.8
=

1
2

  ln  
1.789l -26.565°

0.894l63.435°

tanh-1 x =
1
2

 ln 
1 + x

1 - x

 gl = tanh-110.6 - j0.82
 = 1l -53.13° = 0.6 - j0.8

 tanh gl = A30 - j40

30 + j40
= B50l -53.13°

50l53.13°
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7.6 The Lossy Line 495

and hence

(7.81)

Knowing the value of from (7.81), we can then compute the value of by
using (7.77a).

We shall conclude this section with a discussion of power flow down the line.
From (7.73a) and (7.73b), the time-average power flow down the line is given by

or

(7.82)

where

is the characteristic admittance of the line. For a given source voltage and im-
pedance, we can compute the value of from line impedance and power flow
considerations at the input end of the line and use that value for further compu-
tations. We shall illustrate this by means of an example.

Example 7.8 Computation of power flow and power dissipated for a
lossy line

Let us consider the low-loss line system shown in Fig. 7.32, and compute the time-aver-
age power delivered to the input of the line, the time-average power delivered to the
load, and the time-average power dissipated in the line.

We proceed with the solution in a step-by-step manner as follows:

(a) The reflection coefficient at the load end is given by

≠R =
Z
 –

R - Z
 –

0

Z
 –

R + Z
 –

0
=

150 - 50
150 + 50

= 0.5

ƒV+ ƒ

Y0 =
1

Z
 –

0
= G0 + jB0

8P9 = 1
2 ƒV+ ƒ2e2ad5G0[1 - ƒ≠1d2 ƒ2] + 2B0 Im ≠1d26

 =
1
2

  Re5 ƒV+ ƒ2Y0
*e2ad[1 - ƒ≠1d2 ƒ2 + j2 Im ≠1d2]6

 =
1
2

  Ree ƒV+ ƒ2

Z
 –

0*
 e2ad[1 - ƒ≠1d2 ƒ2 + ≠1d2 - ≠*1d2] f

 =
1
2

  ReeV+egqd[1 + ≠1d2] 

1V+2*
Z
 –

0*
 egq*d[1 - ≠*1d2] f

 8P9 =
1
2

 Re[V1d2I*1d2]

gZ
 –

0

Z
 –

0 = C Z
 –

RZ
 –

in
s Z

 –
in

Z
 –

R + Zin
s - Z

 –
in

Power flow
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496 Chapter 7 Transmission Lines for Communications

(b) Noting that is specified in nepers per wavelength, we obtain the reflection coef-
ficient at the input end as

(c) The input impedance of the line is given by

(d) The current drawn from the voltage generator can be obtained as

(e) The voltage at the input end of the line is given by

 = 35.143l15.238° V
 = 26.33l -29.937° * 1.3347l45.175°

 V1l2 = Z
 –

inI
 –1l2

 = 1.3347l45.175° A

 =
100l0°

52.817 - j53.140
=

100l0°

74.923l -45.175°

 I
 –1l2 =

Vg

Z
 –

g + Z
 –

in
=

100l0°

130 - j402 + 122.817 - j13.1402

I
 –

g = I
 –1l2

 = 122.817 - j13.1402 Æ
 = 50  

0.7117l -19.708°

1.3515l10.229°
= 26.33l -29.937°

 = 50  

1 + 0.4077l -144°

1 - 0.4077l -144°
= 50  

1 + 1-0.33 - j0.242
1 - 1-0.33 - j0.242

 Z
 –

inZ
 –1l2 = Z

 –
0 

1 + ≠1l2
1 - ≠1l2

 = 0.4077l -144°
 = 0.5e-

 
0.204e-j40.8p

 ≠1l2 = ≠R e-2g
q

l = ≠R e-2ale-j2bl

d = l
a

ZR � 150 �

Zg � (30 � j40) �

Vg � 100  0   V

 Z0 = 50 �
  a � 10�2 Np/l

10.2l

d � l d � 0d

�
�

FIGURE 7.32

Lossy transmission-line system for illustrating the computation of power
flow at the two ends of the line and the power dissipated in the line.
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7.6 The Lossy Line 497

(f) The time-average power flow at the input end of the line is given by

(g) Noting that we then obtain the value of by applying (7.82) to 
Thus,

(h) The time-average power delivered to the load is then given by

(i) Finally, the time-average power dissipated in the line is

K7.6. Distributed equivalent circuit; Transmission-line equations; Complex propaga-
tion constant; Complex characteristic impedance; Input impedance; and 
from input impedance considerations; Power flow; Power dissipation.

D7.14. For a lossy line of length and characterized by and 
find the input impedance for each of the following values of 

(a) (b) and (c)

Ans. (a) (b) (c)

D7.15. A lossy line of length and characterized by and
is terminated by a load impedance If a time-average

power of 10 W is to be delivered to the load, determine how much time-aver-
age power should be delivered to the input terminals of the line for each of
the following values of (a) (b) and (c)

Ans. (a) 12.214 W; (b) 15.436 W; (c) 13.556 W.

300 Æ.
Z
 –

R =  Z
 –

R = 20 Æ;Z
 –

R = 100 Æ;Z
 –

R:

Z
 –

R.a = 10-2 Np>l
Z
 –

0 = 100 Æl = 10l

173.17 - j11.392 Æ.120.67 + j17.382 Æ;1102.04 - j85.772 Æ;

Z
 –

R = 136 + j02 Æ.Z
 –

R = q ;Z
 –

R = 0;
Z
 –

R:0.02 Np>l,
a =Z

 –
0 = 60 Æl = 16.3l

gZ
 –

0

 = 5.41 W
 = 20.32 - 14.91

 8Pd9 = 8P1l29 - 8P1029

 = 14.91 W

 = 1
2 * 44.582 * 0.0211 - 0.252

 8P1029 = 1
2 ƒV+ ƒ2G011 - ƒ≠R ƒ22

 = 44.58 V

 = C2 * 20.32 * e-0.204

0.0211 - 0.407722

 ƒV+ ƒ = C 28P1l29e-2al

G0[1 - ƒ≠1l2 ƒ2]

d = l.ƒV+ ƒB0 = 0,

 = 20.32 W

 = 1
2 * 35.143 * 1.3347 *  cos 29.937°

 = 1
2 Re[35.143l15.238° * 1.3347l -45.175°]

 8P1l29 = 1
2 Re[V1l2I –*1l2]
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498 Chapter 7 Transmission Lines for Communications

7.7 PULSES ON LOSSY LINES

In the previous section, we considered the sinusoidal steady state analysis of
lossy lines. We learned that as the waves propagate down the line, they get at-
tenuated in addition to undergoing phase shift. Since and are in general
functions of frequency, the different frequency components of an arbitrarily
time-varying signal undergo different amounts of attenuation and different
amounts of phase shift. Hence, as the signal propagates down the line, it gets dis-
torted. For the general case, the analysis can be performed by employing Fouri-
er techniques. There are, however, two special cases of importance that permit
solution without the use of Fourier techniques: distortionless transmission and
diffusion. We shall consider these two cases in this section.

