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Transmission-Line Essentials 
for Digital Electronics

In Chapter 3 we alluded to the fact that lumped circuit theory is based on low-
frequency approximations resulting from the neglect of certain terms in one or
both of Maxwell’s curl equations. We further pointed out that electromagnetic
wave propagation phenomena and transmission-line (distributed circuit) theory
are based on the simultaneous application of the two laws, with all the terms in-
cluded. We then studied wave propagation in Chapters 3 and 4. In Chapter 5 we
introduced the (lumped) circuit parameters for infinitely long, parallel perfect
conductor arrangements, and also extended the discussion to electric and mag-
netic field systems, which are low-frequency approximations of physical struc-
tures. In this chapter, we begin our study of transmission line theory. Specifically,
we focus on time-domain analysis, an understanding of which is particularly es-
sential for digital electronic systems, while being of general importance.

We introduce the transmission line by considering a uniform plane wave
and placing two parallel plane, perfect, conductors such that the fields remain
unchanged by satisfying the boundary conditions on the perfect conductor sur-
faces. The wave is then guided between and parallel to the conductors, thereby
leading to the parallel-plate line.We shall learn to represent a line by the distrib-
uted parameter equivalent circuit and discuss wave propagation along the line in
terms of voltage and current, as well as the computation of line parameters. We
devote the remainder of the chapter to time-domain analysis using a progres-
sive treatment, beginning with a line terminated by a resistive load and leading
to interconnections between logic gates, and finally culminating in crosstalk on
transmission lines.

6.1 TRANSMISSION LINE

In Section 5.4, we considered a physical arrangement of two parallel, perfect
conductors and discussed the circuit parameters, capacitance, conductance, and
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360 Chapter 6 Transmission-Line Essentials for Digital Electronics

inductance per unit length of the structure. In the general case of time-varying
fields, the situation corresponds to the structure characterized by the properties
of all three of the circuit parameters, continuously and overlappingly along it.
The arrangement is then called a transmission line. To introduce the transmis-
sion-line concept, we recall that in Section 4.5, we learned that the tangential
component of the electric field intensity and the normal component of the mag-
netic field intensity are zero on a perfect conductor surface. Let us now consid-
er the uniform plane electromagnetic wave propagating in the z-direction and
having an x-component only of the electric field and a y-component only of the
magnetic field, that is,

and place perfectly conducting sheets in two planes and as shown
in Fig. 6.1. Since the electric field is completely normal and the magnetic field is
completely tangential to the sheets, the two boundary conditions just referred to
are satisfied, and, hence, the wave will simply propagate, as though the sheets
were not present, being guided by the sheets. We then have a simple case of
transmission line, namely, the parallel-plate transmission line. We shall assume
the medium between the plates to be a perfect dielectric so that the waves prop-
agate without attenuation; hence, the line is lossless.

According to the remaining two boundary conditions, there must be charges
and currents on the conductors.The charge densities on the two plates are

(6.1a)
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FIGURE 6.1

Uniform plane electromagnetic wave propagating between two perfectly conducting sheets,
supported by charges and current on the sheets.
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6.1 Transmission Line 361

where is the permittivity of the medium between the two plates. The current
densities on the two plates are

(6.2a)

(6.2b)

In (6.1a)–(6.2b), it is understood that the charge and current densities are
functions of z and t, as are and Thus, the wave propagation along the
transmission line is supported by charges and currents on the plates, varying
with time and distance along the line, as shown in Fig. 6.1.

Let us now consider finitely sized plates having width w in the y-direction,
as shown in Fig. 6.2(a), and neglect fringing of the fields at the edges or assume
that the structure is part of a much larger-sized configuration. By considering a
constant-z plane, that is, a plane transverse to the direction of propagation of the
wave, as shown in Fig. 6.2(b), we can find the voltage between the two conduc-
tors in terms of the line integral of the electric field intensity evaluated along any
path in that plane between the two conductors. Since the electric field is directed
in the x-direction and since it is uniform in that plane, this voltage is given by

(6.3)V1z, t2 = L
d

x = 0
Ex1z, t2 dx = Ex1z, t2L

d

x = 0
 dx = dEx1z, t2

Hy.Ex
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FIGURE 6.2

(a) Parallel-plate transmission line. (b) Transverse plane of the parallel-plate
transmission line.

RaoCh06v3.qxd  12/18/03  4:25 PM  Page 361



362 Chapter 6 Transmission-Line Essentials for Digital Electronics

Thus, each transverse plane is characterized by a voltage between the two con-
ductors, which is related simply to the electric field, as given by (6.3). Each
transverse plane is also characterized by a current I flowing in the positive z-
direction on the upper conductor and in the negative z-direction on the lower
conductor. From Fig. 6.2(b), we can see that this current is given by

(6.4)

since is uniform in the cross-sectional plane. Thus, the current crossing a
given transverse plane is related simply to the magnetic field in that plane, as
given by (6.4).

Proceeding further, we can find the power flow down the line by evaluat-
ing the surface integral of the Pointing vector over a given transverse plane.
Thus,

(6.5)

which is the familiar relationship employed in circuit theory.
We now recall from Section 4.4 that and satisfy the two differential

equations

(6.6a)

(6.6b)

where we have set in view of the perfect dielectric medium. From (6.3)
and (6.4), however, we have

(6.7a)

(6.7b) Hy =
I
w

 Ex =
V

d

s = 0

 
0Hy

0z
= -sEx - e 

0Ex

0t
= -e 

0Ex

0t

 
0Ex

0z
= -  

0By

0t
= -m 

0Hy

0t

HyEx

 = V1z, t2I1z, t2
 = L

d

x = 0L
w

y = 0
 

V1z, t2
d

  

I1z, t2
w

 dx dy

 = L
d

x = 0L
w

y = 0
Ex1z, t2Hy1z, t2az

# dxdy az

 P1z, t2 = Ltransverse
plane

1E � H2 # dS

Hy

 = wHy1z, t2
 I1z, t2 = L

w

y = 0
JS1z, t2 dy = L

w

y = 0
Hy1z, t2 dy = Hy1z, t2L

w

y = 0
 dy

Transmission
-line equa-
tions

RaoCh06v3.qxd  12/18/03  4:25 PM  Page 362



6.1 Transmission Line 363

Substituting for and in (6.6a) and (6.6b) from (6.7a) and (6.7b), respec-
tively, we now obtain two differential equations for voltage and current along
the line as

or

(6.8a)

(6.8b)

These equations are known as the transmission-line equations. They character-
ize the wave propagation along the line in terms of line voltage and line current
instead of in terms of the fields.

We now denote two quantities familiarly known as the circuit parameters,
the inductance and the capacitance per unit length of the transmission line in
the z-direction by the symbols and respectively. We observe from Section
5.4 that the inductance per unit length, having the units henrys per meter (H/m),
is the ratio of the magnetic flux per unit length at any value of z to the line cur-
rent at that value of z. Noting from Fig. 6.2 that the cross-sectional area normal
to the magnetic field lines and per unit length in the z-direction is (d)(1), or d,
we find the magnetic flux per unit length to be or Since the line cur-
rent is we then have

(6.9)

We also observe that the capacitance per unit length, having the units farads per
meter (F/m), is the ratio of the magnitude of the charge per unit length on either
plate at any value of z to the line voltage at that value of z. Noting from Fig 6.2
that the cross-sectional area normal to the electric field lines and per unit length
in the z-direction is (1), or , we find the charge per unit length to be 
or Since the line voltage is we then have
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364 Chapter 6 Transmission-Line Essentials for Digital Electronics

We note that and are purely dependent on the dimensions of the line and
are independent of and We further note that

(6.11)

so that only one of the two parameters and is independent and the other
can be obtained from the knowledge of and The results given by (6.9) and
(6.10) are the same as those listed in Table 5.2 for the parallel-plane conductor
arrangement, whereas (6.11) is the same as given by (5.73).

Replacing now the quantities in parentheses in (6.8a) and (6.8b) by and
respectively, we obtain the transmission-line equations in terms of these pa-

rameters as

(6.12a)

(6.12b)

These equations permit us to discuss wave propagation along the line in terms
of circuit quantities instead of in terms of field quantities. It should, however,
not be forgotten that the actual phenomenon is one of electromagnetic waves
guided by the conductors of the line.

It is customary to represent a transmission line by means of its circuit
equivalent, derived from the transmission-line equations (6.12a) and (6.12b).To
do this, let us consider a section of infinitesimal length along the line be-
tween z and From (6.12a), we then have

or, for 

(6.13a)

This equation can be represented by the circuit equivalent shown in Fig. 6.3(a),
since it satisfies Kirchhoff’s voltage law written around the loop abcda. Similar-
ly, from (6.12b), we have
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FIGURE 6.3

Development of circuit equivalent for an infinitesimal length of a transmission line.¢z

or, for 

(6.13b)

This equation can be represented by the circuit equivalent shown in Fig. 6.3(b),
since it satisfies Kirchhoff’s current law written for node c. Combining the two
equations, we then obtain the equivalent circuit shown in Fig. 6.3(c) for a section

of the line. It then follows that the circuit representation for a portion of
length l of the line consists of an infinite number of such sections in cascade, as
shown in Fig. 6.4. Such a circuit is known as a distributed circuit as opposed to
the lumped circuits that are familiar in circuit theory. The distributed circuit no-
tion arises from the fact that the inductance and capacitance are distributed uni-
formly and overlappingly along the line.

A more physical interpretation of the distributed-circuit concept follows
from energy considerations. We know that the uniform plane wave propagation
between the conductors of the line is characterized by energy storage in the

¢z
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FIGURE 6.4

Distributed circuit representation of a transmission line.
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366 Chapter 6 Transmission-Line Essentials for Digital Electronics

TEM waves

electric and magnetic fields. If we consider a section of the line, the energy
stored in the electric field in this section is given by

(6.14a)

The energy stored in the magnetic field in that section is given by

(6.14b)

Thus, we note that and are elements associated with energy storage in the
magnetic field and energy storage in the electric field, respectively, for a given
infinitesimal section of the line. Since these phenomena occur continuously and
since they overlap, the inductance and capacitance must be distributed uniform-
ly and overlappingly along the line.

Thus far, we have introduced the transmission-line equations and the dis-
tributed-circuit concept by considering the parallel-plate line in which the
waves are uniform plane waves. In the general case of a line having conductors
with arbitrary cross sections, the fields consist of both x- and y-components and
are dependent on x- and y-coordinates in addition to the z-coordinate.Thus, the
fields between the conductors are given by

These fields are no longer uniform in x and y but are directed entirely trans-
verse to the direction of propagation, that is, the z-axis, which is the axis of the
transmission line. Hence, they are known as transverse electromagnetic waves, or
TEM waves.The uniform plane waves are simply a special case of the transverse
electromagnetic waves. The transmission-line equations (6.12a) and (6.12b) and
the distributed equivalent circuit of Fig. 6.4 hold for all transmission lines made
of perfect conductors and perfect dielectric, that is, for all lossless transmission
lines.The quantities that differ from one line to another are the line parameters 
and which depend on the geometry of the line. Since there is no z-component
of H, the electric-field distribution in any given transverse plane at any given
instant of time is the same as the static electric-field distribution resulting
from the application of a potential difference between the conductors equal
to the line voltage in that plane at that instant of time. Similarly, since there is
no z-component of E, the magnetic-field distribution in any given transverse
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6.1 Transmission Line 367

General
solution

plane at any given instant of time is the same as the static magnetic-field distri-
bution resulting from current flow on the conductors equal to the line current in
that plane at that instant of time. Thus, the values of and are the same as
those obtainable from static field considerations.

Before we consider several common types of lines, we shall show that the
relation (6.11) is valid in general by obtaining the general solution for the
transmission-line equations (6.12a) and (6.12b).To do this, we note their analogy
with the field equations (3.72a) and (3.72b) in Section 3.4, as follows:

The solutions to (6.12a) and (6.12b) can therefore be written by letting

in the solutions (3.78) and (3.79) to the field equations. Thus, we obtain

(6.15a)

(6.15b)

These solutions represent voltage and current traveling waves propagating
along the and with velocity

(6.16)

in view of the arguments for the functions f and g. We, however,
know that the velocity of propagation in terms of the dielectric parameters is
given by
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368 Chapter 6 Transmission-Line Essentials for Digital Electronics

Therefore, it follows that

(6.18)

We now define the characteristic impedance of the line to be

(6.19)

so that (6.15a) and (6.15b) become

(6.20a)

(6.20b)

where we have also substituted for From (6.20a) and (6.20b), it can
be seen that the characteristic impedance is the ratio of the voltage to current in
the wave or the negative of the same ratio for the wave. It is analogous to
the intrinsic impedance of the dielectric medium but not necessarily equal to it.
For example, for the parallel-plate line,

(6.21)

is not equal to unless is equal to 1. In fact for equal to 1, (6.21) is
strictly not valid because fringing of the fields cannot be neglected. Note also
that the characteristic impedance of a lossless line is a purely real quantity. We
shall find in Section 7.6 that for a lossy line, the characteristic impedance is com-
plex just as the intrinsic impedance of a lossy medium is complex.

Equations (6.20a) and (6.20b) are the general solutions for the voltage
and current along a lossless line in terms of and the parameters that char-
acterize the propagation along the line. Whereas is dependent on the dielec-
tric as given by (6.17), is dependent on the dielectric as well as the geometry
associated with the line, in view of (6.19). Combining (6.18) and (6.19), we note
that

(6.22)

Thus, the determination of for a given line involving a given homogeneous
dielectric medium requires simply the determination of of the line and
then the use of (6.22). Since the dielectrics of common transmission lines are
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Ground Plane

(a)

(b)

w Strip

Substrate, erd

FIGURE 6.5

(a) Transverse cross-sectional view of a
microstrip line. (b) Approximate electric-field
distribution in the transverse plane.

generally nonmagnetic, we can further express the propagation parameters
in the manner

(6.23)

(6.24)

where is the relative permittivity of the dielectric, and is the ve-
locity of light in free space.

If the cross section of a transmission line involves more than one dielec-
tric, the situation corresponds to inhomogeneity. An example of this type of
line is the microstrip line, used extensively in microwave integrated circuitry
and digital systems. The basic microstrip line consists of a high-permittivity
substrate material with a conductor strip applied to one side and a conducting
ground plane applied to the other side, as shown by the cross-sectional view in
Fig. 6.5(a). The approximate electric field distribution is shown in Fig. 6.5(b).
Since it is not possible to satisfy the boundary condition of equal phase veloci-
ties parallel to the air-dielectric interface with pure TEM waves, the situation
for the microstrip line does not correspond exactly to TEM wave propagation,
as is the case with any other line involving multiple dielectrics.

The determination of and for the case of a line with multiple di-
electrics involves a modified procedure, assuming that the inhomogeneity has
no effect on and the propagation is TEM. Thus, if is the capacitance per
unit length of the line with all the dielectrics replaced by free space and is the
capacitance per unit length of the line with the dielectrics in place and comput-
ed from static field considerations, we can write

(6.25a)
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370 Chapter 6 Transmission-Line Essentials for Digital Electronics

Table 6.1 Expressions for Characteristic Impedance for the Lines of Fig. 6.6

Description Figure

Coaxial cable 6.6(a)

Parallel-wire line 6.6(b)

Single wire above ground plane 6.6(c)

Shielded parallel-wire line 6.6(d)
h

p
  ln  

d1b2 - d2>42
a1b2 + d2>42

h

2p
  cosh-1 

 
h

a

h

p
  cosh-1

  
d

a

h

2p
  ln  

b

a

Z0

where we have assumed nonmagnetic dielectrics. To express (6.25a) and (6.25b)
in the form of (6.23) and (6.24), respectively, we define an effective relative per-
mittivity so that

(6.26)

(6.27)

Thus, the determination of and requires the knowledge of both and 
The techniques for finding (and ) and, hence, the propagation para-

meters can be broadly divided into three categories: (1) analytical, (2) numeri-
cal, and (3) graphical.

