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Maxwell’s Equations 
in Differential Form, and Uniform
Plane Waves in Free Space

In Chapter 2, we introduced Maxwell’s equations in integral form. We learned
that the quantities involved in the formulation of these equations are the
scalar quantities, electromotive force, magnetomotive force, magnetic flux, dis-
placement flux, charge, and current, which are related to the field vectors and
source densities through line, surface, and volume integrals. Thus, the integral
forms of Maxwell’s equations, while containing all the information pertinent
to the interdependence of the field and source quantities over a given region
in space, do not permit us to study directly the interaction between the field
vectors and their relationships with the source densities at individual points. It
is our goal in this chapter to derive the differential forms of Maxwell’s equa-
tions that apply directly to the field vectors and source densities at a given
point.

We shall derive Maxwell’s equations in differential form by applying
Maxwell’s equations in integral form to infinitesimal closed paths, surfaces,
and volumes, in the limit that they shrink to points. We will find that the dif-
ferential equations relate the spatial variations of the field vectors at a given
point to their temporal variations and to the charge and current densities at
that point. Using Maxwell’s equations in differential form, we introduce the
important topic of uniform plane waves and the associated concepts, funda-
mental to gaining an understanding of the basic principles of electromagnetic
wave propagation.
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130 Chapter 3 Maxwell’s Equations in Differential Form . . .

3.1 FARADAY’S LAW AND AMPÈRE’S CIRCUITAL LAW

We recall from Chapter 2 that Faraday’s law is given in integral form by

(3.1)

where S is any surface bounded by the closed path C. In the most general case,
the electric and magnetic fields have all three components (x, y, and z) and are
dependent on all three coordinates (x, y, and z) in addition to time (t). For sim-
plicity, we shall, however, first consider the case in which the electric field has an
x component only, which is dependent only on the z coordinate, in addition to
time. Thus,

(3.2)

In other words, this simple form of time-varying electric field is everywhere di-
rected in the x-direction and it is uniform in planes parallel to the xy-plane.

Let us now consider a rectangular path C of infinitesimal size lying in a
plane parallel to the xz-plane and defined by the points 

and as shown in Fig. 3.1. According to Fara-
day’s law, the emf around the closed path C is equal to the negative of the time
rate of change of the magnetic flux enclosed by C. The emf is given by the line
integral of E around C. Thus, evaluating the line integrals of E along the four
sides of the rectangular path, we obtain

(3.3a)

(3.3b) L
1x + ¢x, z + ¢z2

1x, z + ¢z2
E # dl = [Ex]z + ¢z ¢x

 L
1x, z + ¢z2

1x, z2
E # dl = 0 since Ez = 0

1x + ¢x, z2,1x + ¢x, z + ¢z2, 1x, z2, 1x, z + ¢z2,

E = Ex1z, t2ax

CC
E # dl = -  

d

dtLS
B # dS

Faraday’s
law, special
case

x

zy

�z

�x S C

(x, z) (x, z � �z)

(x � �x, z � �z)(x � �x, z)
FIGURE 3.1

Infinitesimal rectangular path lying
in a plane parallel to the xz-plane.
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3.1 Faraday’s Law and Ampère’s Circuital Law 131

(3.3c)

(3.3d)

Adding up (3.3a)–(3.3d), we obtain

(3.4)

In (3.3a)–(3.3d) and (3.4), and denote values of evaluated
along the sides of the path for which and respectively.

To find the magnetic flux enclosed by C, let us consider the plane surface
S bounded by C. According to the right-hand screw rule, we must use the mag-
netic flux crossing S toward the positive y-direction, that is, into the page, since
the path C is traversed in the clockwise sense. The only component of B normal
to the area S is the y-component. Also since the area is infinitesimal in size, we
can assume to be uniform over the area and equal to its value at (x, z). The
required magnetic flux is then given by

(3.5)

Substituting (3.4) and (3.5) into (3.1) to apply Faraday’s law to the rectan-
gular path C under consideration, we get

or

(3.6)

If we now let the rectangular path shrink to the point (x, z) by letting and 
tend to zero, we obtain

or

(3.7)
0Ex

0z
= -  

0By

0t

lim
¢x:0
¢z:0

 

[Ex]z + ¢z - [Ex]z

¢z
= - lim

¢x:0
¢z:0

 

0[By]1x, z2
0t

¢z¢x

[Ex]z + ¢z - [Ex]z

¢z
= -  

0[By]1x, z2
0t

5[Ex]z + ¢z - [Ex]z6 ¢x = -  
d

dt
 5[By]1x, z2 ¢x ¢z6

LS
B # dS = [By]1x, z2 ¢x ¢z

By

z = z + ¢z,z = z
Ex[Ex]z + ¢z[Ex]z

 = 5[Ex]z + ¢z - [Ex]z6 ¢x

 CC
E # dl = [Ex]z + ¢z ¢x - [Ex]z ¢x

 L
1x, z2

1x + ¢x, z2
E # dl = -[Ex]z ¢x

 L
1x + ¢x, z2

1x + ¢x, z + ¢z2
E # dl = 0 since Ez = 0
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132 Chapter 3 Maxwell’s Equations in Differential Form . . .

Equation (3.7) is Faraday’s law in differential form for the simple case of
E given by (3.2). It relates the variation of with z (space) at a point to the
variation of with t (time) at that point. Since this derivation can be carried
out for any arbitrary point (x, y, z), it is valid for all points. It tells us in par-
ticular that an associated with a time-varying has a differential in the z-
direction. This is to be expected since if this is not the case, around the
infinitesimal rectangular path would be zero.

Example 3.1 Finding B for a given E

Given V/m, let us find B that satisfies (3.7).
From (3.7), we have

We shall now proceed to derive the differential form of (3.1) for the gen-
eral case of the electric field having all three components (x, y, z), each of them
depending on all three coordinates (x, y, and z), in addition to time (t); that is,

(3.8)

To do this, let us consider the three infinitesimal rectangular paths in planes par-
allel to the three mutually orthogonal planes of the Cartesian coordinate sys-
tem, as shown in Fig. 3.2. Evaluating around the closed paths abcda,
adefa, and afgba, we get

(3.9a)

(3.9b)
 -[Ez]1x + ¢x, y2 ¢z - [Ex]1y, z2 ¢x

 Cadefa
E # dl = [Ez]1x, y2 ¢z + [Ex]1y, z + ¢z2 ¢x

 -[Ey]1x, z + ¢z2 ¢y - [Ez]1x, y2 ¢z

 Cabcda
E # dl = [Ey]1x, z2 ¢y + [Ez]1x,y + ¢y2 ¢z

AE # dl

E = Ex1x, y, z, t2ax + Ey1x, y, z, t2ay + Ez1x, y, z, t2az

 B =
10-7

3
  cos 16p * 108t - 2pz2 ay

 By =
10-7

3
  cos 16p * 108t - 2pz2

 = -20p sin 16p * 108t - 2pz2
 = -  

0
0z

 [10 cos 16p * 108t - 2pz2]
 
0By

0t
= -  

0Ex

0z

E = 10 cos 16p * 108t - 2pz2 ax

AE # dl
ByEx

By

Ex

Faraday’s
law, general
case
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3.1 Faraday’s Law and Ampère’s Circuital Law 133

x
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y

�z

�y
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d(x, y, z � �z)

a(x, y, z)

c(x, y � �y, z � �z)

g(x � �x, y � �y, z)

b(x, y � �y, z)

f(x � �x, y, z)

e(x � �x, y, z � �z)

FIGURE 3.2

Infinitesimal rectangular paths in
three mutually orthogonal planes.

(3.9c)

In (3.9a)–(3.9c), the subscripts associated with the field components in the vari-
ous terms on the right sides of the equations denote the values of the coordi-
nates that remain constant along the sides of the closed paths corresponding to
the terms. Now, evaluating over the surfaces abcd, adef, and afgb, keep-
ing in mind the right-hand screw rule, we have

(3.10a)

(3.10b)

(3.10c)

Applying Faraday’s law to each of the three paths by making use of
(3.9a)–(3.9c) and (3.10a)–(3.10c) and simplifying, we obtain

(3.11a)

(3.11b)

(3.11c) 
[Ey]1x + ¢x, z2 - [Ey]1x, z2

¢x
-

[Ex]1y + ¢y, z2 - [Ex]1y, z2
¢y

= -  

0[Bz]1x, y, z2
0t

 
[Ex]1y, z + ¢z2 - [Ex]1y, z2

¢z
-

[Ez]1x + ¢x, y2 - [Ez]1x, y2
¢x

= -  

0[By]1x, y, z2
0t

 
[Ez]1x, y + ¢y2 - [Ez]1x, y2

¢y
-

[Ey]1x, z + ¢z2 - [Ey]1x, z2
¢z

= -  

0[Bx]1x, y, z2
0t

 Lafgb
B # dS = [Bz]1x, y, z2 ¢x ¢y

 Ladef
B # dS = [By]1x, y, z2 ¢z ¢x

 Labcd
B # dS = [Bx]1x, y, z2 ¢y ¢z

1B # dS

 -[Ex]1y + ¢y, z2 ¢x - [Ey]1x, z2 ¢y

 Cafgba
E # dl = [Ex]1y, z2 ¢x + [Ey]1x + ¢x, z2 ¢y
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134 Chapter 3 Maxwell’s Equations in Differential Form . . .