A. Distortionless Transmission

As the name implies, for this case the propagation along the lossy line is distor-
tionless—although it is characterized by attenuation, as shown in Fig. 7.33. As
the signal propagates down the line, its shape versus time remains the same, but
it diminishes in magnitude. The situation arises for the condition

(7.83)

Substituting (7.83) in (7.66), we observe that

 = Bra1 + j 
vl

r
bga1 + j 

vc

g
b

 g = 21r + jvl21g + jvc2

r

l
=
g

c

vpa

0 t

[V ]z � 0

t0 (� 0) t

[V ]z � z0 (� 0)

z � 0 z

Distortionless Line

FIGURE 7.33

For illustrating pulse propagation along a lossy, but distortionless, line.

Distortionless
line
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7.7 Pulses on Lossy Lines 499

so that

(7.84a)

(7.84b)

(7.84c)

Thus, and are both independent of frequency, provided, of course, that
and are independent of frequency. Hence, the signal propagates dis-

tortionless. Furthermore

(7.84d)

so that is also independent of frequency. Note that the expressions
(7.84a)–(7.84d) are exact; that is, they do not involve any approximations as in
the case of the corresponding expressions [Eqs. (7.71a)–(7.71d)] for the low-loss
line, which also exhibits the same approximate frequency behavior. Hence, the
present expressions are valid in any frequency range for which the condition
(7.83) holds and in which and are constants.

Example 7.9 Pulse propagation along a lossy, but distortionless,
transmission-line system

Let us consider the distortionless line system shown in Fig. 7.34, in which the switch S is
closed at thereby applying the voltage source pulse of duration, in series
with the internal resistance, to the line. We wish to find and sketch (a) the voltage

across the load resistor as a function of time, (b) the line voltage as a function of z at
and (c) the line voltage as a function of z at 

We proceed with the solution in the following manner.

(a) Initially, the voltage source views an impedance of at hence, the line 

voltage at is equal to Thus, a voltage pulse of amplitude 50 V and duration 
1
2

 Vg.z = 0

z = 0;50 Æ

t = 1.5 ms.t = 0.5 ms,
VR

50 Æ
0.1 mst = 0,

cr, l, g,

Z
 –

0

 = Arg = Alc Z0 = Ar + jvl
g + jvc

= Ar11 + jvl>r2
g11 + jvc>g2

cr, l, g,
vpa

 vp =
v

b
=

12lc b = v2lc a = 2rg
 = 2rg + jv2lc = 2rg + jvl Acl = 2rg + jvl Agr = 2rga1 + jv 

l

r
b
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500 Chapter 7 Transmission Lines for Communications

travels toward the load undistorted in shape but attenuated in accordance with
Since the one-way travel time on the line is 

the leading edge of the pulse reaches the load end at and sets up a reflection
with reflection coefficient equal to or 1/3. Hence, the voltage 

across the load is or 4/3 times the incident voltage. Thus, noting that the 

attenuation in a distance of 100 m is we obtain the voltage to be a 

pulse of amplitude and duration from 1 to as
shown in Fig. 7.35(a).

(b) To find the line voltage versus z for we observe that the leading edge of
the incident voltage pulse will have reached at that time, whereas the
trailing edge will have traveled to only Since the attenuation undergone
in 50 m is whereas the attenuation undergone in 40 m is only

the line voltage distribution is a pulse stretching from 40 m to 50
m and having a value at 40 m but only at 50 m,
as shown in Fig. 7.35(b).The slightly downward-curved shape of the pulse between
the two edges can be understood by noting, for example, that at 45 m, the voltage
is 

(c) At the line voltage consists entirely of the reflected wave voltage,
which is 1/3 of the incident wave voltage. The leading edge will have reached 

with a value of whereas the trailing edge 

occupies the location with a value of as 

shown in Fig. 7.35(c). The slightly downward-curved shape of the pulse between

the two edges can once again be understood by noting that the line voltage at 

is 

Finally, the nonrectangular shapes of the voltage distributions with z should not be
misunderstood as distortion, because at every value of z, the individual wave voltage
variation with time is a rectangular pulse of duration, with amplitude determined
by the attenuation undergone and the reflection coefficient(s).

0.1-ms

1
3

* 50e-1 * e-0.45 = 3.91 V.z = 55 m

1
3

* 50e-1 * e-0.4 = 4.11 V,z = 60 m

1
3

* 50e-1 * e-0.5 = 3.72 V,z = 50 m

t = 1.5 ms,
50e-0.01 * 45 = 50e-0.45 = 31.88 V.

50e-0.5 = 30.33 V50e-0.4 = 33.52 V
e-0.01 * 40 = e-0.4,

e-0.01 * 50 = e-0.5,
z = 40 m.

z = 50 m
t = 0.5 ms,

1.1 ms,50 * e-1 *
4
3

= 24.53 V

VRe-0.01 * 100 = e-1,

a1 +
1
3
b

1100 - 502/1100 + 502,
t = 1 ms

100/108 = 10-6 s = 1 ms,e-az = e-0.01z.
0.1 ms

100

0 0.1 t, ms

�
�

50 �

100 �

S

t � 0

z � 0 z � 100 m

a � 10�2 Np/m, vp � 108 m/sVg

Vg, V

Z0 � 50 �

z

FIGURE 7.34

A distortionless transmission line system.
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7.7 Pulses on Lossy Lines 501

B. Diffusion

This case pertains to the historically important noninductive, leakage-free cable
first investigated by Lord Kelvin in 1855, but is also relevant to modern lines
with large skin-effect losses and to many other physical phenomena, such as
heat flow.

The noninductive, leakage-free cable is characterized by so
that the distributed equivalent circuit consists simply of series resistors and
shunt capacitors, as shown by one section in Fig. 7.36. Setting in thel = g = 0

l = g = 0

30

30

0 0.5

100

100

40

500 60

50

1.0 1.1

24.53

t, ms

z, m

z, m

33.52

3.91

3.72
4.11

30.33

31.88[V ]t � 0.5 ms, V

[V ]t � 1.5 ms, V

30

VR, V

(a)

(b)

(c)

FIGURE 7.35

(a) Time-variation of the voltage across the load, and (b) and (c)
distance variations of line voltage for and 
respectively, for the distortionless line system of Fig. 7.34.

t = 1.5 ms,t = 0.5 ms
VR

Noninductive,
leakage-free
cable
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502 Chapter 7 Transmission Lines for Communications

transmission-line equations in time-domain form given by (7.63a) and (7.63b),
we then obtain

(7.85a)

(7.85b)

Differentiating (7.85a) with respect to z and using (7.85b), we obtain the differ-
ential equation for the line voltage to be

(7.86)

