
In Chapters 2, 3, and 4, we introduced progressively Maxwell’s equations and
studied uniform plane waves and associated topics. Two quantities of funda-
mental importance, resulting from Maxwell’s equations in differential form, are
the electromagnetic potentials: the electric scalar potential and the magnetic
vector potential. We introduce these quantities in this chapter and also consider
several topics of relevance to circuits and systems.

We begin the discussion of topics for circuits and systems with two impor-
tant differential equations involving the electric potential and discuss several
applications based on the solution of these equations, including the analysis of a
p-n junction semiconductor and arrangements involving two parallel conduc-
tors. We then introduce an important relationship between the (lumped) circuit
parameters, capacitance, conductance, and inductance for infinitely long, paral-
lel perfect conductor arrangements, and consider their determination.

Next we turn our attention to electric- and magnetic-field systems, that is,
systems in which either the electric field or the magnetic field is predominant,
leading from quasistatic extensions of the static fields existing in the structures
when the frequency of the source driving the structure is zero. The concepts of
electric- and magnetic-field systems are important in the study of electro-
mechanics. We shall also consider magnetic circuits, an important class of mag-
netic field systems, and the topic of electromechanical energy conversion.

5.1 GRADIENT, LAPLACIAN, AND THE POTENTIAL FUNCTIONS

In Example 3.9, we showed that for any vector A, It then fol-
lows from Gauss’ law for the magnetic field in differential form, that
the magnetic flux density vector B can be expressed as the curl of another

� # B = 0,
� # � � A = 0.Magnetic

vector
potential
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5.1 Gradient, Laplacian, and the Potential Functions 283

vector A; that is,

(5.1)

The vector A in (5.1) is known as the magnetic vector potential.
Substituting (5.1) into Faraday’s law in differential form,

and rearranging, we then obtain

or

(5.2)

If the curl of a vector is equal to the null vector, that vector can be ex-
pressed as the gradient of a scalar, since the curl of the gradient of a scalar func-
tion is identically equal to the null vector. The gradient of a scalar, say,
denoted (del ) is defined in such a manner that the increment in 
from a point P to a neighboring point Q is given by

(5.3)

where dl is the differential length vector from P to Q.Applying Stokes’ theorem
to the vector and a surface S bounded by closed path C, we then have

(5.4)

for any single-valued function Since (5.4) holds for an arbitrary S, it follows that

(5.5)

To obtain the expression for the gradient in the Cartesian coordinate sys-
tem, we write

(5.6)
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284 Chapter 5 Electromagnetic Potentials and Topics for Circuits and Systems

Then comparing with (5.3), we observe that

(5.7)

Note that the right side of (5.7) is simply the vector obtained by applying the del
operator to the scalar function It is for this reason that the gradient of is
written as Expressions for the gradient in cylindrical and spherical coordi-
nate systems are derived in Appendix B. These are as follows:

CYLINDRICAL

(5.8a)

SPHERICAL

(5.8b)

To discuss the physical interpretation of the gradient, let us consider a sur-
face on which is equal to a constant, say, and a point P on that surface, as
shown in Fig. 5.1(a). If we now consider another point on the same surface
and an infinitesimal distance away from between these two points is zero
since is constant on the surface. Thus, for the vector drawn from P to

and hence is perpendicular to Since this is true fordl1.[�£]PQ1, [�£]P
# dl1 = 0
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FIGURE 5.1

For discussing the physical interpretation of the gradient of a scalar function.

Physical
interpretation
of gradient
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5.1 Gradient, Laplacian, and the Potential Functions 285

all points on the constant surface, it follows that must be
normal to all possible infinitesimal length vectors drawn at P and
hence is normal to the surface. Denoting to be the unit normal vector to the
surface at P, we then have

(5.9)

Let us now consider two surfaces on which is constant, having values 
and as shown in Fig. 5.1(b). Let P and Q be points on the 
and surfaces, respectively, and dl be the vector drawn from P to
Q. Then from (5.3) and (5.9),

where is the angle between at P and dl. Thus,

(5.10)

Since is the distance between the two surfaces along and hence is the
shortest distance between them, it follows that is the maximum rate of in-
crease of at the point P. Thus, the gradient of a scalar function at a point is
a vector having magnitude equal to the maximum rate of increase of at that
point and is directed along the direction of the maximum rate of increase, which
is normal to the constant surface passing through that point; that is,

(5.11)

where dn is a differential length along The concept of the gradient of a scalar
function we just discussed is often utilized to find a unit vector normal to a given
surface. We shall illustrate this by means of an example.

Example 5.1 Finding unit vector normal to a surface by using the
gradient concept

Let us find the unit vector normal to the surface at the point (2, 4, 1) by using the
concept of the gradient of a scalar.

Writing the equation for the surface as

we note that the scalar function that is constant on the surface is given by

£1x, y, z2 = x2 - y
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Electric
scalar
potential

The gradient of the scalar function is then given by

The value of the gradient at the point (2, 4, 1) is Thus, the
required unit vector is

Returning now to (5.2), we write

(5.12)

where we have chosen the scalar to be the reason for the minus sign to be
explained in Section 5.2. Rearranging (5.12), we obtain

(5.13)

The quantity in (5.13) is known as the electric scalar potential.
The electric scalar potential and the magnetic vector potential A are

known as the electromagnetic potentials. As we shall show later in this section,
the electric scalar potential is related to the source charge density whereas
the magnetic vector potential is related to the source current density J. For the
time-varying case, the two are not independent, since the charge and current
densities are related through the continuity equation. For a given J, it is suffi-
cient to determine A, since B can be found from (5.1) and then E can be found
by using Ampère’s circuital law For static fields, that is,
for the two potentials are independent. Equation (5.1) remains unal-
tered, whereas (5.13) reduces to We shall consider the static field
case in Section 5.2.

To proceed further, we recall that Maxwell’s equations in differential form
are given by

(5.14a)

(5.14b)

(5.14c)
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5.1 Gradient, Laplacian, and the Potential Functions 287

From (5.14d), we expressed B in the manner

(5.15)

and then from (5.14a), we obtained

(5.16)

We now substitute (5.16) and (5.15) into (5.14c) and (5.14b), respectively, to obtain

(5.17a)

(5.17b)

We now define the Laplacian of a scalar quantity denoted (del
squared ) as

(5.18)

In Cartesian coordinates,

so that

or

(5.19)

Note that the Laplacian of a scalar is a scalar quantity. Expressions for the
Laplacian of a scalar in cylindrical and spherical coordinates are derived in
Appendix B. These are as follows:
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Laplacian of
a vector

SPHERICAL

(5.20b)

Before proceeding further, it is interesting to note that the four vector dif-
ferential operations that we have learned thus far in this chapter are such that

The curl of a vector is a vector.
The divergence of a vector is a scalar.
The gradient of a scalar is a vector.
The Laplacian of a scalar is a scalar.

Thus, all four combinations of vector and scalar are involved in the four operations.
Next, we define the Laplacian of a vector, denoted as

(5.21)

Expanding the right side of (5.21) in Cartesian coordinates and simplifying, we
obtain in the Cartesian coordinate system,

(5.22)

Thus, in the Cartesian coordinate system, the Laplacian of a vector is a vector
whose components are the Laplacians of the corresponding components of A.
It should, however, be cautioned that this simple observation does not hold in
the cylindrical and spherical coordinate systems. (See, e.g., Problem P5.6.)

Using (5.18) and (5.21), we now write (5.17a) and (5.17b) as

(5.23a)

(5.23b)

Equations (5.23a) and (5.23b) are a pair of coupled differential equations
for and A. To uncouple the equations, we make use of a theorem known as
Helmholtz’s theorem, which states that a vector field is completely specified by
its curl and divergence. Therefore, since the curl of A is given by (5.15), we are
at liberty to specify the divergence of A. We do this by setting
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which is known as the Lorenz condition1. This uncouples (5.23a) and (5.23b) to
give us

(5.25)

(5.26)

These are the differential equations relating the electromagnetic potentials 
and A to the source charge and current densities and J, respectively.

Before proceeding further, we shall show that the continuity equation is
implied by the Lorenz condition. To do this, we take the Laplacian of both sides
of (5.24). We then have

or

(5.27)

Substituting for and in (5.27) from (5.26) and (5.25), respectively, we
get

or

(5.28)

Thus, by assuming the Lorenz condition (5.24), we imply 
which is the continuity equation.

As pointed out earlier in this section, it is sufficient to determine A for the
time-varying case for a given J. Hence, we shall be concerned only with (5.26),
which we shall refer to in Section 10.1 in connection with obtaining the electro-
magnetic field due to an elemental antenna.

K5.1. Magnetic vector potential; Gradient of a scalar; Physical interpretation of gradi-
ent; Electric scalar potential; Laplacian of a scalar; Potential function equations.
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1Note “Lorenz condition” and not “Lorentz condition.” In editions 2, 3, and 4 of this book, as well as
extensively in books by other authors, this condition has been mistakenly attributed to Lorentz in-
stead of Lorenz. See the note “Lorentz or Lorenz,” by J. Van Bladel in IEEE Antennas and Propa-
gation Magazine, Vol. 33, No. 2, April 1991, p. 69.
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D5.1. Find the outward pointing unit vectors normal to the closed surface 
at the following points: (a) (b) (1, 1, 2); and (c)

Ans. (a) (b) (c)

D5.2. Two scalar functions are given by

Find the following at the point (3, 4, 12): (a) the maximum rate of increase of
(b) the maximum rate of increase of and (c) the rate of increase of 

along the direction of the maximum rate of increase of 
Ans. (a) 26; (b) 3; (c)

D5.3. Find the Laplacians of the following functions: (a) (b) in cylin-
drical coordinates; and (c) in spherical coordinates.
Ans. (a) (b) 0; (c)

5.2 POTENTIAL FUNCTIONS FOR STATIC FIELDS

As already pointed out in the preceding section, Eq. (5.13) reduces to

(5.29)

for the static field case. We observe from (5.29) that the potential function 
then is such that the electric field lines are orthogonal to the equipotential sur-
faces, that is, to the surfaces on which the potential remains constant, as shown
in Fig. 5.2. If we consider two such equipotential surfaces corresponding to

£
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� � �A
� � �B
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FIGURE 5.2

Set of equipotential surfaces in a region of static electric field.
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Potential
difference
versus voltage

and as shown in the figure, the potential difference 
is given, according to the definition of the gradient, by

(5.30)

Using (5.29), we obtain

(5.31)

We now recall from Section 2.1 that is the voltage between points A
and B. Thus, the potential difference in the static field case has the same mean-
ing as the voltage. The reason for the minus sign in (5.13) and hence in (5.29) is
now evident, since without it the voltage between A and B would be the nega-
tive of the potential difference between A and B.

Before proceeding further, we recall that the voltage between two points
A and B in a time-varying electric field is in general dependent on the path fol-
lowed from A to B to evaluate since, according to Faraday’s law,

is not in general equal to zero. On the other hand, the potential difference (or
voltage) between two points A and B in a static electric field is independent of
the path followed from A to B to evaluate since, for static fields,

Thus, the potential difference (or voltage) between two points in a static electric
field has a unique value. Since the potential difference and voltage have the
same meaning for static fields, we shall hereafter replace in (5.29) by V, there-
by writing

(5.32)

Let us now consider the electric field of a point charge and investigate the
electric potential due to the point charge. To do this, we recall that the electric
field intensity due to a point charge Q is directed radially away from the point
charge and its magnitude is where R is the radial distance from the
point charge. Since the equipotential surfaces are everywhere orthogonal to the
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Equipotentials

E

Q

FIGURE 5.3

Cross-sectional view of equipotential surfaces
and electric field lines for a point charge.

field lines, it then follows that they are spherical surfaces centered at the point
charge, as shown by the cross-sectional view in Fig. 5.3. If we now consider two
equipotential surfaces of radii R and the potential drop from the sur-
face of radius R to the surface of radius is or the incre-
mental potential rise dV is given by

(5.33)

where C is a constant. Thus,

(5.34)

Since the potential difference between two points does not depend on the value
of C, we can choose C such that V is zero at some arbitrary reference point.
Here we can conveniently set C equal to zero by noting that it is equal to 
and by choosing for the reference point.Thus, we obtain the electric po-
tential due to a point charge Q to be

(5.35)

We note that the potential drops off inversely with the radial distance away
from the point charge.

Equation (5.35) is often the starting point for the computation of the po-
tential field due to static charge distributions and the subsequent determination
of the electric field by using (5.32). We shall illustrate this by considering the
case of the electric dipole in the following example.

V =
Q

4peR

R = q
V1q2

V1R2 =
Q

4peR
+ C

 = da Q

4peR
+ Cb

 dV = -  

Q

4peR2 dR
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Direction
Lines

(a) (b)

FIGURE 5.4

(a) Geometry pertinent to the determination of the electric field due to an electric dipole.
(b) Cross sections of equipotential surfaces and direction lines of the electric field for the
electric dipole.

Example 5.2 Electric field of a static electric dipole via the potential
due to the dipole

As we have learned in Section 4.2, the electric dipole consists of two equal and opposite
point charges. Let us consider a static electric dipole consisting of point charges Q and

situated on the z-axis at and respectively, as shown in Fig. 5.4(a)
and find the potential and hence the electric field at a point P far from the dipole.

First, we note that in view of the symmetry associated with the dipole around the
z-axis, it is convenient to use the spherical coordinate system. Denoting the distance
from the point charge Q to P to be and the distance from the point charge to P to
be we write the expression for the electric potential at P due to the electric dipole as

For a point P far from the dipole, that is, for the lines drawn from the two
charges to the point are almost parallel. Hence,

and
1
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Electro-
cardiography

Computer
plotting of
equipotentials

2See, for example, R. K. Hobbie, “The Electrocardiogram as an Example in Electrostatics,”
American Journal of Physics, June 1973, pp. 824–831.

so that

(5.36)

where is the dipole moment of the electric dipole. Thus, the potential field of
the electric dipole drops off inversely with the square of the distance from the dipole.
Proceeding further, we obtain the electric field intensity due to the dipole to be

(5.37)

Equation (5.36) shows that the equipotential surfaces are given by 
whereas from (5.37), it can be shown that the direction lines of the electric field are

given by and These are shown sketched in Fig. 5.4(b).
Alternative to using the equation for the direction lines, they can be sketched by recognizing
that (1) they must originate from the positive charge and end on the negative charge and (2)
they must be everywhere perpendicular to the equipotential surfaces.

A technique in everyday life in which the potential field of an electric di-
pole is relevant is electrocardiography.This technique is based on the character-
ization of the electrical activity of the heart by using a dipole model.2 The dipole
moment, p, referred to in medical literature as the electric force vector or the
activity of the heart, sets up an electric potential within the chest cavity and a
characteristic pattern of equipotentials on the body surface. The potential dif-
ferences between various points on the body are measured as a function of time
and are used to deduce the temporal evolution of the dipole moment during the
cardiac cycle, thereby monitoring changes in the electrical activity of the heart.

