
C H A P T E R  4

Fields and Waves In Material
Media
Thus far in our study of fields and waves, we have considered the medium to be
free space. In this chapter, we extend our study to material media. Materials
contain charged particles that respond to applied electric and magnetic fields to
produce secondary fields. We will learn that there are three basic phenomena
resulting from the interaction of the charged particles with the electric and mag-
netic fields. These are conduction, polarization, and magnetization. Although a
given material may exhibit all three properties, it is classified as a conductor (in-
cluding semiconductor), a dielectric, or a magnetic material, depending on
whether conduction, polarization, or magnetization is the predominant phe-
nomenon. Thus, we introduce these materials one at a time and develop a set of
constitutive relations for the material media that enable us to avoid the necessity
of explicitly taking into account the interaction of the charged particles with the
fields.

We shall then use the constitutive relations together with Maxwell’s equa-
tions to extend our study of uniform plane waves to material media, first for the
general case and then for several special cases. To study problems involving two
or more different media, we shall then derive boundary conditions, which are a
set of conditions for the fields to satisfy at the boundaries between the different
media. Finally, we shall use the boundary conditions to study the reflection and
transmission of uniform plane waves at plane boundaries.

4.1 CONDUCTORS AND SEMICONDUCTORS

Depending on their response to an applied electric field, materials may be clas-
sified as conductors, semiconductors, or dielectrics. According to the classical
model, an atom consists of a tightly bound, positively charged nucleus sur-
rounded by a diffuse electron could having an equal and opposite charge to the
nucleus. While the electrons for the most part are less tightly bound, the major-
ity of them are associated with the nucleus and are known as bound electrons.
These bound electrons can be displaced, but not removed from the influence of
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FIGURE 4.1

Energy band diagrams for different cases: (a) and (d) conductor; (b) dielectric; and
(c) semiconductor.

the nucleus upon the application of an electric field. Not taking part in this
bonding mechanism are the free, or conduction, electrons. These electrons are
constantly under thermal agitation, being released from the parent atom at one
point and recaptured at another point. In the absence of an applied electric
field, their motion is completely random; that is, the average thermal velocity on
a macroscopic scale is zero, so that there is no net current and the electron cloud
maintains a fixed position.When an electric field is applied, an additional veloc-
ity is superimposed on the random velocities, thereby causing a drift of the av-
erage position of the electrons along the direction opposite to that of the
electric field. This process is known as conduction. In certain materials, a large
number of electrons may take part in this process.These materials are known as
conductors. In certain other materials, only very few or a negligible number of
electrons may participate in conduction. These materials are known as
dielectrics, or insulators. A class of materials for which conduction occurs not
only by electrons but also by another type of carriers known as holes—vacan-
cies created by detachment of electrons due to breaking of covalent bonds with
other atoms—is intermediate to that of conductors and dielectrics. These mate-
rials are called semiconductors.

The quantum theory describes the motion of the current carriers in terms
of energy levels. According to this theory, the electrons in an atom can have as-
sociated with them only certain discrete values of energy. When a large number
of atoms are packed together, as in a crystalline solid, each energy level in the in-
dividual atom splits into a number of levels with slightly different energies, with
the degree of splitting governed by the interatomic spacing, thereby giving rise
to allowed bands of energy levels that may be widely separated, may be close to-
gether, or may even overlap. Four possible energy band diagrams are shown in
Fig. 4.1, in which a forbidden band consists of energy levels that no electron in
any atom of the solid can occupy. For case (a), the lower allowed band is only
partially filled at the temperature of absolute zero. At higher temperatures, the
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4.1 Conductors and Semiconductors 209

electron population in the band spreads out somewhat, but only very few elec-
trons reach higher energy levels.Thus, since there are many unfilled levels in the
same band, it is possible to increase the energy of the system by moving the elec-
trons to these unoccupied levels very easily by the application of an electric
field, thereby resulting in drift of the electrons. The material is then classified as
a conductor. For cases (b) and (c), the lower band is completely filled, whereas
the next-higher band is completely empty at the temperature of absolute zero. If
the width of the forbidden band is very large as in (b), the situation at normal
temperatures is essentially the same as at absolute zero, and, hence, there are no
neighboring empty energy levels for the electrons to move. The only way for
conduction to take place is for the electrons in the filled band to get excited and
move to the next higher band. But this is very difficult to achieve with reason-
able electric fields, and the material is then classified as a dielectric. Only by sup-
plying a very large amount of energy can an electron be excited to move from
the lower band to the higher band, where it has neighboring empty levels avail-
able for causing conduction.The dielectric is said to break down under such con-
ditions. If, on the other hand, the width of the forbidden band in which the Fermi
level lies is not too large, as in (c), some of the electrons in the lower band move
into the upper band at normal temperatures, so that conduction can take place
under the influence of an electric field, not only in the upper band, but also in
the lower band because of the vacancies (holes) left by the electrons that moved
into the upper band. The material is then classified as a semiconductor. A semi-
conductor crystal in pure form is known as an intrinsic semiconductor.The prop-
erties of an intrinsic crystal can be altered by introducing impurities into it. The
crystal is then said to be an extrinsic semiconductor. For case (d), two allowed
bands overlap; one or both of the bands is only partially filled and the situation
corresponds to a conductor.

In the foregoing discussion, we classified materials on the basis of their
ability to permit conduction of electrons under the application of an external
electric field. For conductors, we are interested in knowing about the relation-
ship between the drift velocity of the electrons and the applied electric field,
since the predominant process is conduction. But for collisions with the atomic
lattice, the electric field continuously accelerates the electrons in the direction
opposite to it as they move about at random. Collisions with the atomic lattice,
however, provide the frictional mechanism by means of which the electrons lose
some of the momentum gained between collisions. The net effect is as though
the electrons drift with an average drift velocity under the influence of the
force exerted by the applied electric field and an opposing force due to the fric-
tional mechanism. This opposing force is proportional to the momentum of the
electron and inversely proportional to the average time between collisions.
Thus, the equation of motion of an electron is given by

(4.1)

where e and m are the charge and mass of an electron.

m 
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210 Chapter 4 Fields and Waves In Material Media

Rearranging (4.1), we have

(4.2)

For the sudden application of a constant electric field at the solution
for (4.2) is given by

(4.3)

where we have evaluated the arbitrary constant of integration by using the ini-
tial condition that at The values of for typical conductors such as
copper are of the order of so that the exponential term on the right side
of (4.3) decays to a negligible value in a time much shorter than that of practical
interest. Thus, neglecting this term, we have

(4.4)

and the drift velocity is proportional in magnitude and opposite in direction to
the applied electric field, since the value of e is negative.

In fact, since we can represent a time-varying field as a superposition of
step functions starting at appropriate times, the exponential term in (4.3) may
be neglected as long as the electric field varies slowly compared to For fields
varying sinusoidally with time, this means that as long as the period T of the si-
nusoidal variation is several times the value of or the radian frequency

the drift velocity follows the variations in the electric field. Since
this condition is satisfied even at frequencies up to several hundred

gigahertz (a gigahertz is ). Thus, for all practical purposes, we can assume
that

(4.5)

Now, we define the mobility, of the electron as the ratio of the magni-
tudes of the drift velocity and the applied electric field. Then we have

(4.6)

and

(4.7a)

For values of typically of the order of we note by substituting for 
and m on the right side of (4.6) that the electron mobilities are of the order of

Alternative units for the mobility are square meters per volt-sec-
ond. In semiconductors, conduction is due not only to the movement of elec-
trons, but also to the movement of holes.We can define the mobility of a holemh
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4.1 Conductors and Semiconductors 211

Conduction
current

similarly to as the ratio of the drift velocity of the hole to the applied electric
field. Thus, we have

(4.7b)

Note from (4.7b) that conduction of a hole takes place along the direction of
the applied electric field, since a hole is a vacancy created by the removal of
an electron and, hence, a hole movement is equivalent to the movement of a
positive charge of value equal to the magnitude of the charge of an electron.
In general, the mobility of holes is lower than the mobility of electrons for
a particular semiconductor. For example, for silicon, the values of and 
are and respectively. Semiconductors are denoted
n-type or p-type, depending on whether the conduction is predominantly due to
the movement of electrons or holes.

The drift of electrons in a conductor and that of electrons and holes in a
semiconductor is equivalent to a current flow. This current is known as the
conduction current. The conduction current density may be obtained in the fol-
lowing manner. If there are free electrons per cubic meter of the material,
then the amount of charge passing through an infinitesimal area normal
to the drift velocity at a point in the material in a time is given by

(4.8)

The current flowing across is given by

(4.9)

The magnitude of the current density at the point is the ratio of to in the
limit tends to zero, and the direction is opposite to that of Thus, the con-
duction current density resulting from the drift of electrons in the conductor
is given by

(4.10)

Substituting for from (4.7a), we have

(4.11)

Defining a quantity as

(4.12)

we obtain the simple and important relationship between and E:

(4.13)

The quantity is known as the electrical conductivity of the material, and (4.13)
is known as Ohm’s law valid at a point. We shall show later that the well-known
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FIGURE 4.2

Ranges of conductivities for conductors, semiconductors, and dielectrics.

Ohm’s law in circuit theory follows from it. In a semiconductor, the current den-
sity is the sum of the contributions due to the drifts of electrons and holes. If the
densities of holes and electrons are and respectively, the conduction cur-
rent density is given by

(4.14)

Thus, the conductivity of a semiconducting material is given by

(4.15a)

For an intrinsic semiconductor, so that (4.15a) reduces to

(4.15b)

The units of conductivity are or
ampere/volt-meter, also commonly known as siemens per meter (S/m), where a
siemen is an ampere per volt. The ranges of conductivities for conductors, semi-
conductors, and dielectrics are shown in Fig. 4.2. Values of conductivities for a
few materials are listed in Table 4.1.The constant values of conductivities do not
imply that the conduction current density is proportional to the applied electric
field intensity for all values of current density and field intensity. However, the
range of current densities for which the material is linear, that is, for which the
conductivity is a constant, is very large for conductors.

In considering electromagnetic wave propagation in conducting media,
the conduction current density given by (4.13) must be employed for the cur-
rent density term on the right side of Ampere’s circuital law. Thus, Maxwell’s
curl equation for H for a conducting medium is given by

(4.16)� � H = Jc +
0D
0t

= sE +
0D
0t
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Ne,Nh

RaoCh04v3.qxd  12/18/03  3:49 PM  Page 212



4.1 Conductors and Semiconductors 213

Table 4.1 Conductivities of Some Materials

Conductivity Conductivity
Material (S/m) Material (S/m)

Silver Seawater 4
Copper Intrinsic germanium 2.2
Gold Intrinsic silicon
Aluminum Fresh water
Tungsten Distilled water
Brass Dry earth
Solder Bakelite
Lead Glass
Constantin Mica
Mercury Fused quartz 0.4 * 10-171.0 * 106

10-11 - 10-152.0 * 106
10-10 - 10-144.8 * 106
10-97.0 * 106
10-51.5 * 107

2 * 10-41.8 * 107
10-33.5 * 107

1.6 * 10-34.1 * 107
5.8 * 107
6.1 * 107

(b)(a)
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FIGURE 4.3

For illustrating the surface charge formation at the boundary of a conductor placed
in a static electric field.

We shall use this equation in Sec. 4.4 to obtain the solution for sinusoidally
time-varying uniform plane waves in a material medium.

Let us now consider a conductor placed in a static electric field, as shown
in Fig. 4.3(a).The free electrons in the conductor move opposite to the direction
lines of the electric field. If there is a way in which the flow of electrons can be
continued to form a closed circuit, then a continuous flow of current takes place.
Since the conductor is bounded by free space, the electrons are held at the
boundary from moving further. Thus, a negative surface charge forms on the
boundary, accompanied by an equal amount of positive surface charge, as
shown in Fig. 4.3(b), since the conductor as a whole is neutral. The surface
charge distribution formed in this manner produces a secondary electric field
which, together with the applied electric field, makes the field inside the con-
ductor zero. We shall illustrate the computation of the surface charge densities
by means of a simple example.

Conductor in
a static
electric field
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(a) Infinite plane slab conductor in a uniform applied field. (b) Induced surface charge at the
boundaries of the conductor and the secondary field. (c) Sum of the applied and the secondary fields.

Example 4.1 Plane conducting slab in a uniform static electric field

Let us consider an infinite plane conducting slab of thickness d occupying the region be-
tween and and in a uniform electric field produced by two infinite
plane sheets of equal and opposite uniform charge densities on either side of the slab, as
shown in Fig. 4.4(a).We wish to find the charge densities induced on the surfaces of the slab.

Since the applied electric field is uniform and is directed along the z-direction, a
negative charge of uniform density forms on the surface due to the accumulation
of free electrons at that surface. A positive charge of equal and opposite uniform density
forms on the surface due to a deficiency of electrons at that surface. Let these sur-
face charge densities be and respectively. To satisfy the property that the field
in the interior of the conductor is zero, the secondary field produced by the surface
charges must be equal and opposite to the applied field; that is, it must be equal to

Now, each surface charge produces a field intensity directed normally from it and
having a magnitude times the charge density so that the field due to the two sur-
face charges together is equal to inside the conductor and zero outside the
conductor, as shown in Fig. 4.4(b). Thus, for zero field inside the conductor,

or

The field outside the conductor remains the same as the applied field since the sec-
ondary field in that region due to the surface charges is zero.The induced surface charge

rS0 = e0 E0

-  

rS0

e0
 az = -E0 az

-1rS0>e02az

1>2e0

-E0 az.

rS0,-rS0

z = d

z = 0

E = E0 azz = dz = 0
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For the derivation of Ohm’s law in circuit
theory.

distribution and the fields inside and outside the conductor are shown in Fig. 4.4(c). In
the general case, the induced surface charge produces a secondary field outside the con-
ductor also, thereby changing the applied field.

Returning now to (4.13), we shall show that the well-known Ohm’s law in
circuit theory follows from it. To do this, let us consider a bar of conducting ma-
terial of conductivity length l, and uniform cross-sectional area A, between
the ends of which a voltage V is applied, as shown in Fig. 4.5.The voltage sets up
an electric field directed along the length of the conductor, thereby giving rise
to conduction current. Assuming, for simplicity, uniformity of the electric field,
the voltage between the two ends of the conductor is given by the electric field
intensity times the length of the conductor, that is,

(4.17)

Then from (4.13) and (4.17), the conduction current density magnitude is given by

(4.18)

Assuming uniformity of the field and hence of the conduction current density in
the cross-sectional area of the conductor, we then obtain the conduction current
to be

(4.19)

Upon rearrangement, we get

(4.20)

which is in the form of the familiar Ohm’s law,

(4.21)

From (4.20), the resistance R of the conducting bar can now be identified as

(4.22)

the units of R being ohms.

R =
l

sA

V = IR

V = I 
l

sA

I = Jc A =
sA

l
 V

Jc = sE =
sV

l

V = El

s,

Ohm’s law,
resistance
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For illustrating the Hall effect
phenomenon.

We shall conclude this section with a discussion of the Hall effect, an im-
portant phenomenon employed in the determination of charge densities in con-
ducting and semiconducting materials, as well as in other techniques such as the
measurement of fluid flow using electromagnetic flow meters. Let us consider
the p-type semiconducting material in the form of a rectangular bar shown in
Fig. 4.6, in which holes drift in the x-direction with a velocity due to an
applied voltage between the two ends of the bar. If a magnetic field is
applied in a perpendicular direction, then the drifting holes will experience a
magnetic force that deflects them in the or This de-
flection of holes toward the establishes an electric field

in the material, resulting in the development of a voltage between
the two sides of the bar. This phenomenon is known as the Hall effect, and the
voltage developed is known as the Hall voltage. Were it not for the establish-
ment of the Hall electric field, the holes would continually deflect toward the

as they drift in the x-direction. The Hall electric field exerts force
on the holes in the which in the steady-state balances exactly

the magnetic force in the so that the net y-directed force is
zero. According to the Lorentz force equation (1.89), the Hall electric field that
achieves this balance is given by

(4.23)

or By using this result, the hole density can be computed from a
measurement of the Hall voltage for known values of the magnetic field 
the current I, and the cross-sectional dimensions of the bar. If the material is
n-type instead of p-type, then the charge carriers are electrons, and v would be
in the The deflection of the charge carriers will still be toward the

since the charge is negative. This results in an electric field in the-y-direction
-x-direction.

Bz,
Ey = vx Bz.

 = q1Ey - vx Bz2ay = 0

 q1EH + v � B2 = q1Ey ay + vx ax � Bz az2

-y-directionFm

+y-direction,FH

-y-direction

EH = Ey ay

-y-direction
-ay-direction.ax � azFm

B = Bz az

v = vx ax

Hall effect
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For Problem D4.2.

and hence in a Hall voltage of opposite polarity to that in the case
of the p-type material. Thus, the polarity of the Hall voltage can be used to de-
termine if the charge carriers are holes or electrons.

K4.1. Conduction; Conduction current density; Conductivity; Ohm’s law; Conductor
in a static electric field; Resistance; Hall effect.

D4.1. Find the magnitude of the electric field intensity required to establish the flow
of a conduction current of 0.1 A across an area of normal to the field for
each of the following cases: (a) in copper; (b) in an intrinsic semiconductor ma-
terial with electron and hole mobilities of and re-
spectively, and electron and hole densities of and (c) in a
metallic wire of circular cross section of radius 1 mm, length 1 m, and resistance
1 ohm.
Ans. (a) (b) 471.1 V/m; (c) 3.14 mV/m.