This equation is of the type

(7.87)

which is known as the diffusion equation. Its solution is of the form

(7.88)

where A and B are arbitrary constants to be evaluated from boundary condi-
tions, and Y is a dummy variable. Thus the general solution for (7.86) is

(7.89)

Let us now consider an initially quiescent cable extending from to
and excited at by a constant voltage source of value connectedV0z = 0z = q

z = 0

V1z, t2 = AL
12rc>4t2z

0
e-Y2

 dY + B

t = AL
121>4Dt2z

0
e-Y2

 dY + B

02t

0z2 =
1
D

  
0t
0t

02V

0z2 = rc 
0V

0t

 
0I1z, t2

0z
= -c 

0V1z, t2
0t

 
0V1z, t2

0z
= -rI1z, t2

z z � �z

r�z

    �z

FIGURE 7.36

One section of distributed equivalent circuit for a
noninductive, leakage-free cable.
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7.7 Pulses on Lossy Lines 503

at as shown in Fig. 7.37, and find the solutions for the line voltage and
current for The boundary conditions for the line voltage are

(7.90a)

(7.90b)

Substituting these boundary conditions into (7.89), we have, from (7.90a),

or

and then from (7.90b)

or

 A = -  

2V02p A 
2p

2
+ V0 = 0

AL
q

0
e-Y2

 dY + V0 = 0

B = V0

AL
0

0
e-Y2

 dY + B = V0

 V1q , t2 = 0 for t 7 0

 V10, 0+2 = V0

t 7 0.
t = 0,

z

z � 0

t � 0

S

V0 to �
Leakage-free,
Noninductive
r,     

FIGURE 7.37

Semi-infinitely long, noninductive, leakage-free cable, excited by a constant
voltage source.
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504 Chapter 7 Transmission Lines for Communications

Thus the particular solution for V(z, t) for the system of Fig. 7.37 is

(7.91)

The second term inside the parentheses is the well-known error function (erf)
having the argument Hence, (7.91) can be written as

(7.92)

where erfc is the complementary error function. Substituting (7.91) into (7.85a),
we obtain the corresponding solution for I(z, t) to be

(7.93)

Note that the boundary conditions of no current anywhere on the line for 
that is, before the voltage source is connected to the line, and no current at

for all t, are satisfied by (7.93).
To discuss the solution for the line voltage given by (7.92), we sketch

(7.94)

as shown in Fig. 7.38. Since the argument involves both z and t in the manner
this sketch represents the shape of the line voltage variation with z

for any fixed value of t. In fact, the scale for the abscissa can be converted to one
12RC>4t2z,

V1z, t2
V0

= erfcaArc4t
 zb

z = q

t = 0,

 = V0 A c

prt
 e-1rc>4t2z2

 I1z, t2 = -   
1
r

  

0V1z, t2
0t

 = V0 erfc12rc>4tz2
 V1z, t2 = V0[1 - erf12rc>4tz2]
12rc>4t2z.

 = V0a1 -
22pL12rc>4t2z

0
e-Y2

 dYb

 V1z, t2 = -   

2V02pL12rc>4t2z

0
e-Y2

 dY + V0

A

B

C
D E

0 0.5 1.0 1.5 2.0
0

0.5

1.0

V/V0

r    /4t z

FIGURE 7.38

Sketch of the complementary
error function depicting the
solution for for the
system of Fig. 7.37.

V1z, t2>V0
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A

B

C
D E

A

B

C

0 1 2 3 4
0

0.5

1.0

V/V0

t � 4r    z0
2

t � r    z0
2

z/z0

(a)

B

C C

EE

A

B

0 4 8 12 16
0

0.5

1.0

V/V0

t/t0

(b)

t0/rz � 2

t0/rz � 4

FIGURE 7.39
(a) Line voltage variations with distance for two values of time, and 
(b) line voltage variations with time for two values of distance, for the
system of Fig. 7.37. The points A, B, C, D, and E correspond to the points
A, B, C, D, and E, respectively, in Fig. 7.38.

for z by multiplying the numbers by Thus, we note that, immediately
after closure of the switch, there is voltage everywhere on the line. This corre-
sponds to the phenomenon of diffusion—as distinguished from propagation,
which is characterized by a well-defined velocity.As t increases, a given point on
the sketch corresponds to larger and larger values of z, indicating that as time
progresses, the line voltage at all values of z increases. For example, since the
values of z are doubled as t is quadrupled, the voltage at a given distance from
the source and at a particular time after closure of the switch is the same as the
voltage at half that distance and at one-fourth of that time. This is depicted in
Fig. 7.39(a) for two values of time and where is any value of

The points A, B, C, D, and E correspond to the points A, B, C, D, and E,
respectively, in Fig. 7.38. The sketch of Fig. 7.38 can also be used to obtain the
time-variations of the line voltage for fixed values of z, by noting that for a fixed
z, the numbers on the abscissa can be converted to values of time.This is depict-
ed in Fig. 7.39(b) for two values of z, which are and where

is any value of Again, the points A, B, C, and E correspond to the points
A, B, C, and E, respectively, in Fig. 7.38.

t 7 0.t0

42t0>rc,22t0>rc

z 7 0.
z04rcz0

2,rcz0
2

24t>rc.
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506 Chapter 7 Transmission Lines for Communications

Finally, let us consider the voltage source in the system of Fig. 7.40 to be a
rectangular pulse of amplitude and duration Then according to superposi-
tion, the rectangular pulse is equivalent to the sum of two constant voltages, one
of value connected at and the second of value connected at 
Applying the result of Fig. 7.39(b) to each constant voltage source and using su-
perposition, we can find the response to the rectangular pulse.Thus, the time vari-
ations of the line voltage for the two values of z equal to and 
are as shown in Fig. 7.40. Note the difference in the vertical scales between Figs.
7.39(b) and 7.40. It can be seen from Fig. 7.40 that, as the value of z is increased,
the attainment of the maximum of the pulse is delayed and the value of the max-
imum is reduced.

K7.7. Distortionless line; Noninductive, leakage-free cable; Diffusion
D7.16. Assume that the duration of the source voltage pulse in Example 7.9 is 

instead of Find the value of the line voltage at for each of the
following values of z: (a) 50 m; (b) 75 m; and (c) 100 m.
Ans. (a) 34.05 V; (b) 28.39 V (c) 24.53 V

SUMMARY

In this chapter, we began our study of sinusoidal steady-state analysis of lossless
transmission lines by expressing the general solutions for the phasor line voltage

t = 1.5 ms,0.1 ms.
1.0 ms,

42t0>rc22t0>rc

t = t0.-V0t = 0V0

t0.V0

Input pulse

0 41 8 12 16
0

0.1

0.2

1.0

V/V0

t/t0

t0/rz � 4

t0/rz � 2

FIGURE 7.40

Line voltage variations with time for two values of distance for the system of Fig. 7.37,
excited by a rectangular pulse of duration also shown in the figure.t0,
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Summary 507

and line current in terms of the distance variable d, measured from the load to-
ward the source. These solutions are

By applying these general solutions to the case of a line short-circuited at the far
end and obtaining the particular solutions for that case, we discussed the stand-
ing-wave phenomenon resulting from the complete reflection of waves by the
short circuit. We introduced the concept of a standing-wave pattern and dis-
cussed the phenomenon of natural oscillations. We examined the frequency be-
havior of the input impedance of a short-circuited line of length l, given by

and illustrated (1) its application in a technique for locating a short circuit in a
line and (2) the computation of resonant frequencies for a system formed by
connecting together short-circuited line sections.