We shall now consider an example for illustrating a method of computer
plotting of equipotentials when a closed form expression such as that for the
electric dipole of Example 5.2 is not available.

Example 5.3 Computer plotting of equipotentials for a set of two point
charges

Let us consider two point charges and situated at 
and (1, 0, 0), respectively, as shown in Fig. 5.5.We wish to discuss the computer plotting of
the equipotentials due to the two point charges.

First, we recognize that since the equipotential surfaces are surfaces of revolution
about the axis of the two charges, it is sufficient to consider the equipotential lines in any
plane containing the two charges. Here we shall consider the xz-plane. The equipotential
lines are also symmetrical about the x-axis, and, hence, we shall plot them only on one

1-1, 0, 02Q2 = -4pe0 CQ1 = 8pe0 C
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FIGURE 5.5

For illustrating the procedure for the computer plotting of
equipotentials due to two point charges.

side of the x-axis and inside the rectangular region having corners at 
and 

As we go from to along the x-axis, the potential varies from to and
is given by

The value of x lying between and 1 for a given potential is then given by

or

We shall begin the equipotential line at this value of x on the x-axis for a given value of
To plot the line, we make use of the property that the equipotential lines are orthog-

onal to the direction lines of E so that they are tangential to the unit vector
We shall step along this unit vector by a small distance (chosen here to

be 0.1), and if necessary, correct the position by repeatedly moving along the electric
field until the potential is within a specified value (chosen here to be 0.001 V) of that for
which the line is being plotted. To correct the position, we make use of the fact that

Thus, the incremental distance required to be moved opposite to the electric
field to increase the potential by is and, hence, the distances required to be
moved opposite to the x- and z-directions are and re-
spectively.The plotting of the line is terminated when the point goes out of the rectangu-
lar region.
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V0 =
1 - 3x

1 - x2

V0-1

 =
1 - 3x

1 - x2

 V =
8pe0

4pe0 11 + x2 -
4pe0

4pe0 11 - x2

- q+ qQ2Q1

1-4, 52.
1-4, 02, 14, 0214, 52,
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296 Chapter 5 Electromagnetic Potentials and Topics for Circuits and Systems

The computer plot obtained from a run of a PC program that carries out this pro-
cedure for values of potentials ranging from to 4 V is shown in Fig. 5.6. It should,
however, be pointed out that for a complete plot, those equipotential lines that surround
both point charges should also be considered.

The computation of potential can be extended to continuous charge distri-
butions by using superposition in conjunction with the expression for the poten-
tial due to a point charge, as in the case of electric field computation in Section
1.5. We shall illustrate by means of an example.

Example 5.4 Electric potential field of an infinitely long line charge

An infinitely long line charge of uniform density is situated along the z-axis. It
is desired to obtain the potential field due to this charge.

First, we divide the line into a number of infinitesimal segments each of length dz,
as shown in Fig. 5.7, such that the charge in each segment can be considered as a
point charge. Let us consider a point P at a distance r from the z-axis, with the projection
of P onto the z-axis being O. For the sake of generality, we consider the point at a dis-
tance from O along OP as the reference point for zero potential and write the poten-
tial dV at P due to the infinitesimal charge at A as

(5.38)
 =

rL0 dz

4pe04r2 + z2
-

rL0 dz

4pe04r0
2 + z2

 dV =
rL0 dz

4pe0 1AP2 -
rL0 dz

4pe0 1AP02

rL0 dz
r0

P0

rL0 dz

rL0 C>m

-2 V

Potential due
to a line
charge

(�4, 0)

�2
�1

(4, 0)

(4, 5)

1 02 4 Q1

Q1 � 8pe0 C
Q2 � �4pe0 C

Q2

(�4, 5)

1
4

1
8

1
2

1
16

1
2

�
1
4

�

1
8

�

1
16

�

FIGURE 5.6

Personal computer-generated plot of equipotentials for the arrangement of two point
charges of Fig. 5.5. The values of potentials are in volts.
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P0a0 a

r0

r

z

P

A

O

rL0 dz

FIGURE 5.7

Geometry for the computation of the
potential field of an infinitely long line
charge of uniform density rL0 C>m.

We will, however, find later that we have to choose the reference point for zero potential
at a finite value of r, in contrast to the case of the point charge for which the reference
point can be chosen to be infinity. The potential V at P due to the entire line charge is
now given by the integral of (5.38), where the integration is to be performed between the
limits and Thus,

(5.39)

Introducing and in the first and second terms, respectively, in
the integrand on the right side of (5.39), we have

(5.40)

In view of the cylindrical symmetry about the line charge, (5.40) is the general expression
in cylindrical coordinates for the potential field of the infinitely long line charge of uni-
form density. It can be seen from (5.40) that a choice of is not a good choice,
since then the potential would be infinity at all points.The difficulty lies in the fact that in-
finity plus a finite number is still infinity. We also note from (5.40) that the equipotential

r0 = q

 = -  

rL0

2pe0
  ln 

r

r0

 =
rL0

2pe0
 c ln 

14r2 + z2 + z2r0

14r0
2 + z2 + z2r dz = 0

q

 =
rL0

2pe0
 5[ln1sec a + tan a2]a= 0

p>2 - [ln1sec a0 + tan a02]a0 = 0
p>2 6

 V =
rL0

2pe0
 aL

p>2

a= 0
 sec a da - L

p>2

a0 = 0
 sec a0 da0b

z = r0 tan a0z = r tan a

 =
rL0

2pe0L
q

z = 0
 a dz4r2 + z2

-
dz4r0
2 + z2

b

 V = L
q

z = -q
 dV = L

q

z = -q
 a rL0 dz

4pe04r2 + z2
-

rL0 dz

4pe04r0
2 + z2

b

z = q .z = - q
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298 Chapter 5 Electromagnetic Potentials and Topics for Circuits and Systems

surfaces are or that is, surfaces of cylinders with the line
charge as their axis.The result of Example 2.6 shows that the electric field due to the line
charge is directed radially away from the line charge. Thus, the direction lines of E and
the equipotential surfaces are indeed orthogonal to each other.

We shall now turn our attention to the magnetic vector potential for the
static field case. Thus, let us consider a current element of length dl situated at
the origin, as shown in Fig. 5.8, and carrying current I A. We shall obtain the
magnetic vector potential due to this current element. To do this, we recall from
Section 1.6 that the magnetic field due to it at a point is given by

(5.41)

Expressing B as

(5.42)

and using the vector identity

(5.43)

we obtain

(5.44)

Since dl is a constant, and (5.44) reduces to

(5.45)B = � �
mIdl
4pr

� � dl = 0,

B = -  

mI

4pr
 � � dl + � �

mI dl
4pr

A � �£ = £� � A - � � £A

B =
m

4p
 I dl � a - � 

1
r
b

B =
m

4p
  

I dl � ar

r2

P1r, u, f2

r = constant,ln r>r0 = constant

Magnetic
vector
potential due
to a current
element

u

f

r

d l

P

z

y

x

FIGURE 5.8

For finding the magnetic vector potential due to
a current element.
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Comparing (5.45) with (5.1), we see that the magnetic vector potential due to
the current element situated at the origin is given by

(5.46)

It follows from (5.46) that for a current element I dl situated at an arbitrary
point, the magnetic vector potential is given by

(5.47)

where R is the distance from the current element.Thus, it has a magnitude inverse-
ly proportional to the radial distance from the element (similar to the inverse dis-
tance dependence of the electric scalar potential due to a point charge) and
direction parallel to the element. We shall make use of this result in Section 10.1.

K5.2. Potential difference; Potential due to a point charge; Computation of potential
due to charge distributions; Electric dipole; Plotting of equipotential lines; Mag-
netic vector potential due to a current element.

D5.4. In a region of static electric field find the potential
difference for each of the following pairs of points: (a) A(2, 1, 1) and
B(1, 4, 0.5); (b) A(2, 2, 2) and B(1, 1, 1); and (c) A(5, 1, 0.2) and B(1, 2, 3).
Ans. (a) 0 V; (b) (c) 5 V.

D5.5. Three point charges are located as follows: at (3, 4, 0), at
and at Find the following: (a) the potential at

the point (0, 0, 3.2); (b) the coordinate x to three decimal places of the point on
the x-axis at which the potential is a maximum; and (c) the potential at the point
found in (b).
Ans. (a) 0 V; (b) 3.872 m; (c) 1.3155 V.

D5.6. For each of the following arrangements of point charges, find the first significant
term in the expression for the electric potential at distances far from the origin

(a) Q at (0, 0, d), 2Q at (0, 0, 0), and Q at and (b) Q at (0, 0,
d), at (0, 0, 0), and Q at 
Ans. (a) (b)

5.3 POISSON’S AND LAPLACE’S EQUATIONS

In Section 5.2, we introduced the static electric potential as related to the static
electric field in the manner

(5.48)

Substituting (5.48) into Maxwell’s divergence equation for D given by

(5.49)� # D = r

E = - �V

1Qd2>4pe0 r3213 cos2 u - 12.Q>pe0 r;
10, 0, -d2.-2Q

10, 0, -d21r � d2:

1-5, 0, 02).-40pe0 C13, -4, 02,
10pe0 C30pe0 C

-7 V;

VA - VB

E = yzax + zxay + xyaz,

A =
mI dl
4pR

A =
mI dl
4pr

Poisson’s
equation
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300 Chapter 5 Electromagnetic Potentials and Topics for Circuits and Systems

we obtain

(5.50)

where is the permittivity of the medium. Using the vector identity

(5.51)

we can write (5.50) as

or

(5.52)

If we assume to be uniform in the region of interest, then and (5.52)
becomes

(5.53)

This equation is known as Poisson’s equation. It governs the relationship be-
tween the volume charge density in a region of uniform permittivity to the
electric scalar potential V in that region. Note that (5.53) also follows from
(5.25) for and In Cartesian coordinates, (5.53) becomes

(5.54)

which is a three-dimensional, second-order partial differential equation. For the
one-dimensional case in which V varies with x only, and are
both equal to zero, and (5.54) reduces to

(5.55)

We shall illustrate the application of (5.55) by means of an example.

Example 5.5 Solution of Poisson’s equation for a p–n junction
semiconductor

Let us consider the space charge layer in a p-n junction semiconductor with zero bias, as
shown in Fig. 5.9(a), in which the region is doped p-type and the region is
doped n-type. To review briefly the formation of the space charge layer, we note that
since the density of the holes on the p side is larger than that on the n side, there is a ten-
dency for the holes to diffuse to the n side and recombine with the electrons. Similarly,
there is a tendency for the electrons on the n side to diffuse to the p side and recombine
with the holes. The diffusion of holes leaves behind negatively charged acceptor atoms,
and the diffusion of electrons leaves behind positively charged donor atoms. Since these

x 7 0x 6 0

02V

0x2 =
d2V

dx2 = -  

r

e

02V>0z202V>0y2

02V

0x2 +
02V

0y2 +
02V

0z2 = -  

r

e

£ = V.0>0t = 0

er

§2V =
-r
e

�e = 0e

e§2V + �e # �V = -r

e� # �V + �e # �V = -r

� # £A = £� # A + A # �£

e

- � # e�V = r

p-n junction
semi-
conductor
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FIGURE 5.9

For illustrating the application of Poisson’s equation for the determination of the
potential distribution for a p-n junction semiconductor.

acceptor and donor atoms are immobile, a space charge layer, also known as the
depletion layer, is formed in the region of the junction, with negative charges on the p
side and positive charges on the n side. This space charge gives rise to an electric field
directed from the n side of the junction to the p side so that it opposes diffusion of the
mobile carriers across the junction, thereby resulting in an equilibrium. For simplicity, let
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302 Chapter 5 Electromagnetic Potentials and Topics for Circuits and Systems

us consider an abrupt junction, that is, a junction in which the impurity concentration is
constant on either side of the junction. Let and be the acceptor and donor ion
concentrations, respectively, and and be the widths in the p and n regions, respec-
tively, of the depletion layer. The space charge density is then given by

(5.56)

as shown in Fig. 5.9(b), where is the magnitude of the electronic charge. Since the
semiconductor is electrically neutral, the total acceptor charge must be equal to the total
donor charge; that is,

(5.57)

We wish to find the potential distribution in the depletion layer and the depletion layer
width in terms of the potential difference across the depletion layer and the acceptor and
donor ion concentrations.

Substituting (5.56) into (5.55), we obtain the equation governing the potential dis-
tribution to be

(5.58)

To solve (5.58) for V, we integrate it once and obtain

where and are constants of integration. To evaluate and we note that since
is simply equal to Since the electric field lines

begin on the positive charges and end on the negative charges, and in view of (5.57), the
field and, hence, must vanish at and giving us

(5.59)

The field intensity, that is, may now be sketched as a function of x as shown in
Fig. 5.9(c).

Proceeding further, we integrate (5.59) and obtain

V = d ƒe ƒNA

2e
 1x + dp22 + C3 for -dp 6 x 6 0

-  

ƒe ƒND

2e
 1x - dn22 + C4 for 0 6 x 6 dn

-dV>dx,

dV

dx
= d ƒe ƒNA

e
 1x + dp2 for -dp 6 x 6 0

-  

ƒe ƒND

e
 1x - dn2 for 0 6 x 6 dn

x = dn,x = -dp0V>0x

-Ex.E = - �V = -10V>0x2 ax, 0V>0x
C2,C1C2C1

dV

dx
= d ƒe ƒNA

e
 x + C1 for -dp 6 x 6 0

-  

ƒe ƒND

e
 x + C2 for 0 6 x 6 dn

d2V

dx2 = d ƒe ƒNA

e
for -dp 6 x 6 0

-  

ƒe ƒND

e
for 0 6 x 6 dn

ƒe ƒNA dp = ƒe ƒND dn

ƒe ƒ

r = e - ƒe ƒNA for -dp 6 x 6 0

ƒe ƒND for 0 6 x 6 dn

r

dndp

NDNA
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where and are constants of integration. To evaluate and we first set the po-
tential at arbitrarily equal to zero to obtain equal to zero.Then we make use
of the condition that the potential be continuous at since the discontinuity in
dV/dx at is finite, to obtain

or

Substituting this value for and setting equal to zero in the expression for V, we get
the required solution

(5.60)

The variation of potential with x as given by (5.60) is shown in Fig. 5.9(d).
We can proceed further and find the width of the depletion layer by

setting equal to the contact potential, that is, the potential difference across the
depletion layer resulting from the electric field in the layer. Thus,

where we have made use of (5.57). Finally, we obtain the result that

which tells us that the depletion layer width is smaller, the heavier the doping is. This
property is used in tunnel diodes to achieve layer widths on the order of by
heavy doping as compared to widths on the order of in ordinary p-n junctions.