If we now let all three paths shrink to the point a by letting and tend
to zero, (3.11a)–(3.11c) reduce to

(3.12a)

(3.12b)

(3.12c)

Equations (3.12a)–(3.12c) are the differential equations governing the re-
lationships between the space variations of the electric field components and
the time variations of the magnetic field components at a point. In particular, we
note that the space derivatives are all lateral derivatives, that is, derivatives eval-
uated along directions lateral to the directions of the field components and not
along the directions of the field components. An examination of one of the
three equations is sufficient to reveal the physical meaning of these relation-
ships. For example, (3.12a) tells us that a time-varying at a point results in an
electric field at that point having y- and z-components such that their net
right-lateral differential normal to the x-direction is nonzero. The right-lateral
differential of normal to the x-direction is its derivative in the or

that is, or The right-lateral differential of 
normal to the x-direction is its derivative in the or that is,

Thus, the net right-lateral differential of the y- and z-components of the
electric field normal to the x-direction is or 

Figure 3.3(a) shows an example in which the net right-lateral differen-
tial is zero although the individual derivatives are nonzero. This is because

and are both positive and equal so that their difference is zero.
On the other hand, for the example in Fig. 3.3(b), is positive and 
is negative so that their difference, that is, the net right-lateral differential, is
nonzero.

0Ey>0z0Ez>0y
0Ey>0z0Ez>0y

0Ey>0z2. 10Ez>0y -1-0Ey>0z2 + 10Ez>0y2,0Ez>0y.
ay-direction,az : ax,

Ez-0Ey>0z.0Ey>01-z2-az-direction,
ay : ax,Ey

Bx

 
0Ey

0x
-

0Ex

0y
= -  

0Bz

0t

 
0Ex

0z
-

0Ez

0x
= -  

0By

0t

 
0Ez

0y
-

0Ey

0z
= -  

0Bx

0t

¢z¢x, ¢y,

z

y

Ey

Ey

Ey

Ey

Ez EzEzEzx

(a) (b)

FIGURE 3.3

For illustrating (a) zero and (b) nonzero net right-lateral differential of and
normal to the x-direction.Ez

Ey
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3.1 Faraday’s Law and Ampère’s Circuital Law 135

Curl (del
cross)

Equations (3.12a)–(3.12c) can be combined into a single vector equation
as given by

(3.13)

This can be expressed in determinant form as

(3.14)

or as

(3.15)

The left side of (3.14) or (3.15) is known as the curl of E, denoted as (del
cross E), where (del) is the vector operator given by

(3.16)

Thus, we have

(3.17)

Equation (3.17) is Maxwell’s equation in differential form corresponding to
Faraday’s law. It tells us that at a point in an electromagnetic field, the curl of
the electric field intensity is equal to the time rate of decrease of the magnetic
flux density. We shall discuss curl further in Section 3.3, but note that for static
fields, is equal to the null vector. Thus, for a static vector field to be real-
ized as an electric field, the components of its curl must all be zero.

Although we have deduced (3.17) from (3.1) by considering the Cartesian
coordinate system, it is independent of the coordinate system since (3.1) is inde-
pendent of the coordinate system. The expressions for the curl of a vector in
cylindrical and spherical coordinate systems are derived in Appendix B. They
are reproduced here together with that in (3.14) for the Cartesian coordinate
system.

� � E

� � E = -  
0B
0t

� = ax 
0

0x
+ ay 

0
0y

+ az 
0
0z

�
� � E

aax 
0

0x
+ ay 

0
0y

+ az 
0
0z
b � 1Ex ax + Ey ay + Ez az2 = -  

0B
0t

4 ax ay az

0
0x

0
0y

0
0z

Ex Ey Ez

4 = -  
0B
0t

 = -  

0Bx

0t
 ax -

0By

0t
 ay -

0Bz

0t
 az

 a 0Ez

0y
-

0Ey

0z
bax + a 0Ex

0z
-

0Ez

0x
bay + a 0Ey

0x
-

0Ex

0y
baz
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136 Chapter 3 Maxwell’s Equations in Differential Form . . .

CARTESIAN

(3.18a)

CYLINDRICAL

(3.18b)

SPHERICAL

(3.18c)

Example 3.2 Evaluating curls of vector fields

Find the curls of the following vector fields: (a) and (b) in cylindrical
coordinates.

(a) Using (3.18a), we have

(b) Using (3.18b), we obtain

� � af =
5
ar

r
af

az

r

0
0r

0
0f

0
0z

0 r 0

5
=

ar

r
c -  

0
0z

 1r2 d +
az

r
c 0
0r

 1r2 d =
1
r

 az

 = -2az

 = ax c -  
0
0z

 1-x2 d + ay c 0
0z

 1y2 d + az c 0
0x

 1-x2 -
0

0y
 1y2 d

 � � 1yax - xay2 = 4 ax ay az

0
0x

0
0y

0
0z

y - x 0

4

afyax - xay

� � A =
5

ar

r2 sin u

au
r sin u

af
r

0
0r

0
0u

0
0f

Ar rAu r sin uAf

5

� � A =
5
ar

r
af

az

r

0
0r

0
0f

0
0z

Ar rAf Az

5

� � A = 4 ax ay az

0
0x

0
0y

0
0z

Ax Ay Az

4
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We shall now consider the derivation of the differential form of Ampère’s
circuital law given in integral form by

(3.19)

where S is any surface bounded by the closed path C.To do this, we need not re-
peat the procedure employed in the case of Faraday’s law. Instead, we note from
(3.1) and (3.17) that in converting to the differential form from integral form,
the line integral of E around the closed path C is replaced by the curl of E, the
surface integral of B over the surface S bounded by C is replaced by B itself, and
the total time derivative is replaced by partial derivative, as shown:

Then using the analogy between Ampère’s circuital law and Faraday’s law, we
can write the following:

Thus, for the general case of the magnetic field having all three compo-
nents (x, y, and z), each of them depending on all three coordinates (x, y, and z),
in addition to time (t), that is, for

(3.20)

the differential form of Ampère’s circuital law is given by

(3.21)� � H = J +
0D
0t

H = Hx1x, y, z, t2ax + Hy1x, y, z, t2ay + Hz1x, y, z, t2az

 � �
$%&

H =  J +
0
0t

 1D2

 CC
H # d l = LS

J # dS +
d

dtLS
D # dS

 � �
$%&

E = -  
0
0t

 1B2

 CC
E # dl = -  

d

dtLS
B # dS

CC
H # dl = LS

J # dS +
d

dtLS
D # dS
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Ampère’s
circuital law,
general case
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138 Chapter 3 Maxwell’s Equations in Differential Form . . .

The quantity is known as the displacement current density. Equation (3.21)
tells us that at a point in an electromagnetic field, the curl of the magnetic field
intensity is equal to the sum of the current density due to flow of charges and the
displacement current density. In Cartesian coordinates, (3.21) becomes

(3.22)

This is equivalent to three scalar equations relating the lateral space derivatives
of the components of H to the components of the current density and the time
derivatives of the electric field components.These scalar equations can be inter-
preted in a manner similar to the interpretation of (3.12a)–(3.12c) in the case of
Faraday’s law.Also, expressions similar to (3.22) can be written in the cylindrical
and spherical coordinate systems by using the determinant expansions for the
curl in those coordinate systems, given by (3.18b) and (3.18c), respectively.

Having obtained the differential form of Ampère’s circuital law for the
general case, we can now simplify it for any particular case. Let us consider the
particular case of

(3.23)

that is, a magnetic field directed everywhere in the y-direction and uniform in
planes parallel to the xy-plane.Then since H does not depend on x and y, we can
replace and in the determinant expansion for by zeros. In ad-
dition, setting we have

(3.24)

Equating like components on the two sides and noting that the y- and z-components
on the left side are zero, we obtain

or

(3.25)

Equation (3.25) is Ampère’s circuital law in differential form for the simple case
of H given by (3.23). It relates the variation of with z (space) at a point to theHy

0Hy

0z
= -Jx -

0Dx

0t

-  

0Hy

0z
= Jx +

0Dx

0t

4 ax ay az

0 0
0
0z

0 Hy 0

4 = J +
0D
0t

Hx = Hz = 0,
� � H0>0y0>0x

H = Hy1z, t2ay

4 ax ay az

0
0x

0
0y

0
0z

Hz Hy Hz

4 = J +
0D
0t

0D>0t

Ampère’s
circuital law,
special case
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3.1 Faraday’s Law and Ampère’s Circuital Law 139

current density and to the variation of with t (time) at that point. It tells us
in particular that an associated with a current density or a time-varying 
or a nonzero combination of the two quantities, has a differential in the z-direction.

Example 3.3 Simultaneous satisfaction of Faraday’s and Ampere’s
circuital laws by E and B

Given in free space We wish to determine if there exists a
magnetic field such that both Faraday’s law and Ampère’s circuital law are satisfied
simultaneously.

Using Faraday’s law and Ampère’s circuital law in succession, we have

which is not the same as the original E. Hence, a magnetic field does not exist which to-
gether with the given E satisfies both laws simultaneously.The pair of fields 
and satisfies only Faraday’s law, whereas the pair of fields 
and satisfies only Ampère’s circuital law.