Next we considered the general case of a line terminated by an arbitrary
load and introduced the concept of the generalized voltage reflection coeffi-
cient, as the ratio of the phasor reflected wave voltage at any value of d to the
phasor incident wave voltage at that value of d. It is given by

where

is the voltage reflection coefficient at the load. We then expressed the solutions
for the line voltage and line current in terms of and discussed the con-
struction of standing-wave patterns from the solutions. We learned that togeth-
er with the property that distance between successive voltage minima of the
standing-wave patterns is the quantities

and

constitute an important set of parameters associated with the standing waves.
The SWR, which is the ratio of the maximum voltage amplitude to the mini-
mum voltage amplitude in the standing-wave pattern, and which is thedmin,

dmin =
l

4p
 1u + p2

SWR =
1 + ƒ≠R ƒ
1 - ƒ≠R ƒ

l>2,

≠1d2

≠R = ƒ≠R ƒeju =
Z
 –

R - Z0

Z
 –

R + Z0

≠1d2 = ≠Re-j2bd

Z
 –

R

Z
 –

in = jZ0 tan bl

 I
 –1d2 =

1
Z0

 1V+ejbd - V-e-jbd2
 V1d2 = V+ejbd + V-e-jbd
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508 Chapter 7 Transmission Lines for Communications

distance of the first voltage minimum of the standing-wave pattern from the
load, are easily measurable quantities. We then defined the ratio of the com-
plex line voltage to the complex line current at a given value of d to be the line
impedance given by

and discussed its several properties as well as the computation of power flow
along the line from considerations of input impedance of the line.

We then turned our attention to the topic of transmission-line matching,
which consists of eliminating standing waves by connecting a matching device
near the load such that the line views an effective impedance equal to its own
characteristic impedance, on the generator side of the matching device. We dis-
cussed the need for matching and three techniques of matching: (1) quarter-wave
transformer, (2) single stub, and (3) double stub. The quarter-wave transformer
technique is based on a property of the line impedance that

whereas the stub-matching techniques make use of the property that the input
impedance of a lossless line short-circuited (or open-circuited) at the far end is
purely reactive. We also discussed the departure of SWR from unity as the fre-
quency is varied from that at which the match is achieved, and we illustrated a
procedure for computation of the SWR versus frequency.

Next we introduced the Smith chart, a popular graphical aid in the solu-
tion of transmission-line problems. We learned that the Smith chart is based
on the transformation from the to the in accordance with the
relationship

where

is the normalized line impedance. We discussed the construction of the Smith
chart, some basic procedures, and the solution of transmission-line matching
problems. We also discussed a useful property associated with the transforma-
tion of the reflection coefficient across a discontinuity and illustrated its appli-
cation by means of an example.

Finally, we extended our analysis of lossless lines briefly to lossy lines,
with the discussion of (1) the distributed equivalent circuit, (2) computation of

z1d2 =
Z
 –1d2

Z0

≠1d2 =
z1d2 - 1

z1d2 + 1

≠-planez-plane

[Z
 –1d2] cZ –ad +

l

4
b d = Z0

2

Z
 –1d2 = Z0 

1 + ≠1d2
1 - ≠1d2

Z
 –1d2,
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characteristic impedance and propagation constant from input impedance
measurements, (3) computation of power flow at the generator and load ends of
the line, and power dissipated on the line, and (4) two special cases, distortion-
less propagation and diffusion, of pulses on lossy lines.

REVIEW QUESTIONS

Q7.1. Discuss the general solutions for the line voltage and line current in terms of the
distance variable d in the sinusoidal steady state.

Q7.2. State the boundary condition at a short circuit on a line. For an open-circuited
line, what is the boundary condition to be satisfied at the open circuit?

Q7.3. What is a standing wave? How do complete standing waves arise? Discuss their
characteristics.

Q7.4. What is a standing-wave pattern? Discuss the voltage and current standing-
wave patterns for a short-circuited line.

Q7.5. Explain the phenomenon of natural oscillations and the determination of nat-
ural frequencies of oscillation by means of an example.

Q7.6. Discuss the variation with frequency of the input reactance of a short-circuited
line and its application in the determination of the location of a short circuit.

Q7.7. Outline the method of computation of resonant frequencies of a system formed
by connecting together two short-circuited line sections.

Q7.8. How is the generalized voltage reflection coefficient defined? Discuss its varia-
tion along the line.

Q7.9. Discuss the sketching of standing-wave patterns for line voltage and current on
a line terminated by an arbitrary load.

Q7.10. Define the standing-wave ratio (SWR). What are the standing-wave ratios for
(a) a semi-infinitely long line; (b) a short-circuited line; (c) an open-circuited
line; and (d) a line terminated by its characteristic impedance?

Q7.11. Discuss the slotted-line technique for performing standing-wave measurements
on a line and the determination of an unknown load impedance from the stand-
ing-wave measurements.

Q7.12. How is line impedance defined? Summarize the several properties of line
impedance.

Q7.13. Outline the procedure for the determination of time-average power flow down
a line from input impedance considerations.

Q7.14. Define normalized line impedance and normalized line admittance. How are
they related to the voltage reflection coefficient?

Q7.15. Discuss the reasons for transmission-line matching and the principle behind
matching.

Q7.16. Which property of line impedance forms the basis for the quarter-wave trans-
former (QWT) technique of transmission-line matching? Outline the solution
for the QWT matching problem.

Q7.17. What is a stub? Outline the solution for the single-stub matching problem.
Q7.18. Outline the solution for the double-stub matching problem.
Q7.19. Discuss the bandwidth associated with a transmission-line matched system and

the procedure for obtaining the SWR in the main line versus frequency.
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510 Chapter 7 Transmission Lines for Communications

Q7.20. What is the basis behind the construction of the Smith chart? Briefly discuss the
mapping of the normalized line impedances onto the 

Q7.21. Why is a circle with its center at the center of the Smith chart known as a con-
stant SWR circle? Where on the circle is the corresponding SWR value marked?

Q7.22. Using the Smith chart, how do you find the normalized line admittance at a
point on the line, given the normalized line impedance at that point?

Q7.23. Briefly describe the solution to the single-stub matching problem by using the
Smith chart.

Q7.24. Briefly describe the solution to the double-stub matching problem by using the
Smith chart.