We have just illustrated an example of the application of Poisson’s equa-
tion involving the solution for the potential distribution for a given charge dis-
tribution. Poisson’s equation is even more useful for the solution of problems in
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which the charge distribution is the quantity to be determined given the func-
tional dependence of the charge density on the potential. We shall, however,
proceed to the discussion of Laplace’s equation.

If the charge density in a region is zero, then Poisson’s equation (5.53) re-
duces to

(5.61)

This equation is known as Laplace’s equation. It governs the behavior of the po-
tential in a charge-free region characterized by uniform permittivity. In Carte-
sian coordinates, it is given by

(5.62)

Laplace’s equation is also satisfied by the potential in conductors under
the steady-current condition. For the steady-current condition, and
the continuity equation given for the time-varying case by

reduces to

(5.63)

Replacing by where is the conductivity of the conductor and
assuming to be constant, we obtain

or

The problems to which Laplace’s equation is applicable consist of finding
the potential distribution in the region between two conductors, given the
charge distribution on the surfaces of the conductors, or the potentials of the
conductors, or a combination of the two. The procedure involves the solving of
Laplace’s equation subject to the boundary conditions on the surfaces of the
conductors. We shall illustrate this by means of an example involving variation
of V in one dimension.

Example 5.6 Solution of Laplace’s equation for a parallel-plate
capacitor

Let us consider two infinite, plane, parallel, perfectly conducting plates occupying the
planes and and kept at potentials and respectively, as shown
by the cross-sectional view in Fig. 5.10, and find the solution for Laplace’s equation in
the region between the plates. The arrangement may be considered an idealization of a

V = V0,V = 0x = dx = 0

§2V = 0

� # sE = s� # E = -s� # �V = -s§2V = 0

s

ssE = -s�V,Jc

� # Jc = 0

� # Jc +
0r
0t

= 0

0r>0t = 0,

02V

0x2 +
02V

0y2 +
02V

0z2 = 0

§2V = 0

Laplace’s
equation

Parallel-plate
arrangement,
capacitance
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�

x � 0,  V � 0

E

x � d, V � V0

�

�

�

�

�

�

�

�

�

�

�

�

�

Equipotential

FIGURE 5.10

Cross-sectional view of parallel-plate capacitor for illustrating the
solution of Laplace’s equation in one dimension.

parallel-plate capacitor with its plates having dimensions very large compared to the
spacing between them.

The potential is obviously a function of x only, and hence (5.62) reduces to

Integrating this equation twice, we obtain

(5.64)

where A and B are constants of integration. To determine the values of A and B, we
make use of the boundary conditions for V; that is,

giving us

Thus, the particular solution for the potential here is given by

(5.65)

which tells us that the equipotentials are planes parallel to the conductors, as shown in
Fig. 5.10.

Proceeding further, we obtain

(5.66)E = - �V = -  
0V

0x
 ax = -  

V0

d
 ax  for  0 6 x 6 d

V =
V0

d
 x  for  0 6 x 6 d

V0 = A1d2 + B = Ad  or  A =
V0

d

0 = A102 + B  or  B = 0

V = 0 for x = 0
V = V0 for x = d

V1x2 = Ax + B

02V

0x2 =
02V

0x2 = 0
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This field is uniform and directed from the higher potential plate to the lower potential
plate, as shown in Fig. 5.10. The surface charge densities on the two plates are given by

The magnitude of the surface charge per unit area on either plate is

Finally, we can find the capacitance C per unit area of the plates, defined to be the ratio
of Q to Thus,

(5.67)

The units of capacitance are farads (F).

If the medium between the plates in Fig. 5.10 is a conductor, then the con-
duction current density is given by

The conduction current from the higher potential plate to the lower potential
plate per unit area of the plates is

The ratio of this current to the potential difference is the conductance G (recip-
rocal of resistance) per unit area of the plates. Thus,

(5.68)

The units of conductance are siemens (S).
We have just illustrated the solution of Laplace’s equation in one dimen-

sion by considering an example involving the variation of V with one Cartesian
coordinate. In a similar manner, solutions for one-dimensional Laplace’s equa-
tions involving variations of V with single coordinates in the other two coordi-
nate systems can be obtained. Of particular interest are the case in which V is a
function of the cylindrical coordinate r only, pertinent to the geometry of a ca-
pacitor made up of coaxial cylindrical conductors, and the case in which V is a

G =
Ic

V0
=
s

d
  per unit area of the plates

Ic = ƒJc ƒ112 =
sV0

d

Jc = sE = -  

sV0

d
 ax

C =
Q

V0
=
e

d
  per unit area of the plates

V0.

Q = ƒrS ƒ112 =
eV0

d

 [rs]x = d = [D]x = d
# 1-ax2 = -  

eV0

d
 ax

# 1-ax2 =
eV0

d

 [rS]x = 0 = [D]x = 0
# ax = -  

eV0

d
 ax

# ax = -  

eV0

d

Parallel-plate
arrangement,
conductance

Cylindrical
and spherical
capacitors
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5.3 Poisson’s and Laplace’s Equations 307

function of the spherical coordinate r only, pertinent to the geometry of a ca-
pacitor made up of concentric spherical conductors. These two geometries are
shown in Figs. 5.11(a) and (b), respectively. The various steps in the solution of
Laplace’s equation and subsequent determination of capacitance for these two
cases are summarized in Table 5.1, which also includes the parallel plane case of
Fig. 5.10.

(a) (b)

V � 0

V � V0

b

Cylinders

r

a
z

e f

V � 0

V � V0

b

Spheres

r

a

e

FIGURE 5.11

Cross-sectional views of capacitors made up of (a) coaxial cylindrical
conductors and (b) concentric spherical conductors.

TABLE 5.1 Summary of Various Steps in the Solution of Laplace’s Equation and Determination of
Capacitance for Three One-Dimensional Cases

Geometry Parallel planes Coaxial cylinders Concentric spheres

Figure 5.10 5.11(a) 5.11(b)

Boundary conditions

Laplace’s equation

General solution

Particular solution

Electric field

Surface charge densities

Capacitance per unit area per unit length
4pe

1>a - 1>b
2pe

ln 1b>a2
e

d

eV0

a2
 11>a - 1>b2, r = a

-eV0

b2 11>a - 1>b2, r = b

eV0

a ln 1b>a2, r = a

-eV0

b ln 1b>a2, r = b

µ
-  

eV0

d
, x = 0

eV0

d
, x = d

V0

r2
 11>a - 1>b2  ar

V0

r ln 1b>a2  ar-  

V0

d
 ax

V = V0  

1>r - 1>b
1>a - 1>bV = V0  

ln 1r>b2
ln 1a>b2V = V0 

x

d

V =
A

r
+ BV = A ln r + BV = Ax + B

1

r2
  

0
0r

 ar2
 
0V

0r
b = 0

1
r

  
0
0r

 ar 
0V

0r
b = 0

02V

0x2
= 0

V = V0, r = a

V = 0, r = b

V = V0, r = a

V = 0, r = b
eV = 0, x = 0

V = V0, x = d
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K5.3. Poisson’s equation; p-n junction; Laplace’s equation in one dimension; Paral-
lel-plate arrangement; Capacitance; Conductance; Cylindrical and spherical
capacitors.

D5.7. The potential distribution in a simplified model of a vacuum diode consisting of
cathode in the plane and anode in the plane and held at a potential

relative to the cathode is given by for Find the
following: (a) V at (b) E at (c) at and (d) on the
anode.
Ans. (a) (b) (c) (d)

D5.8. Find the following: (a) the spacing between the plates of a parallel-plate capaci-
tor with a dielectric of and having capacitance per unit area equal to
1000 pF; (b) the ratio of the outer radius to the inner radius for a coaxial cylin-
drical capacitor with a dielectric of and having capacitance per unit
length equal to 100 pF; and (c) the radius of an isolated spherical conductor in
free space for which the capacitance is 10 pF.
Ans. (a) 1.99 cm; (b) 3.4903; (c) 9 cm.

5.4 CAPACITANCE, CONDUCTANCE, AND INDUCTANCE

In the previous section, we introduced the capacitance and conductance by con-
sidering the solution of Laplace’s equation in one dimension. Specifically, we
derived the expressions for the capacitance per unit area and the conductance
per unit area of a parallel-plate arrangement, the capacitance per unit length of
a coaxial cylindrical arrangement, and the capacitance of a concentric spherical
arrangement.

Let us now consider the three arrangements shown in Fig. 5.12, each of
which is a cross-sectional view of a pair of infinitely long coaxial perfectly con-
ducting cylinders with a material medium between them. In Fig. 5.12(a), the

e = 2.25e0,

e = 2.25e0,

4e0 V0>3d.-16e0 V0>9d2;-12V0>3d2ax;V0>16;

rSx = d>8;rx = d>8;x = d>8;
0 6 x 6 d.V = V01x>d24>3V0

x = dx = 0

(a)

V � 0

E

V � V0

b

r
a

e

f

(b)

V � 0

Jc

V � V0

b

r
a

s

(c)

H

b

ra

m

FIGURE 5.12

Cross sections of three arrangements, each consisting of two infinitely long, coaxial, perfectly
conducting cylinders. The medium between the cylinders is a perfect dielectric for (a), a conductor for
(b), and a magnetic material for (c).

Coaxial
cylindrical
arrangement
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5.4 Capacitance, Conductance, and Inductance 309

material medium is a dielectric of uniform permittivity in Fig. 5.12(b), it is a
conductor of uniform conductivity and in Fig. 5.12(c), it is a magnetic materi-
al of uniform permeability In (a) and (b), a potential difference of is ap-
plied between the conductors, whereas in (c), a current I flows with uniform
density in the on the inner cylinder and returns with uniform den-
sity in the on the outer cylinder.

We know from the discussion in Section 5.3 that the arrangement of
Fig. 5.12(a) is that of a coaxial cylindrical capacitor and from Table 5.1 that its
capacitance (C) per unit length, defined as the magnitude of the charge per unit
length on either conductor to the potential difference between the conductors,
is given by

(5.69)

the units of C being farads (F) and, hence, those of being F/m.
Just as in the case of the parallel-plate arrangement of Example 5.7, re-

placing the dielectric in Fig. 6.4(a) by a conductor as in Fig. 5.12(b) would result
in a conduction current of density

in the medium and, hence, a current per unit length

from the inner cylinder to the outer cylinder. Thus, the ratio of the current per
unit length from the inner to the outer cylinder to the potential difference be-
tween the cylinders, that is, the conductance (G) per unit length of the arrange-
ment, is given by

(5.70)

the units of G being siemens (S) and, hence, those of being S/m.
Turning now to Fig. 5.12(c), we know from the application of Ampere’s

circuital law in integral form that the current flow on the cylinders results in a
magnetic field between the cylinders as given by

g

g =
G

l
=

2ps
ln 1b>a2

 =
2psV0

ln 1b>a2

 Ic = L
2p

f= 0
Jc

# r df ar = L
2p

f= 0
  

sV0

r ln 1b>a2  r df

Jc = sE =
sV0

r ln 1b>a2  ar

c

c =
C

l
=

2pe
ln 1b>a2

-z-direction
+z-direction

V0m.
s;

e;

Conductance
per unit
length,g

Inductance
per unit
length,l

Capacitance
per unit
length,c
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The magnetic flux density is then given by

The magnetic flux linking the current per unit length of the conductors is

We now define the inductance (L) per unit length of the arrangement to be the
ratio of the magnetic flux linking the current per unit length of the arrangement
to the current. Thus,

(5.71)

The units of L are henrys (H) and, hence, those of are H/m.
An examination of (5.69), (5.70), and (5.71) reveals that

(5.72)

and

(5.73)

Thus, only one of the three parameters and is independent, with the
other two obtainable from it and the material parameters. Although this result
is deduced here for the coaxial cylindrical arrangement, it is a general result
valid for all arrangements involving two infinitely long, parallel perfect con-
ductors embedded in a homogeneous medium (a medium of uniform material
parameters). Expressions for the three quantities and are listed in
Table 5.2 for some common configurations of conductors having cross-sectional
views shown in Fig. 5.13. The coaxial cylindrical arrangement is repeated for
the sake of completion.

lg,c,

lg,c,

lc = me

g

c
=
s

e

l

l =
L

l
=
m

2p
  ln  

b
a

 =
mI

2p
  ln  

b
a

 = L
b

r = a
 

mI

2pr
  dr

 c = L
b

r = a
B # dr af

B = mH =
mI

2pr
 af for a 6 r 6 b

H =
I

2pr
 af for a 6 r 6 b
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TABLE 5.2 Conductance, Capacitance, and Inductance per Unit Length for Some Structures Consisting of Infinitely
Long Conductors Having the Cross Sections Shown in Fig. 5.13

Capacitance Conductance Inductance 
Description per unit length, per unit length, per unit length,

Parallel-plane 
conductors, Fig. 5.13 (a)

Coaxial cylindrical 
conductors, Fig. 5.13 (b)

Parallel cylindrical 
wires, Fig. 5.13 (c)

Eccentric inner 
conductor, Fig. 5.13 (d)

Shielded parallel 
cylindrical wires, Fig. 5.13 (e)

m

p
  ln  

d1b2 - d2>42
a1b2 + d2>42

ps

ln 
d1b2 - d2>42
a1b2 + d2>42

pe

ln  

d1b2 - d2>42
a1b2 + d2>42

m

2p
  cosh-1 aa2 + b2 + d2

2ab
b2ps

cosh-1 aa2 + b2 - d2

2ab
b

2pe

cosh-1 aa2 + b2 - d2

2ab
b

m

p
  cosh-1 

 
d

a

ps

cosh-1 1d>a2
pe

cosh-1 1d>a2

m

2p
  ln  

b

a

2ps
ln 1b>a2

2pe
ln 1b>a2

m 
d

w
s 

w

d
e 

w

d

lgc

Example 5.7 Capacitance, conductance, and inductance per unit length
for a parallel-wire line

It is desired to obtain the capacitance, conductance, and inductance per unit length of the
parallel-cylindrical wire arrangement of Fig. 5.13(c).

In view of (5.72) and (5.73), it is sufficient to find one of the three quantities.
Hence, we choose to find the capacitance per unit length. Here we shall do this by con-
sidering the electric potential field of two parallel, infinitely long, straight-line charges of

and of
parallel-
cylindrical
wire
arrangement

lc, g

w

d d 		 w
a

b

(a) (b)

a a

2d

(c) (d)

b a

d 	 (b � a)

d

2a
b

2a

(e)

d

(b2 �
4
d2

) 

 a2

a 		 d

FIGURE 5.13

Cross sections of some common configurations of parallel, infinitely long conductors.
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r1

r2

l

rL0

(a) (b)

rL0

�rL0

FIGURE 5.14

(a) Infinitely long line charge of uniform density along the z-axis. (b) Pair of
parallel, infinitely long line charges of equal and opposite uniform densities.

equal and opposite uniform charge densities and showing that the equipotential surfaces
are cylinders having their axes parallel to the line charges. By placing conductors in two
equipotential surfaces, thereby forming a parallel-wire line, we shall obtain the expres-
sion for the capacitance per unit length of the line.