D4.2. An infinite plane conducting slab lies between, and parallel to, two infinite
plane sheets of charge of uniform surface charge densities and as
shown by the cross-sectional view in Fig. 4.7. Find the surface charge densities
on the two surfaces of the slab: (a) and (b)
Ans. (a) (b)

4.2 DIELECTRICS

In the preceding section, we learned that conductors are characterized by an
abundance of conduction, or free, electrons that give rise to conduction current
under the influence of an applied electric field. In this section, we turn our at-
tention to dielectric materials in which the bound electrons are predominant.
Under the application of an external electric field, the bound electrons of an
atom are displaced such that the centroid of the electron cloud is separated
from the centroid of the nucleus. The atom is then said to be polarized, thereby
creating an electric dipole, as shown in Fig. 4.8(a). This kind of polarization is
called electronic polarization.The schematic representation of an electric dipole
is shown in Fig. 4.8(b). The strength of the dipole is defined by the electric di-
pole moment p given by

(4.24)

where d is the vector displacement between the centroids of the positive and
negative charges, each of magnitude Q coulombs.

p = Qd

1
21rSA - rSB2.1

21rSB - rSA2;
rS2.rS1

rSB,rSA

17.24 mV>m;

2.5 * 1013 cm-3;
1700 cm2>V-s,3600 cm2>V-s

1 cm2

-y-direction

Polarization,
electric dipole
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(a) Electric dipole. (b) Schematic representation of an
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Torque acting on an electric dipole in an external
electric field.

In certain dielectric materials, polarization may exist in the molecular
structure of the material even under the application of no external electric field.
The polarization of individual atoms and molecules, however, is randomly ori-
ented, and hence the net polarization on a macroscopic scale is zero. The appli-
cation of an external field results in torques acting on the microscopic dipoles,
as shown in Fig. 4.9, to convert the initially random polarization into a partially
coherent one along the field, on a macroscopic scale.This kind of polarization is
known as orientational polarization.A third kind of polarization, known as ionic
polarization, results from the separation of positive and negative ions in mole-
cules formed by the transfer of electrons from one atom to another in the mole-
cule. Certain materials exhibit permanent polarization, that is, polarization even
in the absence of an applied electric field. Electrets, when allowed to solidify in
the applied electric field, become permanently polarized, and ferroelectric ma-
terials exhibit spontaneous, permanent polarization.

On a macroscopic scale, we define a vector P, called the polarization vec-
tor, as the electric dipole moment per unit volume.Thus, if N denotes the number
of molecules per unit volume of the material, then there are molecules in
a volume and

(4.25)P =
1

¢v a
N ¢v

j = 1
pj = Np

¢v
N ¢v
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4.2 Dielectrics 219

where p is the average dipole moment per molecule. The units of P are
or coulombs per square meter. It is found that for many

dielectric materials, the polarization vector is related to the electric field E in
the dielectric in the simple manner given by

(4.26)

where a dimensionless parameter, is known as the electric susceptibility. The
quantity is a measure of the ability of the material to become polarized and
differs from one dielectric to another.

When a dielectric material is placed in an electric field, the induced dipoles
produce a secondary electric field such that the resultant field, that is, the sum of
the originally applied field and the secondary field, and the polarization vector
satisfy (4.26). We shall illustrate this by means of a simple example.

Example 4.2 Plane dielectric slab in a uniform static electric field

Let us consider an infinite plane dielectric slab of thickness d sandwiched between two
infinite plane sheets of equal and opposite uniform charge densities and in the

and planes, respectively, as shown in Fig. 4.10(a). We wish to investigate the
effect of polarization in the dielectric.

In the absence of the dielectric, the electric field between the sheets of charge is
given by

In the presence of the dielectric, this field acts as the applied electric field, inducing di-
pole moments in the dielectric with the negative charges separated from the positive
charges and pulled away from the direction of the field. Since the electric field and the
electric susceptibility are uniform, the density of the induced dipole moments, that is, the
polarization vector P, is uniform, as shown in Fig. 4.10(b). Such a distribution results in
exact neutralization of all the charges except at the boundaries of the dielectric since, for
each positive (or negative) charge not on the surface, there is the same amount of nega-
tive (or positive) charge associated with the dipole adjacent to it, thereby canceling its ef-
fect. Thus, the net result is the formation of a positive surface charge at the boundary

and a negative surface charge at the boundary as shown in Fig. 4.10(c).
These surface charges are known as polarization surface charges since they are due to
the polarization in the dielectric. In view of the uniform density of the dipole moments,
the surface charge densities are uniform. Also, in the absence of a net charge in the inte-
rior of the dielectric, the surface charge densities must be equal in magnitude to preserve
the charge neutrality of the dielectric.

Let us therefore denote the surface charge densities as

where the subscript p in addition to the other subscripts stands for polarization. If we
now consider a vertical column of infinitesimal rectangular cross-sectional area cut¢S

rpS = erpS0 for z = d

-rpS0 for z = 0

z = 0,z = d

Ea =
rS0

e0
 az

z = dz = 0
-rS0rS0

xe

xe,

P = e0xe E

coulomb-meter>meter3

Dielectric in
an electric
field
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FIGURE 4.10

For investigating the effect of polarization induced in a dielectric material sandwiched between two
infinite plane sheets of charge.

out from the dielectric, as shown in Fig. 4.10(d), the equal and opposite surface charges
make the column appear as a dipole of moment On the other hand, writing

(4.27)

where is a constant in view of the uniformity of the induced polarization, the dipole
moment of the column is equal to P times the volume of the column, or 
Equating the dipole moments computed in the two different ways, we have

rpS0 = P0

P01d ¢S2az.
P0

P = P0 az

1rpS0 ¢S2daz.
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Thus, we have related the surface charge density to the magnitude of the polariza-
tion vector. Now, the surface charge distribution produces a secondary field given by

Denoting the total field in the dielectric to be we have

(4.28)

But from (4.26),

(4.29)

Substituting (4.27) and (4.28) into (4.29), we obtain

or

(4.30)

Thus, the polarization surface charge densities are given by

(4.31)

and the electric field intensity in the dielectric is

(4.32)

as shown in Fig. 4.10(e).

Let us now consider the case of the infinite plane current sheet of Fig. 3.14,
radiating uniform plane waves, except that now the space on either side of the
current sheet is a dielectric material instead of free space. The electric field in
the medium induces polarization. The polarization in turn acts together with
other factors to govern the behavior of the electromagnetic field. For the case
under consideration, the electric field is entirely in the x-direction and uniform
in x and y. Thus the induced dipoles are all oriented in the x-direction, on a
macroscopic scale, with the dipole moment per unit volume given by

(4.33)

where is understood to be a function of z and t.Ex

P = Px ax = e0xe Ex ax

Et =
rS0

e011 + xe02  az

rpS = d xe0rS0

1 + xe0
for z = d

-  

xe0rS0

1 + xe0
for z = 0

P0 =
xe0rS0

1 + xe0

P0 = xe01rS0 - P02

P = e0xe0 Et

Et = Ea + Es =
rS0

e0
 az -

P0

e0
 az

Et,

Es = c -  

rpS0

e0
 az = -  

P0

e0
 az for 0 6 z 6 d

0 otherwise

Es
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If we now consider an infinitesimal surface of area parallel to the
yz plane, we can write associated with that infinitesimal area to be equal to

where is a constant.The time history of the induced dipoles associ-
ated with that area can be sketched for one complete period of the current
source, as shown in Fig. 4.11. In view of the cosinusoidal variation of the elec-
tric field with time, the dipole moment of the individual dipoles varies in a cos-
inusoidal manner with maximum strength in the positive x direction at 
decreasing sinusoidally to zero strength at and then reversing to the
negative x direction, increasing to maximum strength in that direction at 
and so on.

t = p>v,
t = p>2v t = 0,

E0E0 cos vt,
Ex
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FIGURE 4.11

Time history of induced electric dipoles in a dielectric material under the influence of a
sinusoidally time-varying electric field.
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d

�z

�y

Q2 � �Q1

Q1 � e0xeE0 cos vt �y�z

FIGURE 4.12

Two plane sheets of equal and opposite time-
varying charges equivalent to the phenomenon
depicted in Fig. 4.11.

The arrangement can be considered as two plane sheets of equal and op-
posite time-varying charges displaced by the amount in the x direction, as
shown in Fig. 4.12. To find the magnitude of either charge, we note that the di-
pole moment per unit volume is

(4.34)

Since the total volume occupied by the dipoles is the total dipole mo-
ment associated with the dipoles is The dipole moment
associated with two equal and opposite sheet charges is equal to the magnitude of
either sheet charge multiplied by the displacement between the two sheets. Hence
we obtain the magnitude of either sheet charge to be Thus
we have a situation in which a sheet charge is above
the surface and a sheet charge is below the
surface.This is equivalent to a current flowing across the surface, since the charges
are varying with time.

We call this current the “polarization current” since it results from the
time variation of the electric dipole moments induced in the dielectric due to
polarization. The polarization current crossing the surface in the positive x di-
rection, that is, from below to above, is

(4.35)

where the subscript p denotes polarization. By dividing by and letting
the area tend to zero, we obtain the polarization current density associated with
the points on the surface as

 =
0
0t

 1e0xe E0 cos vt2 =
0Px

0t

 Jpx = Lim
¢y:0
¢z:0

 

Ipx

¢y ¢z
= -e0xe E0v sin vt

¢y ¢zIpx

Ipx =
dQ1

dt
= -e0xe E0v sin vt ¢y ¢z

Q2 = -Q1 = -e0xe E0 cos vt ¢y ¢z
Q1 = e0xe E0 cos vt ¢y ¢z

e0xe E0 cos vt ¢y ¢z.

e0xe E0 cos vt1d ¢y ¢z2.d ¢y ¢z,

Px = e0xe E0 cos vt

d
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224 Chapter 4 Fields and Waves In Material Media

or

(4.36)

Although we have deduced this result by considering the special case of the in-
finite plane current sheet, it is valid in general.

In considering electromagnetic wave propagation in a dielectric medium,
the polarization current density given by (4.36) must be included with the cur-
rent density term on the right side of Ampere’s circuital law. Thus considering
Ampere’s circuital law in differential form for the general case given by (3.21),
we have

(4.37)

In order to make (4.37) consistent with the corresponding equation for free
space given by (3.21), we now revise the definition of the displacement vector D
to read as

(4.38)

Substituting for P by using (4.26), we obtain

(4.39)

or

(4.40)

where we define

(4.41)

and

(4.42)

The quantity is known as the relative permittivity or dielectric constant of the
dielectric, and is the permittivity of the dielectric. The permittivity takes into
account the effects of polarization, and there is no need to consider them when
we use for for The relative permittivity is an experimentally measurable
parameter. Its values for several dielectric materials are listed in Table 4.2.

e0!e

ee

er

e = e0er

er = 1 + xe

D = eE

 = e0er E
= e011 + xe2E

 D = e0 E + e0xe E

D = e0 E + P

 = J +
0
0t

 1e0 E + P2
 = J +

0P
0t

+
0
0t

 1e0 E2
 � � H = J + Jp +

0
0t

 1e0 E2

Jp =
0P
0t
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4.2 Dielectrics 225

Table 4.2 Relative Permittivities of Some Materials

Relative Relative
Material Permittivity Material Permittivity

Air 1.0006 Dry earth 5
Paper 2.0-3.0 Mica 6
Teflon 2.1 Neoprene 6.7
Polystyrene 2.56 Wet earth 10
Plexiglass 2.6-3.5 Ethyl alcohol 24.3
Nylon 3.5 Glycerol 42.5
Fused quartz 3.8 Distilled water 81
Bakelite 4.9 Titanium dioxide 100

Returning now to Example 4.2, we observe that in the absence of the di-
electric between the sheets of charge,

(4.43a)

(4.43b)

since P is equal to zero. In the presence of the dielectric between the sheets of
charge,

(4.44a)

(4.44b)

Thus, the D fields are the same in both cases, independent of the permittivity of
the medium, whereas the expressions for the E fields differ in the permittivities,
that is, with replaced by The situation in general is, however, not so simple
because the dielectric alters the original field distribution. In the case of Exam-
ple 4.2, the geometry is such that the original field distribution is not altered by
the dielectric.Also in the general case, the situation is equivalent to having a po-
larization volume charge inside the dielectric in addition to polarization surface
charges on its boundaries.

The nature of (4.13), which is characteristic of conductors, and of (4.40),
which is characteristic of dielectrics, implies that in the case of conductors and
D in the case of dielectrics are in the same direction as that of E. Such materials
are said to be isotropic materials. For anisotropic materials, this is not necessari-
ly the case. To explain, we shall consider anisotropic dielectric materials. Then D
is not in general in the same direction as that of E. This arises because the in-
duced polarization is such that the polarization vector P is not necessarily in the
same direction as that of E. In fact, the angle between the directions of the ap-
plied E and the resulting P depends on the direction of E. The relationship be-
tween D and E is then expressed in the form of a matrix equation as

(4.45)CDx

Dy

Dz

S = C exx exy exz

eyx eyy eyz

ezx ezy ezz

S CEx

Ey

Ez

S

Jc

e.e0

D = eE = rS0 az

E = Et =
rS0

e011 + xe02  az =
rS0

e
 az

D = e0 Ea = rS0 az

E = Ea =
rS0

e0
 az

Anisotropic
dielectric
materials
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226 Chapter 4 Fields and Waves In Material Media

Thus, each component of D is in general dependent on each component of E.
The square matrix in (4.45) is known as the permittivity tensor of the anisotrop-
ic dielectric.

Although D is not in general parallel to E for anisotropic dielectrics, there
are certain polarizations of E for which D is parallel to E. These are said to cor-
respond to the characteristic polarizations, where the word polarization here
refers to the direction of the field, not to the creation of electric dipoles. We
shall consider an example to investigate the characteristic polarizations.

Example 4.3 Characteristics of an anisotropic dielectric material

An anisotropic dielectric material is characterized by the permittivity tensor

Let us find D for several cases of E.
Substituting the given permittivity matrix into (4.45), we obtain

For D is parallel to E.
For D is not parallel to E.
For D is not parallel to E.
For D is not parallel to E.
For D
is parallel of E.

When D is parallel to E, that is, for the characteristic polarizations of E, one can
define an effective permittivity as the ratio of D to E. Thus, for the case of the
effective permittivity is and for the case of the effective permit-
tivity is For the characteristic polarizations, the anisotropic material behaves effec-
tively as an isotropic dielectric having the permittivity equal to the corresponding
effective permittivity.

K4.2. Polarization; Electric dipole; Polarization vector; Polarization charge; Polariza-
tion current; Permittivity; Relative permittivity; Anisotropic dielectric; Charac-
teristic polarizations; Effective permittivity.

D4.3. Infinite plane sheets of uniform charge densities and occupy
the planes and respectively.The region is a dielectric of
permittivity Find the values of (a) D, (b) E, and (c) P in the region

Ans. (a) (b) (c) 0.75 * 10-6 az C>m2.9000paz V>m;10-6 az C>m2;
0 6 z 6 d.

4e0.
0 6 z 6 dz = d,z = 0

-1 mC>m21 mC>m2

8e0.
E = E012ax + ay2,3e0,

E = E0 az,

E = E012ax + ay2, D = 16e0 E0 ax + 8e0 E0  ay = 8e0 E012ax + ay2 = 8e0 E;

E = E01ax + 2ay2, D = 11e0 E0 ax + 10e0 E0 ay;
E = E0 ay, D = 2e0 E0 ax + 4e0 E0 ay;
E = E0 ax, D = 7e0 E0 ax + 2e0 E0 ay;
E = E0 az, D = 3e0 E0 az = 3e0 E;

 Dz = 3e0 Ez

 Dy = 2e0 Ex + 4e0 Ey

 Dx = 7e0 Ex + 2e0 Ey

[e] = e0C7 2 0
2 4 0
0 0 3

S
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(a)

an I

(b)

Iin Iout

FIGURE 4.13

Schematic representation of a magnetic
dipole as seen from (a) along its axis and
(b) a point in its plane.

D4.4. For an anisotropic dielectric material characterized by the D to E relationship

find the value of the effective relative permittivity for each of the following
electric field intensities corresponding to the characteristic polarizations:

(b) and (c)
Ans. (a) 9; (b) 4; (c) 9.

4.3 MAGNETIC MATERIALS

In the preceding two sections, we have been concerned with the response of ma-
terials to electric fields. We now turn our attention to materials known as mag-
netic materials, which, as the name implies, are classified according to their
magnetic behavior. According to a simplified atomic model, the electrons asso-
ciated with a particular nucleus orbit around the nucleus in circular paths while
spinning about themselves. In addition, the nucleus itself has a spin motion as-
sociated with it. Since the movement of charge constitutes a current, these or-
bital and spin motions are equivalent to current loops of atomic dimensions. A
current loop is the magnetic analog of the electric dipole. Thus, each atom can
be characterized by a superposition of magnetic dipole moments corresponding
to the electron orbital motions, electron spin motions, and the nuclear spin.
However, owing to the heavy mass of the nucleus, the angular velocity of the nu-
clear spin is much smaller than that of an electron spin, and hence the equiva-
lent current associated with the nuclear spin is much smaller than the
equivalent current associated with an electron spin. The dipole moment due to
the nuclear spin can therefore be neglected in comparison with the other two
effects. The schematic representations of a magnetic dipole as seen from along
its axis and from a point in its plane are shown in Figs. 4.13(a) and (b), respec-
tively. The strength of the dipole is defined by the magnetic dipole moment m
given by

(4.46)

where A is the area enclosed by the current loop, and is the unit vector nor-
mal to the plane of the loop and directed in the right-hand sense.

an

m = IAan

E = E012ax + ay2.E = E01ax - 2ay2;(a) E = E0 az;

CDx

Dy

Dz

S = e0C8 2 0
2 5 0
0 0 9

S CEx

Ey

Ez

S

Magnetiza-
tion, magnetic
dipole
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I
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I d l � B

B

I d l � B

FIGURE 4.14

Torque acting on a magnetic dipole
in an external magnetic field.