A. Analytical Techniques

The analytical techniques are based on the closed-form solution of Laplace’s
equation, subject to the boundary conditions, or the equivalent of such a solu-
tion. We have already discussed these techniques in Sections 5.3 and 5.4 for sev-
eral configurations. Hence, without further discussion, we shall simply list in
Table 6.1 the expressions for for some common types of lines, shown by
cross-sectional views in Fig. 6.6. Note that in Table 6.1, is the intrin-
sic impedance of the dielectric medium associated with the line.

B. Numerical Techniques

When a closed-form solution is not possible or when the approximation permit-
ting a closed-form solution breaks down, numerical techniques can be em-
ployed. These are discussed in Chapter 11.

C. Graphical Technique

For a line with arbitrary cross section and involving a homogeneous dielectric,
an approximate value of and, hence, of can be determined by constructing
a field map, that is, a graphical sketch of the direction lines of the electric field
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FIGURE 6.6

Cross sections of some common types of transmission lines.

Magnetic field lines

Electric field lines

FIGURE 6.7
Example of field map for a line of
arbitrary cross section.

and associated equipotential lines between the conductors, as illustrated, for
example, in Fig. 6.7. This technique, known as the field mapping technique, is
discussed in Section 11.5.

K6.1. Parallel-plate line; Transmission-line equations; Circuit parameters; Distributed
equivalent circuit; TEM waves; Characteristic impedance Velocity of propaga-
tion; and for line with homogeneous dielectric; and for line with mul-
tiple dielectrics; Microstrip line.

D6.1. A parallel-plate transmission line is made up of perfect conductors of width
and separation The medium between the plates is a di-

electric of and For a uniform plane wave propagating down
the line, find the power crossing a given transverse plane for each of the following

m = m0.e = 2.25e0

d = 0.01 m.w = 0.2 m

vpZ0vpZ0
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372 Chapter 6 Transmission-Line Essentials for Digital Electronics

cases at a given time in that plane: (a) the electric field between the plates is
(b) the magnetic field between the plates is 7.5 A/m; (c) the voltage

across the plates is and (d) the current along the plates is 0.5 A.
Ans. (a) (b) (c) (d)

D6.2. Find the following: (a) the ratio b/a of a coaxial cable of if
(b) the ratio b/a of a coaxial cable of if and

(c) the ratio d/a of a parallel-wire line of if 
Ans. (a) 3.794; (b) 6.521; (c) 6.132.

6.2 LINE TERMINATED BY RESISTIVE LOAD

In Section 6.1, we obtained the general solutions to the transmission-line equa-
tions for the lossless line, as given by (6.20a) and (6.20b). Since these solutions
represent superpositions of and wave voltages and and wave
currents, we now rewrite them as

(6.28a)

(6.28b)

or, more concisely,

(6.29a)

(6.29b)

with the understanding that is a function of and is a function
of In terms of and wave currents, the solution for the cur-
rent may also be written as

(6.30)

Comparing (6.29b) and (6.30), we see that

(6.31a)

(6.31b)

The minus sign in (6.31b) can be understood if we recognize that in writing
(6.29a) and (6.30), we follow the notation that both and have the same
polarities with one conductor (say, a) positive with respect to the other conductor
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e = e0.Z0 = 300 Æ
e = 2.25e0;Z0 = 75 Æe = 2.56e0;

Z0 = 50 Æ
p W.4p W;9p W;2.25p W;

4p V;
300p V>m;

Notation
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�

�

V �, V �

I �, I �

I �, I �

P�, P�

Conductor a

Conductor b

FIGURE 6.8

Polarities for voltages and currents associated
with and waves.1-21+2

(say, b) and that both and flow in the positive z-direction along conductor
a and return in the negative z-direction along conductor b, as shown in Fig. 6.8.
The power flow associated with either wave, as given by the product of the cor-
responding voltage and current, is then directed in the positive z-direction, as
shown in Fig. 6.8. Thus,

(6.32a)

Since is always positive, regardless of whether is numerically positive
or negative, (6.67a) indicates that the wave power does actually flow in the
positive z-direction, as it should. On the other hand,

(6.32b)

Since is always positive, regardless of whether is numerically positive
or negative, the minus sign in (6.32b) indicates that is negative, and, hence,
the wave power actually flows in the negative z-direction, as it should.

Let us now consider a line of length l terminated by a load resistance 
and driven by a constant voltage source in series with internal resistance 
as shown in Fig. 6.9. Note that the conductors of the transmission line are rep-
resented by double ruled lines, whereas the connections to the conductors are
single ruled lines, to be treated as lumped circuits. We assume that no voltage

Rg,V0

RL

1-2 P-
V-1V-22

P- = V-I- = V-
 a -  

V-

Z0
b = -  

1V-22
Z0

1+2 V+1V+22
P+ = V+I+ = V+

 aV+

Z0
b =

1V+22
Z0

I-I+

Excitation by
constant
voltage
source

z � 0

Z0, vp

t � 0

z � l

Rg

S

RL

V0
FIGURE 6.9

Transmission line terminated by a load resistance
and driven by a constant voltage source in

series with an internal resistance Rg.
RL
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�

�

V � V �

I �

I �

(a) (b)

z � 0 z � 0

Rg Rg

V0 V0

Z0

FIGURE 6.10

(a) For obtaining the wave voltage and
current at for the line of Fig. 6.9.
(b) Equivalent circuit for (a).

z = 0
1+2

and current exist on the line for and the switch S is closed at We
wish to discuss the transient wave phenomena on the line for The char-
acteristic impedance of the line and the velocity of propagation are and 
respectively.

When the switch S is closed at a wave originates at and
travels toward the load. Let the voltage and current of this wave be and

respectively. Then we have the situation at as shown in Fig. 6.10(a).
Note that the load resistor does not come into play here since the phenomenon
is one of wave propagation; hence, until the wave goes to the load, sets up a
reflection, and the reflected wave arrives back at the source, the source does not
even know of the existence of This is a fundamental distinction between or-
dinary (lumped-) circuit theory and transmission-line (distributed-circuit) theo-
ry. In ordinary circuit theory, no time delay is involved; the effect of a transient
in one part of the circuit is felt in all branches of the circuit instantaneously. In a
transmission-line system, the effect of a transient at one location on the line is
felt at a different location on the line only after an interval of time that the wave
takes to travel from the first location to the second. Returning now to the circuit
in Fig. 6.10(a), the various quantities must satisfy the boundary condition, that
is, Kirchhoff’s voltage law around the loop. Thus, we have

(6.33a)

We, however, know from (6.31a) that Hence, we get

(6.33b)

or

(6.34a)

(6.34b) I+ =
V+

Z0
=

V0

Rg + Z0

 V+ = V0 

Z0

Rg + Z0

V0 -
V+

Z0
 Rg - V+ = 0

I+ = V+>Z0.

V0 - I+Rg - V+ = 0

RL.

1+2
z = 0,I+,

V+1+2 z = 01+2t = 0,

vp,Z0

t 7 0.
t = 0.t 6 0
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Reflection
coefficient

(a) (b)

V �� V �� V ��V �� V �

I �� I �� I ��I �� I �

z � 0z � l

Rg

RL

V0

�

�

�

� FIGURE 6.11

For obtaining the voltages and currents
associated with (a) the wave and (b) the

wave, for the line of Fig. 6.9.1- +2
1-2

Thus, we note that the situation in Fig. 6.10(a) is equivalent to the circuit shown
in Fig. 6.10(b); that is, the voltage source views a resistance equal to the charac-
teristic impedance of the line, across This is to be expected since only a

wave exists at and the ratio of the voltage to current in the wave
is equal to 

The wave travels toward the load and reaches the termination at
It does not, however, satisfy the boundary condition there since this

condition requires the voltage across the load resistance to be equal to the cur-
rent through it times its value, But the voltage-to-current ratio in the 
wave is equal to To resolve this inconsistency, there is only one possibility,
which is the setting up of a wave, or a reflected wave. Let the voltage and
current in this reflected wave be and respectively. Then the total voltage
across is and the total current through it is as shown in
Fig. 6.11(a). To satisfy the boundary condition, we have

(6.35a)

But from (6.31a) and (6.31b), we know that and re-
spectively. Hence,

(6.35b)

or

(6.36)

We now define the voltage reflection coefficient, denoted by the symbol as the
ratio of the reflected voltage to the incident voltage. Thus,

(6.37)≠ =
V-

V+ =
RL - Z0

RL + Z0

≠,

V- = V+
 

RL - Z0

RL + Z0

V+ - V- = RL aV+

Z0
-

V-

Z0
b

I- = -V->Z0,I+ = V+>Z0

V+ - V- = RL1I+ + I-2

I+ + I-,V+ + V-,RL

I-,V-
1-2Z0.

1+2RL.

t = l>vp.
1+2Z0.

1+2z = 01+2 z = 0.
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Reflection
coefficients
for some
special cases

We then note that the current reflection coefficient is

(6.38)

Now, returning to the reflected wave, we observe that this wave travels
back toward the source and it reaches there at Since the boundary
condition at which was satisfied by the original wave alone, is then
violated, a reflection of the reflection, or a re-reflection, will be set up and it
travels toward the load. Let us assume the voltage and current in this re-reflect-
ed wave, which is a wave, to be and respectively, with the super-
scripts denoting that the wave is a consequence of the wave. Then the
total line voltage and the line current at are and

respectively, as shown in Fig. 6.11(b). To satisfy the boundary
condition, we have

(6.39a)

But we know that and Hence,

(6.39b)

Furthermore, substituting for from (6.34a), simplifying, and rearranging, we get

or

(6.40)

Comparing (6.40) with (6.36), we note that the reflected wave views the
source with internal resistance as the internal resistance alone; that is, the volt-
age source is equivalent to a short circuit insofar as the wave is concerned.
A moment’s thought will reveal that superposition is at work here. The effect of
the voltage source is taken into account by the constant outflow of the original

wave from the source. Hence, for the reflection of the reflection, that is, for
the wave, we need only consider the internal resistance Thus, the volt-
age reflection coefficient formula (6.37) is a general formula and will be used

Rg.1- +21+2

1-2

V-
 
+ = V-

 

Rg - Z0

Rg + Z0

V-
 
+

 a1 +
Rg

Z0
b = V-

 aRg

Z0
- 1b

V+

V+ + V- + V-
 
+ = V0 -

Rg

Z0
 1V+ - V- + V-

 
+2

I -
 
+ = V-

 
+>Z0.I+ = V+>Z0, I

- = -V->Z0,

V+ + V- + V-
 
+ = V0 - Rg1I+ + I - + I -

 
+2

I+ + I- + I-
 
+,

V+ + V- + V-
 
+z = 0

1-21+2 I -
 
+,V-

 
+1+2

1+2z = 0,
t = 2l>vp.

I-

I+ =
-V->Z0

V+>Z0
= -  

V-

V+ = -≠
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6.2 Line Terminated by Resistive Load 377

Bounce
diagram

repeatedly. In view of its importance, a brief discussion of the values of for
some special cases is in order as follows:

1. or short-circuited line.

The reflected voltage is exactly the negative of the incident voltage, there-
by keeping the voltage across (short circuit) always zero.

2. or open-circuited line.

and the current reflection coefficient Thus, the reflected
current is exactly the negative of the incident current, thereby keeping the
current through (open circuit) always zero.

3. or line terminated by its characteristic impedance.

This corresponds to no reflection, which is to be expected since 
is consistent with the voltage-to-current ratio in the wave alone, and,
hence, there is no violation of boundary condition and no need for the set-
ting up of a reflected wave.Thus, a line terminated by its characteristic im-
pedance is equivalent to an infinitely long line insofar as the source is
concerned.

Returning to the discussion of the re-reflected wave, we note that this
wave reaches the load at time and sets up another reflected wave.This
process of bouncing back and forth of waves goes on indefinitely until the
steady state is reached. To keep track of this transient phenomenon, we make
use of the bounce-diagram technique. Some other names given for this diagram
are reflection diagram and space-time diagram. We shall introduce the bounce
diagram through a numerical example.

Example 6.1 Bounce-diagram technique for time-domain analysis of a
transmission-line system

Let us consider the system shown in Fig. 6.12. Note that we have introduced a new quan-
tity T, which is the one-way travel time along the line from to that is, instead
of specifying two quantities l and we specify Using the bounce diagram
technique, we wish to obtain and plot line voltage and current versus t for fixed values z
and line voltage and current versus z for fixed values t.

T1=  l>vp2.vp,
z = l;z = 0

t = 3l>vp

1+2 RL1=  Z02
≠ =

Z0 - Z0

Z0 + Z0
= 0

RL = Z0,
RL

= -≠ = -1.

≠ =
q - Z0

q + Z0
= 1

RL = q ,
RL

≠ =
0 - Z0

0 + Z0
= -1

RL = 0,

≠
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378 Chapter 6 Transmission-Line Essentials for Digital Electronics

Before we construct the bounce diagram, we need to compute the following
quantities:

The bounce diagram is essentially a two-dimensional representation of the tran-
sient waves bouncing back and forth on the line. Separate bounce diagrams are drawn
for voltage and current, as shown in Fig. 6.13(a) and (b), respectively. Position (z) on the
line is represented horizontally and the time (t) vertically. Reflection coefficient values
for the two ends are shown at the top of the diagrams for quick reference. Note that cur-
rent reflection coefficients are and respectively, at the load and at
the source. Crisscross lines are drawn as shown in the figures to indicate the progress of
the wave as a function of both z and t, with the numerical value for each leg of travel
shown beside the line corresponding to that leg and approximately at the center of the
line. The arrows indicate the directions of travel. Thus, for example, the first line on the
voltage bounce diagram indicates that the initial wave of 60 V takes a time of to
reach the load end of the line. It sets up a reflected wave of 20 V, which travels back to
the source, reaching there at a time of which then gives rise to a wave of volt-
age and so on, with the process continuing indefinitely.

Now, to sketch the line voltage and/or current versus time at any value of z, we note
that since the voltage source is a constant voltage source, each individual wave voltage
and current, once the wave is set up at that value of z, continues to exist there forever.
Thus, at any particular time, the voltage (or current) at that value of z is a superposition
of all the voltages (or currents) corresponding to the crisscross lines preceding that value
of time. These values are marked on the bounce diagrams for and Noting
that each value corresponds to the time interval between adjacent crisscross lines,
we now sketch the time variations of line voltage and current at and as
shown in Figs. 6.14(a) and (b), respectively. Similarly, by observing that the numbers writ-
ten along the time axis for are actually valid for any pair of z and t within the tri-
angle inside which they lie and that the numbers written along the time axis for

are actually valid for any pair of z and t within the triangle inside which they
lie, we can draw the sketches of line voltage and current versus time for any other value
of z. This is done for in Fig. 6.14(c).z = l>2

1�2z = l
1�2

z = 0

z = l,z = 0
2-ms

z = l.z = 0

-4 V,
1+22 ms,

1 ms1+2

-≠S = 1
5,-≠R = -1

3

Voltage reflection coefficient at source, ≠S =
40 - 60
40 + 60

= -  
1
5

Voltage reflection coefficient at load, ≠R =
120 - 60
120 + 60

=
1
3

Current carried by the initial 1+2 wave =
60
60

= 1 A

Voltage carried by the initial 1+2 wave = 100  
60

40 + 60
= 60 V

z � 0

Z0 � 60 	
 T � 1 ms

t � 0

z � l

40 	
120 	

100 V

S

FIGURE 6.12

Transmission-line system for illustrating the
bounce-diagram technique of keeping track
of the transient phenomenon.