Let us first consider an infinitely long, straight-line charge of uniform density
situated along the z-axis, as shown in Fig. 5.14(a), and obtain the electric poten-

tial due to the line charge. The symmetry associated with the problem indicates that the
potential is dependent on the cylindrical coordinate r. Thus, we have

(5.74)

where A and B are constants to be determined. We can arbitrarily set the potential to be
zero at a reference value giving us and

(5.75)

To evaluate the arbitrary constant A in (5.75), we find that the electric-field inten-
sity due to the line charge is given by

The electric field is thus directed radial to the line charge. Let us now consider a cylindri-
cal box of radius r and length l coaxial with the line charge, as shown in Fig. 5.14(a), and
apply Gauss’ law for the electric field in integral form to the surface of the box. For the
cylindrical surface,

LD # dS = -  
eA

r
 12prl2

E = - �V = -  
0V

0r
 ar = -  

A

r
 ar

V = A ln r - A ln r0 = A ln 
r

r0

B = -A ln r0r = r0,

 V = A ln r + B

 §2V =
1
r

  
0
0r

 ar 
0V

0r
b = 0 for r Z 0

rL0 C>m
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5.4 Capacitance, Conductance, and Inductance 313

For the top and bottom surfaces, since the field is parallel to the surfaces.
The charge enclosed by the box is Thus, we have

Substituting this result in (5.75), we obtain the potential field due to the line charge to be

(5.76)

which is consistent with (5.40).
Let us now consider two infinitely long, straight-line charges of equal and opposite

uniform charge densities and parallel to the z-axis and passing
through and respectively, as shown in Fig. 5.14(b). Applying superposi-
tion and using (5.76), we write the potential due to the two line charges as

where and are the distances of the point of interest from the line charges and and
are the distances to the reference point at which the potential is zero. By choosing the

reference point to be equidistant from the two line charges, that is, we get

(5.77)

From (5.77), we note that the equipotential surfaces for the potential field of the
line-charge pair are given by

(5.78)

where k lies between 0 and In terms of Cartesian coordinates, (5.78) can be written as

Rearranging, we obtain

or

This equation represents cylinders having their axes along

x = b  
k2 + 1

k2 - 1
, y = 0

ax - b  
k2 + 1

k2 - 1
b2

+ y2 = ab  
2k

k2 - 1
b2

x2 - 2b  
k2 + 1

k2 - 1
 x + y2 + b2 = 0

1x + b22 + y2

1x - b22 + y2 = k2

q .

r2

r1
= constant, say, k

V =
rL0

2pe
  ln  

r2

r1

r01 = r02,
r02

r01r2r1

V =
rL0

2pe
  ln  

r01

r1
-
rL0

2pe
  ln  

r02

r2

x = -b,x = b
-rL0 C>m,rL0 C>m

V = -  

rL0

2pe
  ln  

r

r0
=
rL0

2pe
  ln  

r0

r

-  
eA

r
 12prl2 = rL0l or A = -  

rL0

2pe

rL0l.
1D # dS = 0,
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x � 0,  k � 1

d d

bb

r2

r1

a a
rL0 rL0

FIGURE 5.15

Cross sections of equipotential surfaces for the line charge pair of Fig
5.14(b). Thick circles represent a cross section of parallel-wire line.

and radii equal to The corresponding potentials are The
cross sections of the equipotential surfaces are shown in Fig. 5.15.

We can now place perfectly conducting cylinders in any two equipotential surfaces
without disturbing the field configuration, as shown, for example, by the thick circles in
Fig. 5.15, thereby obtaining a parallel-wire line. Letting the distance between their cen-
ters be 2d and their radii be a, we have

Solving these two equations for k and accepting only those solutions lying between 0 and
we obtain

The potentials of the right and left conductors are then given, respec-
tively, by

 = -  

rL0

2pe
  ln  

d + 4d2 - a2

a

 V- =
rL0

2pe
  ln  

d - 4d2 - a2

a

 V+ =
rL0

2pe
  ln  

d + 4d2 - a2

a

1k 6 121k 7 12
k =

d ; 4d2 - a2

a

q ,

 a = b  
2k

k2 - 1

 ;d = b  
k2 + 1

k2 - 1

1rL0>2pe2 ln k.b[2k>1k2 - 12].

RaoCh05v3.qxd  12/18/03  4:09 PM  Page 314
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The potential difference between the two conductors is

Finally, to find the capacitance, we note that since the electric field lines begin
on the positive charge and end on the negative charge orthogonal to the equipoten-
tials, the magnitude of the charge on either conductor, which produces the same field
as the line-charge pair, must be the same as the line charge itself. Thus, considering
unit length of the line, we obtain the capacitance per unit length of the parallel-wire
line to be

(5.79)

and, hence, the expressions for and as given in Table 5.2.

If the conductors in a given configuration are not perfect, then the cur-
rents flow in the volumes of the conductors instead of being confined to the sur-
faces. We then have to consider the magnetic field internal to the current
distribution in addition to the magnetic field external to it.The inductance asso-
ciated with the internal field is known as the internal inductance as compared to
the external inductance associated with the external field. The expressions for
the inductance per unit length given in Table 5.2 are for the external inductance.
To obtain the internal inductance, we have to take into account the fact that dif-
ferent flux lines in the volume occupied by the current distribution link differ-
ent partial amounts of the total current. We shall illustrate this by means of an
example.

Example 5.8 Internal inductance per unit length of a solid cylindrical
conductor

A current I A flows with uniform volume density along an infinitely long,
solid cylindrical conductor of radius a and returns with uniform surface density in the op-
posite direction along the surface of an infinitely long, perfectly conducting cylinder of
radius and coaxial with the inner conductor. It is desired to find the internal in-
ductance per unit length of the inner conductor.

The cross-sectional view of the conductor arrangement is shown in Fig. 5.16(a).
From symmetry considerations, the magnetic field is entirely in the direction and inde-
pendent of Applying Ampère’s circuital law to a circular contour of radius as
shown in Fig. 5.16(a), we have

2prHf = pr2J0

r 16  a2,f.
f

b 17  a2

J = J0 az A>m2

l,g

 =
pe

cosh-11d>a2

 c =
rL0

V0
=

pe

ln [1d + 4d2 - a22>a]

V0 = V+ - V- =
rL0

pe
  ln  

d + 4d2 - a2

a

Internal
inductance
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l

(a) (b)

dr dr
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a

b

a

b

r
z

f

FIGURE 5.16

For evaluating the internal inductance per unit length associated with a volume current of
uniform density along an infinitely long cylindrical conductor.

or

The corresponding magnetic flux density is given by

where is the permeability of the conductor. Let us now consider a rectangle of infini-
tesimal width dr in the r-direction and length l in the z-direction at a distance r from the
axis, as shown in Fig. 5.16(b). The magnetic flux crossing this rectangular surface is
given by

where the subscript i denotes flux internal to the conductor. This flux surrounds only the
current flowing within the radius r, as can be seen from Fig. 5.16(a). Let N be the fraction
of the total current I linked by this flux. Then

 =
J0pr2

J0pa2 = a r

a
b2

 N =
current flowing within radius r 16  a2

total current I

 =
mJ0 rl dr

2

 dci = Bf 1area of the rectangle2

dci

m

B = mH =
mJ0 r

2
  af r 6 a

H = Hfaf =
J0 r

2
  af r 6 a
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The contribution from the flux to the internal flux linkage associated with the
current I is the product of N and the flux itself, that is, To obtain the internal flux
linkage associated with I, we integrate between the limits and taking
into account the dependence of N on Thus,

Finally, the required internal inductance per unit length is

(5.80)

From the steps involved in the solution of Example 5.8, we observe that
the general expression for the internal inductance is

(5.81a)

where S is any surface through which the internal magnetic flux associated with
I passes.We note that (5.81a) is also good for computing the external inductance
since for external inductance, N is independent of Hence,

(5.81b)

In (5.81b), the value of N is unity if I is a surface current, as in the arrangement
of Fig. 5.12(c). On the other hand, for a filamentary wire wound on a core, N is
equal to the number of turns of the winding, in which case represents the flux
through the core, that is, the flux crossing the surface formed by one turn, ac-
cording to the same consideration as that in conjunction with the discussion of
Faraday’s law for an N-turn coil (see Fig. 2.13).

The discussion pertaining to inductance thus far has been concerned with
self-inductance, that is, inductance associated with a current distribution by
virtue of its own flux linking it. On the other hand, if we have two independent
currents and we can talk of the flux due to one current linking the second
current. This leads to the concept of mutual inductance. The mutual inductance
denoted as is defined as

(5.82a)L12 = N1 

c12

I2

L12

I2,I1

c

Lext =
N

I LS
dc = N 

c

I

dc.

Lint =
1
ILS

N dc

li =
ci

lI
=
mJ0 a2>8
J0pa2 =

m

8p

ci = L
a

r = 0
N dci = L

a

r = 0
 a r

a
b2

 

mJ0 lr

2
  dr =

mJ0 la2

8

dci.
r = a,r = 0N dci

N dci.
dci

Mutual
inductance
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FIGURE 5.17

For the computation of mutual inductance per unit length between a two-wire telephone
line and a single wire parallel to it.

where is the magnetic flux produced by but linking one turn of the
winding carrying current Similarly,

(5.82b)

where is the magnetic flux produced by but linking one turn of the 
winding carrying current It can be shown that We shall now con-
sider a simple example illustrating the computation of mutual inductance.

Example 5.9 Mutual inductance per unit length between a single wire
and a two-wire telephone line

A single straight wire, infinitely long and carrying current lies below to the left and
parallel to a two-wire telephone line carrying current as shown by the cross-sectional
and plan views in Figs. 5.17(a) and (b), respectively. It is desired to obtain the mutual in-
ductance between the single wire and the telephone line per unit length of the wires.The
thickness of the telephone wire is assumed to be negligible.

Choosing a coordinate system with the axis of the single wire as the z-axis and ap-
plying Ampère’s circuital law to a circular path around the single wire, we obtain the
magnetic flux density due to the single wire as

B =
m0 I1

2pr
  af

I2,
I1,

L21 = L12.I2.
N2-turnI1c21

L21 = N2 

c21

I1

I1.N1-turn
I2c12
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The flux crossing a rectangular surface of length unity and width dy lying between
the telephone wires, as shown in Fig. 5.17(b), is then given by

where is the angle between the flux lines and the normal to the rectangular surface, as
shown in Fig. 5.17(a). The total flux crossing the rectangular surface of length unity
and extending from one telephone wire to the other is

This is the flux due to linking per unit length along the wires. Thus, the required mu-
tual inductance per unit length of the wires is given by

K5.4. Infinitely long, coaxial cylindrical arrangement; Capacitance per unit length
Conductance per unit length Inductance per unit length Rela-

tionship between and Parallel cylindrical wire arrangement; Internal
inductance; Mutual inductance.

D5.9. A coaxial cylindrical conductor arrangement [see Fig. 5.13(b)] has the dimen-
sions and (a) By what value of the distance d should the
inner conductor be displaced parallel to the outer conductor [see Fig. 5.13(d)] to
increase the capacitance per unit length of the arrangement by 25%? (b) By
what percentage is the inductance per unit length of the arrangement then
changed from the original value?
Ans. (a) 1.2368 cm; (b)

D5.10. Figure 5.18 is the cross-sectional view of the coaxial cylindrical conductor
arrangement in which a solid conductor of radius a is enclosed by a hollow con-
ductor of inner radius 4a and outer radius 5a. Current flows in the inner con-
ductor in the and returns on the outer conductor in the

with densities given by

Find the value of N, the fraction of the current linked by the magnetic flux at
a given radius r, for each of the following values of r: (a) 0.8a; (b) 3a; and (c) 4.5a.
Ans. (a) 0.4547; (b) 1; (c) 0.5278.

dciI0

J = d I0 e

pa2 11 - e-r2>a22az for 0 6 r 6 a
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9pa2 az for 4a 6 r 6 5a
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5.5 ELECTRIC- AND MAGNETIC-FIELD SYSTEMS

In Section 3.1, we discussed briefly how lumped circuit theory is based upon ap-
proximations resulting from the neglect of certain terms in one or both of
Maxwell’s curl equations. Such approximations, valid at low frequencies, are
known as quasistatic approximations. In this section, we illustrate the determi-
nation of the low-frequency terminal behavior of a physical structure via a qua-
sistatic extension of the static field existing in the structure when the frequency
of the source driving the structure is zero. The quasistatic extension consists of
starting with a time-varying field having the same spatial characteristics as that
of the static field, and obtaining the field solutions containing terms up to and
including the first power in the radian frequency, leading to the concept of
electric- and magnetic-field systems.

To introduce the quasistatic field approach, we consider the case of an in-
ductor, as represented by the structure shown in Fig. 5.19(a), in which an
arrangement of two parallel-plane conductors joined at one end by another
conducting sheet is excited by a current source at the other end. We neglect
fringing of the fields by assuming that the spacing d between the plates is very
small compared with the dimensions of the plates or that the structure is part of
a structure of much larger extent in the y- and z-directions. For a constant-current
source of value driving the structure at the end as shown in the figure,
such that the surface current densities on the two plates are given by

(5.83)

the medium between the plates is characterized by a uniform y-directed mag-
netic field, as shown by the cross-sectional view in Fig. 5.19(b). From the boundary
condition for the tangential magnetic-field intensity at the surface of a perfect

JS = d I0

w
  az for x = 0

-  

I0

w
  az for x = d

z = - l,I0

v,

Quasistatic
field analysis
for an
inductor

f

4a

5a

a

FIGURE 5.18

For Problem D5.9
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5.5 Electric- and Magnetic-Field Systems 321

conductor, the magnitude of this field is Thus, we obtain the static magnetic-
field intensity between the plates to be

(5.84)

The field is zero outside the plates.
The corresponding magnetic flux density is given by

(5.85)

The magnetic flux linking the current is simply the flux crossing the cross-
sectional plane of the structure. Since B is uniform in the cross-sectional plane
and normal to it,

(5.86)

The ratio of this magnetic flux to the current, that is, the inductance of the struc-
ture, is given by

(5.87)L =
c

I0
=
mdl

w

c = By1dl2 =
mdl

w
 I0

c

B = mH =
mI0

w
  ay for 0 6 x 6 d
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w
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I0>w.
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FIGURE 5.19

(a) Parallel-plate structure short-circuited at one
end and driven by a current source at the other
end. (b) Magnetic field between the plates for a
constant-current source.
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To discuss the quasistatic behavior of the structure, we now let the current
source vary sinusoidally with time at a frequency and assume that the mag-
netic field between the plates varies accordingly. Thus for

(5.88)

we have

(5.89)

where the subscript 0 denotes that the field is of the zeroth power in In terms
of phasor notation, we have

(5.90)

(5.91)

The time-varying magnetic field (5.87) gives rise to an electric field in ac-
cordance with Maxwell’s curl equation for E. Expansion of the curl equation for
the case under consideration gives

or, in phasor form,

(5.92)

Substituting for from (5.91), we have

or

(5.93)

The constant is, however, equal to zero, since to satisfy the bound-
ary condition of zero tangential electric field on the perfect conductor surface.
Thus, we obtain the quasistatic electric field in the structure to be

(5.94)E
 –

x1 = -jv 

mz

w
 I0

[E
 –

x]z = 0 = 0C

E
 –

x = -jvm 

I0

w
 z + C

0E
 –

x

0z
= -jvm 

I0

w

H
 –

y0

0E
 –

x

0z
= -jvmH

 –
y0

0Ex

0z
= -  

0By0

0t
= -m  

0Hy0

0t

 H
 –

y0 =
I0

w

 I
 – = I0

v.