In many materials, the net magnetic moment of each atom is zero; that is,
on the average, the magnetic dipole moments corresponding to the various elec-
tronic orbital and spin motions add up to zero. An external magnetic field has
the effect of inducing a net dipole moment by changing the angular velocities of
the electronic orbits, thereby magnetizing the material. This kind of magnetiza-
tion, known as diamagnetism, is in fact prevalent in all materials. In certain ma-
terials known as paramagnetic materials, the individual atoms possess net
nonzero magnetic moments even in the absence of an external magnetic field.
These permanent magnetic moments of the individual atoms are, however, ran-
domly oriented so that the net magnetization on a macroscopic scale is zero.An
applied magnetic field has the effect of exerting torques on the individual per-
manent dipoles, as shown in Fig. 4.14, that convert, on a macroscopic scale, the
initially random alignment into a partially coherent one along the magnetic
field, that is, with the normal to the current loop directed along the magnetic
field. This kind of magnetization is known as paramagnetism. Certain materials
known as ferromagnetic, antiferromagnetic, and ferrimagnetic materials exhibit
permanent magnetization, that is, magnetization even in the absence of an ap-
plied magnetic field.

On a macroscopic scale, we define a vector M, called the magnetization
vector, as the magnetic dipole moment per unit volume. Thus, if N denotes the
number of molecules per unit volume of the material, then there are mol-
ecules in a volume and

(4.47)

where m is the average dipole moment per molecule. The units of M are
or amperes per meter. It is found that for many magnet-

ic materials, the magnetization vector is related to the magnetic field B in the
material in the simple manner given by

(4.48)

where a dimensionless parameter, is known as the magnetic susceptibility.
The quantity is a measure of the ability of the material to become magne-
tized and differs from one magnetic material to another.

xm

xm,

M =
xm

1 + xm
  
B
m0

ampere-meter2>meter3

M =
1

¢v a
N ¢v

j = 1
mj = Nm

¢v
N ¢v
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(c)

z � d

z � 0

JmS � �JmS0ay

JmS � JmS0ay

(e)

Bt

(b)(a)

z � d

z � 0

xm � xm0
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�JS0ay

JS0ay

(d)

d

�x

�y

FIGURE 4.15

For investigating the effect of magnetization induced in a magnetic material sandwiched between two
infinite plane sheets of current.

Magnetic
material in a
magnetic field

When a magnetic material is placed in a magnetic field, the induced dipoles
produce a secondary magnetic field such that the resultant field, that is, the sum
of the originally applied field and the secondary field, and the magnetization vec-
tor satisfy (4.48). We shall illustrate this by means of an example.

Example 4.4 Plane magnetic material slab in a uniform static 
magnetic field

Let us consider an infinite plane magnetic material slab of thickness d sandwiched be-
tween two infinite plane sheets of equal and opposite uniform current densities and

in the and planes, respectively, as shown in Fig. 4.15(a). We wish to
investigate the effect of magnetization in the magnetic material.

In the absence of the magnetic material, the magnetic field between the sheets of
current is given by

 = m0 JS0 ax

 Ba = m0 JS0 ay � az

z = dz = 0-JS0 ay

JS0 ay
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In the presence of the magnetic material, this field acts as the applied magnetic field re-
sulting in magnetic dipole moments in the material that are oriented along the field.
Since the magnetic field and the magnetic susceptibility are uniform, the density of the
dipole moments, that is, the magnetization vector M, is uniform as shown in Fig. 4.15(b).
Such a distribution results in exact cancelation of currents everywhere except at the
boundaries of the material since, for each current segment not on the surface, there is a
current segment associated with the dipole adjacent to it and carrying the same amount
of current in the opposite direction, thereby canceling its effect.Thus, the net result is the
formation of a negative y-directed surface current at the boundary and a positive
y-directed surface current at the boundary as shown in Fig. 4.15(c). These surface
currents are known as magnetization surface currents, since they are due to the magneti-
zation in the material. In view of the uniform density of the dipole moments, the surface
current densities are uniform. Also, in the absence of a net current in the interior of the
magnetic material, the surface current densities must be equal in magnitude so that
whatever current flows on one surface returns via the other surface.

Let us therefore denote the surface current densities as

where the subscript m in addition to the other subscripts stands for magnetization. If we
now consider a vertical column of infinitesimal rectangular cross-sectional area 

cut out from the magnetic material, as shown in Fig. 4.15(d), the rectangular
current loop of width makes the column appear as a dipole of moment 

On the other hand, writing

(4.49)

where is a constant in view of the uniformity of the magnetization, the dipole mo-
ment of the column is equal to M times the volume of the column, or 
Equating the dipole moments computed in the two different ways, we have

Thus, we have related the surface current density to the magnitude of the magneti-
zation vector. Now, the surface current distribution produces a secondary field given by

Denoting the total field inside the magnetic material to be we have

(4.50)

But, from (4.48),

(4.51)

Substituting (4.49) and (4.50) into (4.51), we have

M0 =
xm0

1 + xm0
 1JS0 + M02

M =
xm0

1 + xm0
  

Bt

m0

 = m01JS0 + M02 ax

 Bt = Ba + Bs = m0 JS0 ax + m0 M0 ax

Bt,

Bs = em0 JmS0 ax = m0 M0 ax for 0 6 z 6 d

0 otherwise

Bs

JmS0 = M0

M01d ¢x ¢y2ax.
M0

M = M0 ax

1d ¢y2ax.
1JmS0 ¢x2¢x

1¢x21¢y2
¢S =

JmS = eJmS0 ay for z = 0
-JmS0 ay for z = d

z = 0,
z = d
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or

(4.52)

Thus, the magnetization surface current densities are given by

(4.53)

and the magnetic flux density in the magnetic material is

(4.54)

as shown in Fig. 4.15(e).

Let us now consider the case of the infinite plane current sheet of Fig. 3.14,
radiating uniform plane waves, except that now the space on either side of the
current sheet possesses magnetic material properties in addition to dielectric
properties. The magnetic field in the medium induces magnetization. The mag-
netization in turn acts together with other factors to govern the behavior of the
electromagnetic field. For the case under consideration, the magnetic field is en-
tirely in the y-direction and uniform in x and y. Thus the induced dipoles are all
oriented with their axes in the y-direction, on a macroscopic scale, with the di-
pole moment per unit volume given by

(4.55)

where is understood to be a function of z and t.
Let us now consider an infinitesimal surface of area parallel to the

yz plane and the magnetic dipoles associated with the two areas to the
left and to the right of the center of this area as shown in Fig. 4.16(a). Since is
a function of z, we can assume the dipoles in the left area to have a different mo-
ment than the dipoles in the right area for any given time. If the dimension of an
individual dipole is in the x direction, then the total dipole moment associated
with the dipoles in the left area is and the total dipole mo-
ment associated with the dipoles in the right area is 

The arrangement of dipoles can be considered to be equivalent to two rec-
tangular surface current loops as shown in Fig. 4.16 (b) with the left side current
loop having a dipole moment and the right side current loop
having a dipole moment Since the magnetic dipole moment
of a rectangular surface current loop is simply equal to the product of the sur-
face current and the cross-sectional area of the loop, the surface current associ-
ated with the left loop is and the surface current associated with
the right loop is Thus we have a situation in which a current
equal to is crossing the area in the positive x direction, and
a current equal to is crossing the same area in the negative x di-
rection. This is equivalent to a net current flowing across the surface.

[My]z + ¢z>2 ¢y
¢y ¢z[My]z - ¢z>2 ¢y

[My]z + ¢z>2 ¢y.
[My]z - ¢z>2 ¢y

[My]z + ¢z>2 d ¢y ¢z.
[My]z - ¢z>2 d ¢y ¢z

[My]z + ¢z>2 d ¢y ¢z.
[My]z - ¢z>2 d ¢y ¢z

d

By

¢y ¢z
¢y ¢z

By

M = Mx ay =
xm

1 + xm
  

By

m0
 ay

Bt = m011 + xm02JS0 ax

JmS = exm0 JS0 ay for z = 0
-xm0 JS0 ay for z = d

M0 = xm0 JS0
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FIGURE 4.16

(a) Induced magnetic dipoles in a magnetic material. (b) Equivalent surface current loops.

We call this current the “magnetization current,” since it results from the
space variation of the magnetic dipole moments induced in the magnetic mate-
rial due to magnetization. The net magnetization current crossing the surface in
the positive x direction is

(4.56)

where the subscript m denotes magnetization. By dividing by and let-
ting the area tend to zero, we obtain the magnetization current density associated

¢y ¢zImx

Imx = [My]z - ¢z>2 ¢y - [My]z + ¢z>2 ¢y
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4.3 Magnetic Materials 233

with the points on the surface as

or

or

(4.57)

Although we have deduced this result by considering the special case of the in-
finite plane current sheet, it is valid in general.

In considering electromagnetic wave propagation in a magnetic material
medium, the magnetization current density given by (4.57) must be included
with the current density term on the right side of Ampere’s circuital law. Thus
considering Ampere’s circuital law in differential form for the general case
given by (3.21), we have

(4.58)

or

(4.59)

In order to make (4.59) consistent with the corresponding equation for free
space given by (3.21), we now revise the definition of the magnetic field intensi-
ty vector H to read as

(4.60)H =
B
m0

- M

� � a B
m0

- Mb = J +
0D
0t

 = J + � � M +
0D
0t

 � �
B
m0

= J + Jm +
0D
0t

Jm = � � M

Jmx ax = 4 ax ay az

0
0x

0
0y

0
0z

0 My 0

4

 = -  

0My

0z

 Jmx = Lim
¢y:0
¢z:0

 

Imx

¢y ¢z
= Lim

¢z:0
 

[My]z - ¢z>2 - [My]z + ¢z>2
¢z
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Substituting for M by using (4.48), we obtain

(4.61)

or

(4.62)

where we define

(4.63)

and

(4.64)

The quantity is known as the relative permeability of the magnetic material
and is the permeability of the magnetic material. The permeability takes
into account the effects of magnetization, and there is no need to consider them
when we use for 

Returning now to Example 4.4, we observe that in the absence of the mag-
netic material between the sheets of current,

(4.65a)

(4.65b)

since M is equal to zero. In the presence of the magnetic material between the
sheets of current,

(4.66a)

(4.66b)

Thus, the H fields are the same in both cases, independent of the permeability of
the medium, whereas the expressions for the B fields differ in the permeabili-
ties, that is, with replaced by The situation in general is, however, not so
simple because the magnetic material alters the original field distribution. In the
case of Example 4.4, the geometry is such that the original field distribution is
not altered by the magnetic material. Also, in the general case, the situation is

m.m0

 H =
B
m

= JS0 ax

 B = Bt = m011 + xm2JS0 ax = mJS0 ax

 H =
B
m0

= JS0 ax

 B = Ba = m0 JS0 ax

m0!m

mm

mr

m = m0mr

mr = 1 + xm

H =
B
m

 =
B
m0mr

 =
B

m011 + xm2

 H =
B
m0

-
xm

1 + xm
  
B
m0
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(c)(b)(a)

Domain Wall
Domain

Applied
Field

FIGURE 4.17

For illustrating the different steps in the magnetization of a ferromagnetic
specimen: (a) unmagnetized state; (b) domain wall motion; and (c) domain
rotation.

equivalent to having a magnetization volume current inside the material in ad-
dition to the surface current at the boundaries. For anisotropic magnetic materi-
als, H is not in general parallel to B and the relationship between the two
quantities is expressed in the form of a matrix equation, as given by

(4.67)

just as in the case of the relationship between D and E for anistropic dielectric
materials.

For many materials for which the relationship between H and B is linear,
the relative permeability does not differ appreciably from unity, unlike the case of
linear dielectric materials, for which the relative permittivity can be very large, as
shown in Table 4.2. In fact, for diamagnetic materials, the magnetic susceptibility

is a small negative number of the order to whereas for para-
magnetic materials, is a small positive number of the order to Fer-
romagnetic materials, however, possess large values of relative permeability on
the order of several hundreds, thousands, or more. The relationship between B
and H for these materials is nonlinear, resulting in a non-unique value of for a
given material. In fact, these materials are characterized by hysteresis, that is, the
relationship between B and H dependent on the past history of the material.

Ferromagnetic materials possess strong dipole moments, owing to the pre-
dominance of the electron spin moments over the electron orbital moments. The
theory of ferromagnetism is based on the concept of magnetic domains, as formu-
lated by Weiss in 1907. A magnetic domain is a small region in the material in
which the atomic dipole moments are all aligned in one direction, due to strong
interaction fields arising from the neighboring dipoles. In the absence of an exter-
nal magnetic field, although each domain is magnetized to saturation, the magne-
tizations in various domains are randomly oriented, as shown in Fig. 4.17(a) for a
single crystal specimen. The random orientation results from minimization of the

mr,

10-7.10-3xm

-10-8,-10-4xm

CBx

By

Bz

S = Cmxx mxy mxz

myx myy myz

mzx mzy mzz

S CHx

Hy

Hz

S

Ferromagnetic
materials

RaoCh04v3.qxd  12/18/03  3:49 PM  Page 235



236 Chapter 4 Fields and Waves In Material Media
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FIGURE 4.18

Hysteresis curve for a ferromagnetic
material.

associated energy.The net magnetization is therefore zero on a macroscopic scale.
With the application of a weak external magnetic field, the volumes of the do-
mains in which the original magnetizations are favorably oriented relative to the
applied field grow at the expense of the volumes of the other domains, as shown
in Fig. 4.17(b).This feature is known as domain wall motion. Upon removal of the
applied field, the domain wall motion reverses, bringing the material close to its
original state of magnetization. With the application of stronger external fields,
the domain wall motion continues to such an extent that it becomes irreversible;
that is, the material does not return to its original unmagnetized state on a macro-
scopic scale upon removal of the field.With the application of still stronger fields,
the domain wall motion is accompanied by domain rotation, that is, alignment of
the magnetizations in the individual domains with the applied field, as shown in
Fig. 4.17(c), thereby magnetizing the material to saturation. The material retains
some magnetization along the direction of the applied field even after removal of
the field. In fact, an external field opposite to the original direction has to be ap-
plied to bring the net magnetization back to zero.

We may now discuss the relationship between B and H for a ferromag-
netic material, which is depicted graphically as shown by a typical curve in Fig.
4.17. This curve is known as the hysteresis curve, or the B–H curve. To trace the
development of the hysteresis effect, we start with an unmagnetized sample of
ferromagnetic material in which both B and H are initially zero, corresponding
to point a on the curve. As H is increased, the magnetization builds up, thereby
increasing B gradually along the curve ab and finally to saturation at b, accord-
ing to the following sequence of events as discussed earlier: (1) reversible mo-
tion of domain walls, (2) irreversible motion of domain walls, and (3) domain
rotation. The regions corresponding to these events along the curve ab as well
as other portions of the hysteresis curve are shown marked 1, 2, and 3, respec-
tively, in Fig. 4.18. If the value of H is now decreased to zero, the value of B

Hysteresis
curve
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Floppy disk

1See, for example, Robert M. White, “Disk-Storage Technology,” Scientific American, August 1980,
pp. 138–148.

does not retrace the curve ab backward, but instead follows the curve bc, which
indicates that a certain amount of magnetization remains in the material even
after the magnetizing field is completely removed. In fact, it requires a magnet-
ic field intensity in the opposite direction to bring B back to zero, as shown by
the portion cd of the curve. The value of B at the point c is known as the
remanence, or retentivity, whereas the value of H at d is known as the coercivity
of the material. Further increase in H in this direction results in the saturation
of B in the direction opposite to that corresponding to b, as shown by the por-
tion de of the curve. If H is now decreased to zero, reversed in direction, and in-
creased, the resulting variation of B occurs in accordance with the curve efgb,
thereby completing the hysteresis loop.

The nature of the hysteresis curve suggests that the hysteresis phenomenon
can be used to distinguish between two states, for example,“1” and “0” in a bina-
ry number magnetic memory system. There are several kinds of magnetic mem-
ories.Although differing in details, all these are based on the principles of storing
and retrieving information in regions on a magnetic medium. In disk, drum, and
tape memories, the magnetic medium moves, whereas in bubble and core memo-
ries, the medium is stationary. We shall briefly discuss here only the floppy disk,
or diskette, used as secondary memory in personal computers.1

The floppy disk consists of a coating of ferrite material applied over a thin
flexible nonmagnetic substrate for physical support. Ferrites are a class of mag-
netic materials characterized by almost rectangular-shaped hysteresis loops so
that the two remanent states are well-defined.The disk is divided into many cir-
cular tracks, and each track is subdivided into regions called sectors, as shown in
Fig. 4.19. To access a sector, an electromagnetic read/write head moves across
the spinning disk to the appropriate track and waits for the correct sector to ro-
tate beneath it. The head consists of a ferrite core around which a coil is wound
and with a gap at the bottom, as shown in Fig. 4.20. Writing data on the disk is
done by passing current through the coil.The current generates a magnetic field
that in the core confines essentially to the material, but in the air gap spreads
out into the magnetic medium below it, thereby magnetizing the region to rep-
resent the 0 state. To store the 1 state in a region, the current in the coil is re-
versed to magnetize the medium in the reverse direction. Reading of data from
the disk is accomplished by the changing magnetic field from the magnetized

Track

Sector

FIGURE 4.19

Arrangement of sectors on a floppy disk.
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Substrate

Magnetic Coating

Direction of

Rotation
Gap

Ferrite
Core

Current

FIGURE 4.20

Writing of data on a floppy disk.

regions on the disk inducing a voltage in the coil of the head as the disk rotates
under the head. The voltage is induced in accordance with Faraday’s law (which
we covered in Section 2.3) whenever there is a change in magnetic flux linked
by the coil.We have here only discussed the basic principles behind storing data
on the disk and retrieving data from it.There are a number of ways in which bits
can be encoded on the disk. We shall, however, not pursue the topic here.

K4.3. Magnetization; Magnetic dipole; Magnetization vector; Magnetization current;
Permeability; Relative permeability; Ferromagnetic materials; Hysteresis.