Q7.25. Discuss the forbidden region of for possible match associated with the dou-
ble-stub matching technique.

Q7.26. Discuss the transformation of the reflection coefficient from one side of a trans-
mission-line discontinuity to the other side of the discontinuity and an applica-
tion of the property associated with this transformation.

Q7.27. Discuss the modification of the distributed equivalent circuit for the lossless
line case to the lossy line case.

Q7.28. What are the conditions under which a lossy line can be classified as a low-loss
line? Compare the propagation parameters of the low-loss line with those for
the lossless line.

Q7.29. Discuss the computation of and for a lossy line from a knowledge of the
input impedances of the line with short-circuit and open-circuit terminations.

Q7.30. Briefly outline the procedure for the computation of time-average power flow
at the input and the load ends of a lossy line and, hence, the time-average power
dissipated in the line.

Q7.31. State and explain the condition for distortionless transmission along a lossy line.
Discuss the propagation of a pulse along the distortionless line by means of an
example.

Q7.32. Discuss the phenomenon of diffusion along a lossy line with reference to the
special case of the noninductive, leakage-free cable.

PROBLEMS

Section 7.1

P7.1. Solutions for line voltage and current for an open-circuited line. For a line open-
circuited at the far end, as shown in Fig. 7.41, obtain the solutions for the phasor
line voltage and current, and sketch the voltage and current standing-wave pat-
terns, as in Fig. 7.4.

gZ
 –

0

y1
œ

≠-plane.

Z0, b Open
Circuit

d � 0d

�
�

FIGURE 7.41

For Problem P7.1.
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0�1/2 1/2 1 3/2 2
t, �s

Z0 � 50 �
 vp � 108 m/s

V0

Vg

Vg, V

100 �

150 m

(a)

(b)

A

�
�

FIGURE 7.43

For Problem P7.3.

P7.2. Open-circuited line excited by a source of two harmonically related frequencies.
In the system shown in Fig. 7.42, the line is open-circuited at the far end, the
source voltage is

and at Find the root-mean-square (rms) values of the line voltage
and line current at values of d/l equal to and 1. (Note: The rms value of the
sum of the voltages of two harmonically related frequencies is equal to the square
root of the sum of the squares of the rms values of the individual voltages.)

0, 13, 12,
f = f0.l = l>4

Vg1t2 = V0 cos pf0 t cos 3pf0 t

Z0 � 100 � Open
Circuit

Vg

50 �

d � l d � 0d

�
�

FIGURE 7.42

For Problem P7.2.

P7.3. Short-circuited line excited by a nonsinusiodal periodic source. In the system
shown in Fig. 7.43(a), the source voltage is periodic, as shown in Fig. 7.43(b).
Find the reading of the ammeter A if it reads root-mean-square values.
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512 Chapter 7 Transmission Lines for Communications

P7.4. A parallel-plate resonator. In the system shown in Fig. 7.44, a nonmagnetic
lossless material medium is sandwiched between two parallel, perfect

conductors. For uniform plane waves bouncing back and forth normal to the
conductors, find the following: (a) the minimum value of l for which the natural
frequency of oscillation is 2.5 GHz if the medium is a perfect dielectric of per-
mittivity and (b) the expression for the lowest natural frequency of oscil-
lation if the medium is a plasma, which can be thought of as equivalent to a
perfect dielectric of permittivity where known as the plasma
frequency, is a constant and f is the wave frequency.

fN,e011 - fN
2 >f22,

2.25e0,

1m = m02,

m0, e

l
FIGURE 7.44

For Problem P7.4.

P7.5. Natural frequencies of oscillation for a ring transmission line. A ring transmis-
sion line is formed as shown in Fig. 7.45(a) by connecting the ends a and of
the conductors of a line of length l [shown in Fig. 7.45(b)] to the ends b and 
respectively, of the same conductors. Find the natural frequencies of oscillation
of the system.

b¿,
a¿

Z0, vp

Z0, vp

l

l
a

a


b

b


(b)

(a)

FIGURE 7.45

For Problem P7.5.

P7.6. Natural frequencies of oscillation for a twisted-ring transmission line. Repeat
Problem P7.5 for a twisted-ring transmission line formed by connecting the ends a
and of the conductors [see Fig. 7.45(b)] to the ends and b, respectively.b¿a¿
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P7.7. Input impedance of a line at low frequencies. Show that, for the
input impedance of a short-circuited line of length l and phase velocity is es-
sentially that of a single inductor of value where is the inductance per unit
length of the line. Assuming that the criterion is satisfied for fre-
quencies compute the maximum length of an air-dielectric short-
circuited line for which the input impedance is approximately that of an
inductance equal to the total inductance of the line for 

P7.8. Location of a short circuit in a line. In the example involving the location of a
short circuit in a line, solve for the distance of the short circuit from the genera-
tor by considering the standing-wave patterns for the two frequencies of inter-
est and deducing the number of wavelengths at one of the two frequencies.

P7.9. Finding the resonant frequencies for a transmission-line resonant system. A
transmission line of characteristic impedance phase velocity 

and length is short-circuited at one end and terminated
by an inductor of value at the other end. Find the three lowest resonant
frequencies of the system.

P7.10. Finding the resonant frequencies for a parallel-plate resonator with two di-
electrics. The arrangement shown in Fig. 7.46 is that of a parallel-plate res-
onator made up of two dielectric slabs sandwiched between perfect conductors
and in which uniform plane waves bounce back and forth normal to the con-
ductors. (a) Show that the resonant frequencies of the system are given by the
roots of the characteristic equation

(b) Find the five lowest resonant frequencies if and
e2 = 16e0.

t = l>2, l = 5 cm, e1 = 4e0,

tan v2m0e1t + Ae1

e2
  tan v2m0e21l - t2 = 0

0.1 mH
l = 20 cm2 * 108 m>s,

vp =Z0 = 100 Æ,

f = 100 MHz.

f … 0.1vp>2pl,
f � vp>2pl
lll,

vp

f � vp>2pl,

m0, e1 m0, e2

t (l � t)
FIGURE 7.46

For Problem P7.10.

Section 7.2

P7.11. Standing-wave parameters for a line terminated by a reactive load. For a line of
characteristic impedance terminated by a purely reactive load jX, show that
the SWR is equal to infinity and the value of is 
for and for 

P7.12. Finding the load impedance from standing-wave measurements. A slotted coax-
ial line of characteristic impedance was used to measure an unknown load75 Æ

X 6 0.1l>2p2 tan-11 ƒX ƒ>Z02X 7 0
1l>2p2[p - tan-11X>Z02]dmin

Z0
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514 Chapter 7 Transmission Lines for Communications

impedance. First, the receiving end of the line was short-circuited. The voltage
minima were found to be 20 cm apart. One of the minima was marked as the ref-
erence point. Next, the unknown impedance was connected to the receiving end
of the line.The SWR was found to be 3.0 and a voltage minimum was found to be
6 cm from the reference point toward the load. Find the value of the unknown
load impedance.