Construction
of bounce
diagrams

Plots of line
voltage and
current 
versus t
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60 V
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�4

�4/3

�4/225

�1/3

2
3

4/15

4/45

3376
45

224
3

80

0
00

2

4

6

1

3

5

7
16876

225

1124
15

76

60

zz � 0 z � l

(a)

t, ms

1
5


S � �
1
3


R �

1 A

�1/675

�1/3375

�1/15

1
5

�
S �

9
15

28
45

1/45

0
00

2

4

6

1

3

5

7
2109
3375

141
225

1

422
675

1/225

zz � 0 z � l

(b)

� 
1
3

�
R �

FIGURE 6.13

(a) Voltage and (b) current bounce diagrams, depicting the bouncing back and forth of the
transient waves for the system of Fig. 6.12.

It can be seen from the sketches of Fig. 6.14 that as time progresses, the line volt-
age and current tend to converge to certain values, which we can expect to be the steady-
state values. In the steady state, the situation consists of a single wave, which is
actually a superposition of the infinite number of transient waves, and a single 
wave, which is actually a superposition of the infinite number of transient waves. De-
noting the steady-state wave voltage and current to be and respectively, and
the steady-state wave voltage and current to be and respectively, we obtain
from the bounce diagrams

 ISS
- = -  

1
3

+
1

45
-

1
675

+ Á = -  
1
3

 a1 -
1

15
+

1

152 - Á b = -0.3125 A

 VSS
- = 20 -

4
3

+
4

45
- Á = 20a1 -

1
15

+
1

152 - Á b = 18.75 V

 ISS
+ = 1 -

1
15

+
1

225
- Á = 1 -

1
15

+
1

152 - Á = 0.9375 A

 VSS
+ = 60 - 4 +

4
15

- Á = 60a1 -
1

15
+

1

152 - Á b = 56.25 V

ISS
- ,VSS

-1-2
ISS

+ ,VSS
+1+2

1-2
1-21+2

1+2
Steady-state
situation
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380 Chapter 6 Transmission-Line Essentials for Digital Electronics

Note that and as they should be. The steady-state line
voltage and current can now be obtained to be

These are the same as the voltage across and current through if the source and its
internal resistance were connected directly to as shown in Fig. 6.15. This is to be ex-
pected since the series inductors and shunt capacitors of the distributed equivalent cir-
cuit behave like short circuits and open circuits, respectively, for the constant voltage
source in the steady state.

RL,
RLRL

 ISS = ISS
+ + ISS

- = 0.625 A

 VSS = VSS
+ + VSS

- = 75 V

ISS
- = -VSS

- >Z0,ISS
+ = VSS

+ >Z0

3376
45

224
3

16876
22576

60 1124
15

(a)

t, ms

9
15

2109
3375

141
225

2
3

28
45

422
675

2

100

0 4 6 8

[V ]z � 0, V

t, ms
20 4 6 8

[I ]z � 0, A

[V ]z � l, V [I ]z � l, A

[V ]z � l/2, V [I ]z � l/2, A

1
1

80

(b)

t, ms
1

100

0 3 5 7 9 9
t, ms

1

1

0 3 5 7

80

60
224

3

(c)

t, ms
0.5

100

0 2.5 4.5 6.5 8.5 8.5
t, ms

1

0

76

1
28
45

9
15

2
3

0.5 2.5 4.5 6.5

FIGURE 6.14

Time variations of line voltage and line current at (a) (b) and (c) for the
system of Fig. 6.12.

z = l>2z = l,z = 0,
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40 	

120 	

100 V �

�

z � 0 z � l

0.625 A

75 V

FIGURE 6.15

Steady-state equivalent for
the system of Fig. 6.12.

Plots of 
line voltage
and current
versus z

Excitation by
pulse voltage
source

(a)

z

100
76

0 l /2 l

[V ]t � 2.5 ms, V

80

(b)

z

1
1

0 2l /3 l

[I ]t � 1�1/3 ms, A

2
3

FIGURE 6.16

Variations with z of (a) line voltage for and (b) line current for for the
system of Fig. 6.12.

t = 1 
1
3 

 
ms,t = 2.5 ms

Sketches of line voltage and current as functions of distance (z) along the line for
any particular time can also be drawn from considerations similar to those employed for
the sketches of Fig. 6.14. For example, suppose we wish to draw the sketch of line voltage
versus z for Then we note from the voltage bounce diagram that for

the line voltage is 76 V from to and 80 V from to 
This is shown in Fig. 6.16(a). Similarly, Fig. 6.16(b) shows the variation of line current
versus z for 

In Example 6.1, we introduced the bounce-diagram technique for a constant-
voltage source.The technique can also be applied if the voltage source is a pulse.
In the case of a rectangular pulse, this can be done by representing the pulse as
the superposition of two step functions, as shown in Fig. 6.17, and superimpos-
ing the bounce diagrams for the two sources one on another. In doing so, we
should note that the bounce diagram for one source begins at a value of time
greater than zero. Alternatively, the time variation for each wave can be drawn
alongside the time axes beginning at the time of start of the wave. These can
then be used to plot the required sketches. An example is in order to illustrate
this technique, which can also be used for a pulse of arbitrary shape.

t = 1 
1
3 

 
ms.

z = l.z = l>2z = l>2z = 0t = 2.5 ms,
t = 2.5 ms.
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382 Chapter 6 Transmission-Line Essentials for Digital Electronics

Example 6.2 Bounce-diagram technique for a pulse excitation

Let us assume that the voltage source in the system of Fig. 6.12 is a 100-V rectangular
pulse extending from to and extend the bounce-diagram technique.

Considering, for example, the voltage bounce diagram, we reproduce in Fig. 6.18
part of the voltage bounce diagram of Fig. 6.13(a) and draw the time variations of the in-
dividual pulses alongside the time axes, as shown in the figure. Note that voltage axes are
chosen such that positive values are to the left at the left end of the diagram, but
to the right at the right end of the diagram.1z = l2

1z = 02

t = 1 mst = 0

��

t
0

Vg

V0

t0

t0
t t

0
0

V0 V0

�V0

FIGURE 6.17

Representation of a rectangular pulse as the superposition of two step functions.

V V

(+)

(�)

0

1

2

320 �4

�4
4

0

1

20 60

6060

2

3

4

(�)

(�)

(����) (���)

(���)

(��)

(��)

z � 0 z � lz

� 3
4

t, ms

1
5�
S �

1
3


R �

FIGURE 6.18

Voltage bounce diagram for the system of Fig. 6.12 except that the voltage source is a rectangular
pulse of 1- duration from to t = 1 ms.t = 0ms
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(a)

16

1

60

0 2 3 �16/15

4 5

[V ]z � 0, V

(b)

80

1

80

0 2 5 6

43

[V ]z � l, V

(c)

20

1.50.5

60

0

3.5
2.5 4.5

4/15

[V ]z � l/2, V

�16/3

16/45

60

�4 �4/3 5.5

FIGURE 6.19

Time variations of line voltage at (a) 
(b) and (c) for the system of
Fig. 6.12, except that the voltage source is a
rectangular pulse of duration from

to t = 1 ms.t = 0
1-ms

z = l>2z = l,
z = 0,

From the voltage bounce diagram, sketches of line voltage versus time at 
and can be drawn, as shown in Figs. 6.19(a) and (b), respectively. To draw the
sketch of line voltage versus time for any other value of z, we note that as time progress-
es, the wave pulses slide down the crisscross lines from left to right, whereas the 1-21+2

z = l
z = 0
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(b)

z

20

0 l/2 l

V�, V

(a)

z0
�4 l/2 l

V��, V

(c)

z

16

20

0 l/2 l

V, V

FIGURE 6.20

Variations with z of (a) the wave voltage, (b) the 
wave voltage, and (c) the total line voltage, at for
the system of Fig. 6.12, except that the voltage source is a
rectangular pulse of duration from to t = 1 ms.t = 01-ms

t = 2.25 ms
1-21- +2

wave pulses slide down from right to left.Thus, to draw the sketch for we displace
the time plots of the waves at and of the waves at forward in time by

that is, delay them by and add them to obtain the plot shown in Fig. 6.19(c).
Sketches of line voltage versus distance (z) along the line for fixed values of time

can also be drawn from the bounce diagram based on the phenomenon of the individual
pulses sliding down the crisscross lines. Thus, if we wish to sketch V(z) for 
then we take the portion from back to (since the
one-way travel time on the line is ) of all the wave pulses at and lay them
on the line from to and we take the portion from back to

of all the wave pulses at and lay them on the line from
back to In this case, we have only one wave pulse—that of the 

wave—and only one wave pulse—that of the wave—as shown in Figs. 6.20(a)
and (b). The line voltage is then the superposition of these two waveforms, as shown in
Fig. 6.20(c).

Similar considerations apply for the current bounce diagram and plots of line cur-
rent versus t for fixed values of z and line current versus z for fixed values of t.

K6.2. wave; wave; Voltage reflection coefficient; Current reflection coeffi-
cient;Transient bouncing of waves;Voltage bounce diagram; Current bounce di-
agram; Steady-state situation; Rectangular pulse voltage source; Superposition.

D6.3. In the system shown in Fig. 6.21, the switch S is closed at Find the value of
for each of the following cases: (a) (b)

(c) and (d)
Ans. (a) (b) (c) (d) 0 Æ.60 Æ;120 Æ;40 Æ;

I10.4l, q2 = 2.5 A.I10.3l, 4.4 ms2 = 1 A; 2.8 ms2 = 76 V;
V10.6l,V10.5l, 1.7 ms2 = 48 V;RL

t = 0.

1-21+2

1-21-2
1- +21+2z = 0.z = l

z = l1-2t = 2.25 - 1 = 1.25 ms
t = 2.25 msz = l,z = 0
z = 01+21 ms

t = 2.25 - 1 = 1.25 mst = 2.25 ms
t = 2.25 ms,

0.5 ms,0.5 ms,
z = l1-2z = 01+2

z = l>2,
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�

�
(�)

VL

IL

Z0 � 50 	

FIGURE 6.22

For Problem D6.5.

z � 0

Z0 � 60 	
T � 1 ms

t � 0

z � l

40 	

RL

100 V

S

FIGURE 6.21

For Problem D6.4.

D6.4. For a line of characteristic impedance terminated by a resistance and dri-
ven by a constant-voltage source in series with an internal resistance, the line
voltage and current in the steady state are known to be 30 V and 1.2 A, respec-
tively. Find (a) the wave voltage; (b) the wave voltage; (c) the wave
current; and (d) the wave current in the steady state.
Ans. (a) 60 V; (b) (c) 0.8 A; (d) 0.4 A.

D6.5. In Fig 6.22, a line of characteristic impedance is terminated by a passive
nonlinear element. A wave of constant voltage is incident on the termi-
nation. If the volt-ampere characteristic of the nonlinear element in the region
of interest is find the wave voltage for each of the following
values of (a) 36 V; (b) 50 V; and (c) 66 V.
Ans. (a) (b) 0 V; (c) 6 V.

6.3 TRANSMISSION-LINE DISCONTINUITY

We now consider the case of a junction between two lines having different val-
ues for the parameters and as shown in Fig. 6.23. Assuming that a 
wave of voltage and current is incident on the junction from line 1, weI+V+

1+2vp,Z0

-4 V;
V0:

1-2VL = 50 IL
2 ,

V01+2
50 Æ

-30 V;
1-2

1+21-21+2

75 Æ

Junction
between two
lines

(�)
(��)

(�)

Z01, vp1 Z02, vp2

FIGURE 6.23

Transmission-line junction for illustrating
reflection and transmission resulting
from an incident wave.1+2

1+ +21-2
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(a) (b)

�

(�)
Z01 Z02

�

�

�

V� � V� V��

I� � I� I��

FIGURE 6.24

(a) For obtaining the reflected wave
and transmitted wave voltages and
currents for the system of Fig. 6.23.
(b) Equivalent to (a) for using the reflection
coefficient concept.

1+ +2
1-2

find that the wave alone cannot satisfy the boundary condition at the junc-
tion, since the voltage-to-current ratio for that wave is whereas the character-
istic impedance of line 2 is Hence, a reflected wave and a transmitted
wave are set up such that the boundary conditions are satisfied. Let the voltages
and currents in these waves be and respectively, where the su-
perscript denotes that the transmitted wave is a wave resulting from the
incident wave.We then have the situation shown in Fig. 6.24(a).

Using the boundary conditions at the junction, we then write

(6.41a)
(6.41b)

But we know that and Hence,
(6.41b) becomes

(6.42)

Combining (6.41a) and (6.42), we have

or

(6.43)

Thus, to the incident wave, the transmission line to the right looks like its char-
acteristic impedance as shown in Fig. 6.24 (b). The difference between a re-
sistive load of and a line of characteristic impedance is that, in the first
case, power is dissipated in the load, whereas in the second ease, the power is
transmitted into the line.
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We now define the voltage transmission coefficient, denoted by the symbol
as the ratio of the transmitted wave voltage to the incident wave voltage.Thus,

(6.44)

The current transmission coefficient, which is the ratio of the transmitted
wave current to the incident wave current, is given by

(6.45)

At this point, one may be puzzled to note that the transmitted voltage can be
greater than the incident voltage if is positive. However, this is not of concern,
since then the transmitted current will be less than the incident current. Similar-
ly, the transmitted current is greater than the incident current when is nega-
tive, but then the transmitted voltage is less than the incident voltage. In fact,
what is important is that the transmitted power is always less than (or equal
to) the incident power since

(6.46)

and irrespective of whether is positive or negative.
We shall illustrate the application of reflection and transmission at a junc-

tion between lines by means of an example.

Example 6.3 Unit impulse response and frequency response for a
system of three lines in cascade

Let us consider the system of three lines in cascade, driven by a unit impulse voltage
source as shown in Fig. 6.25(a). We wish to find the output voltage thereby ob-
taining the unit impulse response.

To find the output voltage, we draw the voltage bounce diagram, as shown in
Fig. 6.25(b). In drawing the bounce diagram, we note that since the internal resistance of
the voltage source is which is equal to the strength of the impulse that the gen-
erator supplies to line 1 is The strengths of the various impulses propagating in the
lines are then governed by the reflection and transmission coefficients indicated on the
diagram. Also note that the numbers indicated beside the crisscross lines are simply the
strengths of the impulses and do not represent constant voltages.