D4.5. Find the magnetic dipole moment for each of the following cases: (a) of
charge in a circular orbit of radius in the xy-plane around the z-axis
in the sense of increasing with angular velocity of 1 revolution per millisec-
ond; (b) a square current loop having the vertices at the points 

and with current 0.1 A flowing in
the sense ABCDA; and (c) an equilateral triangular current loop having vertices
at the points and with current 0.1 A
flowing in the sense ABCA.
Ans. (a) (b) (c)

D4.6. Infinite plane sheets of current densities and occupy the
planes and respectively.The region is a magnetic mate-
rial of permeability Find (a) H, (b) B, and (c) M in the region 
Ans. (a) (b) (c) 9.9ax A>m.4p * 10-6 ax Wb>m2;0.1ax A>m;

0 6 z 6 d.100m0.
0 6 z 6 dz = d,z = 0

-0.1ay A>m0.1ay A>m
5 * 10-81ax + ay + az2 A-m2.2 * 10-7 az A-m2;10-9 az A-m2;

C10, 0, 10-32B10, 10-3, 02,A110-3, 0, 02,
D10, -10-3, 02C1-10-3, 0, 02,B10, 10-3, 02,

A110-3, 0, 02,
f

1>1p mm
1 mC
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4.4 WAVE EQUATION AND SOLUTION FOR MATERIAL MEDIUM

In the previous three sections, we introduced conductors, dielectrics, and mag-
netic materials, and developed the relationships (4.13), (4.40) and (4.62), which
take into account the phenomena of conduction, polarization, and magnetiza-
tion, respectively. In this section, we make use of these relationships, in conjunc-
tion with Maxwell’s curl equations, to extend our discussion of uniform plane
wave propagation in free space in Sections 3.4 and 3.5 to a material medium.
These relationships, known as the constitutive relations, are given by

(4.68a)
(4.68b)

(4.68c)

so that the Maxwell’s equations for the material medium are

(4.69a)

(4.69b)

To discuss electromagnetic wave propagation in the material medium, let us con-
sider the infinite plane current sheet of Fig. 3.14, except that now the medium on
either side of the sheet is a material instead of free space, as shown in Fig. 4.21.

The electric and magnetic fields for the simple case of the infinite plane
current sheet in the plane and carrying uniformly distributed current in
the negative x-direction as given by

(4.70)

are of the form

(4.71a)
(4.71b) H = Hy1z, t2ay

 E = Ex1z, t2ax

JS = -JS0 cos vt ax

z = 0

 � � H = J +
0D
0t

= Jc +
0D
0t

= sE + e 
0E
0t

 � � E = -  
0B
0t

= -m 
0H
0t

 H =
B
m

 D = eE
 Jc = sE
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z

y

x

JS

s, e, m s, e, m

FIGURE 4.21

Infinite plane current sheet embedded in a material
medium.

RaoCh04v3.qxd  12/18/03  3:49 PM  Page 239



240 Chapter 4 Fields and Waves In Material Media

The corresponding simplified forms of the Maxwell’s curl equations are

(4.72a)

(4.72b)

Without the term on the right side of (4.72b), these two equations would be
the same as (3.72a) and (3.72b) with replaced by and replaced by The
addition of the term complicates the solution in time domain. Hence, it is
convenient to consider the solution for the sinusoidally time-varying case by
using the phasor technique. See Appendix A for phasor technique.

Thus, letting

(4.73a)

(4.73b)

and replacing and in (4.72a) and (4.72b) by their phasors and re-
spectively, and by we obtain the corresponding differential equations
for the phasors and as

(4.74a)

(4.74b)

Differentiating (4.74a) with respect to z and using (4.74b), we obtain

(4.75)

Defining

(4.76)

and substituting in (4.75), we have

(4.77)

which is the wave equation for in the material medium.
The solution to the wave equation (4.77) is given by

(4.78)E
 –

x1z2 = A
 –

e-gqz + B
 –

egqz

E
 –

x

02E
 –

x

0z2 = g2E
 –

x

g = 1jvm1s + jve2

02E
 –

x

0z2 = -jvm 

0H
 –

y

0z
= jvm1s + jve2E –x

0H
 –

y

0z
= -sE

 –
x - jveE

 –
x = -1s + jve2E –x

0E
 –

x

0z
= -jvmH

 –
y

H
 –

yE
 –

x

jv,0>0t
H
 –

y,E
 –

xHyEx

 Hy1z, t2 = Re[H
 –

y1z2ejvt]

 Ex1z, t2 = Re[E
 –

x1z2ejvt]

sEx

e.e0mm0

sEx

 
0Hy

0z
= -sEx - e 

0Ex

0t

 
0Ex

0z
= -m 

0Hy

0t

Wave
equation
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4.4 Wave Equation and Solution for Material Medium 241

where and are arbitrary constants. Noting that is a complex number and,
hence, can be written as

(4.79)

and also writing and in exponential form as and respectively, we
have

or

(4.80)

We now recognize the two terms on the right side of (4.80) as representing uni-
form plane waves propagating in the positive z- and negative z-directions, re-
spectively, with phase constant in view of the factors and

respectively. They are, however, multiplied by the factors
and respectively. Hence, the amplitude of the field differs from one

constant phase surface to another. Since there cannot be a wave in the re-
gion that is, to the left of the current sheet, and since there cannot be a

wave in the region that is, to the right of the current sheet, the solu-
tion for the electric field is given by

(4.81)

To discuss how the amplitude of varies with z on either side of the cur-
rent sheet, we note that since and are all positive, the phase angle of

lies between 90° and 180°, and hence the phase angle of lies
between 45° and 90°, making and positive quantities. This means that 
decreases with increasing value of z, that is, in the positive z-direction, and 
decreases with decreasing value of z, that is, in the negative z-direction. Thus,
the exponential factors and associated with the solutions for in
(4.81) have the effect of decreasing the amplitude of the field, that is, attenu-
ating it as it propagates away from the sheet to either side of it. For this rea-
son, the quantity is known as the attenuation constant. The attenuation per
unit length is equal to In terms of decibels, this is equal to or

The units of are nepers per meter. The quantity is known as the
propagation constant, since its real and imaginary parts, and together de-
termine the propagation characteristics, that is, attenuation and phase shift of
the wave.

Having found the solution for the electric field of the wave and dis-
cussed its general properties, we now turn to the solution for the corresponding

b,a

ga8.686a dB.
20 log10 e

a,ea.
a

Exeaze-az

eaz
e-azba

gjvm1s + jve2 ms, e,
Ex

E1z, t2 = eAe-az cos 1vt - bz + u2 ax for z 7 0
Beaz cos 1vt + bz + f2 ax for z 6 0

z 7 0,1-2 z 6 0,
1+2eaz,e-az

 cos 1vt + bz + f2,  cos 1vt - bz + u2b,

 = Ae-az cos 1vt - bz + u2 + Beaz cos 1vt + bz + f2
 = Re[Aejue-aze-jbzejvt + Bejfeazejbzejvt]

 Ex1z, t2 = Re[E
 –

x1z2ejvt]

E
 –

x1z2 = Aejue-aze-jbz + Bejfeazejbz

Bejf,AejuB
 –

A
 –

g = a + jb

gB
 –

A
 –

Attenuation
constant
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242 Chapter 4 Fields and Waves In Material Media

magnetic field by substituting for in (4.74a). Thus,

(4.82)

where

(4.83)

is the intrinsic impedance of the medium, which is now complex. Writing

(4.84)

we obtain the solution for as

(4.85)

Remembering that the first and second terms on the right side of (4.85) corre-
spond to and waves, respectively, and, hence, represent the solutions
for the magnetic field in the regions and respectively, we write

(4.86a)

(4.86b)

To complete the solution for the electromagnetic field due to the current
sheet embedded in the material medium, we need to find the values of the con-
stants A, B, and To do this, we proceed in the same manner as in Sec. 3.4,
using Fig. 3.17, except with a material medium on either side of the current
sheet. Thus, applying Faraday’s law in integral form to the rectangular closed
path abcda in the limit that the sides bc and with the sides ab and dc re-
maining on either side of the current sheet, we have

(4.87)1ab2[Ex]z = 0 + - 1dc2[Ex]z = 0 - = 0

da : 0,

f.u,

H1z, t2 = d A

ƒh ƒ
 e-az cos 1vt - bz + u - t2 ay for z 7 0

-  
B

ƒh ƒ
 eaz cos 1vt + bz + f - t2 ay for z 6 0

z 6 0,z 7 0
1-21+2

 =
A

ƒh ƒ
 e-az cos 1vt - bz + u - t2 -

B

ƒh ƒ
 eaz cos 1vt + bz + f - t2

 = Re c 1

ƒh ƒejt  Aejue-aze-jbzejvt -
1

ƒh ƒejt  Bejfeazejbzejvt d
 Hy1z, t2 = Re[H

 –
y1z2ejvt]

Hy1z, t2
h = ƒh ƒ  ejt

h = A jvm

s + jve

 =
1
h

 1A –e-g
q

z - B
 –

egqz2
 = As + jve

jvm
 1A –e-g

q
z - B

 –
egqz2

 H
 –

y = -  
1

jvm
  

0E
 –

x

0z
=
g

jvm
 1A –e-g

q
z - B

 –
egqz2

E
 –

x

Electro-
magnetic field
due to the
current sheet
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4.4 Wave Equation and Solution for Material Medium 243

or giving us and The so-
lutions for E and H reduce to

(4.88a)

(4.88b)

Now, applying Ampere’s circuital law in integral form to the rectangular closed
path efghe in Fig. 3.17, but with a material medium on either side of the current
sheet, in the limit that the sides fg and with the sides ef and hg remain-
ing on either side of the current sheet, we have

(4.89)

or

Thus, the electromagnetic field due to the infinite plane current sheet of surface
current density

(4.90)

and with a material medium characterized by and on either side of it is
given by

(4.91a)

(4.91b)

As we have already discussed, (4.91a) and (4.91b) represent sinusoidally
time-varying uniform plane waves, getting attenuated as they propagate away
from the current sheet. The phenomenon is illustrated in Fig. 4.22, which shows
sketches of current density on the sheet and the distance variation of the elec-
tric and magnetic fields on either side of the current sheet for three values of t.
As in Fig. 3.22, it should be understood that in these sketches, the field varia-
tions depicted along the z-axis hold also for any other line parallel to the z-axis.
We shall now discuss further the propagation characteristics associated with
these waves:

1. From (4.76) and (4.79), we have

g2 = 1a + jb22 = jvm1s + jve2

 H1z, t2 = ;  

JS0

2
 e <az cos 1vt < bz2 ay for z � 0

 E1z, t2 =
ƒh ƒJS0

2
 e <az cos 1vt < bz + t2 ax for z � 0

ms, e,

JS = -JS0 cos vt ax for z = 0

A =
ƒh ƒJS0

2
 and u = t

2A

ƒh ƒ
 cos 1vt + u - t2 = JS0 cos vt

1ef2[Hy]z = 0 + - 1hg2[Hy]z = 0 - = 1ef2JS0 cos vt

he : 0,

 H1z, t2 = ;  
A

ƒh ƒ
e <az cos 1vt < bz + u - t2 ay for z � 0

 E1z, t2 = Ae <az cos 1vt < bz + u2 ax for z � 0

u = f.A = BA cos 1vt + u2 - B cos 1vt + f2 = 0,

Propagation
characteristics
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JS � � JS0 cos vt ax t � 0, JS � � JS0ax
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JS0t =       ,p

4v 2
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JS = 0t =       ,p
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FIGURE 4.22

Time history of uniform plane electromagnetic wave radiating away from an infinite plane
current sheet embedded in a material medium.

RaoCh04v3.qxd  12/18/03  3:49 PM  Page 244
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or

(4.92a)
(4.92b)

Squaring (4.92a) and (4.92b) and adding and then taking the square root, we
obtain

(4.93)

From (4.92a) and (4.93), we then have

Since and are both positive, we finally get

(4.94)

(4.95)

We note from (4.94) and (4.95) that and are both dependent on through
the factor This factor, known as the loss tangent, is the ratio of the magni-
tude of the conduction current density to the magnitude of the displace-
ment current density in the material medium. In practice, the loss tangent
is, however, not simply inversely proportional to since both and are gen-
erally functions of frequency. In fact, for many materials, the dependence of

on is more toward constant over wide frequency ranges.
2. The phase velocity of the wave along the direction of propagation is

given by

(4.96)

We note that the phase velocity is dependent on the frequency of the wave. Thus,
waves of different frequencies travel with different phase velocities. Consequent-
ly, for a signal comprising a band of frequencies, the different frequency compo-
nents do not maintain the same phase relationships as they propagate in the
medium. This phenomenon is known as dispersion. We shall discuss dispersion in
detail in Chapter 8.

vp =
v

b
=
121me  cB1 + a s

ve
b2

+ 1 d-1>2

vs>ve
esv,

jveE
 –

x

sE
 –

x

s>ve. sba

 b =
v1me12

 cB1 + a s
ve
b2

+ 1 d1>2
 a =

v1me12
 cB1 + a s

ve
b2

- 1 d1>2
ba

 b2 =
1
2

 cv2me + v2meB1 + a s
ve
b2 d

 a2 =
1
2

 c -v2me + v2meB1 + a s
ve
b2 d

a2 + b2 = v2meB1 + a s
ve
b2

 2ab = vms
 a2 - b2 = -v2me
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246 Chapter 4 Fields and Waves In Material Media

3. The wavelength in the medium is given by

(4.97)

In view of the attenuation of the wave with distance, the field variation with dis-
tance is not sinusoidal. Hence, the wavelength is not exactly equal to the dis-
tance between two consecutive positive maxima as in Fig. 3.23. It is, however,
still exactly equal to the distance between two alternate zero crossings.

4. The ratio of the amplitude of the electric field to the amplitude of the
magnetic field is equal to the magnitude of the complex intrinsic impedance
of the medium. The electric and magnetic fields are out of phase by the phase
angle of the intrinsic impedance. In terms of the phasor or complex field com-
ponents, we have

(4.98)

5. From (4.76) and (4.83), we note that

(4.99a)

(4.99b)

so that

(4.100a)

(4.100b)

(4.100c)

Using (4.100a)–(4.100c), we can compute the material parameters and 
from a knowledge of the propagation parameters and at the frequency of
interest.

6. To obtain the electromagnetic field due to a nonsinusoidal source, it is
necessary to consider its frequency components and apply superposition, since
waves of different frequencies are attenuated by different amounts and travel
with different phase velocities. The nonsinusoidal signal changes shape as it
propagates in the material medium, unlike in the case of free space.

We shall now consider an example of the computation of and given
and f.s, e, m,

hg

hg

ms, e,

 m =
1

jv g h

 e =
1
v

 Imag
h
b

 s = Reag
h
b

 
g

h
= s + jve

 g h = jvm

E
 –

x

H
 –

y
= eh for the 1+2 wave

-h for the 1-2 wave

t,
ƒh ƒ ,

l =
2p
b

=
12

f1me  cB1 + a s
ve
b2

+ 1 d-1>2
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Example 4.5 Finding propagation parameters of a material medium
from its material parameters

The material parameters of a certain food item are given by and
at the operating frequency of a microwave oven. We wish to find

the propagation parameters and 
Although explicit expressions for and in terms of and are given by

(4.94) and (4.95), it is instructive to compute their values by using complex algrebra in
conjunction with the expression for given by (4.76). Thus, we have

so that

Proceeding in a similar manner with (4.83), we obtain

 = 53.51l9.37°Æ

 =
54.9898

1.0276l -9.3685°

 =
120p147

  
111 - j0.3392

 =
h01er

  
111 - j1s>ve2

 = A jvm

jve[1 - j1s>ve2]

 h = A jvm

s + jve

 vp =
v

b
= 0.4316 * 108 m>s

 l =
2p
b

= 0.0176 m

 b = 356.67 rad>m
 a = 58.85 Np>m

 = 58.85 + j356.67

 = 361.4912l80.6315°

 = 351.782l90° * 1.0276l -9.3685°

 = j351.78211.0560l -18.7369°

 = j351.78211 - j0.3392

 = j 
2p * 2.45 * 109 * 147

3 * 108 A1 - j 
2.17 * 36p

2p * 2.45 * 109 * 47 * 10-9

 = j 

v1er

c A1 - j 
s

vere0

 = Bjvm – jvea1 - j 
s

ve
b

 g = 1jvm1s + jve2
g

mv, s, e,ba

h.a, b, l, vp,
f = 2.45 GHzm = m0

s = 2.17 S>m, e = 47e0,
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248 Chapter 4 Fields and Waves In Material Media

We shall conclude this section by generalizing the Poynting’s theorem
(3.118), derived in Sec. 3.7, to a material medium.Thus, substituting 
so that and replacing by and by in (3.118), we
obtain

(4.101)

where P is the instantaneous Poynting vector given by

(4.102)

We also recall that the time-average Poynting vector, is given by

(4.103)

In (4.101), the quantity is the power density associated with the work done
by the field, having to do with the conduction current in the material. Since
power is dissipated in causing the conduction current to flow, it is the power dis-
sipation density. Thus, it follows that the power dissipation density, the electric
stored energy density, and the magnetic stored energy density, associated with
electric and magnetic fields in a material medium are given, respectively, by

(4.104a)

(4.104b)

(4.104c)

Example 4.6 Power flow for a uniform plane wave in seawater

Let us consider the electric field of a uniform plane wave propagating in seawater
( and ) in the positive z-direction and having the electric field

at We wish to find the instantaneous power flow per unit area normal to the z-di-
rection as a function of z and the time-average power flow per unit area normal to the z-
direction as a function of z.

From the expression for E, we note that the frequency of the wave is 25 kHz. At
this frequency in seawater, the propagation parameters can be computed to be

and The expressions for the instantaneous electric and
magnetic fields are therefore given by

 H = 4.502e-0.628z cos 15 * 104pt - 0.628z - p>42 ay A>m
 E = 1e-0.628z cos 15 * 104pt - 0.628z2 ax V>m

h = 0.222l45°.a = b L 0.628

z = 0.

E = 1 cos 5 * 104 pt ax V>m
m = m0s = 4 S>m, e = 80e0,

 wm =
1
2

 mH2

 we =
1
2

 eE2

 pd = sE2

sE2

8P9 =
1
2

 Re [E � H*]

8P9,
P = E � H

CS
P # dS = -LV

1sE22 dv -
0
0tLV

a1
2

 eE2b  

dv -
0
0tLV

a1
2

 mH2b  

dv

m,m0ee0E # J = E # sE = sE2,
J = Jc = sE

Poynting’s
theorem for a
material
medium
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4.4 Wave Equation and Solution for Material Medium 249

The instantaneous Poynting vector is then given by

Thus, the instantaneous power flow per unit area normal to the z-direction, which is sim-
ply the z-component of the instantaneous Poynting vector, is

Finally, the time-average power flow per unit area normal to the z-direction is

K4.4. Material medium; Sinusoidal waves; Material parameters; Propagation parame-
ters;Attenuation and phase constants; Complex propagation constant; Complex
intrinsic impedance; Poynting’s theorem for material medium; Power dissipa-
tion density; Electric stored energy density; Magnetic stored energy density.