To generalize the observation made in the example just discussed, there
are certain pairs of time-varying electric and magnetic fields that satisfy only
Faraday’s law as given by (3.17) and certain other pairs that satisfy only Ampère’s
circuital law as given by (3.21). In the strictest sense, every physically realizable
pair of time-varying electric and magnetic fields must satisfy simultaneously both
laws as given by (3.17) and (3.21). However, under the low-frequency approxima-
tion, it is valid for the fields to satisfy the laws with certain terms neglected in one
or both laws. Lumped-circuit theory is based on such approximations. Thus, the
terminal voltage-to-current relationship for an inductor is
obtained by ignoring the effect of the time-varying electric field, that is,
term in Ampère’s circuital law. The terminal current-to-voltage relationship

for a capacitor is obtained by ignoring the effect of the time-
varying magnetic field, that is, term in Faraday’s law.The terminal voltage-
to-current relationship for a resistor is obtained by ignoring theV1t2 = RI1t20B>0t
I1t2 = d[CV1t2]>dt

0D>0t
V1t2 = d[LI1t2]>dt

E = 12E0>m0e02e-tax

B = 2E0 ze-tayB = 2E0 ze-tay

E = E0 z2e-tax

 E =
2E0

m0e0
 e-tax

 Ex =
2E0

m0e0
 e-t

 Dx =
2E0

m0
 e-t

 
0Dx

0t
= -  

0Hy

0z
= -  

2E0

m0
 e-t

 Hy =
2E0

m0
 ze-t

 By = 2E0 ze-t

 
0By

0t
= -  

0Ex

0z
= -2E0 ze-t

1J � 02.E = E0 z2e-tax

Dx,JxHy

DxJx

Lumped-
circuit theory
approxima-
tions
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140 Chapter 3 Maxwell’s Equations in Differential Form . . .

z � �a z � az � 0

x
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Jx

J0

z
�a 0 a

J0 a

z

J0 ax

�J0 a

�2J0 a

�a a

(a) (c)

(b)

FIGURE 3.4

The determination of magnetic field due to a current distribution.

effects of both time-varying electric field and time-varying magnetic field, that
is, both term in Ampère’s circuital law and term in Faraday’s law.
In contrast to these approximations, electromagnetic wave propagation phe-
nomena and transmission-line (distributed circuit) theory are based on the si-
multaneous application of the two laws with all terms included, that is, as given
by (3.17) and (3.21).

We shall conclude this section with an example involving no time variations.

Example 3.4 Magnetic field of a current distribution from Ampere’s
circuital law in differential form

Let us consider the current distribution given by

as shown in Fig. 3.4(a), where is a constant, and find the magnetic field everywhere.
Since the current density is independent of x and y, the field is also independent of

x and y. Also, since the current density is not a function of time, the field is static. Hence
and we have

0Hy

0z
= -Jx

10Dx>0t2 = 0,

J0

J = J0 ax for - a 6 z 6 a

0B>0t0D>0t
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3.2 Gauss’ Laws and the Continuity Equation 141

Integrating both sides with respect to z, we obtain

where C is the constant of integration.
The variation of with z is shown in Fig. 3.4(b). Integrating with respect to z,

that is, finding the area under the curve of Fig. 3.4(b) as a function of z, and taking its
negative, we obtain the result shown by the dashed curve in Fig. 3.4(c) for 
From symmetry considerations, the field must be equal and opposite on either side of the
current region Hence, we choose the constant of integration C to be equal
to thereby obtaining the final result for as shown by the solid curve in Fig. 3.4(c).
Thus, the magnetic field intensity due to the current distribution is given by

The magnetic flux density, B, is equal to 

K3.1. Faraday’s law in differential form; Ampere’s circuital law in differential form;
Curl of a vector; Lumped circuit theory approximations.

D3.1. Given find the time rate of increase of
at for each of the following values of z: (a) 0; (b) and (c)

Ans. (a) 0; (b) (c)
D3.2. For the vector field find the following: (a) the net

right-lateral differential of and normal to the z-direction at the point
(1, 1, 1); (b) the net right-lateral differential of and normal to the x-direc-
tion at the point (1, 2, 1); and (c) the net right-lateral differential of and 
normal to the y-direction at the point 
Ans. (a) (b) 0; (c) 2.

D3.3. Given and find the time rate of increase of
for each of the following cases: (a) (b)

and (c)
Ans. (a) (b) (c) 0.

3.2 GAUSS’ LAWS AND THE CONTINUITY EQUATION

Thus far, we have derived Maxwell’s equations in differential form correspond-
ing to the two Maxwell’s equations in integral form involving the line integrals
of E and H around the closed path, that is, Faraday’s law and Ampère’s circuital
law, respectively. The remaining two Maxwell’s equations in integral form,
namely, Gauss’ law for the electric field and Gauss’ law for the magnetic field,
are concerned with the closed surface integrals of D and B, respectively. In this
section, we shall derive the differential forms of these two equations.

0.0733H0;-0.7358H0;
z = 3 m, t = 10-8 s.1

3 * 10-8 s;
z = 3 m, t =z = 2 m, t = 10-8 s;Dx

H = H0 e-13 * 108t - z22ay  A>m,J = 0

-1;
11, 1, -12.

AxAz

AzAy

AyAx

A = xy2ax + xzay + x2yzaz,
-13pE0.2pE0;

2
3 m.1

4 m;t = 10-8 sBy

E = E0 cos 16p * 108t - 2pz2 ax V>m,

m0 H.

H = c   J0 aay for z 6 -a

-J0 zay for - a 6 z 6 a

-J0 aay for z 7 a

HyJ0 a,
-a 6 z 6 a.

-1z
- qJx dz.

-JxJx

Hy = -L
z

- q
Jx dz + C
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�z
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�x

(x, y, z)

FIGURE 3.5

Infinitesimal rectangular box.

We recall from Section 2.5 that Gauss’ law for the electric field is given by

(3.26)

where V is the volume enclosed by the closed surface S.To derive the differential
form of this equation, let us consider a rectangular box of edges of infinitesimal
lengths and and defined by the six surfaces 

and as shown in Fig. 3.5, in a region of
electric field

(3.27)

and charge of density According to Gauss’ law for the electric field,
the displacement flux emanating from the box is equal to the charge enclosed
by the box. The displacement flux is given by the surface integral of D over the
surface of the box, which comprises six plane surfaces. Thus, evaluating the dis-
placement flux emanating from the box through each of the six plane surfaces
of the box, we have

(3.28a)

(3.28b)

(3.28c)

(3.28d)

(3.28e)

(3.28f)for the surface z = z + ¢z LD # dS = [Dz]z + ¢z ¢x ¢y

for the surface z = z LD # dS = -[Dz]z ¢x ¢y

for the surface y = y + ¢y LD # dS = [Dy]y + ¢y ¢z ¢x

for the surface y = y LD # dS = -[Dy]y ¢z ¢x

for the surface x = x + ¢x LD # dS = [Dx]x + ¢x ¢y ¢z

for the surface x = x LD # dS = -[Dx]x ¢y ¢z

r1x, y, z, t2.
D = Dx1x, y, z, t2ax + Dy1x, y, z, t2ay + Dz1x, y, z, t2az

z = z + ¢z,y = y, y = y + ¢y, z = z,
x = x + ¢x,x = x,¢z¢x, ¢y,

CS
D # dS = LV

 r dv

Gauss’ law
for the
electric field
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3.2 Gauss’ Laws and the Continuity Equation 143

Adding up (3.28a)–(3.28f), we obtain the total displacement flux emanating
from the box to be

(3.29)

Now the charge enclosed by the rectangular box is given by

(3.30)

where we have assumed to be uniform throughout the volume of the box and
equal to its value at (x, y, z), since the box is infinitesimal in volume.

Substituting (3.29) and (3.30) into (3.26), we get

or, dividing throughout by the volume ,

(3.31)

If we now let the box shrink to the point (x, y, z) by letting and tend
to zero, we obtain

or

(3.32)

Equation (3.32) is the differential equation governing the relationship
between the space variations of the components of D to the charge density. In
particular, we note that the derivatives are all longitudinal derivatives, that is,
derivatives evaluated along the directions of the field components, in contrast
to the lateral derivatives encountered in Section 3.1. Thus, (3.32) tells us that
the net longitudinal differential, that is, the algebraic sum of the longitudinal

0Dx

0x
+

0Dy

0y
+

0Dz

0z
= r

 + lim
¢z:0

 

[Dz]z + ¢z - [Dz]z

¢z
= lim

¢x : 0
¢y : 0
¢z : 0

r

 lim
¢x:0

 

[Dx]x + ¢x - [Dx]x

¢x
+ lim

¢y:0
 

[Dy]y + ¢y - [Dy]y

¢y

¢z¢x, ¢y,

[Dx]x + ¢x - [Dx]x

¢x
+

[Dy]y + ¢y - [Dy]y

¢y
+

[Dz]z + ¢z - [Dz]z

¢z
= r

¢v

 + 5[Dz]z + ¢z - [Dz]z6 ¢x ¢y = r¢x ¢y ¢z

 5[Dx]x + ¢x - [Dx]x6 ¢y ¢z + 5[Dy]y + ¢y - [Dy]y6 ¢z ¢x

r

LV
 r dv = r1x, y, z, t2 # ¢x ¢y ¢z = r¢x ¢y ¢z

 + 5[Dz]z + ¢z - [Dz]z6 ¢x ¢y

 + 5[Dy]y + ¢y - [Dy]y6 ¢z ¢x

 CS
D # dS = 5[Dx]x + ¢x - [Dx]x6 ¢y ¢z
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FIGURE 3.6

For illustrating (a) zero and 
(b) nonzero net longitudinal
differential of the components of D.

derivatives, of the components of D at a point in space is equal to the charge
density at that point. Conversely, a charge density at a point results in an elec-
tric field having components of D such that their net longitudinal differential is
nonzero. Figure 3.6(a) shows an example in which the net longitudinal differ-
ential is zero.This is because and are equal in magnitude but op-
posite in sign, whereas is zero. On the other hand, for the example in
Fig. 3.6(b), both and are positive and is zero, so that the
net longitudinal differential is nonzero.