From the bounce diagram, we note that the output voltage is a series of impulses.
In fact, the phenomenon can be visualized without even drawing the bounce diagram,
and the strengths of the impulses can be computed. Thus, the strength of the first im-
pulse, which occurs at is

1 *
50

50 + 50
* a1 +

100 - 50
100 + 50

b * a1 +
50 - 100
50 + 100

b = 1 *
1
2

*
4
3

*
2
3

=
4
9

t = T1 + T2 + T3 = 6 ms,

1
2.
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Transmission
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System of
three lines
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�

�

(a)

(b)

Line 1
Z01 � 50 	
T1 � 2 �s

Line 2
Z02 � 100 	

T2 � 2 �s

Line 3
Z03 � 50 	
T3 � 2 �s

Vo

�
�

50 	

50 	

d(t)

0
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�2/81

2/243

�2/729

4/9

4/81

4/729
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4/9

4/92

4/93

Vo(t)

FIGURE 6.25

(a) System of three lines in cascade driven by a unit impulse voltage source. (b) Voltage bounce
diagram for finding the output voltage for the system of (a).Vo1t2
Each succeeding impulse is due to the additional reflection and re-reflection of the pre-
vious impulse at the right and left end, respectively, of line 2. Hence, each succeeding im-
pulse occurs or later than the preceding one, and its strength is

times the strength of the previous impulse. We can now write the output voltage as

(6.47)

 =
4
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 a1

9
bn
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6.3 Transmission-Line Discontinuity 389

Frequency
response

Note that is the strength of the first impulse and is the multiplication factor for each
succeeding impulse. In terms of and we have

(6.48)

where we have replaced by 
Proceeding further, since the unit impulse response of the system is a series of im-

pulses delayed in time, the response to any other excitation can be found by the super-
position of time functions obtained by delaying the exciting function and multiplying
by appropriate constants. In particular, by considering we can find the
frequency response of the system. Thus, assuming and substituting the
cosine function for the impulse function in (6.48), we obtain the corresponding output
voltage to be

(6.49)

The complex voltage is then given by

(6.50)

Without going into a detailed discussion of the result given by (6.50), we can conclude
the following: maximum amplitude occurs for that is, for

and its value is Minimum amplitude occurs
for that is, for 
and its value is The amplitude response therefore can be roughly sketched,
as shown in Fig. 6.26.

4
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v = 12m + 12p>2T2, m = 0, 1, 2, Á ,2vT2 = 12m + 12p, m = 0, 1, 2, Á ;
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FIGURE 6.26

Rough sketch of amplitude response versus frequency for the system of Fig. 6.25(a)
for sinusoidal excitation.
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Free Space
e0, m0

Free Space
e0, m0

Perfect Dielectric
e = e0er

m = m0mr

l

FIGURE 6.27

Perfect dielectric slab with free space
on either side.

A practical situation in which the discussion of this example is applicable is in
the design of a radome, which is an enclosure for protecting an antenna from the
weather while allowing transparency for electromagnetic waves. A simple, idealized,
planar version of the radome is a dielectric slab with free space on either side of it, as
shown in Fig. 6.27. For reflection and transmission of uniform plane waves incident
normally onto the dielectric slab, the arrangement is equivalent to three lines in cas-
cade, with the characteristic impedances equal to the intrinsic impedances of the media
and the velocities of propagation equal to those in the media. Thus, the amplitude ver-
sus frequency response is of the same form as that in Fig. 6.26, where is the one-way
travel time in the dielectric slab and the maximum is 1 instead of 0.5 (the factor of 0.5
in Fig. 6.26 is due to voltage drop across the internal resistance of the source in the
transmission-line system). Hence, the lowest frequency for which the dielectric slab is
completely transparent is or Conversely, for a
given frequency f, the minimum thickness for which the slab is transparent is

where is the wavelength in the dielectric, corresponding to f.

We shall now discuss time-domain reflectometry, abbreviated TDR, a tech-
nique by means of which discontinuities in transmission-line systems can be lo-
cated by making measurements with pulses. The block diagram of a typical
TDR system is shown in Fig. 6.28. It consists of a pulse generator whose output
is connected to the system under test through a matched attenuator. Voltage
pulses are propagated down the transmission-line system, and the incident and
reflected pulses are monitored by the display scope using a high-impedance
probe.The matched attenuator serves the purpose of absorbing the pulses arriv-
ing back from the system so that reflections of those pulses are not produced.We
shall illustrate the application of a TDR system by means of an example.

ll = c>2f2ermr = l>2,

f = c>2l2ermr.v = p>T2 = pc>l2ermr

T2

Time-domain
reflectometry

Pulse
Generator

Display
Scope

Matched
Attenuator

System
Under
Test

High
Impedance

probe

Sync Pulse

FIGURE 6.28

Block diagram of a typical
time-domain reflectometer.

Radome
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Z0 � 60 	 120 	

4 m

0 10 m4 m

6 m

yp � 2 � 108 m/s

z

TDR System

FIGURE 6.29

Transmission line with discontinuity under test by a TDR system.

Example 6.4 Application of a time-domain reflectometer system for
analyzing a line discontinuity

Let us consider a transmission line under test, as shown in Fig. 6.29, in which a disconti-
nuity exists at and the line is short-circuited at the far end.We shall first analyze
the system to obtain the waveform measured by a TDR system connected at the input
end assuming the TDR pulses to be of amplitude 1 V, duration 10 ns, and repeti-
tion rate We shall then discuss how one can deduce the information about the
discontinuity from the TDR measurement.

Assuming that a pulse from the TDR system is incident on the input of the system
under test at we draw the voltage-bounce diagram, as shown in Fig. 6.30. Note that
for a pulse incident on the discontinuity from either side, the resistance viewed is the par-
allel combination of and of the line, or Hence, the reflection
and transmission coefficients for the voltage are given, respectively, by

From the bounce diagram, the voltage pulses that would be viewed on the display scope
of the TDR system up to are shown in Fig. 6.31. Subsequent pulses become
smaller and smaller in amplitude as time progresses and diminish to insignificant values
well before which is the period of the TDR pulses.

Now, to discuss how one can deduce information about the discontinuity from the
TDR display of Fig. 6.31, without a prior knowledge of the discontinuity but knowing the
values of and of the line and that the line is short-circuited at the far end of un-
known distance from the input, we proceed in the following manner:

The first pulse is the outgoing pulse from the TDR system. The second pulse arriv-
ing at the input of the system under test at is due to reflection from a disconti-
nuity, since if there is no discontinuity, the voltage of the second pulse should be 
and there should be no subsequent pulses. From the voltage of the second pulse, we
know that the reflection coefficient at the discontinuity is The effective resistance

seen by the incident pulse is therefore given by the solution of

which is Since this value is less than the of the line, the discontinuity must be
due entirely to a resistance in parallel with the line or due to a combination of series and

Z040 Æ.

RL - 60

RL + 60
= -  0.2

RL

-  0.2.

-1 V
t = 40 ns

vpZ0

t = 10 ms,

t = 200 ns

 tV = 1 + ≠ = 0.8

 ≠ =
40 - 60
40 + 60

= -  0.2

40 Æ.Z0 1=  60 Æ2120 Æ

t = 0,

105 Hz.
z = 0,

z = 4 m
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1

0 10

40 50 100 110 160 170

�0.2

�0.64

�0.128

V, V

t, ns

FIGURE 6.31

Voltage versus time at the input of the transmission line of Fig. 6.39, as displayed by
the TDR system.

parallel resistors; it cannot be due entirely to a resistance in series with the line. Let us
proceed with the assumption of a parallel resistor alone.Then the value of this resistance
R must be such that

solving which we obtain The location of the discontinuity can be deduced by
multiplying by 20 ns, which is one-half of the time interval between the first and sec-
ond pulses. Thus, the location is 2 * 108 * 20 * 10-9 = 4 m.

vp

R = 120 Æ.

60R

60 + R
= 40

t, ms


 �  �1
 � �0.2, tV � 0.8


 � �0.2, tV � 0.8
1
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z � 0 z � 4 m z � 10 m

�0.128

�0.64

�0.2

1

0.8

�0.8

0.16

�0.16

50

110

FIGURE 6.30

Voltage-bounce diagram for the system of Fig. 6.29, for TDR pulses of
amplitude 1 V.
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6.3 Transmission-Line Discontinuity 393

Continuing, let us postulate that the third pulse of at is due to
reflection occurring at a second discontinuity located at 

In terms of the reflection coefficient at the second discontinuity, denoted
the voltage of the third pulse would be where and are the voltage

transmission coefficients at for pulses incident from the right and from the left,
respectively. Since and are both equal to 0.8, we then have or

which corresponds to a short circuit, which would then give a fourth pulse of
at and so on. From these reasonings, we confirm the assumption of

a parallel resistor of for the discontinuity at and also conclude that the
short circuit is at and that no discontinuities exist between and the
short circuit. If the value of comes out to be different from then further reason-
ings are necessary to deduce the information. It should also be noted that the line of rea-
soning depends on which of the line parameters are known.

K6.3. Voltage transmission coefficient; Current transmission coefficient; Unit impulse
response; Frequency response; Time-domain reflectometry.

D6.6. Consider a wave incident from line 1 onto the junction between lines 1 and
2 having characteristic impedances and respectively. Find the value of

for each of the following cases: (a) the reflected wave voltage is times
the incident wave voltage: (b) the transmitted wave voltage is times the incident
wave voltage; (c) the reflected wave voltage is times the transmitted wave volt-
age; and (d) the reflected wave current is times the transmitted wave current.
Ans. (a) 1.5; (b) (c) (d)

D6.7. The output voltage for a system of three lines in cascade is given by

when the input voltage If find the amplitude of
for each of the following values of (a) (b) and

(c)
Ans. (a) 0.375; (b) 0.2372; (c) 0.1875.

D6.8. Consider lines, each of characteristic impedance emanating from a
common junction, as shown in Fig. 6.32 for For a wave carrying power Pn = 2.

Z0,1n + 12
1.5 * 106p.

1.25 * 106p;106p;v:Vo1t2
Vi1t2 = cos vt,Vi1t2 = d1t2.

Vo1t2 =
1
4
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 a1

3
bn
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3
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3;1
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1
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1
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z = 4 m120 Æ

t = 160 ns,-0.128 V
≠2 = -1,

0.64 ≠2 = -0.64tVLtVR

z = 4 m,
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Z 0
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0
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FIGURE 6.32

For Problem D.6.8.
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z � 0

Z0, T

Z0

V0

t � 0

z � l

L

S IL(0 �) � 0

FIGURE 6.33

Line terminated by an inductor with zero initial current and driven by a constant-
voltage source in series with internal resistance equal to of the line.Z0

incident on the junction from one of the lines, find the power reflected into that
line and the power transmitted into each of the remaining n lines for the follow-
ing cases: (a) (b) and (c)
Ans. (a) (b) (c) 0.64P, 0.04P.

6.4 LINES WITH REACTIVE TERMINATIONS AND DISCONTINUES

Thus far, we have been concerned with purely resistive terminations and dis-
continuities. Now, we shall consider examples of lines terminated by reactive
elements and lines having reactive discontinuities. Let us first consider the sys-
tem shown in Fig. 6.33, in which a line of length l is terminated by an inductor L
with zero initial current and a constant-voltage source with internal resistance
equal to the characteristic impedance of the line is connected to the line at

The internal resistance is chosen to be equal to so that no reflection
takes place at the source end. The moment the switch S is closed at a 
wave originates at with voltage and current 
and travels down the line to reach the load end at time T. Since the inductor
current cannot change instantaneously from zero to the boundary con-
dition at is violated, and hence a wave is set up. Let the voltage and
current in this wave be and respectively. Then the total voltage
across L and the total current through L are and

respectively, as shown in Fig. 6.34. To satisfy the boundary
condition at we then have

(6.51)

Noting that is a constant and hence that is zero, and rearranging, we
obtain

(6.52)
L

Z0
  
dV-

dt
+ V- = -  

V0

2

dV0>dtV0

V0

2
+ V- = L 

d

dt
 a V0

2Z0
-

V-

Z0
b

z = l,
1V0>2Z02 - 1V->Z02,

1V0>22 + V-
I-1t2,V-1t21-2 1-2z = l

V0>2Z0,

I+1=  V0>2Z02V+1=  V0>22z = 0
1+2t = 0,

Z0t = 0.

1
4 P, 14 P;1

9 P, 49 P;
n = 9.n = 3;n = 2;

Inductive
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6.4 Lines with Reactive Terminations and Discontinues 395

This differential equation for has to be solved, subject to the initial con-
dition. This initial condition is that the current through the inductor is zero at

that is, the inductor behaves initially like an open circuit. Thus, at 

or

(6.53)

The general solution for the differential equation can be written as

(6.54)

where A is an arbitrary constant to be evaluated using (6.53). Thus, we have

or

(6.55)

Substituting this result in (6.54), we obtain the solution for as

(6.56)

The corresponding solution for the wave current is given by

(6.57)

The wave, characterized by and as given by (6.56) and (6.57),
respectively, travels back toward the source, and it does not set up a reflected
wave, since the reflection coefficient at that end is zero. At this point, it can be

I-V-1-2

I-1l, t2 = -  
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=
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2Z0
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-
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FIGURE 6.34

For obtaining the wave voltage and current for
the system of Fig. 6.33

1-2
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seen that unlike in the case of linear resistive terminations and discontinuities,
the concept of the reflection coefficient is not useful for studying transient be-
havior when reactive elements are involved. In fact, we note from (6.56) and
(6.57) that the ratios of reflected voltage and current to the incident voltage and
current, respectively, are no longer constants as in the resistive case.

We may now write the expressions for the total voltage across the induc-
tor and the total current through the inductor as follows:

(6.58)

(6.59)

These quantities are shown sketched in Figs. 6.35 (a) and (b), respectively. It
may be seen from these sketches that in the steady state, the voltage goes to

 = b0 for t 6 T

1V0>Z02[1 - e-1Z0>L2 1t - T2] for t 7 T

 I1l, t2 =
V0

2Z0
+ I-1l, t2

 = b0 for t 6 T

V0 e-1Z0>L2 1t - T2 for t 7 T

 V1l, t2 =
V0

2
+ V-1l, t2

V0

T

V0e�1

L
Z0

T �

(a)

0
t

[V]z � l

V0

T

(1� e�1)

Z0
V0

Z0

L
Z0

T �

(b)

0
t

[I]z � l

FIGURE 6.35

Time variations of (a) voltage across the inductor and (b) current through the
inductor, for the system of Fig. 6.43.
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6.4 Lines with Reactive Terminations and Discontinues 397

zero and the current goes to This is consistent with the fact that the in-
ductor behaves like a short circuit for the dc voltage in the steady state, and
hence the situation in the steady state is the same as that for a short-circuited
line. Note also that the variations of the voltage and current from to

are governed by the time constant which is that of the inductor L
in series with of the line. In fact, we can obtain the voltage and current
sketches from considerations of initial and final behaviors of the reactive ele-
ment and the time constant without formally going through the process of set-
ting up the differential equation and solving it.We shall illustrate this procedure
by means of an example.

Example 6.5 A transmission-line system with a capacitive discontinuity

Let us consider the system shown in Fig. 6.36 consisting of a series capacitor of value 10 pF
at the junction between the two lines. Note that line 2 is terminated by its own character-
istic impedance, whereas the internal resistance of the voltage source is equal to the
characteristic impedance of line 1, so that no reflections occur at the two ends of the sys-
tem. We shall assume that the capacitor is initially uncharged and obtain the plots of line
voltage and line current at the input from considerations of initial and final behav-
iors of the capacitor.

Plots of line voltage and line current at versus time are shown in Figs. 6.37(a)
and (b), respectively. We shall explain the several features in these plots as follows: When
the switch S is closed at a wave of voltage 10 V and current 0.2 A goes down
the line. Since the voltage across a capacitor cannot change instantaneously, the initially
uncharged capacitor behaves like a short circuit when the wave impinges on the junc-
tion at Therefore, the wave then sees a resistance of 
across and produces a wave of initial voltage 5 V and initial current The

wave arrives initially at at thereby changing the line voltage and line
current there to 15 V and 0.1 A, as shown in Figs. 6.37(a) and (b), respectively. In the
steady state, the capacitor behaves like an open circuit, which explains the steady-state
values of 20 V and 0 A in these plots. Between and the voltage and cur-
rent vary exponentially with a time constant of which
is that of in series with or Hence, the voltage and current
values at are and 
respectively.