P7.13. Normal incidence of uniform plane waves onto a dielectric slab. In the system
shown in Fig. 7.47, assume uniform plane waves of frequency f incident nor-
mally onto the interface from medium 1. (a) Find the SWR in medium 1 for

if (b) Find the three lowest values of f for which com-
plete transmission occurs if (c) Find the three lowest values of l for
which complete transmission occurs for f = 109 Hz.

l = 5 cm.
l = 5 cm.f = 109 Hz

l

Medium 2
Dielectric
m0, 2.25e0

Medium 1
Free Space
m0, e0

Medium 3
Free Space
m0, e0

FIGURE 7.47

For Problem P7.13.

P7.14. Complete transmission of uniform plane waves through a dielectric slab. For the
system shown in Fig. 7.48, find the lowest value of l for which no reflection occurs
for a uniform plane wave having the electric field

at normally incident on the interface from medium 1.z = 0

E = E0 cos 4p * 109t cos p * 109t ax

z � 0 z � l

Medium 2
m0, 4e0

Medium 1
m0, e0

Medium 3
m0, e0

FIGURE 7.48

For Problem P7.14.

P7.15. Uniform plane-wave transmission for three media in cascade. For uniform
plane waves of frequency f incident normally onto the interface from medium
1 in the system shown in Fig. 7.49, find the fraction of the incident power
transmitted into medium 3 for each of the following values of f: (a) 3000 MHz;
(b) 6000 MHz; and (c) 1500 MHz.
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t t

m0, ed m0, edm0, e0

2l

Perfect
Conductor

Perfect
Conductor

FIGURE 7.50

For Problem P7.16.

100 �

Zg � (30 � j40) �

100   0  V Z0 � 50 �

5l/8

d � l d � 0

�
�

FIGURE 7.51

For Problem P7.17.

Medium 2
m0, 4e0

Medium 1
m0, e0

Medium 3
m0, 9e0

1.25 cm
f FIGURE 7.49

For Problem P7.15.

P7.16. Parallel-plate resonator with the plates coated with a dielectric. The arrange-
ment shown in Fig. 7.50 is that of a parallel-plate resonator made up of two
plane perfect conductors coated with a dielectric and in which uniform plane
waves bounce back and forth normal to the plates. (a) Show that the character-
istic equation for the resonant frequency is given by

(b) Find the value of the lowest resonant frequency for and
ed = 4e0.

t = l>2 = 5 cm

tan v2m0e01l - t2 tan v2m0e0 t = Aed

e0

P7.17. Finding the power delivered to the load from considerations of line input im-
pedance. For the system shown in Fig. 7.51, find the input impedance of the line
and the time-average power delivered to the load.
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516 Chapter 7 Transmission Lines for Communications

P7.18. Application of maximum power transfer theorem for a transmission-line sys-
tem. In the system in Fig. 7.52, find: (a) the value of the load impedance that
enables maximum power transfer from the generator to the load and (b) the
power transferred to the load for the value found in (a). (Hint: Apply maximum
power transfer theorem at )d = l.

Z
 –

R

jX

Zg � (40 � j50) �

Vg

Line 1
Z01 � 50 �

Line 2
Z02

l/4

ZR � (90 � j75) �

l/4

�
�

P7.19. Finding the input impedance of a ring transmission-line system. The ring trans-
mission line of Fig. 7.45(a) is excited by connecting a voltage source 

across the conductors at some location on the line [such as (or )
in Fig. 7.45(b)]. Find the impedance viewed by the voltage source.

P7.20. Application of maximum power transfer theorem for a transmission-line sys-
tem. In the system shown in Fig. 7.53, find the values of the reactance X and the
characteristic impedance of line 2 for which the power delivered to the load

is a maximum.ZR

Z02

bb¿aa¿V0 cos vt
Vg1t2 =

Section 7.3

P7.21. Eliminating reflections by using a quarter-wave dielectric coating. In the arrange-
ment shown in Fig. 7.54, a quarter-wave dielectric coating is employed to elim-
inate reflections of uniform plane waves of frequency 1000 MHz incident
normally from free space onto a dielectric of permittivity Assuming that

find the thickness in centimeters and the permittivity of the dielectric
coating.
m = m0,

4e0.

FIGURE 7.53

For Problem P7.20.

(25 � j50) �

ZR

100   0   V

Z0 � 100 �

0.2 l

d � l d � 0

�
�

FIGURE 7.52

For Problem P7.18.
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Dielectric
Coating
m0, e

m0, e0 m0, 4e0

l/4
1000 MHz

(50 � j50) �

z1

Z0 � 100 � Z0 � 50 � Z0 � 100 �

l/4 d1

Z01 Z02 Z01 Z02

l l

P7.22. Minimizing the standing-wave ratio in a line with a quarter-wave section. In the
system shown in Fig. 7.55, the section of characteristic impedance is
used to minimize the SWR to the left of the section. Find analytically the mini-
mum value of that minimizes the SWR and the minimum value of the SWR.d1

50 Æl>4

FIGURE 7.54

For Problem P7.21.

FIGURE 7.55

For Problem P7.22.

FIGURE 7.56

For Problem P7.23.

P7.23. Alternated-line transformer matching arrangement. Figure 7.56 shows an arrange-
ment, known as the alternated-line transformer, for achieving a matched inter-
connection between two lines of different characteristic impedances and

It consists of two sections of the same characteristic impedances as those of
the lines to be matched but alternated, as shown in the figure. The electrical
lengths of the two sections are equal. Show that to achieve a match, the required

Z02.
Z01
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518 Chapter 7 Transmission Lines for Communications

electrical length of each section is

where 

P7.24. Resolving the problem of nonexistence of solution in double-stub matching
technique. We learned that in the double-stub matching technique, a solution
does not exist for if —see (7.52) and associated discussion.
Show that one means of resolving this problem is by increasing by 

P7.25. Hybrid matching system using parallel and series stubs. Figure 7.57 shows a hy-
brid arrangement of a parallel short-circuited stub and a series short-circuited
stub connected at a fixed distance from the load in order to achieve a match
between the line and the load. With reference to the notation shown in the fig-
ure, show that in order to achieve a match, the required input reactance of the
series stub is given by

and the required input susceptance of the parallel stub is given by

b1 =
x2

1 + x2
2 - b¿

b1

x2 = A1 - g¿
g¿

x2

d1

l>4.d1

g¿ 7 1>sin2 bd12b2

n = Z02>Z01.

l

l
=

1
2p

  tan-1 A n

n2 + n + 1

�R

l2

jx2

jb1

zR

z2

l1

y1 yRy1


Stub 2

Stub 1

d1

FIGURE 7.57

For Problem P7.25.
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Dielectric
m0, 4e0

Free Space
m0, e0

Dielectric
m0, 16e0

1.5 cm
2500 MHz

where is equal to Discuss the condition for which a solution does
not exist for a fixed value of and a remedy to get around the problem.