Equation (3.32) can be written in vector notation as

(3.33)

The left side of (3.33) is known as the divergence of D, denoted as (del dot D).
Thus, we have

(3.34)

Equation (3.34) is Maxwell’s equation in differential form corresponding to
Gauss’ law for the electric field. It tells us that the divergence of the displace-
ment flux density at a point is equal to the charge density at that point. We shall
discuss divergence further in Section 3.3.

Example 3.5 Electric field of a charge distribution from Gauss’ law in
differential form

Let us consider the charge distribution given by

as shown in Fig. 3.7(a), where is a constant, and find the electric field everywhere.
Since the charge density is independent of y and z, the field is also independent of

y and z, thereby giving us and reducing Gauss’ law for the electric
field to

0Dx

0x
= r

0Dy>0y = 0Dz>0z = 0

r0

r = e -r0 for -a 6 x 6 0
  r0 for 0 6 x 6 a

� # D = r

� # D

aax 
0

0x
+ ay 

0
0y

+ az 
0
0z
b # 1Dx ax + Dy ay + Dz az2 = r

0Dz>0z0Dy>0y0Dx>0x
0Dz>0z

0Dy>0y0Dx>0x

Divergence
(del dot)
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FIGURE 3.7

The determination of electric field due to a charge distribution.

Integrating both sides with respect to x, we obtain

where C is the constant of integration.
The variation of with x is shown in Fig. 3.7(b). Integrating with respect to x, that

is, finding the area under the curve of Fig. 3.7(b) as a function of x, we obtain the result 

shown in Fig. 3.7(c) for The constant of integration C is zero since the symmetry 

of the field required by the symmetry of the charge distribution is already satisfied by the
curve of of Fig. 3.7(c). Alternatively, it can be seen that any nonzero value of C would re-
main even if the charge distribution is allowed to disappear, and hence it is not attribut-
able to the given charge distribution.Thus, the displacement flux density due to the charge
distribution is given by

The electric field intensity, E, is equal to D>e0.

D = d   0 for x 6 -a

-r01x + a2ax for -a 6 x 6 0
  r01x - a2ax for 0 6 x 6 a

  0 for x 7 a

L
x

- q
r dx.

rr

Dx = L
x

- q
r dx + C
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146 Chapter 3 Maxwell’s Equations in Differential Form . . .

Although we have deduced (3.34) from (3.26) by considering the Cartesian
coordinate system, it is independent of the coordinate system since (3.26) is in-
dependent of the coordinate system.The expressions for the divergence of a vec-
tor in cylindrical and spherical coordinate systems are derived in Appendix B.
They are reproduced here together with that in (3.32) for the Cartesian coordi-
nate system.

CARTESIAN

(3.35a)

CYLINDRICAL

(3.35b)

SPHERICAL

(3.35c)

Example 3.6 Evaluating divergences of vector fields

Find the divergences of the following vector fields: (a)
and (b) in spherical coordinates.

(a) Using (3.35a), we have

(b) Using (3.35c), we obtain

We shall now consider the derivation of the differential form of Gauss’
law for the magnetic field given in integral form by

(3.36)CS
B # dS = 0

 = 2r cos u

 =
1

r sin u
12r2 sin u cos u2

 � # r2 sin u au =
1

r sin u
 
0
0u

 1r2 sin2 u2

 = 3 + 1 - 1 = 3

 � # [3xax + 1y - 32ay + 12 - z2az] =
0

0x
 13x2 +

0
0y

 1y - 32 +
0
0z

 12 - z2

r2 sin u au
3xax + 1y - 32ay + 12 - z2az

� # A =
1

r2 
0
0r

 1r2Ar2 +
1

r sin u
 
0
0u

 1Au sin u2 +
1

r sin u
 

0Af
0f

� # A =
1
r

 
0
0r

 1rAr2 +
1
r

 

0Af
0f

+
0Az

0z

� # A =
0Ax

0x
+

0Ay

0y
+

0Az

0z

Gauss’ law
for the
magnetic field
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3.2 Gauss’ Laws and the Continuity Equation 147

where S is any closed surface. To do this, we need not repeat the procedure em-
ployed in the case of Gauss’ law for the electric field. Instead, we note from
(3.26) and (3.34) that in converting to the differential form from integral form,
the surface integral of D over the closed surface S is replaced by the divergence
of D and the volume integral of is replaced by itself, as shown:

Then using the analogy between the two Gauss’ laws, we can write the following:

Thus, Gauss’ law in differential form for the magnetic field

(3.37)

is given by

(3.38)

which tells us that the divergence of the magnetic flux density at a point is equal
to zero. Conversely, for a vector field to be realized as a magnetic field, its di-
vergence must be zero. In Cartesian coordinates, (3.38) becomes

(3.39)

pointing out that the net longitudinal differential of the components of B is
zero. Also, expressions similar to (3.39) can be written in cylindrical and spheri-
cal coordinate systems by using the expressions for the divergence in those co-
ordinate systems, given by (3.35b) and (3.35c), respectively.

Example 3.7 Realizability of a vector field as a magnetic field

Determine if the vector in cylindrical coordinates can
represent a magnetic field B.

A = 11>r221cos f ar + sin f af2

0Bx

0x
+

0By

0y
+

0Bz

0z
= 0

� # B = 0

B = Bx1x, y, z, t2ax + By1x, y, z, t2ay + Bz1x, y, z, t2az

 � #$%&

B = 0

 CS
B # dS = 0 = LV

0 dv

 � #$%&

D  =    r

 CS
D # dS = LV

 r dv

rr
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Noting that

we conclude that the given vector can represent a B.

We shall conclude this section by deriving the differential form of the law
of conservation of charge given in integral form by

(3.40)

Using analogy with Gauss’ law for the electric field, we can write the following:

Thus, the differential form of the law of conservation of charge is given by

(3.41)

Equation (3.41) is familiarly known as the continuity equation. It tells us that the
divergence of the current density due to flow of charges at a point is equal to the
time rate of decrease of the charge density at that point. It can be expanded in a
given coordinate system by using the expression for the divergence in that coor-
dinate system.

K3.2. Gauss’ law for the electric field in differential form; Gauss’ law for the magnet-
ic field in differential form; Divergence of a vector; Continuity equation.

D3.4. For the vector field find the net longitudinal dif-
ferential of the components of A at the following points: (a)
(b) and (c) (1, 1, 1).
Ans. (a) (b) 0; (c) 3.

D3.5. The following hold at a point in a charge-free region: (i) the sum of the longitu-
dinal differentials of and is and (ii) the longitudinal differential of DyD0DyDx

-1;
11, 1, -1

22;
11, 1, -12;

A = yzax + xyay + xyz2az,

� # J = -  

0r
0t

 � #$%&

J = -  
0
0t

 1r2

 CS
J # dS = -  

d

dtLV
r dv

CS
J # dS = -  

d

dtLV
 r dv

 = -  

cos f

r3 +
cos f

r3 = 0

 � # A =
1
r

 
0
0r

 a cos f

r
b +

1
r

 
0

0f
 a sin f

r2 b
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Continuity
equation
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is three times the longitudinal differential of Find: (a) (b)
and (c)
Ans. (a) (b) (c)

D3.6. In a small region around the origin, the current density due to flow of charges is
given by where is a constant. Find the
time rate of increase of the charge density at each of the following points:
(a) (0.02, 0.01, 0.01); (b) and (c)
Ans. (a) (b) 0; (c)

3.3 CURL AND DIVERGENCE

In Sections 3.1 and 3.2, we derived the differential forms of Maxwell’s equations
and the law of conservation of charge from their integral forms. Maxwell’s
equations are given by

(3.42a)

(3.42b)

(3.42c)
(3.42d)

whereas the continuity equation is given by

(3.43)

These equations contain two new vector (differential) operations, namely, the
curl and the divergence. The curl of a vector is a vector quantity, whereas the di-
vergence of a vector is a scalar quantity. In this section, we shall introduce the
basic definitions of curl and divergence and then discuss physical interpreta-
tions of these quantities. We shall also derive two associated theorems.