0.1 - 0.111 - e-12 = 0.037 A,15 + 511 - e-12 = 18.16 Vt = 4 ns
200 Æ.1Z01 + Z022,C1=  10 pF2

10-11 * 200 = 2 * 10-9 s = 2 ns,
t = q ,t = 2 ns

t = 2 ns,z = 01-2
-0.1 A.1-2aa¿

Z021=  150 Æ21+2t = 1 ns.aa¿
1+2

1+2t = 0,

z = 0

z = 0

Z0

L>Z0,t = q
t = T

V0>Z0.

Capacitive
discontinuity

z � 0

Z01 � 50 	
T � 1 ns

Z02 � 150 	

t � 0

a'

a

50 	

150 	

20 V

S 10 pF

FIGURE 6.36

Transmission-line system with a capacitive discontinuity.
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(a)

0 2 4

10

20

t, ns

[V]z � 0, V

18.16

(b)

0 2 4

0.1

0.2

t, ns

[I]z � 0, A

0.037FIGURE 6.37

Plots of (a) line voltage and (b) line
current at for the system of
Fig. 6.36.

z = 0

Finally, the arguments that we have employed to explain the features in Fig. 6.37
can be used to deduce information about the nature of the discontinuity if the plots rep-
resent measurements by a time-domain reflectometer.

K6.4. Inductive termination; Capacitive discontinuity.
D6.9. In the system of Fig. 6.33, assume that and Find

the value of the voltage across the inductor at for each of the following
cases: (a) (b)
(c)
Ans. (a) 12.13 V; (b) 10.61 V; (c) 5.52 V.

D6.10. In the system shown in Fig. 6.38, the capacitor is initially uncharged. Find the val-
ues of the line voltage at at the following times: (a) (b)
and (c)
Ans. (a) 0 V; (b) 15 V; (c) 7.2987 V.

t = 3 ns.
t = q ;t = 2 ns+ ;z = 0

L = 0.05 mH; IL10-2 = 0.1 A.
L = 0.1 mH, IL10-2 = 0.05 A;L = 0.1 mH, IL10-2 = 0 A;

t = 2 ms
T = 1 ms.Z0 = 50 Æ,V0 = 20 V,

z � 0

Z0 � 50 	
T � 1 ns

Z0 � 150 	

t � 0

50 	

150 	

20 V

S

40 pF

FIGURE 6.38

For Problem D6.10.
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6.5 Lines with Initial Conditions 399

6.5 LINES WITH INITIAL CONDITIONS

Thus far, we have considered lines with quiescent initial conditions, that is, with
no initial voltages and currents on them.As a prelude to the discussion of analy-
sis of interconnections between logic gates, we shall now consider lines with
nonzero initial conditions. We discuss first the general case of arbitrary initial
voltage and current distributions by decomposing them into and wave
voltages and currents. To do this, we consider the example shown in Fig. 6.39, in
which a line open-circuited at both ends is charged initially, say, at to the
voltage and current distributions shown in the figure.

Writing the line voltage and current distributions as sums of and 
wave voltages and currents, we have

(6.60a)

(6.60b)

But we know that and Substituting these into (6.60b)
and multiplying by we get

(6.61)

Solving (6.60a) and (6.61), we obtain

(6.62a)

(6.62b) V-1z, 02 = 1
2 [V1z, 02 - Z0 I1z, 02]

 V+1z, 02 = 1
2 [V1z, 02 + Z0 I1z, 02]

V+1z, 02 - V-1z, 02 = Z0 I1z, 02
Z0,

I- = -V->Z0.I+ = V+>Z0

 I+1z, 02 + I-1z, 02 = I1z, 02
 V+1z, 02 + V-1z, 02 = V1z, 02

1-21+2
t = 0,

1-21+2

Arbitrary
initial
distribution

l/2

50

0
z

V(z, 0), V

I(z, 0)

l

l/2

1

0
z

I(z, 0), A

l

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Z0 � 50 	
T � 1 ms

z � 0 z � l

V(z, 0)

FIGURE 6.39

Line open-circuited at both ends and initially charged to the voltage and current distributions V(z, 0)
and I(z, 0), respectively.
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400 Chapter 6 Transmission-Line Essentials for Digital Electronics

Thus, for the distributions V(z, 0) and I(z, 0) given in Fig. 6.39, we obtain the dis-
tributions of and as shown by Fig. 6.40(a), and hence of

and as shown by Fig. 6.40(b).
Suppose that we wish to find the voltage and current distributions at some

later value of time, say, Then, we note that as the and waves
propagate and impinge on the open circuits at and respectively,
they produce the and waves, respectively, consistent with a voltage re-
flection coefficient of 1 and current reflection coefficient of at both ends.
Hence, at the and wave voltage and current distributions
and their sum distributions are as shown in Fig. 6.41, in which the points A, B, C,
and D correspond to the points A, B, C, and D, respectively, in Fig. 6.40. Pro-
ceeding in this manner, one can obtain the voltage and current distributions for
any value of time.

Suppose that we connect a resistor of value at the end at 
instead of keeping it open-circuited. Then the reflection coefficient at that
end becomes zero thereafter, and the wave, as it impinges on the resistor,
gets absorbed in it instead of producing the wave. The line therefore
completely discharges into the resistor by the time with the result-
ing time variation of voltage across as shown in Fig. 6.42, where the
points A, B, C, and D correspond to the points A, B, C, and D, respectively, in
Fig. 6.40.

For a line with uniform initial voltage and current distributions, the analysis
can be performed in the same manner as for arbitrary initial voltage and current
distributions.Alternatively, and more conveniently, the analysis can be carried out

RL,
t = 1.5 ms,

1-2
1+2

t = 0z = lZ0

1-21+2t = 0.5 ms,
-1

1+21-2 z = 0,z = l
1-21+2t = 0.5 ms.

I-1z, 02,I+1z, 02 V-1z, 02V+1z, 02

l/2

50

0
z

V�(z, 0), V

l

A

B

C

l/2

50

0

(a) (b)

z

V�(z, 0), V

l

D
C

l/2

1

0
z

I�(z, 0), A

l

l/2

–1

0
z

I�(z, 0), A

l

FIGURE 6.40

Distributions of (a) voltage and (b) current in the and waves obtained by decomposing the
voltage and current distributions of Fig. 6.39.

1-21+2

Uniform
initial
distribution
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6.5 Lines with Initial Conditions 401

with the aid of superposition and bounce diagrams. The basis behind this method
lies in the fact that the uniform distribution corresponds to a situation in which
the line voltage and current remain constant with time at all points on the line
until a change is made at some point on the line.The boundary condition is then
violated at that point, and a transient wave of constant voltage and current is set
up, to be superimposed on the initial distribution. We shall illustrate this tech-
nique of analysis by means of an example.

l/2

50

0
z

V�, V

l

D

B
C

l/2

50

0
z

V�, V

l

A

B

l/2

1

0
z

I�, A

l

l/2

50

0
z

V, V

100

l l/2

1

0
z

I, A

2

l

l/2

1

0 z

I�, A

–1

l

(a) (b)

FIGURE 6.41

Distributions of (a) voltage and (b) current in the and waves and their sum for for the
initially charged line of Fig. 6.39.

t = 0.5 ms1-21+2

0.5 1.0 1.5 2.0

50

0
t, ms

[V]RL, V

A

B

C
D

FIGURE 6.42

Voltage across resulting from
connecting it at to the end of the line
of Fig. 6.39.

z = lt = 0
RL1=  Z0 = 50 Æ2
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402 Chapter 6 Transmission-Line Essentials for Digital Electronics

Example 6.6 Bounce-diagram technique and checking energy balance
for an initially charged line

Let us consider a line of and initially charged to uniform voltage
and zero current. A resistor is connected at to the end

of the line, as shown in Fig. 6.43(a). We wish to obtain the time variation of the
voltage across for 

Since the change is made at by connecting to the line, a wave origi-
nates at so that the total line voltage at that point is and the total line
current is or as shown in Fig. 6.43(b). To satisfy the boundary condition at

we then write

(6.63)

But we know that Hence, we have

(6.64)

or

(6.65a)

(6.65b)

We may now draw the voltage and current bounce diagrams, as shown in Fig. 6.44 We
note that in these bounce diagrams, the initial conditions are accounted for by the horizontal
lines drawn at the top, with the numerical values of voltage and current indicated on

For V0 = 100 V, Z0 = 50 Æ, and RL = 150 Æ, we obtain V+ = -25 V and I + = - 0.5 A.

 I+ = -V0  
1

RL + Z0

 V+ = -V0  

Z0

RL + Z0

V0 + V+ = -  

RL

Z0
 V+

I+ = V+>Z0.

V0 + V+ = -RL I+

z = 0,
I+,0 + I+,

V0 + V+z = 0,
1+2RLz = 0

t 7 0.RL

z = 0
t = 0RL = 150 ÆV0 = 100 V

T = 1 msZ0 = 50 Æ

z � 0

Z0, T V0

t � 0 �

�

�

�

�

(a)

�

�

�

�

�

�

�

�

�

�

�

z � l

S

z = 0

V0 + V�RLRL

+

–

(b)

I�

FIGURE 6.43

(a) Transmission line charged initially to uniform voltage (b) For obtaining the voltage and
current associated with the transient wave resulting from the closure of the switch in (a).1+2

V0.
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6.5 Lines with Initial Conditions 403

them. Sketches of line voltage and current versus z for fixed values of t can be drawn from
these bounce diagrams in the usual manner. Sketches of line voltage and current versus t
for any fixed value of z also can be drawn from the bounce diagrams in the usual manner.
Of particular interest is the voltage across which illustrates how the line discharges
into the resistor. The time variation of this voltage is shown in Fig. 6.45.

It is also instructive to check the energy balance, that is, to verify that the energy dissipat-
ed in the resistor for is indeed equal to the energy stored in the line at 
since the line is lossless. To do this, we note that, in general, energy is stored in both electric
and magnetic fields in the line, with energy densities and respectively.Thus, for
a line charged uniformly to voltage and current the total electric and magnetic stored
energies are given, respectively, by

(6.66a)

 =
1
2

 cV0
2

 
12lc  T =

1
2

  

V0
2

Z0
 T

 We = 1
2 cV0

2 l = 1
2 cV0

2vp T

I0,V0

1
2 lI2,1

2 cV2

t = 0- ,t 7 0150-Æ

RL,

2 4 6

75

0
t, ms

[V]RL
, V

37.5
18.75 9.375

FIGURE 6.45

Time variation of voltage across for in
Fig. 6.43(a) for 

and T = 1 ms.RL = 150 Æ,
Z0 = 50 Æ,V0 = 100 V,

t 7 0RL

0 0

1

3

5

2

4

6

t, ms


 � 1/2 
 � 1

100 V

75

37.5

18.75

�6.25

�6.25

�25

�25

�12.5

�12.5

100

50

25

12.5

z � 0 z � l

0 0

1

3

5

2

4

6

�
 � �1/2 �
 � �1

0 A

�0.5

–0.25

�0.125

�0.125

0.125

0.5

�0.5

�0.25

0.25

0

0

0

0

z � 0 z � l

FIGURE 6.44

Voltage-and current-bounce diagrams depicting the transient phenomenon for for the line
of Fig. 6.43 (a), for and T = 1 ms.V0 = 100 V, Z0 = 50 Æ, RL = 150 Æ,

t 7 0

Energy
balance
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and

(6.66b)

Since for the example under consideration, and 
and Thus, the total initial stored energy in the line is Now,

denoting the power dissipated in the resistor to be we obtain the energy dissipated in
the resistor to be

which is exactly the same as the initial stored energy in the line, thereby satisfying the en-
ergy balance.

K6.5. Initial conditions;Arbitrary distribution; Uniform distribution; Bounce-diagram
technique.

D6.11. For the line of Fig. 6.39 with the initial voltage and current distributions as given
in the figure, find: (a) (b) (c) and
(d)
Ans. (a) 37.5 V; (b) 0.75 A; (c) 25 V; (d)

D6.12. In the system shown in Fig. 6.46, a line of characteristic impedance and
charged to 10 V is connected at to another line of characteristic imped-
ance and charged to 5 V. The one-way travel time T is equal to for
both lines. Find (a) the value of the voltage at the instant of time when both
lines are charged to the same voltage throughout their lengths; (b) the value of
the current to which the lines are charged at that instant of time; and (c) the en-
ergy stored in the system at any instant of time.
Ans. (a) 7 V; (b) 0.04 A; (c) 11/12 mJ.

1 ms50 Æ
t = 0

75 Æ
-0.5 A.

I1l>4, 1 ms2.
V1l>4, 1 ms2;I1l>2, 0.25 ms2;V1l>2, 0.25 ms2;

 =
2 * 10-6

150
* 752

 a1 +
1
4

+
1

16
+ Á b = 10-4 J

 = L
2 * 10-6

0
 
752

150
  dt + L

4 * 10-6

2 * 10-6
 
37.52

150
  dt + L

6 * 10-6

4 * 10-6
 
18.752

150
  dt + Á

 Wd = L
q

t = 0
Pd dt

Pd,
10-4 J.Wm = 0.We = 10-4 J

T = 1 ms,V0 = 100 V, I0 = 0,

 =
1
2

 lI0
2

 
12lc  T =

1
2

 I0
2Z0 T

 Wm =
1
2

 lI0
2 l =

1
2

 lI0
2vp T

Z0 � 75 �
T � 1 ms

10 V

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Z0 � 50 �
T � 1 ms

5 V

t � 0

FIGURE 6.46

For Problem D6.12.
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6.6 INTERCONNECTIONS BETWEEN LOGIC GATES

Thus far we have been concerned with time-domain analysis for lines with ter-
minations and discontinuities made up of linear circuit elements. Logic gates
present nonlinear resistive terminations to the interconnecting transmission
lines in digital circuits.The analysis is then made convenient by a graphical tech-
nique known as the load-line technique. We shall first introduce this technique
by means of an example.

Example 6.7 Load-line technique of analysis for a line terminated by a
nonlinear element

Let us consider the transmission-line system shown in Fig. 6.47, in which the line is ter-
minated by a passive nonlinear element having the indicated V-I relationship.We wish to
obtain the time variations of the voltages and at the source and load ends, respec-
tively, following the closure of the switch S at using the load-line technique.

With reference to the notation shown in Fig. 6.47, we can write the following equa-
tions pertinent to at 

(6.67a)

(6.67b)

where and are the voltage and current, respectively, of the wave set up imme-
diately after closure of the switch. The two equations (6.67a) and (6.67b) can be solved
graphically by constructing the straight lines representing them, as shown in Fig. 6.48,
and obtaining the point of intersection A, which gives the values of and Note in
particular that (6.67b) is a straight line of slope 1/50 and passing through the origin.