P7.26. Finding the bandwidth of a quarter-wave transformer matched system. In the
arrangement shown in Fig. 7.58, a quarter-wave transformer is employed to
eliminate reflections of uniform plane waves of frequency 2500 MHz incident
normally from the free-space side. (a) Find analytically the bandwidth between
frequencies on either side of 2500 MHz at which the SWR in free space is 2.0.
(b) What is the maximum SWR in free space as the frequency is varied on either
side of 2500 MHz?

d1,
yœ

1.1g¿ + jb¿2

FIGURE 7.58

For Problem P7.26.

Section 7.4

P7.27. Property of the transformation forming the basis for the Smith chart. The
transformation

which forms the basis for the construction of the Smith chart maps circles in the
complex onto circles in the complex For the circle in the 
given by find the equation for the circle in the 
(Hint: Consider three points on the circle in the find the corresponding
three points in the and then find the equation.)

P7.28. Property of the transformation forming the basis for the Smith chart. Using
the inverse of the procedure suggested in Problem P7.27, find the equation of
the circle in the that maps onto the circle in the given by

P7.29. Several basic procedures using the Smith chart. For a transmission line of char-
acteristic impedance terminated by a load impedance find
the following quantities by using the Smith chart: (a) reflection coefficient at
the load; (b) SWR on the line; (c) the distance of the first voltage minimum of
the standing-wave pattern from the load; (d) the line impedance at 
(e) the line admittance at and (f) the location nearest to the load
at which the real part of the line admittance is equal to the line characteristic
admittance.

P7.30. Finding SWR by using the Smith chart for an arrangement involving several
media. In the arrangement shown in Fig. 7.59, uniform plane waves of fre-
quency 2500 MHz are incident normally from medium 1 onto the interface

d = 0.15l;
d = 0.15l;

1100 + j502 Æ,50 Æ,

1Re ≠ - 0.2522 + 1Im ≠22 = 0.0625.
≠-planez-plane

≠-plane,
z-plane,

≠-plane.1r - 222 + x2 = 1,
z-plane≠-plane.z-plane

≠ =
z - 1
z + 1
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520 Chapter 7 Transmission Lines for Communications

between medium 1 and medium 2. Using the Smith chart, find the SWR in:
(a) medium 3; (b) medium 2; and (c) medium 1.

Section 7.5

P7.31. Finding load impedance from standing-wave measurements by using the Smith
chart. Standing-wave measurements on a line of characteristic impedance

indicate an SWR of 4.0 and a voltage minimum at a distance of 
from the load. Determine the value of the load impedance by using the Smith
chart.

P7.32. Solution of a single-stub matching problem by using the Smith chart. A trans-
mission line of characteristic impedance is terminated by a certain load im-
pedance. It is found that the SWR on the line is equal to 4.0 and that the first
voltage minimum of the standing-wave pattern is located to be at from the
load. Using the Smith chart, determine the location nearest to the load and the
length of a short-circuited stub of characteristic impedance connected in
parallel with the line required to achieve a match between the line and the
load.

P7.33. Solution of a double-stub matching problem by using the Smith chart. Stand-
ing-wave measurements on a line of characteristic impedance indicate
SWR on the line to be 4.0 and the location of the first voltage minimum of the
standing-wave pattern to be from the load. Assuming that and

and using the Smith chart, find the lengths of the two short-circuited
stubs of characteristic impedance required to achieve a match between the
line and the load.

P7.34. Limits for the nonexistence of a solution in double-stub matching technique. It
is proposed to match a transmission line of characteristic impedance to a
load impedance by using a double-stub arrangement with spac-
ing between stubs, equal to Determine the forbidden range of values of

within the first half-wavelength to achieve the match using the Smith chart.
P7.35. Minimizing the SWR in a line with a quarter-wave section by using the Smith

chart. Solve Problem P7.22 by using the Smith chart.
P7.36. Solution of matching with two quarter-wave sections by using the Smith chart.

In the system shown in Fig. 7.60, two line sections, each of length and charac-
teristic impedance are employed. By using the Smith chart, find the locations
of the two sections, that is, the values of and to achieve a match between
the line and the load. Use the notation shown in the figure.100-Æ

l2l1l>4
50 Æ,

l>4

d1

5l>8.d12,
120 - j1002 Æ

100 Æ

60 Æ
d12 = 0.375l

d1 = 0.05l0.1l

60 Æ

60 Æ

0.2l

60 Æ

0.4l60 Æ

Medium 2
m0, 9e0

Medium 1
m0, e0

4.8 cm

Medium 3
m0, 4e0

Medium 4
m0, e0

4.8 cm
2500 MHz

FIGURE 7.59

For Problem P7.30.
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(50 � j50) �

z4

Z0 � 50 �Z0 � 50 � Z0 � 100 �Z0 � 100 �

 l/4 l1l2 l/4

z2z3 z1 zR

FIGURE 7.60
For Problem P7.36.

(30 � j40) �

(30 � j40) �

Vg

Z0 � 100 �

l/4

�
�

FIGURE 7.61

For Problem P7.40.

P7.37. Bandwidth of a quarter-wave transformer matched system by using the Smith
chart. Solve Problem P7.26 by using the Smith chart.

P7.38. Solution of alternated-line transformer matching problem by using the Smith
chart. Consider and for the alternated-line trans-
former arrangement of Problem P7.23. By using the Smith chart, obtain the
minimum value of for achieving the match and show that it agrees with the
solution given in Problem P7.23.

P7.39. Solution of hybrid parallel-series matching problem by using the Smith chart.
For the hybrid parallel-series stub matching arrangement of Problem P7.25, il-
lustrate the solution with the use of the Smith chart by considering a line of
characteristic impedance terminated by a load of Assume

and the characteristic impedance of the stubs to be 
P7.40. Investigation of maximum power transfer achievement problem by using the

Smith chart. In the system shown in Fig. 7.61, it is desired to transfer the maxi-
mum possible power from the source to the load. By using the Smith chart, find,
if possible, the location and the length of a short-circuited stub of characteristic
impedance connected in parallel with the line that will enable this to be
achieved.

100 Æ

50 Æ.d1 = l>8
140 + j402 Æ.50 Æ

l>l
Z02 = 100 ÆZ01 = 50 Æ

Section 7.6

P7.41. Computation of propagation parameters from line parameters for a lossy line.
For a lossy line having the parameters 

and compute the values of and for f = 10 kHz.gZ
 –

0c = 50 pF>m,3 * 10-9 S>m,
g =l = 1.0 mH>m,r = 0.03 Æ>m,
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522 Chapter 7 Transmission Lines for Communications

P7.42. Propagation parameters for a lossy line from input impedance measurements.
The input impedance of a lossy line of length 50 m is measured at a frequency of
100 MHz for two cases: with the output short-circuited, it is and
with the output open circuited, it is Find: (a) the characteristic
impedance of the line; (b) the attenuation constant of the line; and (c) the phase
velocity in the line, assuming its approximate value to be 

P7.43. Computation of power flow and power dissipated for a lossy line. For the lossy
transmission-line system shown in Fig. 7.62, find: (a) the time-average power
flow at the input end of the line; (b) the time-average power delivered to the
load; and (c) the time-average power dissipated in the line.