A. Curl

To discuss curl first, let us consider Ampère’s circuital law without the displace-
ment current density term; that is,

(3.44)

We wish to express at a point in the current region in terms of H at that
point. If we consider an infinitesimal surface at the point and take the dot
product of both sides of (3.44) with we get

(3.45)1� � H2 # ¢S = J # ¢S

¢S,
¢S

� � H

� � H = J

� # J = -  

0r
0t

 � # B = 0
 � # D = r

 � � H = J +
0D
0t

 � � E = -  
0B
0t

0.04J0 1C>m32>s.-0.08J0 1C>m32>s;
1-0.02, -0.01, 0.012.10.02, -0.01, -0.012;
J0J = J01x2ax + y2ay + z2az2 A>m2,

-D0.-3D0;4D0;
0Dz>0z.

0Dy>0y;0Dx>0x;Dz.
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Curl, basic
definition
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150 Chapter 3 Maxwell’s Equations in Differential Form . . .

But is simply the current crossing the surface and according to Am-
père’s circuital law in integral form without the displacement current term,

(3.46)

where C is the closed path bounding Comparing (3.45) and (3.46), we have

or

(3.47)

where is the unit vector normal to and directed toward the side of ad-
vance of a right-hand screw as it is turned around C. Dividing both sides of
(3.47) by we obtain

(3.48)

The maximum value of and hence that of the right side of
(3.48), occurs when is oriented parallel to that is, when the surface

is oriented normal to the current density vector J. This maximum value is
simply Thus,

Since the direction of is the direction of J, or that of the unit vector nor-
mal to we can then write

This result is, however, approximate, since (3.47) is exact only in the limit that
tends to zero. Thus,

(3.49)

which is the expression for at a point in terms of H at that point. Al-
though we have derived this for the H vector, it is a general result and, in fact,

� � H

� � H = lim
¢S:0

c AC H # dl

¢S
d

max
 an

¢S

� � H = c AC H # dl

¢S
d

max
 an

¢S,
� � H

ƒ � � H ƒ = c AC H # dl

¢S
d

max

ƒ � � H ƒ .
¢S

� � H,an

1� � H2 # an,

1� � H2 # an = AC H # dl

¢S

¢S,

¢San

1� � H2 # ¢S an = CC
 H # dl

1� � H2 # ¢S = CC
 H # dl

¢S.

CC
 H # dl = J # ¢S

¢S,J # ¢S
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3.3 Curl and Divergence 151

is often the starting point for the introduction of curl. Thus, for any vector
field A,

(3.50)

Equation (3.50) tells us that to find the curl of a vector at a point in that
vector field, we first consider an infinitesimal surface at that point and compute
the closed line integral or circulation of the vector around the periphery of this
surface by orienting the surface such that the circulation is maximum. We then
divide the circulation by the area of the surface to obtain the maximum value of
the circulation per unit area. Since we need this maximum value of the circula-
tion per unit area in the limit that the area tends to zero, we do this by gradually
shrinking the area and making sure that each time we compute the circulation
per unit area, an orientation for the area that maximizes this quantity is main-
tained. The limiting value to which the maximum circulation per unit area ap-
proaches is the magnitude of the curl. The limiting direction to which the normal
vector to the surface approaches is the direction of the curl. The task of comput-
ing the curl is simplified if we consider one component at a time and compute
that component, since then it is sufficient if we always maintain the orientation
of the surface normal to that component axis. In fact, this is what we did in
Section 3.1, which led us to the determinant expression for the curl in Cartesian
coordinates, by choosing for convenience rectangular surfaces whose sides are
all parallel to the coordinate planes.

We are now ready to discuss the physical interpretation of the curl. We do
this with the aid of a simple device known as the curl meter, which responds to
the circulation of the vector field. Although the curl meter may take several
forms, we shall consider one consisting of a circular disk that floats in water with
a paddle wheel attached to the bottom of the disk, as shown in Fig. 3.8. A dot at
the periphery on top of the disk serves to indicate any rotational motion of the
curl meter about its axis (i.e., the axis of the paddle wheel). Let us now consider
a stream of rectangular cross section carrying water in the z-direction, as shown
in Fig. 3.8(a). Let us assume the velocity v of the water to be independent of
height but increasing sinusoidally from a value of zero at the banks to a maxi-
mum value at the center, as shown in Fig. 3.8(b), and investigate the behavior
of the curl meter when it is placed vertically at different points in the stream.We
assume that the size of the curl meter is vanishingly small so that it does not dis-
turb the flow of water as we probe its behavior at different points.

Since exactly in midstream the blades of the paddle wheel lying on either
side of the centerline are hit by the same velocities, the paddle wheel does not ro-
tate. The curl meter simply slides down the stream without any rotational mo-
tion, that is, with the dot on top of the disk maintaining the same position relative
to the center of the disk, as shown in Fig. 3.8(c). At a point to the left of the mid-
stream, the blades of the paddle wheel are hit by a greater velocity on the right
side than on the left side so that the paddle wheel rotates in the counterclockwise

v0

� � A = lim
¢S:0

c AC A # dl

¢S
d

max
 an

Physical
interpretation
of curl
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FIGURE 3.8

For explaining the physical interpretation of curl using the curl meter.

sense, as seen looking along the positive y-axis. The curl meter rotates in the
counterclockwise direction about its axis as it slides down the stream, as indicat-
ed by the changing position of the dot on top of the disk relative to the center of
the disk, as shown in Fig. 3.8(d). At a point to the right of midstream, the blades
of the paddle wheel are hit by a greater velocity on the left side than on the right
side so that the paddle wheel rotates in the clockwise sense, as seen looking
along the positive y-axis. The curl meter rotates in the clockwise direction about
its axis as it slides down the stream, as indicated by the changing position of the
dot on top of the disk relative to the center of the disk, as shown in Fig 3.8(e).

If we now pick up the curl meter and insert it in the water with its axis par-
allel to the x-axis, the curl meter does not rotate because its blades are hit with
the same force above and below its axis. If the curl meter is inserted in the water
with its axis parallel to the z-axis, it does not rotate since the water flow is then
parallel to the blades.
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3.3 Curl and Divergence 153

To relate the behavior of the curl meter with the curl of the velocity vector
field of the water flow, we note that since the velocity vector is given by

its curl is given by

Therefore, the x- and z-components of the curl are zero, whereas the y-component
is nonzero varying with x in a cosinusoidal manner, from negative values left of
midstream, to zero at midstream, to positive values right of midstream.Thus, no ro-
tation of the curl meter corresponds to zero value for the component of the curl
along its axis. Rotation of the curl meter in the counterclockwise or left-hand sense
as seen looking along its axis corresponds to a nonzero negative value, and rotation
in the clockwise or right-hand sense corresponds to a nonzero positive value for
the component of the curl. It can further be visualized that the rate of rotation of
the curl meter is a measure of the magnitude of the pertinent nonzero component
of the curl.

The foregoing illustration of the physical interpretation of the curl of a
vector field can be used to visualize the behavior of electric and magnetic fields.
Thus, from

we know that at a point in an electromagnetic field, the circulation of the elec-
tric field per unit area in a given plane is equal to the component of 
along the unit vector normal to that plane and directed in the right-hand sense.
Similarly, from

we know that at a point in an electromagnetic field, the circulation of the mag-
netic field per unit area in a given plane is equal to the component of 
along the unit vector normal to that plane and directed in the right-hand sense.

J + 0D>0t

� � H = J +
0D
0t

-0B>0t

� � E = -  
0B
0t

 = -  

pv0

a
  cos 
px
a

  ay

 = -  

0vz

0x
 ay

 � � v = 4 ax ay az

0
0x

0
0y

0
0z

0 0 vz

4

v = vz1x2az = v0 sin 
px
a

  az
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B. Divergence

Turning now to the discussion of divergence, let us consider Gauss’ law for the
electric field in differential form; that is,

(3.51)

We wish to express at a point in the charge region in terms of D at that
point. If we consider an infinitesimal volume at that point and multiply both
sides of (3.51) by we get

(3.52)

But is simply the charge contained in the volume and according to
Gauss’ law for the electric field in integral form,

(3.53)

where S is the closed surface bounding Comparing (3.52) and (3.53), we have

(3.54)

Dividing both sides of (3.54) by we obtain

(3.55)

This result is however approximate since (3.54) is exact only in the limit that 
tends to zero. Thus,

(3.56)

which is the expression for at a point in terms of D at that point. Although
we have derived this for the D vector, it is a general result and, in fact, is often the
starting point for the introduction of divergence. Thus, for any vector field, A,

(3.57)

Equation (3.57) tells us that to find the divergence of a vector at a point in
that vector field, we first consider an infinitesimal volume at that point and
compute the surface integral of the vector over the surface bounding that vol-
ume, that is, the outward flux of the vector field from that volume. We then di-
vide the flux by the volume to obtain the flux per unit volume. Since we need
this flux per unit volume in the limit that the volume tends to zero, we do this by
gradually shrinking the volume. The limiting value to which the flux per unit

� # A = lim
¢v:0

 
AS A # dS

¢v

� # D

� # D = lim
¢v:0

 
AS D # dS

¢v

¢v

� # D = AS D # dS

¢v

¢v,

1� # D2 ¢v = CS
D # dS

¢v.