D4.7. Compute the propagation constant and intrinsic impedance for the following
cases: (a) and and (b)

and 
Ans. (a) (b)

D4.8. For a uniform plane wave of frequency propagating in a nonmagnetic
material medium, the propagation constant is known to be 
Find the following: (a) the distance in which the fields are attenuated

by (b) the distance in which the fields undergo a change of phase by 1 rad;
(c) the distance that a constant phase of the wave travels in (d) the ratio of
the amplitudes of the electric and magnetic fields; and (e) the phase difference
between the electric and magnetic fields.
Ans. (a) 20 m; (b) 10 m; (c) 62.83 m; (d) (e)

D4.9. The magnetic field associated with a uniform plane wave propagating in the
in a nonmagnetic material medium is given by

Find the following: (a) the instantaneous power flow across a surface of area
in the plane at (b) the time-average power flow across a sur-

face of area in the plane; and (c) the time-average power flow across
a surface of area in the plane.
Ans. (a) (b) (c) 6.94H0

2 W.51.28H0
2 W;102.57H0

2 W;
z = 1 m1 m2

z = 01 m2
t = 0;z = 01 m2

H = H0 e-z cos 16p * 107t - 13z2 ay A>m
1m = m02+z-direction

0.1476p.70.62 Æ;

1 ms;
e-1;

j0.12 m-1.
10.05 +1m = m02

106 Hz

36.34l20.99°Æ.
177.84 + j202.862 m-1,10.00083 + j0.004762 m-1, 163.54l9.9°Æ;

f = 109 Hz.e = 80e0, m = m0,
s = 4 S>m,f = 105 Hz;s = 10-5 S>m, e = 5e0, m = m0,

 = 1.592e-1.256z W>m2

 8Pz9 = 2.251e-1.256z cos p>4

Pz = 2.251e-1.256z [cos p>4 +  cos 1105pt - 1.256z - p>42] W>m2

 –  cos 15 * 104pt - 0.628z - p>42 az W>m2

 = 4.502e-1.256z cos 15 * 104pt - 0.628z2
 P = E � H
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250 Chapter 4 Fields and Waves In Material Media

4.5 UNIFORM PLANE WAVES IN DIELECTRICS AND CONDUCTORS

In the preceding section, we discussed uniform plane electromagnetic wave
propagation in a material medium for the general case. In this section, we con-
sider special cases as follows:

Case 1: Perfect dielectrics. Perfect dielectrics are characterized by 
Then

(4.105)

is purely imaginary, so that

(4.106a)
(4.106b)

(4.106c)

(4.106d)

Further,

(4.107)

is purely real. Thus, the waves propagate without attenuation and with the elec-
tric and magnetic fields in phase, as in free space but with replaced by and

replaced by In terms of the relative permittivity and the relative perme-
ability of the perfect dielectric medium, the propagation parameters are

(4.108a)

(4.108b)

(4.108c)

(4.108d)

where the quantities with subscripts “0” refer to free space.

Case 2: Imperfect dielectrics. Imperfect dielectrics are characterized by
but Recalling that is the conduction current density and

is the displacement current density, we note that this condition is equiva-
lent to stating that the magnitude of the conduction current density is small
compared to the magnitude of the displacement current density. Using the bi-
nomial expansion

11 + x2n = 1 + nx +
n1n - 12

2!
 x2 + Á

veE
 –

x

sE
 –

xs>ve � 1.s Z 0,

 h = h0Amr

er

 l =
l01mrer

 vp =
c1mrer

 b = b01mrer

mr

erm.m0

ee0

h = A jvm

jve
= Ame

 l =
2p
b

=
1

f1me vp =
v

b
=

11me b = v1me a = 0

g = 1jvm –jve = jv1me s = 0.
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4.5 Uniform Plane Waves in Dielectrics and Conductors 251

we can then write

(4.109)

so that

(4.110a)

(4.110b)

(4.110c)

(4.110d)

Further,

so that

(4.111)

In (4.109)–(4.111), we have retained all terms up to and including the second
power in and have neglected all higher-order terms, since For
a value of equal to 0.1, the quantities and are different from those
for the corresponding perfect dielectric case by a factor of only 1/800, whereas
the intrinsic impedance has a real part differing from the intrinsic impedance of
the perfect dielectric medium by a factor of 3/800 and an imaginary part, which
is 1/20 of the intrinsic impedance of the perfect dielectric medium. Thus, for all
practical purposes, the only significant feature different from the perfect dielec-
tric case is the attenuation.

Case 3: Good conductors. Good conductors are characterized by
just the opposite of imperfect dielectrics.This condition is equivalents>ve � 1,

lb, vp,s>ve s>ve � 1.s>ve

h L Ame  c a1 -
3
8

  
s3

v2e2 b + j 
s

2ve
d

 = A jvm

jve
 a1 - j 

s

ve
b-1>2

 h = A jvm

s + jve

 l =
2p
b

L
1

f1me a1 -
s2

8v2e2 b

 vp =
v

b
L

11me  a1 -
s2

8v2e2 b

 b L v1me a1 +
s2

8v2e2 b

 a L
s

2Ame   a1 -
s2

8v2e2 b

 L
s

2Ame  a1 -
s2

8v2e2 b + jv1me a1 +
s2

8v2e2 b

 = Bjvm # jvea1 - j 
s

ve
b = jv1me a1 - j 

s

ve
b1>2

 g = 1jvm1s + jve2
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252 Chapter 4 Fields and Waves In Material Media

to stating that the magnitude of the conduction current density is large com-
pared to the magnitude of the displacement current density. Then

(4.112)

so that

(4.113a)
(4.113b)

(4.113c)

(4.113d)

Further,

or

(4.114)

We note that and are proportional to provided that and are
constants. This behavior is much different from the imperfect dielectric case.

To discuss the propagation characteristics of a wave inside a good conduc-
tor, let us consider the case of copper. The constants for copper are 

and Hence, the frequency at which is equal to for
copper is equal to or Thus, at frequencies of even
several gigahertz, copper behaves like an excellent conductor. To obtain an idea
of the attenuation of the wave inside the conductor, we note that the attenuation
undergone in a distance of one wavelength is equal to or In terms of
decibels, this is equal to In fact, the field is attenuated by
a factor or 0.368, in a distance equal to This distance is known as the skin
depth and is denoted by the symbol From (4.113a), we obtain

(4.115)d =
11pfms

d.
1>a.e-1,

20 log10 e
2p = 54.58 dB.

e-2p.e-al

1.04 * 1018 Hz.5.8 * 107/2pe0,
vesm = m0.107 S>m, e = e0,

s = 5.80 *

ms1f,ha, b, vp,

 = Apfm
s

 11 + j2
 h L Avms  ejp>4

 L A jvm
s

 h = A jvm

s + jve

 l =
2p
b

L A 4p
fms

 vp =
v

b
L A4pf

ms

 b L 1pfms

 a L 1pfms

 = 1pfms11 + j2
 = 1vms ejp>4
 L 1jvms

 g = 1jvm1s + jve2

Skin effect
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4.5 Uniform Plane Waves in Dielectrics and Conductors 253

Underwater
communica-
tion

2F. Sterzer et al., “RF Therapy for Malignancy,” IEEE Spectrum, December 1980, pp. 32–37.

The skin depth for copper is equal to

Thus, in copper, the fields are attenuated by a factor in a distance of 0.066
mm even at the low frequency of 1 MHz, thereby resulting in the concentration
of the fields near to the skin of the conductor.This phenomenon is known as the
skin effect. It also explains shielding by conductors.

To discuss further the characteristics of wave propagation in a good con-
ductor, we note that the ratio of the wavelength in the conducting medium to
the wavelength in a dielectric medium having the same and as those of the
conductor is given by

(4.116)

Since For example, for seawater,
and so that the ratio of the two wavelengths for 

is equal to 0.00745. Thus, for the wavelength in
seawater is 1/134 of the wavelength in a dielectric having the same and as
those of seawater and a still smaller fraction of the wavelength in free space.
Furthermore, the lower the frequency, the smaller is this fraction. Since it is the
electrical length (i.e., the length in terms of the wavelength) instead of the physi-
cal length that determines the radiation characteristics of an antenna, this means
that antennas of much shorter length can be used in seawater than in free space.
Together with the property that this illustrates that the lower the fre-
quency, the more suitable it is for underwater communication.

For a given frequency, the higher the value of the greater is the value of
the attenuation constant, the smaller is the value of the skin depth, and hence the
less deep the waves can penetrate. For example, in the heating of malignant tis-
sues (hyperthermia) by RF (radio-frequency) radiation, the waves penetrate
much deeper into fat (low water content) than into muscle (high water content).2

Equation (4.114) tells us that the intrinsic impedance of a good conductor
has a phase angle of 45°. Hence, the electric and magnetic fields in the medium
are out of phase by 45°. The magnitude of the intrinsic impedance is given by

(4.117)

As a numerical example, for copper, this quantity is equal toB2pf * 4p * 10-7

5.8 * 107 = 3.69 * 10-71f Æ

ƒh ƒ = ` 11 + j2Apfm
s
` = A2pfm

s

s,

a r 1f,

me

f = 25 kHz,1s>ve = 36,0002 f = 25 kHzm = m0,e = 80e0,
s = 4 S>m,s>ve � 1, lconductor � ldielectric.

lconductor

ldielectric
L
14p>fms
1>f1me = A4pfe

s
= A2ve

s

me

e-1

14pf * 4p * 10-7 * 5.8 * 107
=

0.0661f
 m
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254 Chapter 4 Fields and Waves In Material Media

Thus, the intrinsic impedance of copper has as low a magnitude as even
at a frequency of In fact, by recognizing that

(4.118)

we note that the magnitude of the intrinsic impedance of a good conductor
medium is a small fraction of the intrinsic impedance of a dielectric medium
having the same and It follows that for the same electric field, the magnetic
field inside a good conductor is much larger than the magnetic field inside a di-
electric having the same and as those of the conductor.

Case 4: Perfect conductors. Perfect conductors are idealizations of good
conductors in the limit that From (4.115), we note that the skin depth is
equal to zero, and, hence, there is no penetration of fields into the material.
Thus, no time-varying fields can exist inside a perfect conductor.

Summarizing the discussion of the special cases, we observe that as 
varies from 0 to a material is classified as a perfect dielectric for an
imperfect dielectric for but a good conductor for and fi-
nally a perfect conductor in the limit that This implies that a material of
nonzero behaves as an imperfect dielectric for but as a good conduc-
tor for where the transition frequency, is equal to In practice,
however, the situation is not so simple because, as was already mentioned in
Section 4.4, and are in general functions of frequency.

K4.5. Perfect dielectric; Imperfect dielectric; Good conductor; Conduction current
versus displacement current; Skin effect; Perfect conductor.

D4.10. For a nonmagnetic perfect dielectric material, find the relative per-
mittivity for each of the following cases: (a) the phase velocity in the dielectric is
one-third of its value in free space; (b) the rate of change of phase with distance
at a fixed time in the dielectric for a wave of frequency is the same as the rate
of change of phase with distance at a fixed time in free space for a wave of fre-
quency (c) for the same frequency, the wavelength in the dielectric is two-
thirds of its value in free space; and (d) for the same electric-field amplitude, the
magnetic-field amplitude in the dielectric is four times its value in free space.
Ans. (a) 9; (b) 4; (c) 2.25; (d) 16.

D4.11. For a uniform plane wave of frequency propagating in a good con-
ductor medium, the fields undergo attenuation by the factor in a distance of
2.5 m. Find the following: (a) the distance in which the fields undergo a change
of phase by rad for (b) the distance by which a constant phase
travels in for and (c) the distance by which a constant phase
travels in for assuming the material parameters to be the same
as at 
Ans. (a) 5 m; (b) 0.5 m; (c) 0.1581 m.

D4.12. The electric fields of uniform plane waves of the same frequency propagating in
three different materials 1, 2, and 3 are given, respectively, by

(a) E1 = E0 e-0.4pz cos 12p * 105t - 0.4pz2 ax

f = 105 Hz.
f = 104 Hz,1 ms
f = 105 Hz;1 ms

f = 105 Hz;2p

e-p
f = 105 Hz

2f0;

f0

1m = m02

es

s>2pe.fq,f � fq,
f � fqs

s: q .
s � ve,� ve,s Z 0

s = 0,q ,
s

s: q .

me

m.e

ƒh ƒ = A2pfm
s

= Aves Ame1012 Hz.
0.369 Æ
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4.6 Boundary Conditions 255

(b)
(c)

For each material, determine if at the frequency of operation, it can be classified
as an imperfect dielectric or a good conductor or neither of the two.
Ans. (a) Good conductor; (b) Imperfect dielectric; (c) Neither.

4.6 BOUNDARY CONDITIONS

In our study of electromagnetics, we will be considering many problems involv-
ing more than one medium. Examples are reflections of waves at an air–dielec-
tric interface, determination of capacitance for a multiple-dielectric capacitor,
and guiding of waves in a metallic waveguide. To solve a problem involving a
boundary surface between different media, we need to know the conditions sat-
isfied by the field components at the boundary.These are known as the boundary
conditions. They are a set of relationships relating the field components at a
point adjacent to and on one side of the boundary, to the field components at a
corresponding point adjacent to and on the other side of the boundary.These re-
lationships arise from the fact that Maxwell’s equations in integral form involve
closed paths and surfaces and they must be satisfied for all possible closed paths
and surfaces, whether they lie entirely in one medium or encompass a portion of
the boundary between two different media. In the latter case, Maxwell’s equa-
tions in integral form must be satisfied collectively by the fields on either side of
the boundary, thereby resulting in the boundary conditions.

We shall derive the boundary conditions by considering the Maxwell’s
equations

(4.119a)

(4.119b)

(4.119c)

(4.119d)

and applying them one at a time to a closed path or a closed surface encom-
passing the boundary, and in the limit that the area enclosed by the closed path
or the volume bounded by the closed surface goes to zero. Thus, let us consider
two semi-infinite media separated by a plane boundary, as shown in Fig. 4.23.
Let us denote the quantities pertinent to medium 1 by subscript 1 and the quan-
tities pertinent to medium 2 by subscript 2. Let be the unit normal vector to
the surface and directed into medium 1, as shown in Fig. 4.23, and let all normal
components of fields at the boundary in both media denoted by an additional
subscript n be directed along Let the surface charge density and the1C>m22an.

an

 CS
B # dS = 0

 CS
D # dS = LV

  r dv

 CC
H # dl = LS

J # dS +
d

dtLS
D # dS

 CC
E # dl = -  

d

dtLS
B # dS

E3 = E0 e-0.004z cos 12p * 105t - 0.01z2 ax

E2 = E0 e-2p* 10-5z cos 12p * 105t - 2p * 10-3z2 ax

Boundary
condition
explained
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a

d c

b

an
as

Medium 1

Medium 2

FIGURE 4.23

For deriving the boundary
conditions resulting from Faraday’s
law and Ampère’s circuital law.

surface current density (A/m) on the boundary be and respectively. Note
that, in general, the fields at the boundary in both media and the surface charge
and current densities are functions of position on the boundary.

First, we consider a rectangular closed path abcda of infinitesimal area in
the plane normal to the boundary and with its sides ab and cd parallel to and on
either side of the boundary, as shown in Fig. 4.23. Applying Faraday’s law
(4.119a) to this path in the limit that ad and by making the area abcd tend
to zero, but with ab and cd remaining on either side of the boundary, we have

(4.120)

In this limit, the contributions from ad and bc to the integral on the left side of
(4.120) approach zero. Since ab and cd are infinitesimal, the sum of the contri-
butions from ab and cd becomes where and are
the components of and along ab and cd, respectively. The right side of
(4.120) is equal to zero, since the magnetic flux crossing the area abcd ap-
proaches zero as the area abcd tends to zero. Thus, (4.120) gives

or, since ab and cd are equal and 

(4.121)

Let us now define to be the unit vector normal to the area abcd and in the di-
rection of advance of a right-hand screw as it is turned in the sense of the closed
path abcda. Noting then that is the unit vector along ab, we can write
(4.121) as

Rearranging the order of the scalar triple product, we obtain

(4.122)as
# an � 1E1 - E22 = 0

as � an
# 1E1 - E22 = 0

as � an

as

Eab - Edc = 0

Edc = -Ecd,

Eab1ab2 + Ecd1cd2 = 0

E2E1

EcdEab[Eab1ab2 + Ecd1cd2],

lim
ad : 0
bc : 0Cabcda

E # dl = - lim
ad : 0
bc : 0

 
d

dt 3
area

abcd 

B # dS

bc : 0

JS,rS

Boundary
condition for
Etangential
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Since we can choose the rectangle abcd to be in any plane normal to the bound-
ary, (4.122) must be true for all orientations of It then follows that

(4.123a)

or, in scalar form,

(4.123b)

where and are the components of and respectively, tangential to
the boundary. In words, (4.123a) and (4.123b) state that at any point on the
boundary, the components of and tangential to the boundary are equal.