When the wave reaches the load end at a wave is set up. We
can then write the following equations pertinent to at 

(6.68a)

(6.68b)

 =
V+ - 1VL - V+2

50
=

2V+ - VL

50

 IL = I+ + I- =
V+ - V-

Z0

 VL = V+ + V-
 VL = 50IL ƒIL ƒ

z = l:t = T+
1-2t = T,z = l1+2

IS.VS

1+2I+V+

 IS = I+ =
V+

Z0
=

VS

50

 VS = V+
 50 = 200IS + VS

z = 0:t = 0+

t = 0,
VLVS

Load-line
technique

z � 0 z � l

Z0 � 50 	
T � 1 ms

t � 0

200 	 �

�

50 V

S

�

�

�

�

VL � 50IL  IL

Passive Nonlinear
VLVS

IS IL

FIGURE 6.47

Line terminated by a passive nonlinear element and driven by a constant-voltage source
in series with internal resistance.

RaoCh06v3.qxd  12/18/03  4:26 PM  Page 405



406 Chapter 6 Transmission-Line Essentials for Digital Electronics

20

0.1

0.2

0.3

0.4

V

I

SS

IS �

4 6 8 10 12

�2V� � VS

50

C

D
E

B

A

IL �
2V� � VL

50

IS �
VS

50

VL � 50IL  IL 

50 � 200IS + VS

FIGURE 6.48

Graphical solution for obtaining time variations of and for in the
transmission-line system of Fig. 6.47.

t 7 0VLVS

where and are the wave voltage and current, respectively. The solution for 
and is then given by the intersection of the nonlinear curve representing (6.68a) and
the straight line of slope corresponding to (6.68b). Noting from (6.68b) that for

we see that the straight line passes through point A. Thus, the so-
lution of (6.68a) and (6.68b) is given by point B in Fig. 6.48.

When the wave reaches the source end at it sets up a reflection.
Denoting this to be the wave, we can then write the following equations pertinent
to at 

(6.69a)

(6.69b)

where and are the wave voltage and current, respectively. Noting from
(6.69a) that for we see that (6.69b) represents a
straight line of slope 1/50 passing through B. Thus, the solution of (6.69a) and (6.69b) is
given by point C in Fig. 6.48.

Continuing in this manner, we observe that the solution consists of obtaining the
points of intersection on the source and load V-I characteristics by drawing successively
straight lines of slope and beginning at the origin (the initial state) and with
each straight line originating at the previous point of intersection, as shown in Fig. 6.48.
The points A, C, E, give the voltage and current at the source end for

whereas the points B, D, give the
voltage and current at the load end for Thus, for example,T 6 t 6 3T, 3T 6 t 6 5T, Á .

Á ,0 6 t 6 2T, 2T 6 t 6 4T, 4T 6 t 6 6T, Á ,
Á ,

-1>Z0,1>Z0

VS = V+ + V-, IS = 1V+ - V-2>50,
1- +2I-

 
+V-

 
+

 =
V+ - V- + 1VS - V+ - V-2

50
=

-2V- + VS

50

 IS = I+ + I- + I-
 
+ =

V+ - V- + V-
 
+

Z0

 VS = V+ + V- + V-
 
+

 50 = 200IS + VS

z = 0:t = 2T+
1- +2

t = 2T,z = 01-2
VL = V+, IL = V+>50,

-1>50
IL

VL1-2I-V-
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(a)

0 2 6

10

t, ms

VS

A

C
E

4

(b)

0 1 5

5

t, ms

VL

B
D

3

FIGURE 6.49

Time variations of (a) and (b) for the
transmission-line system of Fig. 6.47. The
voltage levels A, B, C, correspond to those
in Fig. 6.48.

Á

VL,VS

the time variations of and are shown in Figs. 6.49(a) and (b), respectively. Finally, it
can be seen from Fig. 6.48 that the steady-state values of line voltage and current are
reached at the point of intersection (denoted SS) of the source and load V-I characteristics.

Now, going back to Example 6.6, the behavior of the system for the uniform-
ly charged line can be analyzed by using the load-line technique, as an alternative
to the solution using the bounce diagram technique. Thus, noting that the termi-
nal voltage-current characteristics at the ends and of the system in
Fig. 6.43 are given by and respectively, and that
the characteristic impedance of the line is we can carry out the load-line
construction, as shown in Fig. 6.50, beginning at the point A (100 V, 0 A), and

50 Æ,
I = 0,V = -IRL = -150I

z = lz = 0

VLVS

0
50 Input 100

I, A

V, V

F

E

C

D

B

A

Output

Slope � � 1
50

�
1
3

� 2
3

Slope � 1
50

FIGURE 6.50

Load-line construction for the analysis of the system of Fig 6.43(a).
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Z0, T

(a)

(b)

Vo

�

Vi

�

�

�

Io Ii

I, mA

V, V

10

�1

20

30

�10

�30

�20

�2 1 2 3 4 5

Input

Output 0 State

Output 1 State

Steady-State 1

Steady-State 0

FIGURE 6.51

(a) Transmission-line interconnection
between two logic gates. (b) Typical 
V-I characteristics for the logic gates.

drawing alternately straight lines of slope 1/50 and to obtain the points of
intersection B, C, D, The points B, D, F, give the line voltage and current
values at the end for intervals of beginning at 

whereas the points C, E, give the line voltage and current values at the
end for intervals of beginning at For example, the
time variation of the line voltage at provided by the load-line construc-
tion is the same as in Fig. 6.45.

We shall now apply the procedure for the use of the load-line technique for
a line with uniform initial distribution, just illustrated, to the analysis of the sys-
tem in Fig. 6.51(a) in which two transistor-transistor logic (TTL) inverters are
interconnected by using a transmission line of characteristic impedance and
one-way travel time T. As the name inverter implies, the gate has an output that
is the inverse of the input. Thus, if the input is in the HIGH (logic 1) range, the
output will be in the LOW (logic 0) range, and vice versa.Typical V-I characteris-
tics for a TTL inverter are shown in Fig. 6.51(b).As shown in this figure, when the
system is in the steady state with the output of the first inverter in the 0 state, the

Z0

z = 0
Á .3 ms,t = 1 ms,2 msz = l

ÁÁ ,
4 ms,2 ms,t = 0 ms,2 msz = 0

ÁÁ .
-1>50

Interconnec-
tion between
logic gates
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6.6 Interconnections Between Logic Gates 409

voltage and current along the line are given by the intersection of the output 0
characteristic and the input characteristic; when the system is in the steady state
with the output of the first inverter in the 1 state, the voltage and current along
the line are given by the intersection of the output 1 characteristic and the input
characteristic. Thus, the line is charged to 0.2 V for the steady-state 0 condition
and to 4 V for the steady-state 1 condition. We wish to study the transient phe-
nomena corresponding to the transition when the output of the first gate switches
from the 0 to the 1 state, and vice versa, assuming of the line to be 

Considering first the transition from the 0 state to the 1 state, and follow-
ing the line of argument in Example 6.7, we carry out the construction shown in
Fig. 6.52(a). This construction consists of beginning at the point corresponding
to the steady-state 0 (the initial state) and drawing a straight line of slope 1/30 to
intersect with the output 1 characteristic at point A, then drawing from point A

30 Æ.Z0

(a)

(b)
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V, V
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Steady-State 0
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B D

T 3T
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0
t

Vi, V

5T
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4
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2.6
2.95

FIGURE 6.52

(a) Construction based on the load-line
technique for analysis of the 0-to-1
transition for the system of Fig 6.51(a).
(b) Plot of versus t obtained from the
construction in (a).

Vi

Analysis 
of 0-to-1
transition
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(b)

Output 1 State
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FIGURE 6.53

(a) Construction based on the load-line
technique for analysis of the 1-to-0
transition for the system of Fig. 6.51(a).
(b) Plot of versus t obtained from the
construction in (a).

Vi

Analysis of 
1-to-0
transition

a straight line of slope to intersect the input characteristic at point B, and
so on. From this construction, the variation of the voltage at the input of the
second gate can be sketched as shown in Fig. 6.52(b), in which the voltage levels
correspond to the points in Fig. 6.52(a). The effect of the transients
on the performance of the system may now be seen by noting from Fig. 6.52(b)
that depending on the value of the minimum gate voltage that will reliably be
recognized as logic 1, a time delay in excess of T may be involved in the transi-
tion from 0 to 1. Thus, if this minimum voltage is 2 V, the interconnecting line
will result in an extra time delay of 2T for the input of the second gate to switch
from 0 to 1, since does not exceed 2 V until 

Considering next the transition from the 1 state to the 0 state, we carry out
the construction shown in Fig. 6.53(a), with the crisscross lines beginning at the

t = 3T+ .Vi

0, B, D, Á ,

Vi

-1>30
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6.7 Crosstalk on Transmission Lines 411

point corresponding to the steady-state 1. From this construction, we obtain the
plot of versus t, as shown in Fig. 6.53(b), in which the voltage levels correspond
to the points in Fig. 6.53(a). If we assume a maximum gate input
voltage that can be readily recognized as logic 0 to be 1 V, it can once again be
seen that an extra time delay of 2T is involved in the switching of the input of the
second gate from 1 to 0, since does not drop below 1 V until 

K6.6. Load-line technique; Interconnection between logic gates.
D6.13. Assume that in the system of Fig. 6.47 the values of the voltage source and its in-

ternal resistance are 12 V and respectively, and that of the line is
By using the load-line technique, find the approximate values of: (a)

at (b) at (c) at and (d) at 
Ans. (a) 2 V; (b) 9.3 V; (c) 5 V; (d) 8 V.

6.7 CROSSTALK ON TRANSMISSION LINES

When two or more transmission lines are in the vicinity of one another, a wave
propagating along one line, which we shall call the primary line, can induce a
wave on another line, the secondary line, due to capacitive (electric field) and
inductive (magnetic field) coupling between the two lines, resulting in the unde-
sirable phenomenon of crosstalk between the lines.An example is illustrated by
the arrangement of Fig. 6.54(a), which is a printed-circuit board (PCB) repre-
sentation of two closely spaced transmission lines. Figure 6.54(b) represents the
distributed circuit equivalent, where and are the coupling capacitance
and coupling inductance, respectively, per unit length of the arrangement.

lmcm

t = q .VLt = 4 ms;VLt = 3 ms;VSt = 2 ms;
VL100 Æ.

Z010 Æ,

t = 3T+ .Vi

1, B, D, Á ,
Vi

Primary Line

Secondary Line
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Ground Plane

(a) (b)

    1 �z

    1 �z

    2 �z

    2 �z
    2 �z
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    1 �z

    1 �z

    m �z

    m �z

    m �z

    m �z

FIGURE 6.54

(a) PCB representation of two closely spaced transmission lines. (b) Distributed equivalent circuit for (a).

Crosstalk
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t � 0

z � 0 z � l

z � j
dj

S

Line 1
Z0, vp, T Z0

Z0

�
�

Vg(t)

Line 2
Z0, vp, T Z0Z0

z

FIGURE 6.55

Coupled transmission-line pair for analysis of crosstalk.

In this section, we shall analyze a pair of coupled transmission lines for
the determination of induced waves on the secondary line for a given wave on
the primary line. To keep the analysis simple, we shall consider both lines to be
of the same characteristic impedance, velocity of propagation, and length, and
terminated by their characteristic impedances, so that no reflections occur
from the ends of either line. It is also convenient to assume the coupling to be
weak, so that the effects on the primary line of waves induced in the secondary
line can be neglected. Thus, we shall be concerned only with the crosstalk from
the primary line to the secondary line and not vice versa. Briefly, as the 
wave propagates on the primary line from source toward load, each infinitesi-
mal length of that line induces voltage and current in the adjacent infinitesimal
length of the secondary line, which set up and waves on that line. The
contributions due to the infinitesimal lengths add up to give the induced volt-
age and current at a given location on the secondary line.

We shall represent the coupled-line pair, as shown in Fig. 6.55, with the
primary line as line 1 and the secondary line as line 2.Then, when the switch S is
closed at a wave originates at on line 1 and propagates toward
the load. Let us consider a differential length at the location of line 1
charged to the wave voltage and current and obtain its contributions to the
induced voltages and currents in line 2.

The capacitive coupling induces a differential crosstalk current flow-
ing into the nongrounded conductor of line 2, given by

(6.70a)¢Ic21j, t2 = cm ¢j  

0V11j, t2
0t

¢Ic2,

1+2 z = jdj
z = 01+2t = 0,

1-21+2

1+2

Weak
coupling
analysis

Modeling for
capacitive
coupling
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6.7 Crosstalk on Transmission Lines 413

where is the line-1 voltage. This induced current is modeled by an ideal
current source, connected in parallel with line 2 at on that line, as shown in
Fig. 6.56(a). The current source views the characteristic impedance of the line to
either side of so that the equivalent circuit is as shown in Fig. 6.56(b).Thus,
voltages of are produced to the right and left of and propagate as
forward-crosstalk and backward-crosstalk voltages, respectively, on line 2.

The inductive coupling induces a differential crosstalk voltage, which
is given by

(6.70b)

This induced voltage is modeled by an ideal voltage source in series with line 2
at on that line, as shown in Fig. 6.57(a). The polarity of the voltage source
is such that the current due to it in line 2 produces a magnetic flux, which op-
poses the change in the flux due to the current in line 1, in accordance with
Lenz’s law. The voltage source views the characteristic impedance of the line to
either side of it, so that the equivalent circuit is as shown in Fig. 6.57(b). Thus,

z = j

¢Vc21j, t2 = lm ¢j  

0I11j, t2
0t

¢Vc2,

z = j1
2 Z0 ¢Ic2

z = j,

z = j
V11j, t2

Line 2

(a) (b)
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z � j z � jz

1
2 Z0 �IC2�IC2

1
2

�

�

�

�

FIGURE 6.56

(a) Modeling for capacitive coupling in crosstalk analysis. (b) Equivalent circuit for (a).
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(a) Modeling for inductive coupling in crosstalk analysis. (b) Equivalent circuit for (a).
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414 Chapter 6 Transmission-Line Essentials for Digital Electronics

voltages of and are produced to the left and right of re-
spectively, and propagate as backward-crosstalk and forward-crosstalk voltages,
respectively, on line 2.

Combining the contributions due to capacitive coupling and inductive
coupling, we obtain the total differential voltages produced to the right and left
of to be

(6.71a)

(6.71b)

respectively. Substituting (6.70a) and (6.70b) into (6.71a) and (6.71b), we obtain

(6.72a)

(6.72b)

where we have substituted in accordance with the relationship be-
tween the voltage and current of a wave.

We are now ready to apply (6.72a) and (6.72b) in conjunction with super-
position to obtain the and wave voltages at any location on line 2, due to
a wave of voltage on line 1. Thus, noting that the effect of at

at a given time t is felt at a location on line 2 at time 
we can write

(6.73)

or

(6.74)

where we have defined

(6.75)

and the prime associated with denotes differentiation with time. The quantity
is called the forward-crosstalk coefficient. Note that the upper limit in the in-

tegral in (6.108) is z, because the line-1 voltage to the right of a given location z
Kf
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6.7 Crosstalk on Transmission Lines 415

on that line does not contribute to the forward-crosstalk voltage on line 2 at that
same location. The result given by (6.74) tells us that the forward-crosstalk volt-
age is proportional to z and the time derivative of the primary line voltage.

To obtain we note that the effect of at at a given time t is
felt at a location on line 2 at time Hence,

(6.76)

or

(6.77)

where we have defined the backward-crosstalk coefficient

(6.78)

Note that the lower limit in the integral in (6.76) is z, because the line-1 voltage
to the left of a given location z on that line does not contribute to the backward-
crosstalk voltage on line 2 at that same location.

We shall now consider an example to illustrate the application of (6.74)
and (6.77) for a specified voltage in Fig. 6.55.