H0 =
I0

w
  cos vt ay

I1t2 = I0 cos vt

v
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where the subscript 1 denotes that the field is of the first power in The value
of this field at the input of the structure is given by

(5.95)

The voltage developed across the current source is now given by

or

(5.96)

Thus, the quasistatic extension of the static field in the structure of Fig. 5.19 il-
lustrates that its input behavior for low frequencies is essentially that of a single
inductor of value equal to that found from static-field considerations.

We shall now determine the condition under which the quasistatic ap-
proximation is valid, that is, the condition under which the field of the first
power in is the predominant part of the total field. To do this, we proceed in
the following manner. The electric field gives rise to a magnetic field in ac-
cordance with Maxwell’s curl equation for H, which for the case under consid-
eration is given by

or in phasor form by

(5.97)

Substituting from (5.94) for in (5.97), we have

or

(5.98)H
 –
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v2mez2

2w
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0H
 –

y

0z
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z
w
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xE
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x
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0Ex

0t
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v
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mdl

w
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[E
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where the subscript 2 denotes that the field is of power 2 in The constant 
can be evaluated by noting that at must be zero, since by itself
satisfies the boundary condition Thus, we get

(5.99)

This magnetic field gives rise to an electric field in accordance with
Maxwell’s curl equation for E. Hence, we have

or

(5.100)

where the subscript 3 denotes that the field is of power 3 in The constant 
has to be equal to zero to satisfy the boundary condition of zero tangential elec-
tric field on the conductor surface Thus, we obtain

(5.101)

and, hence,

(5.102)

Continuing in this manner, we would obtain

(5.103)

and so on. The total electric field at can then be written as

 = jAme   
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or

(5.104)

From (5.104), it can be seen that for 

which is the same as Thus, the condition under which the quasistatic
approximation is valid is

or

(5.105)

For frequencies beyond which (5.105) is valid, the input behavior of the struc-
ture of Fig. 5.19 is no longer essentially that of a single inductor.

To further investigate the condition for the quasistatic approximation, we
recognize that (5.105) can be written as

or,

(5.106)

where is the wavelength corresponding to f in the dielectric region
between the plates. Thus, (5.106) tells us that the length of the structure must
be very small compared to the wavelength.

The criterion (5.106) is a general condition for the quasistatic approxima-
tion for the input behavior of a physical structure. Physical structures can be
classified as electric-field systems and magnetic-field systems, depending on
whether the electric field or the magnetic field is predominant. Quasistatic
electric- and magnetic-field systems are particularly important in electro-
mechanics. The structure of Fig. 5.19 is a magnetic-field system, since for the
static case the only field present between the plates is the magnetic field and
the quasistatic magnetic field has the same spatial dependence as that of the

l = vp>f
l �
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static magnetic field. The quasistatic magnetic field gives rise to a time-varying
electric field, but the corresponding displacement current is so small that its
effect in adding to the quasistatic magnetic field is negligible, and hence it can
be omitted from Maxwell’s curl equation for H.Thus, for a quasistatic magnetic-
field system, we have

(5.107a)

(5.107b)

(5.107c)

Likewise, if the structure of Fig. 5.19 is open-circuited at and driven
by a voltage source at the only field present between the plates in the
static case would be the electric field, and the quasistatic electric field would
have the same spatial dependence as that of the static electric field. The system
would then be an electric-field system. The quasistatic electric field would give
rise to a time-varying magnetic field, but the corresponding value of 
would be so small that its effect in adding to the quasistatic electric field would
be negligible and, hence, it can be omitted from Maxwell’s curl equation for E.
Thus, for a quasistatic electric-field system, we have

(5.108a)

(5.108b)

(5.108c)

When the medium between the plates is conductive, a conduction current
flows between the plates in accordance with and the analysis for
low-frequency input behavior results in both electric and magnetic fields of the
first order in We shall illustrate this by means of an example.

Example 5.10 Determination of low-frequency behavior of a resistor by
quasistatic field approach

Let us consider the case of two parallel perfectly conducting plates separated by a lossy
medium characterized by conductivity permittivity and permeability and driven
by a voltage source at one end, as shown in Fig. 5.20(a). We wish to determine its low-
frequency behavior by using the quasistatic-field approach.

Assuming the voltage source to be a constant-voltage source, we first obtain the
static electric field in the medium between the plates to be

following the procedure of Example 5.6. The conduction current density in the medium
is then given by

Jc = sE =
sV0

d
  ax

E =
V0

d
  ax

m,e,s,

v.

J = Jc = sE

 � # D = r

 � � H = J +
0D
0t

 � � E = 0

0B>0t

z = - l,
z = 0

 � # B = 0

 � � E = -  
0B
0t

 � � H = J

Low-
frequency
behavior of a
resistor
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The conduction current gives rise to a static magnetic field in accordance with Maxwell’s
curl equation for H, given for static fields by

For the case under consideration, this reduces to

giving us

The constant is, however, equal to zero, since in view of the boundary
condition that the surface current density on the plates must be zero at Thus, the
static magnetic field in the medium between the plates is given by

The static electric- and magnetic-field distributions are shown by the cross-sectional
view of the structure in Fig. 5.20(b).

To determine the quasistatic behavior of the structure, we now let the voltage
source vary sinusoidally with time at a frequency and assume that the electric andv

H = -  

sV0 z

d
 ay

z = 0.
[Hy]z = 0 = 0C1

Hy = -  

sV0 z

d
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0Hy

0z
= -sEx = -  

sV0

d

� � H = Jc = sE
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E, Jc
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(a)

V

a

b

z � �l z � 0
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y

z

y

d

x � 0
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s, e, m

x

w

�
� FIGURE 5.20

(a) Parallel-plate structure with lossy medium
between the plates and driven by a voltage
source. (b) Electric and magnetic fields between
the plates for a constant-voltage source.
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magnetic fields vary with time accordingly. Thus, for

we have

(5.109a)

(5.109b)

where the subscript 0 denotes that the fields are of the zeroth power in In terms of
phasor notation, we have for 

(5.110a)

(5.110b)

The time-varying electric field (5.109a) gives rise to a magnetic field in accordance
with

and the time-varying magnetic field (5.109b) gives rise to an electric field in accordance with

For the case under consideration and using phasor notation, these equations reduce to

giving us

where the subscript 1 denotes that the fields are of the first power in The constant 
is, however, equal to zero in view of the boundary condition that the surface current den-
sity on the plates must be zero at To evaluate the constant we note that

since the boundary condition at the source end, that is,
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is satisfied by alone. Thus, we have

or

Substituting for and in the expressions for and respectively, we get

(5.111a)

The result for is, however, not complete, since gives rise to a conduction current
of density proportional to which in turn provides an additional contribution to 
Denoting this contribution to be we have

The constant is zero for the same reason that is zero. Hence, setting equal to
zero and adding the resulting expression for to the right side of the expression for

we obtain the complete expression for as

(5.111b)

The total field components correct to the first power in are then given by

(5.112a)

(5.112b)

The current drawn from the voltage source is

(5.113)
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L
3

�
�

R

C

I

V
FIGURE 5.21

Equivalent circuit for the low-frequency input
behavior of the structure of Fig. 5.20.

Finally, the input admittance of the structure is given by

(5.114)

where we have approximated by Proceeding fur-
ther, we have

(5.115)

where is the capacitance of the structure if the material is a perfect dielectric,
is the dc resistance (reciprocal of the conductance) of the structure, and
is the inductance of the structure if the material is lossless and the two plates

are short-circuited at The equivalent circuit corresponding to (5.115) consists of
capacitance C in parallel with the series combination of resistance R and inductance L/3,
as shown in Fig. 5.21. Thus, the low-frequency input behavior of the structure of Fig. 5.20
(which acts like a pure resistor at dc) can be represented by the circuit Fig. 5.21, with the
understanding of the approximation used in (5.114).

Note that for (5.113) reduces to

and the input behavior of the structure is essentially that of a single capacitor of the same
value as that found from static-field considerations.

Sometimes, it is of interest to consider equivalent circuit representation
for the input behavior of a structure for frequencies beyond the quasistatic ap-
proximation. For an example, let us consider frequencies slightly beyond those
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1
3I L C FIGURE 5.22

Equivalent circuit for the input behavior of the
structure of Fig. 5.19 for frequencies slightly beyond
those for which the quasistatic approximation is valid.

for which the quasistatic approximation is valid for the structure of Fig. 5.19.
Then

and from (5.95) and (5.102), we have

(5.116)

and the voltage developed across the current source is given by

(5.117)

where is the capacitance of the structure with the end open-
circuited and from static-field considerations. Rearranging (5.117), we get

(5.118)

Thus, the equivalent circuit consists of the parallel combination of L and as
shown in Fig. 5.22.
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s
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b V � 0
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f
C

FIGURE 5.23

(a) Toroidal conductor. (b) Toroidal magnetic core.

K5.5. Quasistatic approximation; Condition for quasistatic approximation; Electric-
and magnetic-field systems; Low-frequency terminal behavior; Inductor; Resistor.

D5.11. For the structure of Fig. 5.19, assume that and
that the medium between the conductors is free space.Assuming that the condi-
tion for quasistatic approximation given by (5.105) is valid for 
find the following: (a) the maximum frequency for which the input behavior of
the structure is essentially that of a single inductor; (b) the value of this induc-
tor; and (c) the ratio of the amplitude of the electric field at the input, if the
structure behaves exactly like a single inductor, to the amplitude of the actual
electric field at the input for the frequency found in (a).
Ans. (a) 47.746 MHz; (b) (c) 0.9967.

5.6 MAGNETIC CIRCUITS

Let us consider the two structures shown in Fig. 5.23.The structure of Fig. 5.23(a)
is a toroidal conductor of uniform conductivity and has a cross-sectional area
A and mean circumference l.There is an infinitesimal gap a–b across which a po-
tential difference of volts is maintained by connecting an appropriate voltage
source. Because of the potential difference, an electric field is established in the
toroid and a conduction current results from the higher-potential surface a to
the lower-potential surface b as shown in the figure. The structure of Fig. 5.23(b)
is a toroidal magnetic core of uniform permeability with a cross-sectional area
A and mean circumference l. A current I A is passed through a filamentary wire
of N turns wound around the toroid by connecting an appropriate current
source. Because of the current through the winding, a magnetic field is estab-
lished in the toroid and a magnetic flux results in the direction of advance of a
right-hand screw as it is turned in the sense of the current.

c

m

Ic

V0

s

4p * 10-9 H;

f 6 1>20p1mel,l = 10 cm, d = 1 cm, w = 10 cm,

Toroidal
conductor
versus
toroidal
magnetic core
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5.6 Magnetic Circuits 333

Since the conduction current cannot leak into the free space surrounding
the conductor, it is confined entirely to the conductor. On the other hand, the
magnetic flux can leak into the free space surrounding the magnetic core and,
hence, is not confined completely to the core. However, let us consider the case
for which Applying the boundary conditions at the boundary between
a magnetic material of and free space, as shown in Fig. 5.24, we have

or

Thus, and

For example, if the values of and are and 89°, respectively, then
and We can assume, for all practical purposes,

that the magnetic flux is confined to the magnetic core, just as the conduction
current is confined to the conductor. The structure of Fig. 5.23(b) is then known
as a magnetic circuit, similar to the electric circuit of Fig. 5.23(a). Magnetic cir-
cuits are encountered in applications involving electromechanical systems, typi-
cal examples of which are electromagnets, transformers, and rotating machines.

For the toroidal conductor of Fig. 5.23(a), we have

(5.119)L
b

a
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m � m0.

B1

B2

a2
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Magnetic Material

Free Space

m1 

     m0

m2 � m0 FIGURE 5.24

Lines of magnetic flux density at the boundary between
free space and a magnetic material of m � m0.
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Reluctance
defined

Proceeding with the assumption that is uniform over the cross-sectional area
and equal to its value at the mean radius of the toroid, and we obtain

Thus, the resistance of the circuit is given by

(5.120)

Similarly, for the toroidal magnetic core of Fig. 5.23(b),

(5.121)

Assuming to be uniform over the cross-sectional area and equal to its value
at the mean radius of the toroid, we obtain

We now define the reluctance of the magnetic circuit, denoted by the sym-
bol as the ratio of the ampere turns applied to the magnetic circuit to the
magnetic flux Thus,

(5.122)

The reluctance of the magnetic circuit is analogous to the resistance of an elec-
tric circuit and has the units of ampere-turns per weber (A-t/Wb). In fact, the
complete analogy between the toroidal conductor and the toroidal magnetic
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FIGURE 5.26

B versus H curve for annealed sheet steel.

core can be seen as follows.

The equivalent-circuit representations of the two arrangements are shown in
Figs. 5.25(a) and (b), respectively. We note from (5.122) that for a given magnetic
material, the reluctance appears to be purely a function of the dimensions of the
circuit. This is, however, not true, since, for the ferromagnetic materials used for
the cores, is a function of the magnetic flux density in the material, as we
learned in Section 4.3.