Similarly, applying Ampère’s circuital law (4.119b) to the closed path in
the limit that ad and we have

(4.124)

Using the same argument as for the left side of (4.120), we obtain the quantity
on the left side of (4.124) to be equal to where and

are the components of and along ab and cd, respectively. The second
integral on the right side of (4.124) is zero since the displacement flux crossing
the area abcd approaches zero as the area abcd tends to zero. The first integral
on the right side of (4.124) would also be equal to zero but for a contribution
from the surface current on the boundary, because letting the area abcd tend to
zero with ab and cd on either side of the boundary reduces only the volume cur-
rent, if any, enclosed by it to zero, keeping the surface current still enclosed by it.
This contribution is the surface current flowing normal to the line that abcd ap-
proaches as it tends to zero, that is, Thus, (4.124) gives

or, since ab and cd are equal and 

(4.125)

In terms of and we have

or

(4.126)

Since (4.126) must be true for all orientations of that is, for a rectangle abcd
in any plane normal to the boundary, it follows that

(4.127a)an � 1H1 - H22 = JS

as,

as
# an � 1H1 - H22 = as

# JS

as � an
# 1H1 - H22 = JS

# as

H2,H1

Hab - Hdc = JS
# as

Hdc = -Hcd,

Hab1ab2 + Hcd1cd2 = 1JS
# as21ab2

[JS
# as]1ab2.

H2H1Hcd

Hab[Hab1ab2 + Hcd1cd2],

lim
ad : 0
bc : 0Cabcda

H # dl = lim
ad : 0
bc : 0 3area

abcd 

J # dS + lim
ad : 0
bc : 0

 
d

dt 3
area

abcd 

D # dS

bc : 0,

E2E1

E2,E1Et2Et1

Et1 - Et2 = 0

an � 1E1 - E22 = 0

as.

Boundary
condition for
Htangential
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258 Chapter 4 Fields and Waves In Material Media

or, in scalar form,

(4.127b)

where and are the components of and respectively, tangential to
the boundary. In words, (4.127a) and (4.127b) state that at any point on the
boundary, the components of and tangential to the boundary are discon-
tinuous by the amount equal to the surface current density at that point. It should
be noted that the information concerning the direction of relative to that of

which is contained in (4.127a), is not present in (4.127b). Thus, in
general, (4.127b) is not sufficient, and it is necessary to use (4.127a).

Now, we consider a rectangular box abcdefgh of infinitesimal volume en-
closing an infinitesimal area of the boundary and parallel to it, as shown in
Fig. 4.24. Applying Gauss’ law for the electric field (4.119c) to this box in the
limit that the side surfaces (abbreviated ss) tend to zero by making the vol-
ume of the box tend to zero but with the sides abcd and efgh remaining on ei-
ther side of the boundary, we have

(4.128)

In this limit, the contributions from the side surfaces to the integral on the left
side of (4.128) approach zero. The sum of the contributions from the top and
bottom surfaces becomes since abcd and efgh are in-
finitesimal. The quantity on the right side of (4.128) would be zero but for the
surface charge on the boundary, since letting the volume of the box tend to zero
with the sides abcd and efgh on either side of it reduces only the volume charge,
if any, enclosed by it to zero, keeping the surface charge still enclosed by it. This
surface charge is equal to Thus, (4.128) gives

or, since abcd and efgh are equal,

(4.129a)Dn1 - Dn2 = rS

Dn11abcd2 - Dn21efgh2 = rS1abcd2
rS1abcd2.

[Dn11abcd2 - Dn21efgh2]

lim
ss:0 C

surface
of the box 

D # dS = lim
ss:0 3

volume
of the box

  
r dv

1H1 - H22,
JS

H2H1

H2,H1Ht2Ht1

Ht1 - Ht2 = JS

Boundary
condition for
Dnormal

a

d c

g
b

an

Medium 1

Medium 2

h

e f
FIGURE 4.24

For deriving the boundary
conditions resulting from the
two Gauss’ laws.
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4.6 Boundary Conditions 259

In terms of and (4.129a) is given by

(4.129b)

In words, (4.129a) and (4.129b) state that at any point on the boundary, the com-
ponents of and normal to the boundary are discontinuous by the amount
of the surface charge density at that point.

Similarly, applying Gauss’ law for the magnetic field (4.119d) to the box
abcdefgh in the limit that the side surfaces tend to zero, we have

(4.130)

Using the same argument as for the left side of (4.128), we obtain the quantity on
the left side of (4.130) to be equal to Thus, (4.130) gives

or, since abcd and efgh are equal

(4.131a)

In terms of and (4.131a) is given by

(4.131b)

In words, (4.131a) and (4.131b) state that at any point on the boundary, the com-
ponents of and normal to the boundary are equal.

Summarizing the boundary conditions, we have

(4.132a)

(4.132b)

(4.132c)

(4.132d)

or, in scalar form,

(4.133a)

(4.133b)

(4.133c)

(4.133d)

as illustrated in Fig. 4.25. Although we have derived these boundary conditions
by considering a plane interface between the two media, it should be obvious
that we can consider any arbitrary-shaped boundary and obtain the same results
by letting the sides ab and cd of the rectangle and the top and bottom surfaces of

 Bn1 - Bn2 = 0

 Dn1 - Dn2 = rS

 Ht1 - Ht2 = JS

 Et1 - Et2 = 0

 an
# 1B1 - B22 = 0

 an
# 1D1 - D22 = rS

 an � 1H1 - H22 = JS

 an � 1E1 - E22 = 0

B2B1

an
# 1B1 - B22 = 0

B2,B1

Bn1 - Bn2 = 0

Bn11abcd2 - Bn21efgh2 = 0

[Bn11abcd2 - Bn21efgh2].

lim
ss:0 C

surface
of the box

B # dS = 0

D2D1

an
# 1D1 - D22 = rS

D2,D1

Boundary
condition for
Bnormal
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an
Medium 1

Medium 2

�
Et1

Et2

Ht1

Dn1

Bn1

Bn2Dn2

Ht2

rSJS

FIGURE 4.25

For illustrating the boundary conditions at an interface between two different media.

Boundary
conditions at
interface
between
perfect
dielectrics

the box tend to zero, in addition to the limits that the sides ad and bc of the rec-
tangle and the side surfaces of the box tend to zero.

The boundary conditions given by (4.132a) – (4.132d) are general. When
they are applied to particular cases, the special properties of the pertinent
media come into play. Two such cases are important to be considered. They are
as follows.

Interface between two perfect dielectric media: Since for a perfect di-
electric, Thus, there cannot be any conduction current in a
perfect dielectric, which in turn rules out any accumulation of free charge on the
surface of a perfect dielectric. Hence, in applying the boundary conditions
(4.132a)–(4.132d) to an interface between two perfect dielectric media, we set

and equal to zero, thereby obtaining

(4.134a)
(4.134b)
(4.134c)
(4.134d)

These boundary conditions tell us that the tangential components of E and H
and the normal components of D and B are continuous at the boundary.

Surface of a perfect conductor: No time-varying fields can exist in a per-
fect conductor. In view of this, the boundary conditions on a perfect conductor
surface are obtained by setting the fields with subscript 2 in (4.132a) – (4.132d)
equal to zero. Thus, we obtain

(4.135a)
(4.135b)
(4.135c)
(4.135d) an

# B = 0
 an

# D = rS

 an � H = JS

 an � E = 0

 an
# 1B1 - B22 = 0

 an
# 1D1 - D22 = 0

 an � 1H1 - H22 = 0
 an � 1E1 - E22 = 0

JSrS

s = 0, Jc = sE = 0.

Boundary
conditions on
a perfect
conductor
surface
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4.6 Boundary Conditions 261

where we have also omitted subscripts 1, so that E, H, D, and B are the fields on
the perfect conductor surface. The boundary conditions (4.135a) and (4.135d)
tell us that on a perfect conductor surface, the tangential component of the elec-
tric field intensity and the normal component of the magnetic field intensity are
zero. Hence, the electric field must be completely normal, and the magnetic
field must be completely tangential to the surface. The remaining two boundary
conditions (4.135c) and (4.135b) tell us that the (normal) displacement flux den-
sity is equal to the surface charge density and the (tangential) magnetic field in-
tensity is equal in magnitude to the surface current density.

Example 4.7 Application of boundary conditions

In Fig. 4.26, the region is a perfect conductor, the region is a perfect di-
electric of and and the region is free space. The electric and mag-
netic fields in the region are given at a particular instant of time by

We wish to find (a) and on the surface and (b) E and H for that is, im-
mediately adjacent to the and on the free-space side, at that instant of time.

(a) Denoting the perfect dielectric medium to be medium 1 and the per-
fect conductor medium to be medium 2, we have and all fields
with subscript 2 are equal to zero. Then from (4.132c) and (4.132b), we obtain

Note that the remaining two boundary conditions (4.132a) and (4.132d) are al-
ready satisfied by the given fields, since and do not exist and for 

Also note that what we have done here is equivalent to using (4.135a) –
(4.135d), since the boundary is the surface of a perfect conductor.
Ez = 0.

x = 0,BxEy

 = H1 sin 2pz az

 [JS]x = 0 = an � [H1]x = 0 = ax � H1 sin 2pz ay

 = 2e0 E1 sin 2pz

 [rS]x = 0 = an
# [D1]x = 0 = ax

# 2e0 E1 sin 2pz ax

an = ax,1x 6 02
10 6 x 6 d2

x = d plane
x = d+ ,x = 0JSrS

 H = H1 cos px sin 2pz ay

 E = E1 cos px sin 2pz ax + E2 sin px cos 2pz az

0 6 x 6 d
x 7 dm = m0,e = 2e0

0 6 x 6 dx 6 0

zy

x � d

x � 0

x

Free Space
e0, m0

Perfect Dielectric
2e0, m0

Perfect Conductor

FIGURE 4.26

For illustrating the application of boundary conditions.
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262 Chapter 4 Fields and Waves In Material Media

(b) Denoting the perfect dielectric medium to be medium 1 and the
free-space medium to be medium 2 and setting we obtain from
(4.133a) and (4.133c)

Thus

Setting and using (4.133b) and (4.133d), we obtain

Thus,

Note that what we have done here is equivalent to using (4.134a) – (4.134d), since
the boundary is the interface between two perfect dielectrics.

K4.6. Boundary conditions; Tangential component of E; Tangential component of H;
Normal component of D; Normal component of B.

D4.13. For each of the following values of the displacement flux density at a point on the
surface of a perfect conductor (no electric field inside and hence on the sur-
face), find the surface charge density at that point: (a)
and pointing away from the surface; (b) and pointing toward
the surface; and (c) and pointing away from the surface.
Assume to be positive for all cases.
Ans. (a) (b) (c)

D4.14. The region is a perfect dielectric of permittivity and the region 
is a perfect dielectric of permittivity Consider the field components at point
1 on the of the boundary to be denoted by subscript 1 and the field
components at the adjacent point 2 on the of the boundary to be de-
noted by subscript 2. If find the following: (a) (b)

and (c)
Ans. (a) 1.5; (b) (c)

D4.15. The plane forms the boundary between free space and another
medium. Find the following: (a) at if is a perfect conductor
and (b) if is a magneticz 6 0H10, 0, 0+2H10, 0, 0+2 = H013ax - 4ay2 cos vt;

z 6 0t = 0JS10, 0, 02
1z 7 02z = 0

2>15.3>15;
D1>D2.E1>E2;

Ex1>Ex2;E1 = E012ax + ay2,
-x-side

+x-side
3e0.

x 6 02e0x 7 0
D0.-2D0;3D0;

D0

D = D010.8ax + 0.6ay2
D = D01ax + 13az2

D = D01ax - 2ay + 2az2
Et = 0

[H]x = d + = H1 cos pd sin 2pz ay

 [Bx]x = d + = [Bx]x = d - = 0

 [Hz]x = d + = [Hz]x = d - = 0

 [Hy]x = d + = [Hy]x = d - = H1 cos pd sin 2pz

JS = 0

[E]x = d + = 2E1 cos pd sin 2pz ax + E2 sin pd cos 2pz az

 = 2E1 cos pd sin 2pz

 [Ex]x = d + =
1
e0

 [Dx]x = d +

 = 2e0 E1 cos pd sin 2pz

 [Dx]x = d + = [Dx]x = d - = 2e0[Ex]x = d -

 [Ez]x = d + = [Ez]x = d - = E2 sin pd cos 2pz

 [Ey]x = d + = [Ey]x = d - = 0

rS = 0,1x 7 d2
10 6 x 6 d2
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4.7 Reflection and Transmission of Uniform Plane Waves 263

material of and and (c) the ratio of
to for the case of (b).

Ans. (a) (b) (c) 8.989.

4.7 REFLECTION AND TRANSMISSION OF UNIFORM PLANE WAVES

Thus far, we have considered uniform plane wave propagation in unbounded
media. Practical situations are characterized by propagation involving several dif-
ferent media. When a wave is incident on a boundary between two different
media, a reflected wave is produced. In addition, if the second medium is not a per-
fect conductor, a transmitted wave is set up. Together, these waves satisfy the
boundary conditions at the interface between the two media. In this section, we
shall consider these phenomena for waves incident normally on plane boundaries.

To do this, let us consider the situation shown in Fig. 4.27 in which steady-
state conditions are established by uniform plane waves of radian frequency 
propagating normal to the plane interface between two media character-
ized by two different sets of values of and where We shall as-
sume that a wave is incident from medium onto the interface,
thereby setting up a reflected wave in that medium, and a transmitted 
wave in medium For convenience, we shall work with the phasor or
complex field components. Thus, considering the electric fields to be in the x-di-
rection and the magnetic fields to be in the y-direction, we can write the solu-
tion for the complex field components in medium 1 to be

(4.136a)

(4.136b)

where and are the incident and reflected wave electric and
magnetic field components, respectively, at in medium 1 and

(4.137a)

(4.137b) h1 = A jvm1

s1 + jve1

 g1 = 1jvm11s1 + jve12
z = 0-

H
 –

1
-E

 –
1
+, E

 –
1
-, H

 –
1
+,

 =
1
h1

 1E –1
+e-g

q1 z - E
 –

1
-egq1 z2

 H
 –

1y1z2 = H
 –

1
+e-g

q1 z + H
 –

1
-egq1 z

 E
 –

1x1z2 = E
 –

1
+e-g

q1 z + E
 –

1
-egq1 z

2 1z 7 02. 1+21-2 1 1z 6 021+2 s Z q .m,s, e,
z = 0

v

10H01ax + 2az2;H014ax + 3ay2;
B10, 0, 0+2B10, 0, 0-2

H10, 0, 0-2 = H0110ax + az2;m = 20m0

Normal
incidence on
a plane
interface

z

x

y

Medium 1

(�)
(�)

(�)

z 	 0 z 
 0
z � 0

s1, e1, m1

Medium 2

s2, e2, m2

FIGURE 4.27

Normal incidence of uniform plane
waves on a plane interface between
two different media.
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264 Chapter 4 Fields and Waves In Material Media

Recall that the real field corresponding to a complex field component is ob-
tained by multiplying the complex field component by and taking the real
part of the product. The complex field components in medium 2 are given by

(4.138a)

(4.138b)

where and are the transmitted wave electric- and magnetic-field compo-
nents at in medium 2 and

(4.139a)

(4.139b)

To satisfy the boundary conditions at we note that (1) the compo-
nents of both electric and magnetic fields are entirely tangential to the interface
and (2) in view of the finite conductivities of the media, no surface current exists
on the interface (currents flow in the volumes of the media). Hence, from the
phasor forms of the boundary conditions (4.133a) and (4.133b), we have

(4.140a)

(4.140b)

Applying these to the solution pairs given by (4.136a, b) and (4.138a, b), we have

(4.141a)

(4.141b)

We now define the reflection coefficient at the boundary, denoted by the symbol
to be the ratio of the reflected wave electric field at the boundary to the inci-

dent wave electric field at the boundary. From (4.141a) and (4.141b), we obtain

(4.142)

Note that the ratio of the reflected wave magnetic field at the boundary to the
incident wave magnetic field at the boundary is given by

(4.143)

The ratio of the transmitted wave electric field at the boundary to the incident
wave electric field at the boundary, known as the transmission coefficient and

H
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H
 –

1
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E
 –
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= -  

E
 –
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E
 –

1
+ = -≠

≠ =
E
 –

1
-

E
 –

1
+ =
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 [H
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1y]z = 0 = [H
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 [E
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 h2 = A jvm2

s2 + jve2

 g2 = 1jvm21s2 + jve22
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 e-q
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4.7 Reflection and Transmission of Uniform Plane Waves 265

denoted by the symbol is given by

(4.144)

where we have used (4.141a). The ratio of the transmitted wave magnetic field
at the boundary to the incident wave magnetic field at the boundary is given by

(4.145)

The reflection and transmission coefficients given by (4.142) and (4.144),
respectively, enable us to find the reflected and transmitted wave fields for a
given incident wave field. We observe the following properties of and 

1. For and The incident wave is entirely transmitted.
The situation then corresponds to a “matched” condition.A trivial case oc-
curs when the two media have identical values of the material parameters.

2. For that is, when both media are perfect dielectrics, and
are real. Hence, and are real. In particular, if the two media have the

same permeability but different permittivities and then

(4.146)

(4.147)

3. For and Thus, if medium 2 is a perfect
conductor, the incident wave is entirely reflected, as it should be since there
cannot be any time-varying fields inside a perfect conductor.The superposi-
tion of the reflected and incident waves would then give rise to the so-called
complete standing waves in medium 1. We shall discuss complete standing
waves as well as partial standing waves when we study the topic of sinu-
soidal steady-state analysis of waves on transmission lines in Chapter 7.

Example 4.8 Normal incidence of a uniform plane wave onto a material
medium

Region is free space, whereas region is a material medium charac-
terized by and For a uniform plane wave having the
electric field

Ei = E0 cos 13p * 105t - 10-3pz2 ax V>m

m = m0.s = 10-4 S>m, e = 5e0,
2 1z 7 021 1z 6 02

t: 0.s2 : q , h2 : 0, ≠ : -1,

 t =
2

1 + 1e2>e1

 =
1 - 1e2>e1

1 + 1e2>e1

 ≠ =
1m>e2 - 1m>e11m>e2 + 1m>e1

e2,e1m

t≠h2

h1s1 = s2 = 0,

t = 1.h2 = h1, ≠ = 0

t:≠

H
 –

2
+

H
 –

1
+ =

H
 –

1
+ + H

 –
1
-
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 –

1
+ = 1 - ≠

t =
E
 –
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+

E
 –

1
+ =

E
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1
+ + E

 –
1
-

E
 –

1
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t,
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266 Chapter 4 Fields and Waves In Material Media

incident on the interface from region 1, we wish to obtain the expressions for the
reflected and transmitted wave electric and magnetic fields.