Example 6.8 Determination of induced wave voltages in the secondary
line of a coupled pair of lines

Let in Fig. 6.55 be the function shown in Fig. 6.58, where We wish
to determine the and wave voltages on line 2.

Noting that

and hence
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0 T0

2V0

t

Vg

FIGURE 6.58

Source voltage for the system of
Fig. 6.65 for Example 6.8.

and using (6.74), we can write the wave voltage on line 2 as

This is shown in the three-dimensional plot of Fig 6.59, in which the cross section in any
constant-z plane is a pulse of voltage for Note that
the pulse voltage is shown to be negative.This is because normally the effect of inductive
coupling dominates that of the capacitive coupling, so that is negative.

Using (6.77), the wave voltage can be written as

where
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Determination of backward-crosstalk voltage for the system of Fig. 6.55, with
as in Fig. 6.58.Vg1t2
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Three-dimensional depiction of
forward-crosstalk voltage for the system
of Fig. 6.55, with as in Fig. 6.58.Vg1t2
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These two voltages and the wave voltage for a value of z for which 
are shown in Fig. 6.60. Figure 6.61 shows the three-dimensional

plot of in which the cross section in any given constant-z plane gives the
time variation of for that value of z. Note that as z varies from zero to l, the
shape of changes from a trapezoidal pulse with a height of at to a tri-
angular pulse of height and width at and then changes to
a trapezoidal pulse again but with a height continuously decreasing from to
zero at 

K6.7. Weak coupling analysis; Capacitive coupling; Inductive coupling; Forward
crosstalk; Backward crosstalk.

D6.14. In Example 6.8, assume that 
and for the line parameters in Fig. 6.55, and for in
Fig. 6.58. Find the following: (a) the forward-crosstalk coefficient; (b) the back-
ward-crosstalk coefficient; (c) (d) and (e)
Ans. (a) (b) 0.0508; (c) (d)
(e)

SUMMARY

In this chapter we introduced the parallel-plate transmission line by considering
a uniform plane wave propagating between two parallel perfectly conducting
plates.We showed that wave propagation on a transmission line can be discussed
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FIGURE 6.61

Three-dimensional depiction of backward-crosstalk voltage for the system of Fig. 6.55, with as in
Fig. 6.58.
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Summary 419

in terms of voltage and current, which are related to the electric and magnetic
field, respectively, by deriving the transmission-line equations

(6.79a)

(6.79b)

which then led us to the concept of the distributed circuit.We learned that prop-
agation along a transmission line in the general case is characterized by trans-
verse electromagnetic waves, with the parameters and differing from one
line to another and derivable from static-field considerations. The solutions to
the transmission-line equations are

(6.80a)

(6.80b)

where is the characteristic impedance of the line, and 
is the velocity of propagation on the line.

We discussed the determination of and for the case of a line with ho-
mogeneous dielectric, as well as for the case of a line involving more than one
dielectric, an example being the microstrip line. For the former case,

(6.81a)

(6.81b)

where c, and are the relative permittivity of the dielectric, the velocity of
light in free space, and the capacitance per unit length of the line computed
from static field considerations, respectively. For the latter case, assuming non-
magnetic dielectrics,

(6.82a)

(6.82b)

where is the capacitance per unit length of the line with the dielectrics in
place, and is the capacitance per unit length with all dielectrics replaced by
free space, both computed from static field considerations. Note that (6.82a)
and (6.82b) reduce to (6.81a) and (6.81b), respectively, if all dielectrics are the
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420 Chapter 6 Transmission-Line Essentials for Digital Electronics

same, since then Based on (6.81a) and (6.81b), and using closed
form solutions obtained in Sections 5.3 and 5.4 for the capacitance per unit
length, we presented the analytical expressions for for some common types
of lines.

We then discussed time-domain analysis of a transmission line terminated
by a load resistance and excited by a constant voltage source in series
with internal resistance Writing the general solutions (6.80a) and (6.80b)
concisely in the manner

(6.83a)
(6.83b)

where

(6.84a)

(6.84b)

we found that the situation consists of the bouncing back and forth of transient
and waves between the two ends of the line. The initial wave volt-

age is All other waves are governed by the reflection coeffi-
cients at the two ends of the line, given for the voltage by

(6.85a)

and

(6.85b)

for the load and source ends, respectively. In the steady state, the situation is the
superposition of all the transient waves, equivalent to the sum of a single 
wave and a single wave. We discussed the bounce-diagram technique of
keeping track of the transient phenomenon and extended it to a pulse voltage
source.

We learned that when a wave is incident from, say, line 1 onto a junction
with line 2, reflection occurs just as though line 1 is terminated by a load resistor
equal to the characteristic impedance of line 2. A transmitted wave goes into
line 2 in accordance with the voltage and current transmission coefficients

(6.86a)tV = 1 + ≠

1-2 1+2

≠S =
Rg - Z0

Rg + Z0

≠R =
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V-
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V0RL
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c = c0er.
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and

(6.86b)

respectively, where is the voltage reflection coefficient. Applying this to a sys-
tem of three lines in cascade, we showed how to obtain the unit impulse response
of the system and from it obtain the frequency response. We then extended the
analysis to lines with discontinuities to discuss and illustrate by means of an ex-
ample the application of time-domain reflectometry, an important experimental
technique.

We then considered lines with reactive terminations and discontinuities,
where we learned that the reflection coefficient concept is not useful to study the
transient behavior. It is necessary to write the differential equations pertinent to
the boundary conditions at the terminations and/or discontinuities, and solve
them subject to the appropriate initial conditions; alternatively, the required volt-
ages and currents can be obtained from considerations of initial and final be-
haviors of the reactive element(s), and associated time constant(s).

As a prelude to the consideration of interconnections between logic gates,
we discussed time-domain analysis of lines with nonzero initial conditions. For
the general case, the initial voltage and current distributions V(z, 0) and I(z, 0)
are decomposed into and wave voltages and currents as given by

The voltage and current distributions for are then obtained by keeping
track of the bouncing of these waves at the two ends of the line. For the special
case of uniform distribution, the analysis can be performed more conveniently
by considering the situation as one in which a transient wave is superimposed
on the initial distribution and using the bounce-diagram technique. We then in-
troduced the load-line technique of time-domain analysis, and applied it to the
analysis of transmission-line interconnection between logic gates.

Finally, we studied the topic of crosstalk on transmission lines, by consid-
ering the case of weak coupling between two lines. We learned that for a given
wave on the primary line, the crosstalk consists of two waves, forward and back-
ward, induced on the secondary line and governed by the forward-crosstalk co-
efficient and the backward-crosstalk coefficient, respectively. We illustrated by
means of an example the determination of crosstalk voltages for a specified ex-
citation for the primary line.
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422 Chapter 6 Transmission-Line Essentials for Digital Electronics

REVIEW QUESTIONS

Q6.1. Describe the phenomenon of guiding of a uniform plane wave by a pair of par-
allel, plane, perfectly conducting sheets.

Q6.2. Discuss the derivation of the transmission-line equations from the field equa-
tions by considering the parallel-plate line.

Q6.3. Discuss the concept of the distributed circuit as compared to a lumped circuit.
Q6.4. Discuss the physical interpretation of the distributed circuit concept from ener-

gy considerations.
Q6.5. What is a transverse electromagnetic wave? Discuss the electric and magnetic

field distributions associated with a transverse electromagnetic wave.
Q6.6. Discuss the analogy between uniform plane wave parameters and transmission-

line parameters.
Q6.7. Explain why the product of and of a line is equal to the product of and 

of the dielectric of the line.
Q6.8. What is the significance of the characteristic impedance of a line? Why is it not

in general equal to the intrinsic impedance of the medium between the conduc-
tors of the line?

Q6.9. Discuss the geometry associated with the microstrip line and the determination
of its characteristic impedance and velocity of propagation.

Q6.10. Discuss the general solutions for the line voltage and current and the notation
associated with their representation in concise form.

Q6.11. What is the fundamental distinction between the occurrence of the response in
one branch of a lumped circuit to the application of an excitation in a different
branch of the circuit and the occurrence of the response at one location on a
transmission line to the application of an excitation at a different location on
the line?

Q6.12. Describe the phenomenon of the bouncing back and forth of transient waves on
a transmission line excited by a constant voltage source in series with internal
resistance and terminated by a resistance.

Q6.13. What is the nature of the formula for the voltage reflection coefficient? Discuss
its values for some special cases.

Q6.14. What is the steady-state equivalent of a line excited by a constant voltage
source? What is the actual situation in the steady state?

Q6.15. Discuss the bounce-diagram technique of keeping track of the bouncing back and
forth of the transient waves on a transmission line for a constant voltage source.

Q6.16. Discuss the bounce-diagram technique of keeping track of the bouncing back
and forth of the transient waves on a transmission line for a pulse voltage
source.

Q6.17. How are the voltage and current transmission coefficients at the junction be-
tween two lines related to the voltage reflection coefficient?

Q6.18. Explain how it is possible for the transmitted voltage or current at a junction be-
tween two lines to exceed the incident voltage or current.

Q6.19. Discuss the determination of the unit impulse response of a system of three
lines in cascade.

Q6.20. Outline the procedure for the determination of the frequency response of a sys-
tem of three lines in cascade from its unit impulse response.

emcl
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Problems 423

Q6.21. What is a radome? How is it analyzed by using transmission-line equivalent?
Q6.22. Describe the technique of locating discontinuities in a transmission-line system

by using a time-domain reflectometer.
Q6.23. Discuss the transient analysis of a line driven by a constant voltage source in se-

ries with a resistance equal to the of the line and terminated by an inductor.
Q6.24. Why is the concept of reflection coefficient not useful for studying the transient

behavior of lines with reactive terminations and discontinuities?
Q6.25. Discuss the determination of the transient behavior of lines with reactive termi-

nations and discontinuities without formally setting up the differential equa-
tions and solving them.

Q6.26. Discuss the determination of the voltage and current distributions on an initial-
ly charged line for any given time from the knowledge of the initial voltage and
current distributions.

Q6.27. Discuss with the aid of an example the discharging of an initially charged line
into a resistor.

Q6.28. Discuss the bounce-diagram technique of transient analysis of a line with uni-
form initial voltage and current distributions.

Q6.29. How do you check the energy balance for the case of a line with initial voltage
and/or current distribution(s) and discharged into a resistor?

Q6.30. Discuss the load-line technique of obtaining the time variations of the voltages
and currents at the source and load ends of a line from a knowledge of the ter-
minal V-I characteristics.

Q6.31. Discuss the analysis of transmission-line interconnection between two logic gates.
Q6.32. Discuss briefly the weak-coupling analysis for crosstalk between two transmis-

sion lines.
Q6.33. Discuss the modeling of capacitive and inductive couplings for crosstalk on

transmission lines.
Q6.34. Discuss and distinguish between the dependence of the forward- and backward-

crosstalk coefficients on the line parameters.
Q6.35. Outline the determination of the forward- and backward-crosstalk voltages in-

duced on a secondary line for a given excitation for the primary line.

PROBLEMS

Section 6.1

P6.1. Finding fields and power flow for a parallel-plate line for specified voltage along
the line. A parallel-plate transmission line is made up of perfect conductors of
width and lying in the planes and The medium
between the conductors is a nonmagnetic perfect dielectric. For a uni-
form plane wave propagating along the line, the voltage along the line is given by

Neglecting fringing of fields, find: (a) the electric field intensity of the
wave; (b) the magnetic field intensity of the wave; (c) the current I(z, t)
along the line; and (d) the power flow P(z, t) down the line.

Hy1z, t2
Ex1z, t2

V1z, t2 = 10 cos 13p * 108t - 2pz2 V

1m = m02,
x = 0.01 m.x = 0w = 0.1 m

Z0
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424 Chapter 6 Transmission-Line Essentials for Digital Electronics

P6.2. Computation of parameters for a parallel-plate line with two dielectrics in par-
allel. A parallel-plate transmission line consists of an arrangement of two per-
fect dielectrics, as shown by the transverse cross section in Fig. 6.62. Note that

so that the TEM waves propagating in the two dielectrics are in
phase at all points along the interface between the dielectrics. Neglect fringing of
fields and compute the values of and of the line.Z0l, c,

m1e1 = m2e2,

y
z

x

0.01 m

0.1 m 0.1 m

e1 � 4e0

m1 � m0

e2 = 2e0
m2 = 2m0

FIGURE 6.62

For Problem P6.2.

P6.3. Computation of parameters for a parallel-plate line with two dielectrics in series.
Repeat Problem P6.2 for a parallel-plate line having the cross section shown in
Fig. 6.63.

0.01 m

0.01 m

0.2 m

z

x

y
e1 � 9e0, m1 � m0

e2 � 3e0, m2 � 3m0

FIGURE 6.63

For Problem P6.3.

P6.4. Transmission-line equations and power flow from the geometry of a coaxial
cable. Derive the transmission-line equations by considering the special case of
two infinitely long coaxial cylindrical conductors.Also show that the power flow
along the line is equal to the product of the voltage between the conductors and
current along the conductors.

Section 6.2

P6.5. A transmission-line system involving two lines. In the system shown in Fig. 6.64,
assume that is a constant voltage source of 100 V and the switch S is closed at

Find and sketch: (a) the line voltage versus z for (b) the line cur-
rent versus z for (c) the line voltage versus t for and (d) the
line current versus t for z = -40 m.

z = 30 m;t = 0.4 ms;
t = 0.2 ms;t = 0.

Vg
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z � �300 m z = 300 mz � 0� z � 0�z

Z0 � 120 	
vp � 2 � 108 m/s

Z0 = 60 	
vp � 3 � 108  m/s

Vg

t � 0

120 	
60 	

60 	

S

�
�

z

FIGURE 6.64

For Problem P6.5.

(a)

(b)

Z0 � 100 	
T � l /vp

z � 0

t � 0

z � l

Rg

S

RL

V0

90

t, ms
2

100

0 4 6

[V ]z � 0, V [V ]z � l, V

(c)

75

t, ms
2

100

0 4 6

FIGURE 6.65

For Problem P6.6.

P6.6. Finding several quantities in a transmission-line system from given observations.
In the system shown in Fig. 6.65(a), the switch S is closed at The line volt-
age variations with time at and for the first are observed to be
as shown in Fig. 6.65(b) and (c), respectively. Find the values of and T.V0, Rg, RL,

5 msz = lz = 0
t = 0.

P6.7. Expressing the steady-state situation on a line as superposition of and 
waves. The system shown in Fig. 6.66 is in steady state. Find (a) the line voltage
and current, (b) the wave voltage and current, and (c) the wave voltage
and current.

1-21+2
(�)(�)
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426 Chapter 6 Transmission-Line Essentials for Digital Electronics

P6.8. Time-domain analysis of a transmission-line system using the bounce-diagram
technique. In the system shown in Fig. 6.67, the switch S is closed at As-
sume to be a direct voltage of 90 V and draw the voltage and current
bounce diagrams. From these bounce diagrams, sketch: (a) the line voltage and
line current versus t (up to ) at and and (b) the
line voltage and line current versus z for and t = 3.5 ms.t = 1.2 ms

z = l>2;z = 0, z = l,t = 7.25 ms

Vg1t2
t = 0.

t, ms
0.1

100

0 0.2 0.3

Vg, V

FIGURE 6.68

For Problem P6.9.

P6.9. Time-domain analysis of a transmission-line system for a triangular pulse
excitation. Repeat Problem P6.5 assuming to be a triangular pulse, as
shown in Fig. 6.68.

Vg

z � 0

t � 0

z � l

S

Vg(t)

Z0 � 60 	
T � 1 ms 180 	

90 	

�
�

FIGURE 6.67

For Problem P6.8.