As a numerical example of computations involving the magnetic circuit of
Fig. 5.23(b), let us consider a core of cross-sectional area and mean cir-
cumference 20 cm. Let the material of the core be annealed sheet steel for
which the B versus H relationship is shown by the curve of Fig. 5.26. Then to es-
tablish a magnetic flux of in the core, the mean flux density must3 * 10-4 Wb

2 cm2

m

 R 4R
 Ic 4 c
 s4 m
 Jc 4 B

 E 4 H

 V0 4 NI0

�
� R

(a)

V0

Ic

(b)

RNI0

c

�
�

FIGURE 5.25

Equivalent-circuit representations for the structures of Figs. 5.23(a) and (b), respectively.
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FIGURE 5.27

(a) Magnetic circuit. (b) Fringing of magnetic flux in the air gap of the magnetic circuit.
(c) Effective and actual cross sections for the air gap.

be or From Fig. 5.26, the corresponding
value of H is 1000 A/m. The number of ampere-turns required to establish the
flux is then equal to or 200, and the reluctance of the core is

or We shall now consider a more detailed
example.

Example 5.11 Determination of the ampere-turns for a specified flux in
the air gap of a magnetic circuit

A magnetic circuit containing three legs and with an air gap in the right leg is shown in
Fig. 5.27(a). A filamentary wire of N turns carrying current I is wound around the center
leg. The core material is annealed sheet steel, for which the B versus H relationship is
shown in Fig. 5.26. The dimensions of the magnetic circuit are

Let us determine the value of NI required to establish a magnetic flux of in
the air gap.

The current in the winding establishes a magnetic flux in the center leg that divides be-
tween the right and left legs.Fringing of the flux occurs in the air gap,as shown in Fig.5.27(b).
This is taken into account by using an effective cross section larger than the actual cross
section, as shown in Fig. 5.27(c). Using subscripts 1, 2, 3, and g for the quantities associated
with the left, center, and right legs, and the air gap, respectively, we can write

 c2 = c1 + c3

 c3 = cg

4 * 10-4 Wb

l1 = l3 = 20 cm l2 = 10 cm lg = 0.2 mm
A1 = A3 = 3 cm2 A2 = 6 cm2

12>32 * 106 A-t>Wb.200>13 * 10-42, 1000 * 20 * 10-2,

1.5 Wb>m2.13 * 10-42>12 * 10-42,

Magnetic
circuit with
three legs and
an air gap
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5.6 Magnetic Circuits 337

Also, applying Ampère’s circuital law to the right and left loops of the magnetic circuit,
we obtain, respectively,

It follows from these two equations that

which can also be written directly from a consideration of the outer loop of the magnetic
circuit.

Noting from Fig. 5.27(c) that the effective cross section of the air gap is
we find the required magnetic flux density in the air gap to be

The magnetic-field intensity in the air gap is

The flux density in leg 3 is

From Fig. 5.26, the value of is 475 A/m.
Knowing the values of and we then obtain

From Fig. 5.26, the value of is and, hence, the flux in leg 1 is

Thus,

 B2 =
c2

A2
=

8.68 * 10-4

6 * 10-4 = 1.447 Wb>m2

 = 4.68 * 10-4 + 4 * 10-4 = 8.68 * 10-4 Wb

 c2 = c1 + c3

c1 = B1 A1 = 1.56 * 3 * 10-4 = 4.68 * 10-4 Wb

1.56 Wb>m2,B1

 H1 =
302.4
0.2

= 1512 A>m
 = 302.4 A
 = 475 * 0.2 + 0.1037 * 107 * 0.2 * 10-3

 H1 l1 = H3 l3 + Hg lg

H3,Hg

H3

B3 =
c3

A3
=
cg

A3
=

4 * 10-4

3 * 10-4 = 1.333 Wb>m2

Hg =
Bg

m0
=

1.303

4p * 10-7 = 0.1037 * 107 A>m

Bg =
cg

1Ag2eff
=

4 * 10-4

3.07 * 10-4 = 1.303 Wb>m2

113 + lg22 = 3.07 cm2,

H1 l1 = H3 l3 + Hg lg

 NI = H2 l2 + H1 l1

 NI = H2 l2 + H3 l3 + Hg lg
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NI

c1 c3

c2

�
�

R2

R3

Rg

R1

FIGURE 5.28

Equivalent circuit for the magnetic
circuit of Fig. 5.27.

From Fig. 5.26, the value of is 750 A/m. Finally, we obtain the required number of am-
pere-turns to be

Note that the equivalent circuit corresponding to the magnetic circuit is as shown in
Fig. 5.28, where the reluctances are given by

K5.6. Magnetic circuit; Analogy with electric circuit; Reluctance; Air gap.
D5.12. Assume that the portion of B versus H curve of Fig. 5.26 in the range

can be approximated by the straight line

For a toroidal magnetic circuit made of annealed sheet steel, find the reluctance
for each of the following cases: (a)
(b) A-t; and (c)

Ans. (a) 849,057 A-t/Wb; (b) 1,538,462 A-t/Wb; (c) 625,000 A-t/Wb.
D5.13. For the magnetic circuit of Fig. 5.27, assume that the region of operation on the

B–H curve of the material is such that of the material is equal to 4000 for all
three legs. Find the reluctance as viewed by the excitation for each of the fol-
lowing cases: (a) winding in leg 1; (b) winding in leg 2; and (c) winding in leg 3.
Ans. (a) 164,207 A-t/Wb; (b) 143,681 A-t/Wb; (c) 689,671 A-t/Wb.

mr

8 * 10-4 Wb.
c =  A = 5 cm2, l = 25 cm,A = 2 cm2, l = 20 cm, NI = 500

A = 4 cm2, l = 30 cm, H = 1800 A>m;

B = 1.5 + 5 * 10-5H

1500 … H … 3000

 Rg =
lg

m01Ag2eff
=

0.2 * 10-3

4p * 10-7 * 3.07 * 10-4 = 518,420 A-t>Wb

 R3 =
l3

m3 A3
=

H3 l3

B3 A3
=

475 * 0.2

1.333 * 3 * 10-4 = 237,559 A-t>Wb

 R2 =
l2

m2 A2
=

H2 l2

B2 A2
=

750 * 0.1

1.447 * 6 * 10-4 = 86,386 A-t>Wb

 R1 =
l1

m1 A1
=

H1 l1

B1 A1
=

1512 * 0.2

1.56 * 3 * 10-4 = 646,154 A-t>Wb

 = 377.4
 = 750 * 0.1 + 302.4

 NI = H2 l2 + H1 l1

H2
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5.7 ELECTROMECHANICAL ENERGY CONVERSION

Let us consider a parallel-plate capacitor with one plate fixed and the other
plate free to move, as shown by a cross-sectional view in Fig. 5.29. If we assume
a positive charge Q on the movable plate and a negative charge on the fixed
plate, resulting from the application of a voltage V between the plates, then a
force directed toward the fixed plate is exerted on the movable plate. If this
force is allowed to produce a displacement of the movable plate, mechanical
work results, thereby converting electrical energy in the system into mechanical
energy. Conversely, an externally applied mechanical force can be made to act
on the movable plate so as to increase the stored electrical energy in the system.
Thus, energy can be converted from electrical to mechanical or vice versa. A fa-
miliar example of the former is in the case of an electrical motor, whereas that
of the latter is in the case of an electrical generator.To determine the amount of
energy converted from one form to another, we first need to know how to com-
pute the force In this section, we illustrate this computation and discuss the
determination of energy converted from one form to another.

The computation of the mechanical force of electric origin follows from
considerations of energy balance associated with the electromechanical system.
The energy balance can be expressed as

(5.123)

For simplicity, we shall consider the system to be lossless so that the last term
on the right side of (5.123) is zero. In using (5.123) to find we shall apply to
the movable element of the system an external force equal to and displace
the element by an infinitesimal distance in the direction of the external force,
so that no change in stored mechanical energy occurs. This eliminates the first
term on the right side of (5.123). Thus, with reference to the system of Fig. 5.29,
we have

(5.124)-Fex dx + VI dt = dWe

-Fe

Fe,

Mechanical
energy
input

 +  
Electrical

energy
input

 =  

Increase
in stored

mechanical
energy

 +  

Increase
in stored
electrical
energy

 +  
Energy

dissipated

Fe

Fe.

Fe

-Q
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Parallel-plate
capacitor
with a
movable plate

Computation
of mechanical
force of
electric origin

Fe

Movable

V

I

� � � � � �

� � � � � �

Fixed

�Q

Q

x

FIGURE 5.29

Parallel-plate capacitor with a movable plate,
depicting the force on the movable plate.Fe
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where dx is the displacement of the movable plate, I is the current drawn from
the voltage source, and is the electric stored energy in the capacitor. Substi-
tuting from the law of conservation of charge, we obtain

or

(5.125)

To proceed further, we shall neglect fringing of the electric field at the
edges of the capacitor plates so that the charges on the plates and the electric
field between the plates are uniformly distributed. Then if A is the area of each
plate, we can write the following:

Thus, we obtain

(5.126)

Note that in this procedure V was held constant, since the voltage source
was kept connected to the capacitor plates in the process of displacing the plate.
If, on the other hand, the voltage source is not connected to the capacitor plates
in the process of displacing the plate, then Q remains constant, and we can write
the following:

 
dWe

dx
=

d

dx
 a1

2
 e0 E2Axb

 
dQ

dx
= 0

 = -  
1
2

  

e0 AV2

x2

 Fex =
e0 V2A

2x2 -
e0 AV2

x2

 
dQ

dx
= -  

e0 AV

x2

 Q = CV =
e0 AV

x

 
dWe

dx
= -  

e0 V2A

2x2

 =
e0 V2A

2x

 We =
1
2

 e0 E2Ax =
1
2

 e0 aV
x
b2

Ax

Fex = -  

dWe

dx
+ V 

dQ

dx

-Fex dx + VdQ = dWe

I = dQ>dt
We
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5.7 Electromechanical Energy Conversion 341

(5.127)

The results obtained for in (5.126) and (5.127) appear to be different,
but they are not. This can be seen by expressing (5.126) in terms of Q or by ex-
pressing (5.127) in terms of V. Choosing the first option, we can write (5.126) as

which is the same as that given by (5.127). This is to be expected since Q and V
are not independent of each other; they are related through the capacitance of
the capacitor. Thus, the force is given by

(5.128)

We shall now illustrate, by means of an example, the application of the re-
sult we obtained for in the computation of energy converted from electrical
to mechanical, or vice versa, in the energy conversion process.

Example 5.12 Energy conversion in a parallel-plate capacitor with a
movable plate

Assume that in the parallel-plate capacitor of Fig. 5.29, a source of mechanical force F is
applied to the movable plate such that F is always maintained equal to By appro-
priately varying V and F, the system is made to traverse the closed cycle in the Q–x-
plane, shown in Fig. 5.30. We wish to calculate the energy converted per cycle and
determine whether the conversion is from electrical to mechanical or vice versa.

Since the system is made to traverse a closed cycle in the Q–x-plane, there is no
change in the electrical stored energy from the initial state to the final state. Hence, the
sum of the mechanical and electrical energy inputs to the system must be zero, or the
electrical energy output is equal to the mechanical energy input. The mechanical energy

-Fe.

Fe

Fe = -  
1
2

  

e0 AV2

x2  ax = -  
1
2

  

Q2

Ae0
 ax

Fe

 = -  
1
2

  

Q2

Ae0

 = -  
1
2

 e0 Aa Q

Ae0
b2

 = -  
1
2

 e0 AE2

 Fex = -  
1
2

  

e0 AV2

x2

Fex

 Fex = -  
1
2

  

Q2

Ae0

 =
1
2

  

Q2

Ae0

 =
d

dx
 c1

2
 e0 a Q

Ae0
b2

Ax d

Energy
conversion
computation
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d 2d0

Q0

2Q0

x

Q

B Q � 2Q0

Q � Q0

x � d

C

A

x
d

FIGURE 5.30

Closed cycle traversed by the capacitor
system of Fig. 5.29.

Electromagnet

input is given by

From A to B, x remains constant; hence, is zero. From (5.127),

Hence,

Thus, an amount of energy equal to is converted from mechanical to electri-
cal form.

We have thus far considered an electric-field electromechanical system, that
is, one in which conversion takes place between energy stored in an electric field
and mechanical energy. For an example of a magnetic-field electromechanical

5Q0
2d>6e0 A

 =
5
6

  

Q0
2d

e0 A

 =
2Q0

2d

e0 A
-

7Q0
2d

6e0 A

 Wmechanical input = L
2d

x = d
  
2Q2

0
Ae0

 dx + L
d

x = 2d
  

Q2
0x

2

2Ae0d2 dx

Fex = d -  

2Q0
2

Ae0
 from B to C

-  

Q0
2x2

2Ae0 d2  from C to A

1B
A Fex dx

 = -L
B

A
Fex dx - L

C

B
Fex dx - L

A

C
Fex dx

 Wmechanical input = CABCA
Fx dx = -CABCA

Fex dx
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5.7 Electromechanical Energy Conversion 343

system, that is, one in which conversion takes place between energy stored in a
magnetic field and mechanical energy, let us consider the arrangement shown in
Fig. 5.31, which is the cross section of an electromagnet. When current is passed
through the coil, the armature is pulled upward to close the air gap.The mechani-
cal force of electric origin can once again be found from energy balance.

In the case of the parallel-plate capacitor of Fig. 5.31, we found in two
ways: by keeping the voltage across the plates constant and by keeping the
charge on the plates constant. We found that the two approaches resulted in
equivalent expressions for the force. In the present case, we can find by keep-
ing the current I in the exciting coil to be a constant or by keeping the magnetic
flux in the core (and, hence, in the air gap) to be a constant. The two ap-
proaches should result in equivalent expressions for We shall, therefore, take
advantage of this to simplify the task of finding by keeping constant, since
then no voltage is induced in the coil and, hence, the electrical energy input
term in (5.123) can be set to zero. Also, we shall once again assume a lossless
system, apply to the armature an external force equal to and displace it by
an infinitesimal distance in the direction of the external force. Thus, we obtain

where is the magnetic stored energy in the system.
Neglecting fringing of flux across the air gap and noting that the displace-

ment of the armature changes only the magnetic energy stored in the air gap, we
write the following:

 Hgap =
c

Am0

Wm

 Fex = -  

dWm

dx

 - Fex dx = dWm

-Fe,

cFe

Fe.
c

Fe

Fe

Fe

N

Fe

I

c

FIGURE 5.31

Electromagnet.
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where A is the cross-sectional area of each gap, and the factor 2 takes into ac-
count two gaps. Proceeding further, we have

(5.129)

The expression for in terms of the current I in the coil that would result
from considerations of constant I may now be found by simply expressing in
(5.129) in terms of I. Thus, if we assume for simplicity that the permeability of
the magnetic core material is so high that

where and are the lengths of the core and air gap, respectively, then

(5.130)

Finally, the computation of energy converted from electrical to mechanical,
or vice versa, in a magnetic-field electromechanical system can be performed in
a manner similar to that illustrated in Example 5.12 for an electric-field system.