From computation as in Example 4.5 for and

Then

Thus, the reflected and transmitted wave electric and magnetic fields are given by

Note that at the boundary conditions of and are sat-
isfied, since

and

K4.7. Plane interface between two material media; Normal incidence of uniform
plane waves; Reflection; Transmission; Reflection and transmission coefficients.

D4.16. For each of the following cases of uniform plane waves of frequency 
incident normally from medium onto the interface with
medium find the values of and (a) Medium 1 is free space and
the parameters of medium 2 are and and (b) them = m0;s = 10-3 S>m, e = 6e0,

t:≠2 1z 7 02,
1z = 021 1z 6 02

f = 1 MHz

E0

377
- 1.678 * 103E0 cos 0.8976p = 4.277 * 103E0 cos 1-   0.0396p2

E0 + 0.6325E0 cos 0.8976p = 0.4472E0 cos 0.1476p

Hi + Hr = HtEi + Er = Etz = 0,

  – cos 13p * 105t - 9.425 * 10-3z - 0.0396p2 ay A>m
 = 4.277 * 10-3E0 e-

  

6.283 * 10-3z

  – cos 13p * 105t - 9.425 * 10-3z + 0.1476p - 0.1872p2 ay A>m
 Ht =

0.4472E0

104.559
 e-

  

6.283 * 10-3z

  – cos 13p * 105t - 9.425 * 10-3z + 0.1476p2 ax V>m
 Et = 0.4472E0 e-

  

6.283 * 10-3z

 = -1.678 * 10-3E0 cos 13p * 105t + 10-3pz + 0.8976p2 ay  A>m
 Hr = -  

0.6325E0

377
 cos 13p * 105t + 10-3pz + 0.8976p2 ay  A>m

 Er = 0.6325E0 cos 13p * 105t + 10-3pz + 0.8976p2 ax  V>m

 = 0.4472l26.565° = 0.4472l0.1476p

 t = 1 + ≠ = 1 + 0.6325l161.565°

 = 0.6325l161.565° = 0.6325l0.8976p

 ≠ =
h - h0

h + h0
=

104.559l33.69° - 377

104.559l33.69° + 377

 h = 104.559l33.69° = 104.559l0.1872p

 g = 16.283 + j9.4252 * 10-3

f = 13p * 1052>2p = 1.5 * 105 Hz,
s = 10-4 S>m, e = 5e0, m = m0,

z = 0
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parameters of medium 1 are and and the parame-
ters of medium 2 are and 
Ans. (a) (b)

D4.17. The regions and are nonmagnetic perfect dielectrics of
permittivities and respectively. For a uniform plane wave incident from the
region normally onto the boundary find for each of the fol-
lowing to hold at (a) the electric field of the reflected wave is times
the electric field of the incident wave; (b) the electric field of the transmitted
wave is 0.4 times the electric field of the incident wave; and (c) the electric field
of the transmitted wave is six times the electric field of the reflected wave.
Ans. (a) 4; (b) 16; (c) 4/9.

SUMMARY

In this Chapter, we introduced materials. We learned that materials can be clas-
sified as (1) conductors, (2) semiconductors, (3) dielectrics, and (4) magnetic
materials, depending on the nature of the response of the charged particles in
the materials to applied fields. Conductors are characterized by conduction,
which is the phenomenon of steady drift of free electrons under the influence of
an applied electric field, thereby resulting in a conduction current. In semicon-
ductors, also characterized by conduction, the charge carriers are not only elec-
trons, but also holes.We learned that the conduction current density is related to
the electric field intensity in the manner

(4.148)

where is the conductivity of the material. We discussed (1) the formation of
surface charge at the boundaries of a conductor placed in a static electric field,
(2) the derivation of Ohm’s law in circuit theory, and (3) the Hall effect.

Dielectrics are characterized by polarization, which is the phenomenon
of the creation and net alignment of electric dipoles, formed by the displace-
ment of the centroids of the electron clouds from the centroids of the nucleii of
the atoms, along the direction of an applied electric field. Magnetic materials
are characterized by magnetization, which is the phenomenon of net alignment
of the axes of the magnetic dipoles, formed by the electron orbital and spin mo-
tion around the nucleii of the atoms, along the direction of an applied magnet-
ic field. To eliminate the need for explicitly taking into account the effects of
polarization and magnetization, we revised the definitions of the displacement
flux density vector and the magnetic field intensity vector, introduced in Sec.
2.3 for free space, to be applicable for a material medium. The revised defini-
tions are

 H =
B
m0

- M

 D = e0 E + P

s

Jc = sE

-1>3z = 0:
e2>e1z = 0,z 6 0

e2,e1

1m = m02z 7 0z 6 0

1.948l -1.177°.0.9486l-2.4155°,0.6909l64.177°, 0.3846l29.331°;
m = m0.s = 10-3 S>m, e = 80e0,
m = m0,s = 4 S>m, e = 80e0,
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268 Chapter 4 Fields and Waves In Material Media

respectively, where P is the polarization vector, and M is the magnetization vec-
tor. We learned that for isotropic materials, these expressions simplify to

(4.149)

(4.150)

where

are the permittivity and the permeability, respectively, of the material and the
quantities and are the relative permittivity and the relative permeability,
respectively, which take into account implicitly the effects of polarization and
magnetization, respectively. Equations (4.148), (4.149), and (4.150) are known
as the constitutive relations.We also discussed the hysteresis phenomenon asso-
ciated with ferromagnetic materials and discussed an application based on the
use of the hysteresis curve.

Next, we extended the treatment of uniform plane waves to a material
medium. Starting with Maxwell’s equations for a material medium given by

and using the phasor technique, we considered the infinite plane current sheet
of uniform surface current density

in the xy-plane and embedded in the material medium, and obtained the elec-
tromagnetic field due to it to be

(4.151a)

(4.151b)

In (4.151a, b), and are the attenuation and phase constants given, respec-
tively, by the real and imaginary parts of the propagation constant, Thus,

The quantities and are the magnitude and phase angle, respectively, of the
intrinsic impedance, of the medium. Thus,

h = ƒh ƒ  ejt = A jvm

s + jve

h,
tƒh ƒ

g = a + jb = 1jvm1s + jve2
g.

ba

 H = ;  

JS0

2
 e < az cos 1vt < bz2 ay  for z � 0

 E =
ƒh ƒJS0

2
 e < az cos 1vt < bz + t2 ax for z � 0

JS = -JS0 cos vt ax A>m

 � � H = Jc +
0D
0t

= sE + e 
0E
0t

 � � E = -  
0B
0t

= -m 
0H
0t

mrer

 m = m0mr

 e = e0er

 H =
B
m

 D = eE
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Summary 269

The solution given by (4.151a) and (4.151b) tells us that the wave propagation
in the material medium is characterized by attenuation, as indicated by and
a phase difference between E and H in the amount We also learned that these
properties as well as the phase velocity are frequency-dependent.

We also generalized the Poynting’s theorem, introduced in Sec. 3.7 for free
space, to a material medium and learned that the power dissipation density as-
sociated with the phenomenon of conduction, and the electric and magnetic
stored energy densities are given, respectively, by

The power flow out of a closed surface S, as given by the surface integral of the
Poynting vector, P, over S, plus the power dissipated in the volume V bounded
by S, is always equal to the sum of the time rates of decrease of the electric and
magnetic stored energies in the volume V, as given by the Poynting’s theorem

Having discussed uniform plane wave propagation for the general case of
a medium characterized by and we then considered several special
cases. These are summarized in the following:

Perfect dielectrics. For these materials, Wave propagation occurs with-
out attenuation as in free space but with the propagation parameters governed
by and instead of and respectively.

Imperfect dielectrics. A material is classified as an imperfect dielectric for
that is, conduction current density small in magnitude compared to

the displacement current density. The only significant feature of wave propaga-
tion in an imperfect dielectric as compared to that in a perfect dielectric is the
attenuation undergone by the wave.

Good conductors. A material is classified as a good conductor for 
that is, conduction current density large in magnitude compared to the displace-
ment current density. Wave propagation in a good conductor medium is charac-
terized by attenuation and phase constants both equal to Thus for large
values of f and/or the fields do not penetrate very deep into the conductor.
This phenomenon is known as the skin effect. From considerations of the fre-
quency dependence of the attenuation and wavelength for a fixed we learned
that low frequencies are more suitable for communication with underwater ob-
jects. We also learned that the intrinsic impedance of a good conductor medium
is very low in magnitude compared to that of a dielectric medium having the
same and m.e

s,

s,
1pfms.

s W ve,

s V ve,

m0,e0me

s = 0.

m,s, e,

CS
P # dS = -LV

 sE2 dv -
0
0tLv

 
1
2

 eE2 dv -
0
0tLv

 
1
2

 mH2 dv

 wm = 1
2 mH2

 we = 1
2 eE2

 pd = sE2

t.
e <az
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270 Chapter 4 Fields and Waves In Material Media

Perfect conductors. These are idealizations of good conductors in the limit
For the skin depth, that is, the distance in which the fields in-

side a conductor are attenuated by a factor is zero. Hence, there can be no
penetration of fields into a perfect conductor.

As a prelude to the consideration of problems involving more than one
medium, we derived the boundary conditions resulting from the application of
Maxwell’s equations in integral form to closed paths and closed surfaces en-
compassing the boundary between two media, and in the limits that the areas
enclosed by the closed paths and the volumes bounded by the closed surfaces
go to zero. These boundary conditions are given by

where the subscripts 1 and 2 refer to media 1 and 2, respectively, and is unit
vector normal to the boundary at the point under consideration and directed
into medium 1. In words, the boundary conditions state that at a point on the
boundary, the tangential components of E and the normal components of B are
continuous, whereas the tangential components of H are discontinuous by the
amount equal to at that point, and the normal components of D are discon-
tinuous by the amount equal to at that point.

Two important special cases of boundary conditions are as follows: (a) At
the boundary between two perfect dielectrics, the tangential components of E
and H and the normal components of D and B are continuous. (b) On the sur-
face of a perfect conductor, the tangential component of E and the normal com-
ponent of B are zero, whereas the normal component of D is equal to the
surface charge density, and the tangential component of H is equal in magni-
tude to the surface current density.

Finally, we considered uniform plane waves incident normally onto a
plane boundary between two media, and we learned how to compute the re-
flected and transmitted wave fields for a given incident wave field.

REVIEW QUESTIONS

Q4.1. Distinguish between bound electrons and free electrons in an atom and briefly
describe the phenomenon of conduction.

Q4.2. Discuss the classification of a material as a conductor, semiconductor, or dielec-
tric with the aid of energy band diagrams.

Q4.3. What is mobility? Give typical values of mobilities for electrons and holes.
Q4.4. State Ohm’s law valid at a point, defining the conductivities for conductors and

semiconductors.
Q4.5. Explain how conduction current in a material is taken into consideration in

Maxwell’s equations.
Q4.6. Discuss the formation of surface charge at the boundaries of a conductor placed

in a static electric field.

rS

JS

an

 an
# 1B1 - B22 = 0

 an
# 1D1 - D22 = rS

 an � 1H1 - H22 = JS

 an � 1E1 - E22 = 0

e-1,
s = q ,s: q .
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Review Questions 271

Q4.7. Discuss the derivation of Ohm’s law in circuit theory from the Ohm’s law valid
at a point.

Q4.8. Discuss the Hall effect.

Q4.9. Briefly describe the phenomenon of polarization in a dielectric material. What
are the different kinds of polarization?

Q4.10. What is an electric dipole? How is its strength defined?

Q4.11. What is a polarization vector? How is it related to the electric field intensity?

Q4.12. Discuss the effect of polarization in a dielectric material using the example of
polarization surface charge.

Q4.13. Discuss how polarization current arises in a dielectric material. How is it taken
into account in Maxwell’s equations?

Q4.14. Discuss the revised definition of displacement flux density and the permittivity
concept.

Q4.15. What is an anisotropic dielectric material? When can an effective permittivity
be defined for an anisotropic dielectric material?

Q4.16. Briefly describe the phenomenon of magnetization in a magnetic material.
What are the different kinds of magnetic materials?

Q4.17. What is a magnetic dipole? How is its strength defined?

Q4.18. What is a magnetization vector? How is it related to the magnetic flux density?

Q4.19. Discuss the effect of magnetization in a magnetic material using the example of
magnetization surface current.

Q4.20. Discuss how magnetization current arises in a magnetic material. How is it
taken into account in Maxwell’s equations?

Q4.21. Discuss the revised definition of magnetic field intensity and the permeability
concept.

Q4.22. Discuss the phenomenon of hysteresis associated with ferromagnetic materials.

Q4.23. Discuss the principles behind storing data on a floppy disk and retrieving the
data from it.

Q4.24. State the constitutive relations for a material medium.

Q4.25. Discuss the determination of the electromagnetic field due to an infinite plane
current sheet of sinusoidally time-varying current density embedded in a material
medium, explaining how it is made convenient by using the phasor technique.

Q4.26. What is the propagation constant for a material medium? Discuss the signifi-
cance of its real and imaginary parts.

Q4.27. What is the intrinsic impedance for a material medium? What is the conse-
quence of its complex nature?

Q4.28. What is loss tangent? Discuss its significance.

Q4.29. Discuss the consequence of the frequency dependence of the phase velocity of a
wave in a material medium.

Q4.30. How would you obtain the electromagnetic field due to a current sheet of non-
sinusoidally time-varying current density embedded in a material medium?

Q4.31. State Poynting’s theorem for a material medium.

Q4.32. What are the power dissipation density, the electric stored energy density, and
the magnetic stored energy density associated with an electromagnetic field in a
material medium?
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272 Chapter 4 Fields and Waves In Material Media

Q4.33. What is the condition for a medium to be a perfect dielectric? How do the char-
acteristics of wave propagation in a perfect dielectric medium differ from those
of wave propagation in free space?

Q4.34. What is the criterion for a material to be an imperfect dielectric? What is the
significant feature of wave propagation in an imperfect dielectric as compared
to that in a perfect dielectric?

Q4.35. What is the criterion for a material to be a good conductor? Give two exam-
ples of materials that behave as good conductors for frequencies of up to sev-
eral gigahertz.

Q4.36. What is skin effect? Discuss skin depth, giving some numerical values.
Q4.37. Why are low-frequency waves more suitable than high-frequency waves for

communication with underwater objects?
Q4.38. Discuss the consequence of the low intrinsic impedance of a good conductor as

compared to that of a dielectric medium having the same and 
Q4.39. Why can there be no fields inside a perfect conductor?
Q4.40. What is a boundary condition? How do boundary conditions arise and how are

they derived?
Q4.41. Summarize the boundary conditions for the general case of a boundary between

two arbitrary media, indicating correspondingly the Maxwell’s equations in in-
tegral form from which they are derived.

Q4.42. Discuss the boundary conditions on the surface of a perfect conductor.
Q4.43. Discuss the boundary conditions at the interface between two perfect dielectric

media.
Q4.44. Discuss the determination of the reflected and transitted wave fields from the

fields of a wave incident normally onto a plane boundary between two material
media.

Q4.45. What is the consequence of a wave incident on a perfect conductor?

PROBLEMS

Section 4.1

P4.1. Kinetic energy of electron motion under thermal agitation. Consider two elec-
trons moving under thermal agitation with velocities equal in magnitude and
opposite in direction. A uniform electric field is applied along the direction of
motion of one of the electrons. Show that the gain in kinetic energy by the ac-
celerating electron is greater than the loss in kinetic energy by the decelerating
electron.

P4.2. Drift velocity of electron motion in a conductor for a sinusoidal electric field.
(a) For a sinusoidally time-varying electric field where is a
constant, show that the steady-state solution to (4.2) is given by

(b) Based on the assumption of one free electron per atom, the free electron
density in silver is Using the conductivity for silver given in
Table 4.1, find the frequency at which the drift velocity lags the applied field by

5.86 * 1028 m-3.Ne

vd =
te

m41 + v2t2
 E0 cos 1vt - tan-1 vt2

E0E = E0 cos vt,

m.e
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Problems 273

What is the ratio of the mobility at this frequency to the mobility at zero
frequency?

P4.3. Surface charge densities for plane conducting slabs with net surface charge den-
sities. (a) An infinite plane conducting slab carries uniformly distributed surface
charges on both of its surfaces. If the net surface charge density, that is, the sum of
the surface charge densities on the two surfaces, is find the surface
charge densities on the two surfaces. (b) Two infinite plane parallel conducting
slabs 1 and 2 carry uniformly distributed surface charges on all four of their sur-
faces. If the net surface charge densities are and respectively, for the
slabs 1 and 2, find the surface charge densities on all four surfaces.

P4.4. Line charge in the presence of a plane conductor. The region is occupied
by a conductor. An infinitely long line charge of uniform density is situated
along the line passing through (d, 0, 0) and parallel to the z-axis, where 
From the secondary field required to make the total electric field inside the con-
ductor equal to zero and from symmetry considerations, as shown by the cross-
sectional view in Fig. 4.28, show that the field outside the conductor is the same
as the field due to the line charge passing through (d, 0, 0) and a parallel
“image” line charge of uniform density along the line passing through

Find the expression for the electric field outside the conductor. Hint:
Use the expression for the electric field intensity due to an infinitely long line
charge of uniform density along the z-axis given by 1rL0>2pe0 r2ar.rL0

1-d, 0, 02.
-rL0

d 7 0.
rL0

x 6 0

rS2 C>m2,rS1

rS0 C>m2,

p>4.

Charge

� � � � � � � � � x � 0

Induced
Charge

Applied Field

Secondary Field

FIGURE 4.28

For Problem P4.4.