1.75 * 108 m>s.

110 - j492 Æ.
110 + j492 Æ,

P7.44. An arrangement for eliminating reflections from a perfect conductor. In the
arrangement shown in Fig. 7.63, uniform plane waves are incident normally
onto a coating of good conductor material of conductivity and thickness l on
a perfect dielectric slab of thickness and backed by a perfect conductor.
Show that no reflection occurs from the coating if and 
where is the propagation constant in the good conductor material.gc

s = 1>h0 l,ƒgc l ƒ � 1
l>4

s

  Z0 � 50 �

a � 0.02 Np/l

9.25l

d � l d � 0

�
�

ZR � (30 � j40) �

Zg � (30 � j40) �

Vg � 100  0   V

d

FIGURE 7.62

For Problem P7.43.

Good Conductor

Free Space
m0, e0

f

Perfect
Dielectric

Perfect
Conductor

l l/4

FIGURE 7.63

For Problem P7.44.
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0 0.5 1.0 t, ms

Vg, V

100

FIGURE 7.64

For Problem P7.46.

Section 7.7

P7.45. Energy storage and dissipation in a distortionless line. For a wave alone or
a wave alone on a distortionless transmission line, show that the energy is
stored equally in the inductance and capacitance of the line, and that the energy
is dissipated equally in the resistance and conductance of the line.

P7.46. Pulse propagation along a lossy, but distortionless, transmission-line system.
For the distortionless line system of Fig. 7.34, assume that the source voltage 
is the triangular pulse of duration shown in Fig. 7.64, instead of the rectan-
gular pulse of duration shown in Fig. 7.34. Find and sketch (a) the voltage

across the load resistor versus t, (b) the line voltage versus z for 
and (c) the line voltage versus z for t = 1.5 ms.

t = 0.5 ms,VR

0.1 ms
1 ms

Vg

1-2
1+2

P7.47. Maximum value of current and its timing on the noninductive, leakage-free cable.

Show that the time-variation of the current on the noninductive, leakage-free

cable, given by (7.93), is characterized by a maximum value of at

P7.48. Diffusion of fields in a highly conducting medium. Show that the time-domain
behavior of electromagnetic fields in a highly conducting medium (displacement
current density negligible) is characterized by diffusion. Consider for simplicity
the case of and 

REVIEW PROBLEMS

R7.1. Short-circuited line excited by a nonsinusiodal periodic source. In the system
shown in Fig. 7.65(a), the source current is periodic, as shown in Fig. 7.65(b).
Find the rms value of the current through the short-circuit.

R7.2. A transmission-line resonant system. (a) For the system shown in Fig. 7.66, find
the value of L for which the system is resonant at (b) What is the
next resonant frequency of the system, greater than (c) If L is increased
by a small amount by what percent should l be changed such that the sys-
tem remains resonant at (d) Repeat part (c) for the resonant fre-
quency found in part (b).

f = 109 Hz?
d%,

109 Hz?
f = 109 Hz.

H = Hy1z, t2ay.E = Ex1z, t2ax

t =
1
2

 rcz2.
A 2
pe

  

V0

rz
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524 Chapter 7 Transmission Lines for Communications

R7.3. Uniform plane-wave reflection and transmission for three media in cascade. In
the arrangement shown in Fig. 7.67, a uniform plane wave having the electric field

is incident on the interface at Find the fraction of the incident time-average
power reflected back into medium 1 and the fraction transmitted into medium 3.

z = 0.

Ei = E0 cos 145p * 108t - 15pz2 cos 115p * 108t - 5pz2 ax V>m

Z0 � 100 �
 vp � 2 � 108 m/s

200 m

(a)

(b)

Ig

Ig

I0

�I0

50 �

0�1�2
t, �s

1 2 3

FIGURE 7.65

For Problem R7.1.

l � 10 cm

L Z0 � 50 �
 vp � 3 � 108 m/s

FIGURE 7.66

For Problem R7.2.

z � 0 z � l

Medium 2
m0, 4e0

Medium 1
m0, e0

Medium 3
m0, 16e0

x

2.5 cm
y z

FIGURE 7.67

For Problem R7.3.
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R7.4. Power flow in a system involving three transmission lines. In the system shown in
Fig. 7.68, find (a) the time-average power delivered to the resistor and (b) the
time-average power delivered to the resistor R3.

R2

jX

(50 � j50) �

50  0  V Z0 � 100 � RL � 250 �

l

�
�

FIGURE 7.69

For Problem R7.5.

Line 1
Z01 � 100 �

Line 3
Z

03� 100 �

Line 2

Z 02 �
 100 �

50 �

R2 � 200 �

R3 � 200 �

3l/4

l/2

l/4

60  0  V�
�

FIGURE 7.68

For Problem R7.4.

R7.5. Application of maximum power transfer theorem for a transmission-line sys-
tem. In the system shown in Fig. 7.69, find the value of the reactance X and the
minimum value of the line length l for which the time-average power delivered
to the resistor is a maximum.What are the values of this power and the SWR
on the line?

RL

R7.6. Finding load impedance and minimizing SWR by using the Smith chart. Stand-
ing-wave measurements on a line of characteristic impedance indicate
an SWR of 2.80 and a voltage minimum at a distance of from the load.
By using the Smith chart, determine the value of the load impedance. It is de-
sired to minimize the SWR on the line by connecting a line section at the load.
By using the Smith chart, find the minimum required length of the line section

0.1l
100 Æ
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526 Chapter 7 Transmission Lines for Communications

and the minimum achievable SWR for each of the following line sections: (a) a
short-circuited stub of characteristic impedance connected in parallel with
the load; (b) a short-circuited stub of characteristic impedance connected
in series with the load; and (c) a line section of characteristic impedance 
inserted between the main line and the load.

R7.7. Nonexistence of solution in the hybrid parallel-series stub matching technique.
It is desired to achieve a match between a line of characteristic impedance

to a load of by employing the hybrid parallel-series stub
matching arrangement of Problem P7.25. Determine the forbidden range of val-
ues of d within the first half-wavelength from the load.

R7.8. Energy dissipation in a distortionless line system. For the distortionless trans-
mission line system of Fig. 7.34, find the energy dissipated in the line from 
to Repeat the solution for the case of a short circuit for the load and a
value of for the resistor in series with the voltage source.100 Æ

t = q .
t = 0

1120 - j1602 Æ100 Æ

50 Æ
100 Æ

100 Æ
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