Fe L -  

m0 N2I2A

4x2   ax

 c L
m0 NIA

2x

 Bgap L
m0 NI

2x

 Hgap L
NI

2x

 NI L 2Hgap x

lgaplcore

Hcore lcore � Hgap lgap

c

Fe

Fe = -  

c2

Am0
  ax

 Fex = -  

c2

Am0

 =
c2

Am0

 
dWm

dx
=

d

dx
 [1Wm2gap]

 =
c2x

Am0

 = m0 a c
Am0
b2

Ax

 1Wm2gap = 2 c1
2

 m01Hgap22Ax d
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Summary 345

K5.7. Mechanical force of electric origin; Energy conversion; Parallel-plate capacitor
with movable plate; Electromagnet.

D5.14. For the parallel-plate capacitor of Fig. 5.29, assume and
and compute for each of the following cases: (a) the dielectric

between the plates is free space; (b) the dielectric between the plates is a mate-
rial of permittivity and (c) the lower half of the region between the plates is
a dielectric of permittivity whereas the upper half is free space.
Ans. (a) (b) (c)

SUMMARY

In this chapter, we first introduced the electric scalar and magnetic vector po-
tential functions, less and A, respectively. From Gauss’ law for the magnetic
field in differential form, we have

(5.131)

and then from Faraday’s law in differential form, we obtain

(5.132)

In (5.132), is the gradient of the scalar function We learned that the gra-
dient of a scalar is a vector having magnitude equal to the maximum rate of
increase of at that point, and its direction is the direction in which the maxi-
mum rate of increase occurs, that is, normal to the constant surface passing
through that point; that is,

In Cartesian coordinates, the expansion for the gradient is

Next, we derived two differential equations for the potential functions.
These are given by

(5.133a)

(5.133b) §2A - me 
02A
0t2 = -mJ

 §2£ - me 
02£
0t2 = -  

r

e

�£ =
0£
0x

 ax +
0£
0y

 ay +
0£
0z

 az

�£ =
0£
0n

 an

£
£

£
£.�£

E = - �£ -
0A
0t

B = � � A

£

-12,800e0 ax N.-20,000e0 ax, N;-5000e0 ax N;
4e0,

4e0;

FeA = 0.01 m2
V = 10 V, x = 1 cm,
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where is the Laplacian of the scalar and is the Laplacian of the vec-
tor A. In Cartesian coordinates,

and

In deriving (5.133a) and (5.133b), we made use of the Lorenz condition

which is consistent with the continuity equation.
We then considered the potential functions for the static field case, for

which (5.132) reduces to

(5.134)

whereas (5.131) remains unaltered. In (5.134), the symbol is replaced by the
symbol V, since the electric potential difference between two points in a static elec-
tric field has the same meaning as the voltage between the two points. We consid-
ered the potential field of a point charge and found that for the point charge

(5.135)

where R is the radial distance away from the point charge. The equipotential
surfaces for the point charge are thus spherical surfaces centered at the point
charge. We illustrated the application of the potential concept in the determina-
tion of electric field due to charge distributions by considering the examples of
an electric dipole and a line charge. We also discussed a procedure for comput-
er plotting of equipotentials. We then derived the expression for the magnetic
vector potential due to a current element. For a current element I dl, the mag-
netic vector potential is given by

(5.136)

where R is the distance from the current element.
Next, we introduced Poisson’s and Laplace’s equations. Poisson’s equation

given by

§2V = -  

r

e

A =
mI dl
4pR

V =
Q

4peR

£

E = - �£ = - �V

� # A = -me 
0£
0t

§2A = 1§2Ax2ax + 1§2Ay2ay + 1§2Az2az

§2£ =
02£
0x2 +

02£
0y2 +

02£
0z2

§2A£§2£
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is a differential equation governing the behavior of the electric scalar potential
in a region of charge, whereas Laplace’s equation

holds in a charge-free region. We discussed the application of Poisson’s and
Laplace’s equations for the solution of problems involving the variation of V
with one dimension only. In particular, we illustrated the solution of Poisson’s
equation by considering the example of a p-n junction diode and the solution of
Laplace’s equation by considering the determination of capacitance for several
cases. We then considered the determination of circuit parameters for infinitely
long, parallel conductor arrangements. Specifically, (1) we derived the expres-
sions for the capacitance per unit length the conductance per unit length

and the inductance per unit length for a coaxial cylindrical arrange-
ment; (2) we showed that the three circuit parameters are related through the
material parameters and as given by

and (3) we used these relationships for other geometries of the conductors. We
then extended our discussions to internal inductance and mutual inductance.

Next, we introduced the quasistatic extension of the static field as a means
of obtaining the low-frequency behavior of a physical structure.The quasistatic-
field approach involves starting with a time-varying field having the same spa-
tial characteristics as the static field and then obtaining field solutions
containing terms up to and including the first power in frequency by using
Maxwell’s curl equations for time-varying fields. We learned that the quasistatic
approximation leads to electric- and magnetic-field systems. We illustrated the
quasistatic-field analysis by considering two examples, one of them involving a
lossy medium.

We then discussed the magnetic circuit, which is essentially an arrange-
ment of closed paths for magnetic flux to flow around, just as current does in
electric circuits. The closed paths are provided by ferromagnetic cores, which,
because of their high permeability relative to that of the surrounding medium,
confine the flux almost entirely to within the core regions. We illustrated the
analysis of magnetic circuits by considering two examples, one of them includ-
ing an air gap in one of the legs.

Finally, we studied the topic of electromechanical energy conversion. By
considering examples of a parallel-plate capacitor with one movable plate, and
an electromagnet, we discussed the determination of mechanical forces of elec-
tric origin. We also illustrated energy conversion computation for the parallel-
plate capacitor example.

 lc = me

 
g

c
=
s

e

m,s, e,

1l21g2, 1c2,

§2V = 0

RaoCh05v3.qxd  12/18/03  4:09 PM  Page 347



348 Chapter 5 Electromagnetic Potentials and Topics for Circuits and Systems

REVIEW QUESTIONS

Q5.1. What are electromagnetic potentials? How do they arise?
Q5.2. What is the expansion for the gradient of a scalar in Cartesian coordinates?

When can a vector be expressed as the gradient of a scalar?
Q5.3. Discuss the physical interpretation for the gradient of a scalar function and the

application of the gradient concept for the determination of unit vector normal
to a surface.

Q5.4. How is the Laplacian of a scalar defined? What is its expansion in Cartesian co-
ordinates?

Q5.5. Compare and contrast the operations of curl of a vector, divergence of a vector,
gradient of a scalar, and Laplacian of a scalar.

Q5.6. How is the Laplacian of a vector defined? What is its expansion in Cartesian co-
ordinates?

Q5.7. Outline the derivation of the differential equations for the electromagnetic po-
tentials.

Q5.8. What is the relationship between the static electric field intensity and the elec-
tric scalar potential?

Q5.9. Distinguish between voltage, as applied to time-varying fields, and the potential
difference in a static electric field.

Q5.10. Describe the electric potential field of a point charge.
Q5.11. Discuss the determination of the electric field intensity due to a charge distribu-

tion by using the potential concept.
Q5.12. Discuss the procedure for the computer plotting of equipotentials due to two

(or more) point charges.
Q5.13. Compare the magnetic vector potential field due to a current element to the

electric scalar potential due to a point charge.
Q5.14. State Poisson’s equation. How is it derived?
Q5.15. Discuss the application of Poisson’s equation for the determination of potential

due to the space charge layer in a p-n junction semiconductor.
Q5.16. State Laplace’s equation. In what regions is it valid?
Q5.17. Discuss the application of Laplace’s equation for a conducting medium.
Q5.18. Outline the solution of Laplace’s equation in one dimension by considering the

variation of potential with x only.
Q5.19. Outline the steps in the derivation of the expression for the capacitance of an

arrangement of two conductors.
Q5.20. Discuss the relationship between the capacitance, conductance, and inductance

per unit length for an infinitely long, parallel conductor arrangement.
Q5.21. Outline the steps in the derivation of the expressions for the capacitance, con-

ductance, and inductance per unit length of an infinitely long parallel cylindri-
cal-wire arrangement.

Q5.22. Distinguish between internal inductance and external inductance. Discuss the
concept of flux linkage pertinent to the determination of the internal inductance.

Q5.23. Explain the concept of mutual inductance and discuss an example of its
computation.

Q5.24. What is meant by the quasistatic extension of the static field in a physical
structure?
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Problems 349

Q5.25. Outline the steps involved in the quasistatic extension of the static field in a par-
allel-plate structure short-circuited at one end.

Q5.26. Discuss the derivation of the condition for the validity of the quasistatic ap-
proximation for the parallel-plate structure short-circuited at one end.

Q5.27. Discuss the general condition for the quasistatic approximation of a physical
structure.

Q5.28. Discuss the classification of physical structures as electric- and magnetic-field
systems.

Q5.29. Discuss the low-frequency behavior of a parallel-plate structure with a lossy
medium between the plates.

Q5.30. Discuss the quasistatic behavior of the structure of Fig. 5.20 for 
Q5.31. What is a magnetic circuit? Why is the magnetic flux in a magnetic circuit con-

fined almost entirely to the core?
Q5.32. Define the reluctance of a magnetic circuit. What is the analogous electric cir-

cuit quantity? Why is the reluctance for a given set of dimensions of a magnetic
circuit not a constant?

Q5.33. Discuss the complete analogy between a magnetic circuit and an electric circuit
using the example of the toroidal magnetic core versus the toroidal conductor.

Q5.34. How is the fringing of the magnetic flux in an air gap in a magnetic circuit taken
into account?

Q5.35. Discuss by means of an example the analysis of a magnetic circuit with three
legs and its equivalent-circuit representation.

Q5.36. Discuss by means of an example the phenomenon of electromechanical energy
conversion.

Q5.37. Outline the computation of mechanical force of electric origin from considera-
tions of energy balance associated with an electromechanical system.

Q5.38. Discuss by means of an example the computation of energy converted from
electrical to mechanical, or vice versa, in an electromechanical system.

PROBLEMS

Section 5.1

P5.1. Two identities in vector calculus. Show by expansion in the Cartesian coordi-
nate system that: (a) for any A and (b) for any 

P5.2. Application of identities in vector calculus. Determine which of the following
vectors can be expressed as the curl of another vector and which of them can be
expressed as the gradient of a scalar:

(a)
(b) in cylindrical coordinates
(c) in spherical coordinates.

P5.3. Finding a scalar function for which the gradient is a given vector function. Find
the scalar functions whose gradients are given by the following vector functions:

(a)
(b) in cylindrical coordinates
(c) in spherical coordinates11>r3212 cos u ar + sin u au2

1cos f ar - sin f af2
e-y1cos x ax - sin x ay2

11>r2 sin u af

11>r221cos f ar + sin f af2
xyax + yzay + zxaz

£.� � �£ = 0� # � � A = 0

s L 0.
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P5.4. Application of the gradient concept. By using the gradient concept, show that
the unit vector along the line of intersection of two planes

which are not parallel is given by

Then find the unit vector along the intersection of the planes 
and 

P5.5. Application of the gradient concept. By using the gradient concept, show that
the equation of the plane passing through the point and normal to
the vector is given by

Then find the equation of the plane tangential to the surface at the
point 

P5.6. Laplacian of a vector in cylindrical coordinates. Show that the Laplacian of a
vector in cylindrical coordinates is given by

Section 5.2

P5.7. Equipotential surfaces and direction lines of electric field for a given electric po-
tential. For the static electric potential function discuss the equipo-
tential surfaces and the direction lines of the electric field with the aid of sketches.

P5.8. Electric potential and field for a rectangular quadrupole. An arrangement of
point charges known as the rectangular quadrupole consists of the point
charges and at the points (0, 0, 0), and

respectively. Obtain the approximate expression for the electric po-
tential and hence for the electric field intensity due to the rectangular quadru-
pole at distances r from the origin large compared to and 

P5.9. Electric potential for a finitely long line charge. For a finitely long line charge
of uniform density situated along the line between and (0, 0,
a), obtain the expression for the electric potential at an arbitrary point 
in cylindrical coordinates. Further show that the equipotential surfaces are el-
lipsoids with the ends of the line as their focii.

P5.10. Electric potential for two parallel infinitely long line charges. Show that for two
infinitely long line charges parallel to the z-axis, having uniform densities

and and passing through and (1,
0, 0), respectively, the potential is given by where and are dis-
tances to the point from the line charges 1 and 2, respectively.

P5.11. Electric potential at the center of a rectangular uniformly distributed surface
charge. Consider the surface charge distributed uniformly with density rS0 C>m2

r2r1V = ln 1r2>r1
k2,

0, 021-1,rL2 = -2pe0 C>mrL1 = 2kpe0 C>m

1r, f, z2
10, 0, -a2rL0 C>m

¢z.¢x

10, 0, ¢z2,
1¢x, 0, ¢z2,1¢x, 0, 02,-Q,Q, -Q, Q,

V1x, y2 = xy,

§2A = a§2Ar -
Ar

r2 -
2

r2  

0Af

0f
bar + a§2Af -

Af

r2 +
2

r2  

0Ar

0f
baf + 1§2Az2az

112, 14, 82.
xyz = 1

a1x - x02 + b1y - y02 + c1z - z02 = 0

1aax + bay + caz2
1x0, y0, z02

y = x.
x + y + z = 3

�
1a2 b3 - a3 b22ax + 1a3 b1 - a1 b32ay + 1a1 b2 - a2 b12az41a2 b3 - a3 b222 + 1a3 b1 - a1 b322 + 1a1 b2 - a2 b122

 b1 x + b2 y + b3 z = c2

 a1 x + a2 y + a3 z = c1
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on a rectangular-shaped surface of sides a and b. Show that the electric potential
at the center of the rectangle is

Further show that for a square-shaped surface of sides a, the potential at the
center is 

P5.12. Potential difference in the field of an infinitely long strip of surface charge.
Consider surface charge of uniform density distributed on an infinite-
ly long strip lying between the straight lines and 
Noting that the electric potential is independent of z, show that the potential
difference between two points in the first quadrant of the xy-plane 
and is given by

P5.13. Magnetic vector potential and field for a magnetic dipole. Consider a circular
current loop of radius a lying in the xy-plane with its center at the origin and
with current I flowing in the sense of increasing so that the magnetic dipole
moment m is Show that far from the dipole such that the mag-
netic vector potential is given by

and hence the magnetic flux density is given by

P5.14. An identity in vector calculus. By expansion in Cartesian coordinates, show that

Section 5.3

P5.15. Solution of Poisson’s equation for a space-charge distribution in Cartesian co-
ordinates. A space-charge density distribution is given by

r = e
-r0 a1 +

x

d
b for -d 6 x 6 0

r0 a1 -
x

d
b for 0 6 x 6 d

0 otherwise

A � �£ � £� � A � � � 1£A2

B =
mm

4pr3 12 cos u ar + sin u au2

A L
mm � ar

4pr2

r � a,Ipa2 az.
f,

 - 2y1 a tan-1
  
a - x1

y1
+ tan-1

  
a + x1

y1
b f

 + 2y2 a tan-1
  
a - x2

y2
+ tan-1

  
a + x2

y2
b

 - 1a - x12 ln [1a - x122 + y1
2] - 1a + x12 ln [1a + x122 + y1

2]

 
rS0

4pe0
 e 1a - x22 ln [1a - x222 + y2

2] + 1a + x22 ln [1a + x222 + y2
2]

1x2, y2, 02
1x1, y1, 02

x = a, y = 0.x = -a, y = 0
rS0 C>m2

1rS0a>pe02 ln 11 + 122.

rS0

2pe0
 aa ln 

4a2 + b2 + b

a
+ b ln 

4a2 + b2 + a

b
b
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where is a constant. Obtain the solution for the potential V versus x for all x.
Assume for 

P5.16. Solution of Poisson’s equation for a space-charge distribution in Cartesian co-
ordinates. A space-charge density distribution is given by

where is a constant. Find and sketch the potential V versus x for all x.Assume
for 

P5.17. Solution of Poisson’s equation for a space-charge distribution in spherical coor-
dinates. A space-charge density distribution is given in spherical coordinates by

where is a constant. Find and sketch the potential V versus r for all r.
P5.18. Solution of Laplace’s equation for a parallel-plate capacitor with two perfect di-

electrics. The region between the two plates in Fig. 5.10 is filled with two per-
fect dielectric media having permittivities for (region 1) and for

(region 2). (a) Find the solutions for the potentials in the two regions
and (b) Find the capacitance per unit area of the plates.