Section 4.2

P4.5. Torque on an electric dipole in an applied electric field. Show that the torque
acting on an electric dipole of moment p due to an applied electric field E is

Compute the torque for a dipole consisting of of charge at
and of charge at in an electric field 

103 12ax - ay + 2az2 V/m.
E =10, 0, -10-32-1 mC10, 0, 10-32

1 mCp � E.
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274 Chapter 4 Fields and Waves In Material Media

P4.6. Point charge surrounded by a spherical dielectric shell. A point charge Q is sit-
uated at the origin surrounded by a spherical dielectric shell of uniform permit-
tivity and having inner and outer radii a and b, respectively. Find the
following: (a) the D and E fields in the three regions and

and (b) the polarization vector inside the dielectric shell.
P4.7. Characteristics of an anisotropic dielectric material. An anisotropic dielectric

material is characterized by the D to E relationship

(a) Find D for (b) Find D for (c) Find E for
Comment on your result for each case.

P4.8. Characteristic polarizations and effective permittivities for an anisotropic dielec-
tric. An anisotropic dielectric material is characterized by the D to E relationship

For find the value(s) of for which D is parallel to E.
Find the effective permittivity for each case.

Section 4.3

P4.9. Magnetic dipole moment of a charged rotating disk of uniform charge density.
Charge Q is distributed with uniform density on a circular disk of radius a lying
in the xy-plane and rotating around the z-axis with angular velocity in the
sense of increasing Find the magnetic dipole moment of the rotating charge.

P4.10. Torque on a magnetic dipole in an applied magnetic field. Considering for sim-
plicity a rectangular current loop in the xy-plane, show that the torque acting on
a magnetic dipole of moment m due to an applied magnetic field B is 
Then find the torque acting on a circular current loop of radius 1 mm, in the xy-
plane, centered at the origin and with current 0.1 A flowing in the sense of in-
creasing in a magnetic field 

P4.11. Finding the parameters of a ferromagnetic material. A portion of the B–H curve
for a ferromagnetic material can be approximated by the analytical expression

where k is a constant having units of meter per ampere. Find and M.
P4.12. Finding effective permeability for an anisotropic magnetic material. An

anisotropic magnetic material is characterized by the B to H relationship

where k is a constant. Find the effective permeability for H = H013ax - 2ay2.

CBx

By

Bz

S = km0 C7 6 0
6 12 0
0 0 3

S CHx

Hy

Hz

S

m, mr, xm,

B = m0 kHH

B = 10-512ax - 2ay + az2 Wb>m2.f

m � B.

f.
v

Ey>ExE = Ex ax + Ey ay,

CDx

Dy

Dz

S = C exx exy 0
eyx eyy 0
0 0 ezz

S CEx

Ey

Ez

S

D = D01ax + ay - 2az2.
E = E01ax - ay2.E = E01ax + ay2.

CDx

Dy

Dz

S = e0 C3 1 1
1 3 1
1 1 3

S CEx

Ey

Ez

S

r 7 b
a 6 r 6 b,0 6 r 6 a, 

4e0
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Section 4.4

P4.13. Finding fields for a plane-sheet sinusoidal current source in a material medium.
An infinite plane sheet in the plane carries a surface current of density

The medium on either side of the sheet is characterized by 
and Find E and H on either side of the current sheet.

P4.14. An array of two infinite plane current sheets in a material medium. Consider an
array of two infinite plane, parallel, current sheets of uniform densities given by

situated in a medium characterized by and 
(a) Find the minimum value of and the corresponding value of k for
which the fields in the region are zero. (b) For the values of d and k
found in (a), obtain the electric-field intensity in the region 

P4.15. Finding material parameters of a medium from propagation characteristics. A
uniform plane wave of frequency propagating in a material medium
has the following characteristics. (i) The fields are attenuated by the factor in
a distance of 28.65 m. (ii) The fields undergo a change in phase by in a dis-
tance of 111.2 m. (iii) The ratio of the amplitudes of the electric- and magnetic-
field intensities at a point in the medium is 59.4. (a) What is the value of 
(b) What is the value of (c) Find and of the medium.

P4.16. Finding fields for a plane-sheet nonsinusoidal current source in a material
medium. Repeat Problem P4.13 for the surface current of density

P4.17. Power flow and dissipation in a material medium. The magnetic field of a uniform
plane wave propagating in a nonmagnetic material medium is given by

Find: (a) the time-average power flow per unit area normal to the z-direction
and (b) the time-average power dissipated in the volume bounded by the planes

and 

Section 4.5

P4.18. Finding parameters for a uniform plane-wave electric field in a perfect dielec-
tric. The electric field of a uniform plane wave propagating in a perfect dielec-
tric medium having is given by

Find: (a) the frequency; (b) the wavelength; (c) the phase velocity; (d) the rela-
tive permittivity of the medium; and (e) the associated magnetic-field vector H.

P4.19. Plotting field variations for a nonsinusoidal current source in a perfect dielectric.
An infinite plane sheet lying in the plane carries a surface current of den-
sity where is as shown in Fig. 4.29. The medium on ei-
ther side of the current sheet is a perfect dielectric of and m = m0.e = 2.25e0

JS1t2JS = -JS1t2ax A>m,
z = 0

E = 10 cos 13p * 107t - 0.2px2 az

m = m0

z = 1.x = 0, x = 1, y = 0, y = 1, z = 0,

H = H0 e-z cos 12p * 106t - 2z2 ax A>m
1m = m02

Js = -0.2 cos 2p * 106t cos 4p * 106t ax A>m

ms, e,h?
g?

2p
e-1

5 * 105 Hz

z 7 d.
z 6 0

d17  02
m = m0.s = 10-3 S>m, e = 6e0,

 JS2 = -kJS0 sin 2p * 106t ax in the z = d plane

 JS1 = -JS0 cos 2p * 106t ax  in the z = 0 plane

m = m0.
s = 10-3 S>m, e = 6e0,

Js = -0.2 cos 2p * 106t ax A>m
z = 0
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276 Chapter 4 Fields and Waves In Material Media

Find and sketch (a) versus t for (b) versus t for 
(c) versus z for and (d) versus z for 

P4.20. Finding the parameters of a perfect dielectric from propagation characteristics.
For a uniform plane wave having and and prop-
agating in the in a perfect dielectric medium, the time variation of

in a constant z-plane and the distance variation of for a fixed time are ob-
served to be periodic, as shown in Figs. 4.30(a) and (b), respectively, for two
complete cycles. Find the relative permittivity and the relative permeability of
the medium.

HyEx

+z-direction
H = Hy1z, t2ayE = Ex1z, t2ax

t = 3 ms.Hyt = 2 ms;Ex

z = -300 m;Hyz = 200 m;Ex

(a)

t

9p V/m

10 ns

Ex(t)

(b)

z

0.2 A/m

50 cm

Hy(t)

FIGURE 4.30

For Problem P4.20.

P4.21. Computing propagation parameters for a uniform plane wave in ice. For uni-
form plane wave propagation in ice com-
pute and for What is the distance in which the fields
are attenuated by the factor 

P4.22. Computing propagation parameters for a uniform plane wave in seawater.
For uniform plane wave propagation in seawater 

compute and for two frequencies: (a)
and (b)

P4.23. Finding the electric field for a nonsinusoidal-wave magnetic field in a material
medium. For a uniform plane wave propagating in the in a materi-
al medium, the magnetic field intensity in the plane is given by

Find E(z, t) for each of the following cases: (a) the medium is characterized by
and (b) the medium is characterized by 

and and (c) the medium is characterized by 
and m = m0.e = 9e0,

s = 10 S>m,m = m0;e = 9e0,
s = 10-3 S>m,m = m0;s = 0, e = 9e0,

[H]z = 0 = 0.1 cos3 2p * 108t ay A>m
z = 0

+z-direction

f = 100 kHz.
f = 10 GHzha, d, b, l, vp,m = m02,

1s = 4 S>m, e = 80e0,  and

e-1?
f = 1 MHz.ha, b, np, l,

m02,1s L 10-6 S>m, e = 3e0, and m =

t, �s0

JS, A/m

0.2

21 3
FIGURE 4.29

For Problem P4.19
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Section 4.6

P4.24. Verifying consistency of results with boundary conditions. Show that the results
obtained for the electric field due to the sheet of charge in Example 1.9 and for
the magnetic field due to the sheet of current in Example 1.12 are consistent
with the boundary conditions.

P4.25. Applying boundary conditions at interface between dielectric and free space.
Medium 1, consisting of the region in spherical coordinates, is a perfect
dielectric of permittivity whereas medium 2, consisting of the region in
spherical coordinates, is free space.The electric field intensities in the two media
are given by

respectively. Find 
P4.26. Applying boundary conditions at interface between dielectric and free space.

A boundary separates free space from a perfect dielectric medium. At a point
on the boundary, the electric field intensity on the free space side is 

whereas on the dielectric side, it is 
where is a constant. Find the permittivity of the dielectric medium.

P4.27. Applying boundary conditions at interface between magnetic material and free
space. Medium 1, consisting of the region in spherical coordinates, is a
magnetic material of permeability whereas medium 2, consisting of the re-
gion in spherical coordinates, is free space. The magnetic flux densities in
the two media are given by

respectively. Find 
P4.28. Verification and application of boundary conditions on a perfect conductor sur-

face. In Problem P4.4, show that the applied and secondary fields together sat-
isfy the boundary condition of zero tangential component of electric field on the
conductor surface. From the boundary condition for the normal component of
D, find the charge density on the conductor surface and show that the total in-
duced surface charge per unit width in the z-direction is 

P4.29. Applying boundary conditions for a rectangular cavity resonator. The rectan-
gular cavity resonator is a box consisting of the region 
and and bounded by perfectly conducting walls on all of its six sides.
The time-varying electric and magnetic fields inside the resonator are given by

where and are constants. Find and on all six walls, assuming
the medium inside the box to be a perfect dielectric of e = 4e0.

JSrSH02E0, H01,

 H = H01 sin  
px

a
  cos  
pz

d
  sin vt ax - H02 cos  

px

a
  sin  
pz

d
  sin vt az

 E = E0 sin  
px

a
  sin  
pz

d
  cos vt ay

0 6 z 6 d,
0 6 x 6 a, 0 6 y 6 b,

-rL0.

m1.

 B2 = B02 c a1 + 1.94 
a3

r3 b  cos u ar - a1 - 0.97 
a3

r3 b  sin u au d
 B1 = B011cos u ar -  sin u au2

r 7 a
m1,

r 6 a

E0

E2 = 3E01ax + az2,E014ax + 2ay + 5az2,
E1 =

e1.

 E2 = E02 c a1 +
a3

2r3 b  cos u ar - a1 -
a3

4r3 b  sin u au d
 E1 = E011cos u ar - sin u au2

r 7 ae1,
r 6 a
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278 Chapter 4 Fields and Waves In Material Media

P4.30. Finding fields for a plane-sheet current source with different media on either
side. In Problem P4.13, assume that the region is free space, whereas the
region is a material medium characterized by and

Find E and H on either side of the current sheet. (Hint: Make use of the
complex electric and magnetic fields to satisfy the boundary conditions at )

P4.31. Finding fields for a plane-sheet current source with different dielectrics on ei-
ther side. An infinite plane sheet lying in the plane carries a surface current
of density

The region is a perfect dielectric of and whereas the
region is a perfect dielectric of and Find E and H on
both sides of the sheet.

Section 4.7

P4.32. Normal incidence of a sinusoidal uniform plane wave onto a material medium.
Region is free space, whereas region is a material medium
characterized by and For a uniform plane wave
having the electric field

incident on the interface from region 1, obtain the expression for the re-
flected and transmitted wave electric fields.

P4.33. Normal incidence of a nonsinusoidal uniform plane wave onto a material medi-
um. Repeat Problem P4.32 for the incident wave electric field given by

P4.34. Uniform plane wave reflection and transmission involving three media in cas-
cade. In Fig. 4.31, medium 3 extends to infinity so that no reflected wave
exists in that medium. For a uniform plane wave having the electric field

incident from medium 1 onto the interface obtain the expressions for the
phasor electric- and magnetic-field components in all three media.

z = 0,

Ei = E0 cos 13 * 108pt - pz2 ax V>m

1-2

Ei = E0 cos3 13p * 105t - 10-3pz2 ax V>m

z = 0

Ei = E0 cos 13p * 105t - 10-3pz2 ax V>m

m = m0.s = 10-4 S>m, e = 5e0,
2 1z 7 021 1z 6 02

m = m0.e = 4e0z 6 0
m = m0,e = 2.25e0z 7 0

Js = -0.2 cos 6p * 108t ax A>m

z = 0

z = 0.
m = m0.

s = 10-3 S>m, e = 6e0,z 6 0
z 7 0

z

x

y

Medium 1

(�)

(�)

z � 0

m0, e0

Medium 2

(�)

(�)

m0, 9e0

Medium 3

(�)

m0, 4e0

z �      m1
3

FIGURE 4.31

For Problem P4.34.
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P4.35. Plotting field variations for a nonsinusoidal wave incident on a perfect dielectric.
A uniform plane wave propagating in the and having the electric
field where in the plane is as shown in Fig. 4.32, is in-
cident normally from free space onto a nonmagnetic perfect
dielectric of permittivity Find and sketch the following: (a) ver-
sus z for and (b) versus z for t = 1 ms.Hyt = 1 ms

Ex4e0.1z 7 02
1m = m02,1z 6 02

z = 0Exi1t2Ei = Exi1t2ax,
+z-direction

z

x

y

Perfect
Dielectric

z � 0

z 	 0

Perfect
Conductor

z 
 0

m, e

FIGURE 4.33

For Problem P4.36.

t, �s0

[Exi]z � 0, V/m

E0

1 2

FIGURE 4.32

For Problem P4.35

P4.36. Normal incidence of a uniform plane wave on a perfect conductor surface. The
region is a perfect dielectric, whereas the region is a perfect con-
ductor, as shown in Fig. 4.33. For a uniform plane wave having the electric and
magnetic fields

where and obtain the expressions for the reflected wave
electric and magnetic fields and hence the expressions for the total

electric and magnetic fields in the dielectric, and the cur-
rent density on the surface of the perfect conductor.
1incident + reflected2

h = 1m>e,b = v1me  Hi =
E0

h
  cos 1vt - bz2 ay

 Ei = E0 cos 1vt - bz2 ax

z 7 0z 6 0

REVIEW PROBLEMS

R4.1. Finding surface charge densities for plane conducting slabs between two sheets
of charge. Two infinite plane conducting slabs lie between and parallel to two
infinite plane sheets of uniform surface charge densities and as shown
by the cross-sectional view in Fig. 4.34. Find the surface charge densities on all
four surfaces of the slabs.

rSB,rSA
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280 Chapter 4 Fields and Waves In Material Media

R4.2. Characteristic polarizations for an anisotropic dielectric. An anisotropic dielec-
tric material is characterized by the D to E relationship

Express as the linear combination of and which corre-
spond to two of the characteristic polarizations of the material.

R4.3. Magnetic dipole moment of a charged rotating disk of nonuniform charge den-
sity. Charge Q is distributed with density proportional to r on a circular disk of
radius a lying on the xy-plane with its center at the origin and rotating around
the z-axis with angular velocity in the sense of increasing Find the magnet-
ic dipole moment.

R4.4. Finding H and the material parameters of a nonmagnetic medium from E in the
medium. The electric field of a uniform plane wave propagating in the

in a nonmagnetic material medium is given by

Find the magnetic field of the wave. Further, find the values of and of the
medium.

R4.5. Infinite plane current sheet sandwiched between two different perfect dielectric
media. An infinite plane current sheet of uniform density is
sandwiched between two perfect dielectric media, as shown in Fig. 4.35(a). If

is a triangular pulse of duration the plots of at some value of z
equal to and for some value of t equal to are given by
Figs. 4.35(b) and (c), respectively. If instead of
being a pulse, find E and H on both sides of the sheet, and the time-average
power radiated by the sheet for unit area of the sheet.

R4.6. Application of boundary conditions on a perfect conductor surface. The region
is occupied by a perfect conductor. If at a point on the

perfect conductor surface, the surface charge and current densities at a particu-
lar instant of time are and find D and H at that
point at that instant of time.

R4.7. Application of boundary conditions at interface between dielectric and free
space. Medium 1, consisting of the region in spherical coordinates, is a
perfect dielectric of permittivity whereas medium 2, consisting of thee1 = 2e0,

r 6 a

JS014ax - 3ay2A>m,rS0 C>m2

3x + 4y + 12z 6 12

JS1t2 = JS0 cos 6p * 108t A>m,
t0 17  02Hy1z2z0 17  02

Ex1t23 ms,JS1t2
JS = -JS1t2ax

es

E = 8.4e- 0.0432z cos 14p * 106t - 0.1829z2 ax V>m
1m = m02+z-direction

f.v

E2,E1E = E01ax - ay2

CDx

Dy

Dz

S = e0C6.5 1.5 0
1.5 2.5 0
0 0 2

S CEx

Ey

Ez

S

rSA

rSB

1

2

3

4
FIGURE 4.34

For Problem R4.1.
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(a)

Medium 1

z � 0           z

m1, e1

Medium 2
m2, e2

(b)

0

[Ex]z � z0

t

E0

3 �s

(c)

[Ex]t � t0

z
225 m

150 m

0

E0

60p

E0

80p
�

FIGURE 4.35

For Problem R4.5.

region is free space. The electric field intensity in medium 1 is given by
Find the electric field intensity at the points (a) (0, 0, a), (b) (0, a, 0),

and (c) in Cartesian coordinates, in medium 2.
R4.8. Normal incidence of a uniform plane wave onto a slab of perfect dielectric. For

a sinusoidally time-varying uniform plane wave incident normally from medium
1 on to the interface in Fig. 4.36, show that there is a minimum value of
the frequency for which a wave at that frequency or any integer multiple of that
frequency undergoes no reflection at the interface. Further, find the maximum
value of the period of a nonsinusoidal periodic wave for which no reflection oc-
curs at the interface. Note that medium 1 and medium 3 are both free space.

z = 0

10, a>12, a>122,
E1 = E0 az.

r 7 a,

Medium 1

(�)

z � 0 z z � 0.5 m

m0, e0

Medium 2
m0, 9e0

Medium 3
m0, e0

FIGURE 4.36

For Problem R4.8.
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