CS
D # dS = r ¢v

¢v,r ¢v

1� # D2 ¢v = r ¢v

¢v,
¢v

� # D

� # D = r

Divergence,
basic
definition
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Physical
interpretation
of divergence

volume approaches is the value of the divergence of the vector field at the point
to which the volume is shrunk. In fact, this is what we did in Section 3.2, which
led to the expression for the divergence in Cartesian coordinates, by choosing
for convenience the volume of a rectangular box whose surfaces are parallel to
the coordinate planes.

We are now ready to discuss the physical interpretation of the divergence.
To simplify this task, we shall consider the continuity equation given by

(3.58)

Let us investigate three different cases: (1) positive value, (2) negative value,
and (3) zero value of the time rate of decrease of the charge density at a point,
that is, the divergence of the current density vector at that point.We shall do this
with the aid of a simple device, which we shall call the divergence meter. The di-
vergence meter can be imagined to be a tiny elastic balloon that encloses the
point and that expands when hit by charges streaming outward from the point
and contracts when acted on by charges streaming inward toward the point. For
case 1, that is, when the time rate of decrease of the charge density at the point
is positive, there is a net amount of charge streaming out of the point in a given
time, resulting in a net current flow outward from the point that will make the
imaginary balloon expand. For case 2, that is, when the time rate of decrease of
the charge density at the point is negative or the time rate of increase of the
charge density is positive, there is a net amount of charge streaming toward the
point in a given time, resulting in a net current flow toward the point that will
make the imaginary balloon contract. For case 3, that is, when the time rate of
decrease of the charge density at the point is zero, the balloon will remain un-
affected, since the charge is streaming out of the point at exactly the same rate
as it is streaming into the point. The situation corresponding to case 1 is illus-
trated in Figs. 3.9(a) and (b), whereas that corresponding to case 2 is illus-
trated in Figs. 3.9(c) and (d), and that corresponding to case 3 is illustrated in
Fig. 3.9(e). Note that in Figs. 3.9(a), (c), and (e), the imaginary balloon slides
along the lines of current flow while responding to the divergence by expand-
ing, contracting, or remaining unaffected.

Generalizing the foregoing discussion to the physical interpretation of the
divergence of any vector field at a point, we can imagine the vector field to be a
velocity field of streaming charges acting on the divergence meter and obtain in
most cases a qualitative picture of the divergence of the vector field. If the di-
vergence meter expands, the divergence is positive and a source of the flux of
the vector field exists at that point. If the divergence meter contracts, the diver-
gence is negative and a sink of the flux of the vector field exists at that point. It
can be further visualized that the rate of expansion or contraction of the diver-
gence meter is a measure of the magnitude of the divergence. If the divergence
meter remains unaffected, the divergence is zero, and neither a source nor a
sink of the flux of the vector field exists at that point; alternatively, there can
exist at the point pairs of sources and sinks of equal strengths.

� # J = -  

0r
0t
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C. Stokes’ and Divergence Theorems

We shall now derive two useful theorems in vector calculus, Stokes’ theorem and
the divergence theorem. Stokes’ theorem relates the closed line integral of a vec-
tor field to the surface integral of the curl of that vector field, whereas the di-
vergence theorem relates the closed surface integral of a vector field to the
volume integral of the divergence of that vector field.

To derive Stokes’ theorem, let us consider an arbitrary surface S in a mag-
netic field region and divide this surface into a number of infinitesimal surfaces

bounded by the contours respectively. Then,
applying (3.45) to each one of these infinitesimal surfaces and adding up, we get

(3.59)

where are unit vectors normal to the surfaces chosen in accordance with
the right-hand screw rule. In the limit that the number of infinitesimal surfaces
tends to infinity, the left side of (3.59) approaches to the surface integral of

over the surface S. The right side of (3.59) is simply the closed line inte-
gral of H around the contour C, since the contributions to the line integrals
from the portions of the contours interior to C cancel, as shown in Fig. 3.10.
Thus, we get

(3.60)LS
1� � H2 # dS = CC

H # dl

� � H

¢Sjanj

a
j
1� � H2j # ¢Sj anj = CC1

H # dl + CC2

H # dl + Á

C1, C2, C3, Á ,¢S1, ¢S2, ¢S3, Á ,

Stokes’
theorem

(c) (d)

(b)(a)

(e)

FIGURE 3.9

For explaining the physical interpretation of divergence using the divergence meter.
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C

FIGURE 3.10

For deriving Stokes’ theorem.

Equation (3.60) is Stokes’ theorem.Although we have derived it by considering
the H field, it is general and can be derived from the application of (3.50) to a
geometry such as that in Fig. 3.10. Thus, for any vector field A,

(3.61)

where S is any surface bounded by C.

Example 3.8 Evaluation of line integral around a closed path using
Stokes’ theorem

Let us evaluate the line integral of Example 2.1 by using Stokes’ theorem.
For 

With reference to Fig. 2.4, we then have

which agrees with the result obtained in Example 2.1.

 = 6
 = area ABCDA

 = Larea
ABCDA

 dx dy

 = Larea
ABCDA

az
# dx dy az

 CABCDA
F # dl = Larea

ABCDA

1� � F2 # dS

� � F = 3 ax ay az

0
0x

0
0y

0
0z

0 x 0

3 = az

F = xay,

CC
A # dl = LS

1� � A2 # dS
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S

FIGURE 3.11

For deriving the divergence theorem.

To derive the divergence theorem, let us consider an arbitrary volume V in
an electric field region and divide this volume into a number of infinitesimal vol-
umes bounded by the surfaces respectively.Then,
applying (3.54) to each one of these infinitesimal volumes and adding up, we get

(3.62)

In the limit that the number of the infinitesimal volumes tends to infinity, the
left side of (3.62) approaches to the volume integral of over the volume V.
The right side of (3.62) is simply the closed surface integral of D over S since the
contribution to the surface integrals from the portions of the surfaces interior to
S cancel, as shown in Fig. 3.11. Thus, we get

(3.63)

Equation (3.63) is the divergence theorem.Although we have derived it by con-
sidering the D field, it is general and can be derived from the application of
(3.57) to a geometry such as that in Fig. 3.11. Thus, for any vector field A,

(3.64)

where V is the volume bounded by S.

Example 3.9 Showing that the divergence of the curl of a vector is zero

By using the Stokes and divergence theorems, show that for any vector field A,

Let us consider volume V bounded by the closed surface where and 
are bounded by the closed paths and respectively, as shown in Fig. 3.12. Note thatC2,C1

S2S1S1 + S2,
� # � � A = 0.

CS
A # dS = LV

1� # A2 dv

LV
1� # D2 dv = CS

D # dS

� # D

a
j
1� # D2j ¢vj = CS1

D # dS + CS2

D # dS + Á

S1, S2, S3, Á ,¢v1, ¢v2, ¢v3, Á ,

Divergence of
the curl of a
vector

Divergence
theorem
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C1 C2

S1 S2

dS2dS1

FIGURE 3.12

For proving the identity � # � � A = 0.

and touch each other and are traversed in opposite senses and that and are
directed in the right-hand sense relative to and respectively. Then, using diver-
gence and Stokes’ theorems in succession, we obtain

Since this result holds for any arbitrary volume V, it follows that

(3.65)

K3.3. Basic definition of curl; Physical interpretation of curl; Basic definition of diver-
gence; Physical interpretation of divergence; Stokes’ theorem; Divergence theo-
rem; Divergence of the curl of a vector.

D3.7. With the aid of the curl meter, determine if the z-component of the curl of the
vector field is positive, zero, or negative at each of the follow-
ing points: (a) (b) (0, 2, 4); and (c)

Ans. (a) positive; (b) zero; (c) negative.

D3.8. With the aid of the divergence meter, determine if the divergence of the vector
field is positive, zero, or negative at each of the following
points: (a) (2, 4, 3); (b) and (c)

Ans. (a) zero; (b) negative; (c) positive.

D3.9. Using Stokes’ theorem, find the absolute value of the line integral of the vector
field around each of the following closed paths: (a) the perime-
ter of a square of sides 2 m lying in the xy-plane; (b) a circular path of radius

lying in the xy-plane; and (c) the perimeter of an equilateral triangle of
sides 2 m lying in the yz-plane.
Ans. (a) 4; (b) 1; (c) 3.

1>1p m

1xay + 13yaz2

13, -1, 42.11, 1, -12;
A = 1x - 222ax

1-1, 2, -12.12, -3, 12;
A = 1x2 - 42ay

� # � � A = 0

 = 0

 = CC1

A # dl + CC2

A # dl

 = LS1

1� � A2 # dS1 + LS2

1� � A2 # dS2

 LV
1� # � � A2 dv = CS1 + S2

1� � A2 # dS

C2,C1

dS2dS1C2C1
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160 Chapter 3 Maxwell’s Equations in Differential Form . . .

D3.10. Using the divergence theorem, find the surface integral of the vector field
over each of the following closed surfaces: (a) the surface of

a cube of sides 1 m; (b) the surface of a cylinder of radius and length 2 m;
and (c) the surface of a sphere of radius 
Ans. (a) 3; (b) 6; (c) 4.