Z0 � 75 	
T � 1 ms

z � 0 z � l

40 	
60 	

100 V

FIGURE 6.66

For Problem P6.7.

P6.10. Time-domain analysis of a transmission-line system for a rectangular pulse
excitation. For the system of Problem P6.8, assume that the voltage source is
of duration instead of being of infinite duration. Find and sketch the
line voltage and line current versus z for and 

P6.11. Time-domain analysis of a transmission-line system for a triangular pulse exci-
tation. In the system shown in Fig. 6.69, the switch S is closed at Find andt = 0.

t = 3.5 ms.t = 1.2 ms
0.3 ms
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sketch: (a) the line voltage versus z for (b) the line current versus z
for and (c) the line voltage at versus t up to t = 4 ms.z = lt = 2 

1
2 

 
ms;

t = 2 
1
2 

 
ms;

z � 0

t � 0

z � l

S

Z0 � 50 	
T � 1 ms

50 	

�
� 10 sin 106pt V

FIGURE 6.70

For Problem P6.12.

z � 0

t � 0

z � l

S

Vg(t)

Z0 � 60 	
T � 1 ms 20 	

30 	

t, ms
0.5

90

0 1.0 1.5 2.0

Vg(t), V

�
�

FIGURE 6.69

For Problem P6.11.

P6.12. Time-domain analysis of a transmission-line system for a sinusoidal excitation.
In the system shown in Fig. 6.70, the switch S is closed at Draw the volt-
age and current-bounce diagrams and sketch (a) the line voltage and line cur-
rent versus t for and and (b) the line voltage and line current versus
z for 9/4, 5/2, 11/4, and Note that the period of the source voltage is

which is equal to the two-way travel time on the line.2 ms,
3 ms.t = 2,

z = lz = 0

t = 0.

Section 6.3

P6.13. Reflection and transmission at a transmission-line discontinuity. In the system
shown in Fig. 6.71, an incident wave of voltage strikes the discontinuity from
the left, that is, from line 1. Find the reflected wave voltage and current into line
1 and the transmitted wave voltage and current into line 2.

V+
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428 Chapter 6 Transmission-Line Essentials for Digital Electronics

P6.14. Unit impulse response and frequency response for a system of three lines in
cascade. In the system shown in Fig. 6.72: (a) find the output voltage across
the resistor for and (b) find and sketch the amplitude of

versus for Vg1t2 = cos vt.vVo1t2
Vg1t2 = d1t2;300-Æ

Vo

A

t

A/152 A/154

�A/153

�A/15

2 ms

(a)

(b)

Medium 1
m0, e0

Medium 2
m0, e2

Medium 3
m0, 9e0

l

I O

Exi Exo

Hyi Hyo

FIGURE 6.73

For Problem P6.15.

P6.15. Finding unknown parameters for a system of three media from unit impulse
response. In Fig. 6.73 (a), the plane I is the input plane from which a uniform

Line 2
Z02 � 50 	

Line 1
Z01 � 100 	

(�)

R2 � 150 	

R1 � 100 	

FIGURE 6.71

For Problem P6.13.

�

�

Vo
�
�

50 	

300 	
Vg(t)

Z0 � 50 	
T � 1 ms

Z0 � 150 	
T � 1 ms

Z0 � 300 	
T � 1 ms

FIGURE 6.72

For Problem P6.14.
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Problems 429

plane wave is incident normally on the interface between medium 1 and medi-
um 2, and the plane O is the output plane in which the response of the system
is observed. For an incident wave of find the minimum value of
the thickness l and the corresponding value of the permittivity of medium 2
required to obtain the electric field in the output plane, as shown in
Fig. 6.84(b), in which the interval between successive impulses is Then find
the value of A, and sketch the reflected wave electric field in the plane I.

P6.16. Computing reflected and transmitted powers at a junction involving three lines.
In Fig. 6.74, a wave carrying power P is incident on the junction from
line 1. Find (a) the power reflected into line 1; (b) the power transmitted into
line 2; and (c) the power transmitted into line 3.

a-a¿1+2

2 ms.
Exo1t2

e2

Exi1t2 = d1t2,

Z0 � 50 	
 T � 1 ms

t � 0

50 	

50 	

100 V

S

Relay
Coil

IL

0.1 H

1 2

FIGURE 6.75

For Problem P6.18.

P6.17. Time-domain reflectometer system observations for a line with a given disconti-
nuity. In the system of Fig. 6.29, assume that the discontinuity at is a re-
sistor of value in series with the line, instead of the parallel resistor.
Find and sketch the waveform that the TDR system would measure up to

Section 6.4

P6.18. Line terminated with an inductive load. In the system shown in Fig. 6.75, the
switch S is closed at with no current in the relay coil and with the relay in
position 1.When the relay coil current reaches 1.73 A, the relay switches to po-
sition 2; when the current drops to 0.636 A, the relay switches back to position 1.
(a) Find the time at which the relay switches to position 2. (b) Find the time at
which the relay switches back to position 1.

t2t1

IL

t = 0

t = 200 ns.

120-Æ40 Æ
z = 4 m

Line 2
Z02 � 100 	

Line 1
Z01 � 100 	

Line 3
Z03 � 50 	

a

a

FIGURE 6.74

For Problem P6.16.
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430 Chapter 6 Transmission-Line Essentials for Digital Electronics

P6.19. Line terminated with a capacitive load. In the system shown in Fig. 6.76, the
switch S is closed at with the voltage across the capacitor equal to zero.
(a) Obtain the differential equation for at (b) Find the solution for
V-1l, t2.

z = l.V-
t = 0,

P6.20. A transmission-line system with inductive discontinuity. In the system shown in
Fig. 6.77, the switch S is closed at with the lines uncharged and with zero
current in the inductor. Obtain the solution for the line voltage versus time at
z = l+ .

t = 0,

Z0, T 

Z0

Z0

C

V0

t � 0

S

z � 0 z � l

FIGURE 6.76

For Problem P6.19.

Z0

z � 0

Z0, T

Z0

V0

Z0L

t � 0

S

z � l� z � l�z z

FIGURE 6.77

For Problem P6.20.

P6.21. Using observations to find the parameters for a transmission line with a dis-
continuity. In the system shown in Fig. 6.78(a), the network N consists of a sin-
gle circuit element (R, L, or C). The system is initially uncharged. The switch S
is closed at and the line voltage at is observed to be as shown in
Fig. 6.78(b). (a) Determine whether the circuit element is R, L, or C. (b) Find
the value of Z02>Z01.

z = 0t = 0,
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Section 6.5

P6.22. Discharging of an initially charged line into a passive nonlinear element. In the
system shown in Fig. 6.79, a passive nonlinear element having the indicated volt-
ampere characteristic is connected to an initially charged line at Find the
voltage across the nonlinear element immediately after closure of the switch.

t = 0.

P6.23. Bounce-diagram technique and checking energy balance for an initially charged
line. In the system shown in Fig. 6.80, steady-state conditions are established with
the switch S closed.At the switch is opened. (a) Find the sketch the voltage
across the resistor for with the aid of a bounce diagram. (b) Show
that the total energy dissipated in the resistor after opening the switch is
exactly the same as the energy stored in the line before opening the switch.

150-Æ
t Ú 0,150-Æ

t = 0,

(a)

Z02

z � 0

Z01, T1

Z01

V0

Z02

t � 0

S

V0

0.5 V0

0.25 V0

2T1
(b)

0
t

[V ]z � 0

N

FIGURE 6.78

For Problem P6.21.

z � 0

Z0 � 50 	 V � 50 I I

t � 0�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

z � l

S

I

10 V

FIGURE 6.79

For Problem P6.22.
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432 Chapter 6 Transmission-Line Essentials for Digital Electronics

P6.24. An initially charged transmission-line system. In the system shown in Fig. 6.81,
steady-state conditions are established with the switch S closed. At the
switch is opened. (a) Sketch the voltage and current along the system for

(b) Find the total energy stored in the lines for (c) Find and
sketch the voltages across the two resistors for (d) From your sketches of
part (c), find the total energy dissipated in the resistors for t 7 0.

t 7 0.
t = 0- .t = 0- .

t = 0,

P6.25. An initially charged line connected to an inductor. In the system shown in
Fig. 6.82, steady-state conditions are established with the switch S open and no
current in the inductor. At the switch is closed. (a) Obtain the expres-
sions for the line voltage and current versus t at (b) Sketch the line volt-
age and current versus z for t = T>2.

z = l.
t = 0,

Z0 � 50 	
T � 1 ms

z � 0

t � 0

z � l

50 	
150 	

100 V

S

FIGURE 6.80

For Problem P6.23.

z � �l z � lz � 0

t � 0

60 	 100 V

60 	

120 	

S

Z0 � 60 	
T � 1 ms

Z0 � 60 	
T � 1 ms

FIGURE 6.81

For Problem P6.24.

Z0, T L

Z0

V0

z � 0

t � 0

z � l

S

FIGURE 6.82

For Problem P6.25.

Section 6.6

P6.26. Application of load-line technique for a line with linear resistive terminations.
For the system of Problem P6.8, use the load-line technique to obtain and plot
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line voltage and line current versus t (up to ) at and 
Also obtain the steady-state values of line voltage and current from the load-
line construction.

P6.27. Application of load-line technique for an initially charged line. For the system
of Problem P6.22, use the load-line technique to obtain and plot line voltage
versus t from up to at and 

P6.28. Analysis of transmission-line interconnection between two logic gates. For the
example of interconnection between logic gates of Fig. 6.51(a), repeat the load-
line constructions for and draw graphs of versus t for both 0-to-1
and 1-to-0 transitions.

P6.29. Analysis of transmission-line interconnection between two logic gates. For the
example of interconnection between logic gates of Fig. 6.51(a), find (a) the min-
imum value of such that for the transition from 0 to 1, the voltage reaches
2 V at and (b) the minimum value of such that for the transition from
1 to 0, the voltage reaches 1 V at 

Section 6.7

P6.30. Determination of induced wave voltages in the secondary line of a coupled pair
of lines. In Example 6.8, assume that is the function shown in Fig. 6.83, in-
stead of as in Fig. 6.58. Find and sketch the following: (a) (b)
and (c) V2

-10.8l, t2.
V2

-10, t2;V2
+1l, t2;

Vg1t2

t = T+ .Vi

Z0t = T+
ViZ0

ViZ0 = 50 Æ

z = l.z = 0t = 7l>vpt = 0

z = l.z = 0t = 5.25 ms

P6.31. Determination of induced wave voltages in the secondary line of a coupled pair
of lines. In Example 6.8, assume that

Find and sketch the following: (a) (b) (c)

P6.32. Determination of induced wave voltages in the secondary line of a coupled pair
of lines. In Example 6.8, assume that and Find and
sketch the following: (a) (b) and (c)

REVIEW PROBLEMS

R6.1. Circuit equivalents for transmission-line equations. Show that two alternative
representations of the circuit equivalent of the transmission line equations
(6.12a) and (6.12b) are as shown in Figs. 6.84(a) and 6.84 (b).

V21z, 1.1T2.V2
-1z, 1.1T2;V2

+1z, 1.1T2;
T0 = 0.2T.Kb>Kf = -25vp

V2
-10.75l, t2.V2

-10, t2;V2
+1l, t2;

Vg1t2 = e2V0 sin2 pt>T for 0 6 t 6 T

0 otherwise

t
0.1T

2V0

0 0.4T 0.5T

Vg

FIGURE 6.83

For Problem P6.30.
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434 Chapter 6 Transmission-Line Essentials for Digital Electronics

R6.2. A system of three transmission lines excited by a pulse voltage source. In the
system shown in Fig. 6.85, the voltage source is a pulse of amplitude 10 V and
duration from to and the switch S is closed at (a) Find
and sketch the voltage across the load resistor as a function of time for 
(b) Find and sketch the voltage across the internal resistance of the voltage
source as a function of time for (c) Show that the total energy supplied by
the voltage source is equal to the sum of the total energy dissipated in and the
total energy dissipated in Rg.

RL

t 7 0.
Rg

t 7 0.RL

t = 0.t = 1 ms,t = 01 ms
Vg

1
2     �z 1

2     �z     �z

    �z

�z
2z � z �z

2z � �z
2z � z �z

2z �

(a) (b)

1
2     �z

FIGURE 6.84
For Problem R6.1.

t � 0

S

Vg

Z0 � 100 	
vp � 3 � 108 m/s

Z
0  � 100 	

v
p  � 3 � 10 8 m/s

Z 0 �
 100 	

v p �
 3 � 10

8  m/s

Rg � 100 	

RL � 100 	

�
�

300 m

300 m

150 m

FIGURE 6.85

For Problem R6.2.
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R6.3. Uniform plane-wave impulse response and transparency of a dielectric slab. In
Fig. 6.86 the plane I is the input plane from which a uniform plane wave is inci-
dent normally on the interface between medium 1 and medium 2, and the plane
O is the output plane in which the response of the system is observed. (a) For an
incident wave of a unit impulse, find and sketch the sequence of
impulses for the electric field in the output plane. (b) If consists of
a periodic sequence of unit impulses of frequency f, show that there exists a
minimum value of f for which consists of a periodic sequence of unit im-
pulses of the same frequency f, and find that value of f.

Exo1t2
Exi1t2Exo1t2

Exi1t2 = d1t2,

Medium 1
m0, e0

Medium 2
m0, 9e0

Medium 3
m0, e0

5 cm

Plane I Plane O

Exi Exo

Hyi Hyo

FIGURE 6.86

For Problem R6.3.

R6.4. A system of three lines with a resistive network at the junction. In the system
shown in Fig. 6.87, a wave carrying power P is incident on the junction 
from line 1. (a) Find the value of R for which there is no reflected wave into line
1. (b) For the value of R found in (a), find the power transmitted into each of
lines 2 and 3.

a-a¿1+2

Line 1
Z01 � 100 	

Line 2
Z02 � 100 	

Line 3
Z03 � 100 	

R R

R

FIGURE 6.87

For Problem R6.4.

R6.5. An initially charged transmission-line system with capacitive discontinuity. In
the system shown in Fig. 6.88, steady-state conditions are established with the
switch S closed. At the switch S is opened. (a) Find the energy stored in
the system at (b) Obtain the solutions for the voltages across and

for (c) Show that the total energy dissipated in and for 
is equal to the energy stored in the system at t = 0- .

t 7 0RL2RL1t 7 0.RL2

RL1t = 0- .
t = 0,

RaoCh06v3.qxd  12/18/03  4:26 PM  Page 435



436 Chapter 6 Transmission-Line Essentials for Digital Electronics

R6.6. Transmission-line interconnection between two logic gates. For the example of
interconnection between logic gates in Section 6.6, find the value of for
which the voltage reached at for the transition from 0 to 1 is the same as
that reached for the transition from 1 to 0. What is the value of this voltage?

R6.7. A coupled line pair excited by a sinusoidal source in the primary line. In exam-
ple 6.8, assume that Show that for the ratio of
the amplitude of to the amplitude of is equal to and the
ratio of the amplitude of to is equal to pfl ƒKf ƒ .V0V21l, t2

Kb,Vg1t2,V0,V210, t2
f = 1>4T,Vg1t2 = V0 cos 2pft.

t = T+
Z0

Z0, T � CZ0 2Z0, T � CZ0
Z0

V0

t � 0S

RL1 � Z0 RL2 � 2Z0

C

FIGURE 6.88

For Problem R6.5.
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