P5.19. Solution of Laplace’s equation for a parallel-plate capacitor with imperfect di-
electrics. Assume that the two media in Problem P5.18 are imperfect dielectrics
having conductivities and for and respectively.
(a) What are the boundary conditions to be satisfied at (b) Find the so-
lutions for the potentials in the two regions. (c) Find the potential at 

P5.20. Parallel-plate capacitor with a dielectric of nonuniform permittivity. Assume
that the region between the two plates of Fig. 5.10 is filled with a perfect dielec-
tric of nonuniform permittivity

Find the solution for the potential between the plates and obtain the expression
for the capacitance per unit area of the plates.

P5.21. Coaxial cylindrical capacitor with a dielectric of nonuniform permittivity. As-
sume that the region between the coaxial cylindrical conductors of Fig. 5.11(a) is
filled with a dielectric of nonuniform permittivity Obtain the solution
for the potential between the conductors and the expression for the capacitance
per unit length of the cylinders.

Section 5.4

P5.22. Capacitance per unit length of parallel wire line with large spacing between the
wires. For the parallel-wire arrangement of Fig. 5.13(c), show that for 
the capacitance per unit length of the line is Find the value of d/a
for which the exact value of the capacitance per unit length is 1.05 times the
value given by the approximate expression for d � a.

pe>ln 12d>a2.
d � a,

e = e0 b>r.

e =
e0

1 - 1x>2d2

x = t.
x = t?

t 6 x 6 d,0 6 x 6 ts2s1

t 6 x 6 d.0 6 x 6 t
t 6 x 6 d

e20 6 x 6 te1

r0

r = er0 for a 6 r 6 2a

0 otherwise

x = 0.V = 0
r0

r = er0 sin x for -p 6 x 6 p
0 otherwise

x = 0.V = 0
r0
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P5.23. Direction lines of electric field for a parallel-wire line. For the line-charge pair
of Fig. 5.15, show that the direction lines of the electric field are arcs of circles
emanating from the positively charged line and terminating on the negatively
charged line.

P5.24. Inductance of a toroid with magnetic core. A filamentary wire carrying current
I is closely wound around a toroidal magnetic core of rectangular cross section,
as shown in Fig. 5.32. The mean radius of the toroidal core is a and the number
of turns per unit length along the mean circumference of the toroid is N. Find
the inductance of the toroid.

I

c

b

a

FIGURE 5.32

For Problem P5.24.

P5.25. Inductance per unit length of an infinitely long, uniformly wound solenoid. An
infinitely long, uniformly wound solenoid of radius a and having N turns per
unit length carries a current I. Find the inductance per unit length of the sole-
noid. Assume air core 

P5.26. Internal inductance per unit length of a wire with nonuniform current distribu-
tion. A current I flows with nonuniform volume density given by

along an infinitely long cylindrical conductor of radius a having the z-axis as its
axis. The current returns with uniform surface density in the opposite direction
along the surface of an infinitely long, perfectly conducting cylinder of radius

and coaxial with the inner conductor. Find the internal inductance per
unit length of the inner conductor.

P5.27. Magnetic energy stored in an infinitely long cylindrical conductor of current.
Consider the infinitely long solid cylindrical conductor of Fig. 5.16. Obtain the
expression for the energy stored per unit length in the magnetic field internal to
the current distribution and show that it is equal to where I is the total
current.

P5.28. Mutual inductance per unit length of two coaxial solenoids. An infinitely long,
uniformly wound solenoid of radius a and having turns per unit length is
coaxial with another infinitely long, uniformly wound solenoid of radius 
and having turns per unit length. Find the mutual inductance per unit length
of the solenoids. Assume air core 1m = m02.

N2

b 17  a2
N1

1
2 li I2,

b 17  a2

J = J0 a r

a
b2

az

1m = m02.
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Section 5.5

P5.29. Input behavior of an inductor at low and high frequencies. For the structure of
Fig. 5.19, assume that and and free space for
the medium between the plates. (a) For a current source 
find the voltage developed across the source. (b) Repeat part (a) for 

P5.30. Frequency behavior of a capacitor beyond the quasistatic approximation. For
the structure of Fig. 5.20 with show that the input behavior for frequen-
cies slightly beyond those for which the quasistatic approximation is valid is
equivalent to the series combination of and where 
is the inductance of the structure obtained from static-field considerations with
the two plates joined by another conductor at as in Fig. 5.19.

P5.31. Quasistatic input behavior of a resistor for three different cases. Find the con-
ditions under which the quasistatic input behavior of the structure of Fig. 5.20 is
essentially equivalent to that of: (a) a single resistor; (b) a capacitor 
in parallel with a resistor; and (c) a resistor in series with an inductor.

P5.32. Frequency behavior of an inductor with material having nonzero conductivity.
For the structure of Fig. 5.19, assume that the medium has nonzero conductivity 
(a) Show that the input behavior correct to the first power in is the same as if 
were zero. (b) Investigate the input behavior correct to the second power in and
obtain the equivalent circuit.

P5.33. Frequency behavior of an inductor beyond the quasistatic approximation. For
the structure of Fig. 5.19, obtain the equivalent circuit for the input behavior for
frequencies for which the fields up to and including the fifth-order terms in 
are significant.

Section 5.6

P5.34. Calculations involving a toroidal magnetic core. A toroidal magnetic core has
the dimensions and (a) If it is found that for NI equal to
200 A-t, a magnetic flux equal to is established in the core, find
the permeability of the core material. (b) If now an air gap of width 

is introduced, find the new value of NI required to maintain the flux of
neglecting fringing of flux in the air gap.

P5.35. Calculations involving a magnetic circuit with three legs and an air gap. For the
magnetic circuit of Fig. 5.27, assume the air gap to be in the center leg. Find the
NI required to establish a magnetic flux of in the air gap.

P5.36. Calculations involving a magnetic circuit with three legs and two air gaps. For
the magnetic circuit of Fig. 5.27, assume that there is an air gap of length 0.2 mm
in the left leg in addition to that in the right leg. Find the NI required to estab-
lish a magnetic flux of in the air gap in the right leg.

P5.37. Magnetic circuit with a center leg and two symmetrical side legs. For the mag-
netic circuit of Fig. 5.27, assume that there is no air gap. Find the magnetic flux
established in the center leg for an applied NI equal to 180 A-t.

P5.38. Magnetic circuit with a center leg and two asymmetrical side legs. For the mag-
netic circuit of Fig. 5.27, assume that there is no air gap and that with
all other dimensions remaining as specified in Example 5.1. Find the magnetic flux
density in the center leg for an applied NI equal to 150 A-t.

A1 = 5 cm2,

4 * 10-4 Wb

9 * 10-4 Wb

8 * 10-4 Wb,
0.1 mm

lg =m

8 * 10-4 Wbc

l = 20 cm.A = 5 cm2

v

v

sv

s.

C1=  ewl>d2

z = 0,

L = m dl>w1
3 L,C1=  ewl>d2

s = 0,

1 cos 109 pt A.
I1t2 =

I1t2 = 1 cos 106 pt A,
w = 5 cml = 10 cm, d = 5 mm,
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Section 5.7

P5.39. Finding the mechanical force of electric origin for a parallel-plate capacitor sys-
tem. In Fig. 5.33, a dielectric slab of permittivity sliding between the plates of
a parallel-plate capacitor experiences a mechanical force of electrical origin.
Assuming width for the plates normal to the page and neglecting fringing of
fields at the edges of the plates, find the expression for Fe.

w
Fe

e

L

x

V � 0

V � V0

Fe

a

b

e e0

FIGURE 5.34

For Problem P5.40.

P5.40. Finding the mechanical force of electric origin for a cylindrical capacitor sys-
tem. In Fig. 5.34, a dielectric material of permittivity sliding freely in a cylin-
drical capacitor experiences a mechanical force of electrical origin in the
axial direction. Show that

Fe =
V0

2p1e - e02
ln 1b>a2   ax

Fe

e

e Fe

L

V

x

d

FIGURE 5.33

For Problem P5.39.

P5.41. Energy conversion in a parallel-plate capacitor with a movable plate. Assume
that in Example 5.12, the parallel-plate capacitor system of Fig. 5.29 is made
to traverse the closed cycle in the V-x plane shown in Fig. 5.35 instead of the
closed cycle in the Q-x plane shown in Fig. 5.30. Calculate the energy con-
verted per cycle and determine whether the conversion is from mechanical to
electrical or vice versa.
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(b)

(a)

b/2 (b � l)/20

D C

A B
I0

2I0

x

x

I

b

l

Fe

Magnetic core

m 

 m0

m0

FIGURE 5.36

For Problem P5.42.

P5.42. Energy conversion in a solenoidal coil with sliding magnetic core. Figure 5.36(a)
shows a magnetic-field electromechanical device in which the magnetic core is
free to slide inside a long air-core solenoidal coil. The solenoid has length l, ra-
dius a, and number of turns per meter N, and carries a current I. The magnetic
core has length radius a, and permeability and extends a distance
x into the solenoid. (a) Neglect fringing of the field and find the mechanical force

of electric origin on the core. Plot versus x. (b) Assume that the device isFexFe

m � m0,b 6 l,

d 2d

V0 A
C

B

V � V0

x � d
V � 3V0 � V0(x /d)

2V0

0
x

V

FIGURE 5.35

For Problem P5.41.
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made to traverse the closed path in the I-x plane, as shown in Fig. 5.36(b). Find
the energy converted per cycle and determine whether it is from mechanical to
electrical or vice versa.

REVIEW PROBLEMS

R5.1. Finding the angle between two planes by using the gradient concept. By using
the gradient concept, show that the angle between two planes

is given by

Then find the angle between the planes and 
R5.2. Electric potential due to a circular charged disk of uniform charge density.

Consider a circular disk of radius a lying in the xy-plane with its center at the
origin and carrying charge of uniform density Obtain the expression
for the potential V due to the charged disk at a point (0, 0, z) on the z-axis. Ver-
ify your answer by considering the limiting cases of V(z) for and 
for 

R5.3. Magnetic vector potential and field for an infinitely long straight wire of cur-
rent. Obtain the magnetic vector potential at an arbitrary point due to an infi-
nitely long straight filamentary wire lying along the z-axis and carrying a
current I in the Then evaluate B by performing the curl operation
on the magnetic vector potential.

R5.4. Spherical capacitor with a dielectric of nonuniform permittivity. Assume that
the region between the concentric spherical conductors of Fig. 5.11(b) is filled with
a dielectric of nonuniform permittivity Obtain the solution for
the potential between the conductors and the expression for the capacitance.

R5.5. Finding the internal inductance per unit length of a cylindrical conductor
arrangement. Current I flows with uniform density along an infinitely long, hol-
low cylindrical conductor of inner radius a and outer radius b and returns with
uniform surface density in the opposite direction along the surface of an infinite-
ly long, perfectly conducting cylinder of radius and coaxial with the hol-
low conductor. Find the internal inductance per unit length of the arrangement.

R5.6. Quasistatic input behavior of a short-circuited coaxial cable. An air-dielectric
coaxial cable of inner radius outer radius and length

is short-circuited at one end. Obtain the equivalent circuit for the input
behavior of the structure for frequencies slightly beyond those for which the
quasistatic approximation is valid. Compute the resonant frequency of the equiv-
alent circuit and comment on its value compared to those for which the circuit is
valid.

R5.7. Calculations involving a magnetic circuit with three legs. For the magnetic cir-
cuit shown in Fig. 5.37, the dimensions of the legs are 

and The permeability of the core materiall2 = 10 cm.3 cm2, l1 = l3 = 30 cm,
A2 =A1 = A3 = 2 cm2,

l = 1 m
b = 2 cm,a = 1 cm,

c 17  b2

e = e0 b2>r2.

+z-direction.

ƒz ƒ � a.
Ez1z2ƒz ƒ � a

rS0 C>m2.

z = 0.x + y + z = 1

a = cos-1
  

a1 b1 + a2 b2 + a3 b341a1
2 + a2

2 + a3
221b1

2 + b2
2 + b3

22

 b1 x + b2 y + b3 z = c2

 a1 x + a2 y + a3 z = c1

a
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can be assumed to be (a) Draw the equivalent electric circuit. (b) For
and find the magnetic flux in each leg.

R5.8. For analyzing an electromechanical system set in motion. In the system shown
in Fig. 5.38, the mass M is set in motion in the following manner: (1) the mass is
brought to rest at the equilibrium position with no charge on the capac-
itor plates; (2) the mass is constrained to that position and the capacitor plates
are charged to as shown; and (3) the mass is released, thereby permitting
frictionless motion. Obtain the differential equation for the motion of M and
find the solution.

�Q

x = x0

N2 I2 = 100 A-t,N1 I1 = 200 A-t
1000m0.

358 Chapter 5 Electromagnetic Potentials and Topics for Circuits and Systems

M
e0

x

�Q Q

K

Capacitor
with plates
area A

FIGURE 5.38

For Problem R5.8.

I1 I2

N1 N2

Leg 1 Leg 3

Leg 2

FIGURE 5.37

For Problem R5.7.
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