3.4 UNIFORM PLANE WAVES IN TIME DOMAIN IN FREE SPACE

In Section 3.1, we learned that the space variations of the electric- and magnetic-
field components are related to the time variations of the magnetic- and electric-
field components, respectively, through Maxwell’s equations.This interdependence
gives rise to the phenomenon of electromagnetic wave propagation. In the general
case, electromagnetic wave propagation involves electric and magnetic fields
having more than one component, each dependent on all three coordinates, in
addition to time. However, a simple and very useful type of wave that serves as
a building block in the study of electromagnetic waves consists of electric and
magnetic fields that are perpendicular to each other and to the direction of
propagation and are uniform in planes perpendicular to the direction of propa-
gation.These waves are known as uniform plane waves. By orienting the coordi-
nate axes such that the electric field is in the x-direction, the magnetic field is in
the y-direction, and the direction of propagation is in the z-direction, as shown
in Fig. 3.13, we have

(3.66a)
(3.66b)

Uniform plane waves do not exist in practice because they cannot be pro-
duced by finite-sized antennas. At large distances from physical antennas and
ground, however, the waves can be approximated as uniform plane waves. Fur-
thermore, the principles of guiding of electromagnetic waves along transmission
lines and waveguides and the principles of many other wave phenomena can be
studied basically in terms of uniform plane waves. Hence, it is very important
that we understand the principles of uniform plane wave propagation.

H = Hy1z, t2ay

E = Ex1z, t2ax

1>1p21>3 m.
1>1p m

1xax + yay + zaz2

Uniform
plane wave
defined

E

z

y

x

H

Direction of
propagation

FIGURE 3.13

Directions of electric and magnetic fields and direction
of propagation for a simple case of uniform plane wave.
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w

z

y

x

JS

e0, m0 e0, m0

FIGURE 3.14

Infinite plane sheet in the xy-plane carrying
surface current of uniform density.

To illustrate the phenomenon of interaction of electric and magnetic fields
giving rise to uniform plane electromagnetic wave propagation and the princi-
ple of radiation of electromagnetic waves from an antenna, we shall consider a
simple, idealized, hypothetical source. This source consists of an infinite sheet
lying in the xy-plane, as shown in Fig. 3.14. On this infinite plane sheet, a uni-
formly distributed current flows in the negative x-direction, as given by

(3.67)

where is a given function of time. Because of the uniformity of the surface
current density on the infinite sheet, if we consider any line of width w parallel
to the y-axis, as shown in Fig. 3.14, the current crossing that line is simply given
by w times the current density, that is, If then the cur-
rent crossing the width w, actually alternates between negative x-
and positive x-directions, that is, downward and upward.The time history of this
current flow for one period of the sinusoidal variation is illustrated in Fig. 3.15,
with the lengths of the lines indicating the magnitudes of the current. We shall
consider the medium on either side of the current sheet to be free space.

wJS0 cos vt,
JS1t2 = JS0 cos vt,wJS1t2.

JS1t2
JS = -JS1t2ax for z = 0

Infinite plane
current sheet
source

0 p 2p

wJS0 wJS0

vt vt

FIGURE 3.15

Time history of current flow across a line of width w parallel to the y-axis for
the current sheet of Fig. 5.2, for JS = -JS0 cos vt ax.
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To find the electromagnetic field due to the time-varying current sheet, we
shall begin with Faraday’s law and Ampère’s circuital law given, respectively, by

(3.68a)

(3.68b)

and use a procedure that consists of the following steps:

1. Obtain the particular differential equations for the case under consideration.
2. Derive the general solution to the differential equations of step 1 without

regard to the current on the sheet.
3. Show that the solution obtained in step 2 is a superposition of traveling

waves propagating in the and 
4. Extend the general solution of step 2 to take into account the current on

the sheet, thereby obtaining the required solution.

Although the procedure may be somewhat lengthy, we shall in the process learn
several useful concepts and techniques.

1. To obtain the particular differential equations for the case under con-
sideration, we first note that since (3.67) can be thought of as a current
distribution having only an x-component of the current density that varies only
with z, we can set and all derivatives with respect to x and y in (3.68a) and
(3.68b) equal to zero. Hence, (3.68a) and (3.68b) reduce to

(3.69a) (3.70a)

(3.69b) (3.70b)

(3.69c) (3.70c)

In these six equations, there are only two equations involving and the perti-
nent electric- and magnetic-field components, namely, the simultaneous pair
(3.69b) and (3.70a). Thus, the equations of interest are

(3.71a)

(3.71b)
0Hy
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0t
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0t

Jx

 0 =
0Dz

0t
 0 = -  
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=

0Dy
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0Hy
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which are the same as (3.7) and (3.25), the simplified forms of Faraday’s law and
Ampère’s circuital law, respectively, for the special case of electric and magnet-
ic fields characterized by (3.66a) and (3.66b), respectively.

2. In applying (3.71a) and (3.71b) to (3.67), we note that in (3.71b) is a
volume current density, whereas (3.67) represents a surface current density.
Hence, we shall solve (3.71a) and (3.71b) by setting and then extend the
solution to take into account the current on the sheet. For (3.71a) and
(3.71b) become

(3.72a)

(3.72b)

Differentiating (3.72a) with respect to z and then substituting for from
(3.72b), we obtain

or

(3.73)

We have thus eliminated from (3.72a) and (3.72b) and obtained a single
second-order partial differential equation involving only. Equation (3.73) is
known as the wave equation. In particular, it is a one-dimensional wave equa-
tion in time-domain form, that is, for arbitrary time dependence of 

To obtain the solution for (3.73), we introduce a change of variable by
defining Substituting for z in (3.73) in terms of we then have

(3.74)

or

(3.75)

where the quantities in parentheses are operators operating on one another and
on Equation (3.75) is satisfied if

a 0
0t
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0
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 a 0Hy
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0
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 a 0Hy
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0
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0Ex
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Derivation of
wave
equation

Solution of
wave
equation
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or

(3.76)

Let us first consider the equation corresponding to the upper sign in (3.76); that is,

This equation says that the partial derivative of with respect to is
equal to the negative of the partial derivative of with respect to t. The
simplest function that satisfies this requirement is the function It then
follows that any arbitrary function of say, satisfies the re-
quirement since

and

where the prime associated with denotes differentiation of f with re-
spect to In a similar manner, the solution for the equation correspond-
ing to the lower sign in (3.76), that is, for

can be seen to be any arbitrary function of say, Combining
the two solutions, we write the solution for (3.76) to be

(3.77)

where A and B are arbitrary constants.
Substituting now for in (3.77) in terms of z, we obtain the solution for

(3.73) to be

(3.78)

The corresponding solution for can be obtained by substituting (3.78)
into (3.72a) or (3.72b). Thus, using (3.72a),

(3.79)Hy1z, t2 =
11m0>e0

 [Af1t - z1m0e02 - Bg1t + z1m0e02]

0Hy

0t
= A e0

m0
 [Af¿1t - z1m0e02 - Bg¿1t + z1m0e02]

Hy1z, t2
Ex1z, t2 = Af1t - z1m0e02 + Bg1t + z1m0e02

t

Ex1t, t2 = Af1t - t2 + Bg1t + t2

g1t + t2.1t + t2,

0Ex

0t
=

0Ex

0t

1t - t2. f¿1t - t2

0
0t

 [f1t - t2] = f¿1t - t2 
0
0t
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0
0t
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0
0t
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0
0t
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0t
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The fields given by (3.78) and (3.79) are the general solutions to the differential
equations (3.72a) and (3.72b).

3. To proceed further, we need to know the meanings of the functions f
and g in (3.78) and (3.79). To discuss the meaning of f, let us consider a specific
example

Plots of this function versus z for two values of and are shown
in Fig. 3.16(a).An examination of these plots reveals that as time increases from 0
to every point on the plot for moves by one unit in the +z-direction,t = 01m0e0,

t = 1m0e0,t, t = 0

f1t - z1m0e02 = 1t - z1m0e022

Traveling
wave
functions
explained

m0e0

4m0e0

3210

(a)

�1�2
z

�3

(t � z   m0e0)
2

t =    m0e0t = 0

m0e0

4m0e0

3210

(b)

�1�2
z

�3

(t � z   m0e0)
2

t �    m0e0 t � 0

FIGURE 3.16

(a) Plots of the function versus z for and (b) Plots of the
function versus z for and t = 1m0e0.t = 01t + z1m0e022

t = 1m0e0.t = 01t - z1m0e022
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166 Chapter 3 Maxwell’s Equations in Differential Form . . .

thereby making the plot for an exact replica of the plot for ex-
cept displaced by one unit in the The function f is therefore said to
represent a traveling wave propagating in the -direction, or simply a wave.
In particular, it is a uniform plane wave since its value does not vary with position
in a given constant z-plane. By dividing the distance traveled by the time taken, the
velocity of propagation of the wave can be obtained to be

(3.80)

which is equal to c, the velocity of light in free space. Similarly, to discuss the
meaning of g, we shall consider

Then plotting the function versus z for and as shown in Fig.
3.16(b), we can see that the plot for is an exact replica of the plot for

except displaced by one unit in the The function g is there-
fore said to represent a traveling wave propagating in the or simply
a wave. Once again, it is a uniform plane wave with the velocity of propaga-
tion equal to 

To generalize the foregoing discussion of the functions f and g, let us con-
sider two pairs of t and z, say, and and and Then for the
function f to maintain the same value for these two pairs of z and t, we must
have

or

Since is a positive quantity, this indicates that as time progresses, a given
value of the function moves forward in z with the velocity thereby giv-
ing the characteristic of a wave for f. Similarly, for the function g to main-
tain the same value for the two pairs of t and z, we must have

or

The minus sign associated with indicates that as time progresses, a
given value of the function moves backward in z with the velocity giv-
ing the characteristic of a wave for g.1-2 1>1m0e0,

1>1m0e0

¢z = -  
11m0e0

 ¢t

t1 + z11m0e0 = 1t1 + ¢t2 + 1z1 + ¢z21m0e0

1+2 1>1m0e0,
1m0e0

¢z =
11m0e0

 ¢t

t1 - z11m0e0 = 1t1 + ¢t2 - 1z1 + ¢z21m0e0

z1 + ¢z.t1 + ¢tz1,t1

1>1m0e0.
1-2 -z-direction,

-z-direction.t = 0,
t = 1m0e0

t = 1m0e0,t = 0

g1t + z1m0e02 = 1t + z1m0e022

vp =
11m0e0

= 3 * 108 m>s

1+2+z
+z-direction.

t = 0,t = 1m0e0
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We shall now define the intrinsic impedance of free space, to be

(3.81)

From (3.78) and (3.79), we see that is the ratio of to for the wave
or the negative of the same ratio for the wave. Since the units of are volts
per meter and the units of are amperes per meter, the units of are
volts per ampere or ohms, thereby giving the character of impedance for Re-
placing in (3.79) by and substituting for in the arguments
of the functions f and g in both (3.78) and (3.79), we can now write (3.78) and
(3.79) as

(3.82a)

(3.82b)

4. Having learned that the solution to (3.72a) and (3.72b) consists of super-
position of traveling waves propagating in the and we now
make use of this solution together with other considerations to find the electro-
magnetic field due to the infinite plane current sheet of Fig. 3.14, and with the
current density given by (3.67). To do this, we observe the following:

(a) Since the current sheet, which is the source of waves, is in the plane,
there can be only a wave in the region and only a wave in
the region Thus,

(3.83a)

(3.83b)

(b) Applying Faraday’s law in integral form to the rectangular closed path
abcda in Fig. 3.17 in the limit that the sides bc and with the sides
ab and dc remaining on either side of the current sheet, we have

(3.84)1ab2[Ex]z = 0 + - 1dc2[Ex]z = 0 - = 0

da : 0,

 H1z, t2 = e
A
h0

 fa t -
z
vp
bay for z 7 0

-  
B
h0

 ga t +
z
vp
bay for z 6 0

 E1z, t2 = e Afa t -
z
vp
bax for z 7 0

Bga t +
z
vp
bax for z 6 0

z 6 0.
1-2z 7 01+2 z = 0

-z-directions,+z-

 Hy1z, t2 =
1
h0

 cAfa t -
z
vp
b - Bga t +

z
vp
b d

 Ex1z, t2 = Afa t -
z
vp
b + Bga t +

z
vp
b

1>1m0e0vph01m0>e0

h0.
Ex>HyHy

Ex1-2 1+2HyExh0

h0 = Am0

e0
L 120p Æ = 377 Æ

h0,
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Electro-
magnetic field
due to the
current sheet
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z

x

y

h e

g
f

b

ad

c

e0, m0

JS

FIGURE 3.17

Rectangular closed paths with sides on either
side of the infinite plane current sheet.

or Thus, (3.83a) and (3.83b) reduce to

(3.85a)

(3.85b)

where we have used 
(c) Applying Ampere’s circuital law in integral form to the rectangular closed

path efghe in Fig. 3.17 in the limit that the sides fg and with the
sides ef and hg remaining on either side of the current sheet, we have

(3.86)

or Thus, and (3.85a) and (3.85b)
become

(3.87a)

(3.87b)

Equations (3.87a) and (3.87b) represent the complete solution for the
electromagnetic field due to the infinite plane current sheet of surface current

 H1z, t2 = ;
1
2

 JSa t <
z
vp
bay for z � 0

 E1z, t2 =
h0

2
 JSa t <

z
vp
bax for z � 0

F1t2 = 1h0>22JS1t2,12>h02F1t2 = JS1t2.
1ef2[Hy]z = 0 + - 1hg2[Hy]z = 0 - = 1ef2Js1t2

he : 0,

Af1t2 = Bg1t2 = F1t2.

 H1z, t2 = ;
1
h0

Fa t <
z
vp
bay for z � 0

 E1z, t2 = Fa t <
z
vp
bax for z � 0

Af1t2 = Bg1t2.
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3.4 Uniform Plane Waves in Time Domain in Free Space 169

density given by

(3.88)

The solution corresponds to uniform plane waves having their field components
uniform in planes parallel to the current sheet and propagating to either side of
the current sheet with the velocity The time variation of the electric
field component in a given plane is the same as the current
density variation delayed by the time and multiplied by The time
variation of the magnetic field component in a given plane is the
same as the current density variation delayed by and multiplied by 
depending on Using these properties, one can construct plots of the field
components versus time for fixed values of z and versus z for fixed values of t.
We shall illustrate by means of an example.

Example 3.10 Plotting field variations for an infinite plane-sheet
current source

Let us consider the function in (3.88) to be that given in Fig. 3.18. We wish to find
and sketch (a) versus t for (b) versus t for (c) versus z
for and (d) versus z for 

(a) Since the time delay corresponding to 300 m is Thus,
the plot of versus t for is the same as that of multiplied by 
or 188.5, and delayed by as shown in Fig. 3.19(a).

(b) The time delay corresponding to 450 m is Thus, the plot of versus t for
is the same as that of multiplied by and delayed by 

as shown in Fig. 3.19(b).
(c) To sketch versus z for a fixed value of t, say, we use the argument that a given

value of existing at the source at an earlier value of time, say, travels away
from the source by the distance equal to times Thus, at the
values of corresponding to points A and B in Fig. 3.18 move to the locations

and respectively, and the value of corresponding to
point C exists right at the source. Hence, the plot of versus z for is as
shown in Fig. 3.19(c). Note that points beyond C in Fig. 3.18 correspond to

and therefore they do not appear in the plot of Fig. 3.19(c).
(d) Using arguments as in part (c), we see that at the values of corre-

sponding to points A, B, C, D, and E in Fig. 3.18 move to the locations 
and respectively, as shown in Fig. 3.19(d). Note

that the plot is an odd function of z, since the factor by which is multiplied to
obtain is depending on z � 0.;  

1
2,Hy

JS0

;150 m,;600 m, ;450 m, ;300 m,
z = ;750 m,

Hyt = 2.5 ms,
t 7 1 ms,

t = 1 msEx

Exz = ;150 m,z = ;300 m
Ex

t = 1 ms,vp.1t1 - t22
t2,Ex

t1,Ex

1.5 ms,-1>2JS1t2z = -450 m
Hy1.5 ms.

1 ms,
h0>2,JS1t2z = 300 mEx

1 ms.vp = c = 3 * 108 m>s,

t = 2.5 ms.Hyt = 1 ms,
Exz = -450 m,Hyz = 300 m,Ex

JS1t2

z � 0.
;1

2,ƒ z ƒ >vp

z = constant
h0>2.ƒ z ƒ >vp

z = constantEx

vp1=  c2.

JS1t2 = -JS1t2ax for z = 0

10 2

0.1

t, �s

JS, A/m

A

B

C D E

FIGURE 3.18

Plot of versus t for Example 3.10.Js
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1
0

(a)
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t, �s

18.85
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C D E

[Ex]z � 300 m, V/m

1
0

(b)

2 3 4 5
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A

B

C D E
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�900 �600 �300

(d)
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�0.05

0.05

[Hy]t � 2.5 �s, A/m

A

A

B

B

C D E

CDE

�900 �600 �300

(c)

0 300 600 900
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18.85

[Ex]t � 1 �s, V/m

AA
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C

FIGURE 3.19

Plots of field components versus t for fixed values of z and versus z for fixed values of t for
Example 3.10.
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K3.4. Infinite plane current sheet; Uniform plane wave;Wave equation;Time domain;
Traveling-wave functions; Velocity of propagation; Intrinsic impedance of free
space; Time delay.

D3.11. For each of the following traveling-wave functions, find the velocity of propaga-
tion both in magnitude and direction: (a) (b) and
(c)
Ans. (a) (b) (c)

D3.12. The time variation for of a function f(z, t) representing a traveling wave
propagating in the with velocity 200 m/s is shown in Fig. 3.20. Find
the value of the function for each of the following cases: (a)
(b) and (c)
Ans. (a) 0.25A; (b) 0.6A; (c) 0.

z = 100 m, t = 0.5 s.z = -200 m, t = 0.4 s;
z = 300 m, t = 2.0 s;

+z-direction
z = 0

108az m>s.-50ax m>s;20ay m>s;
cos 12p * 108t - 2pz2.

u1t + 0.02x2;10.05y - t22;

10 t, s

[ f ]z � 0

At2

2 3

A

FIGURE 3.20

For Problem D3.12.

10 t, s2 3 4 5

A

[g ]z � 0

FIGURE 3.21

For Problem D3.13.

Solution for
the field for
the sinusoidal
case

D3.13. The time variation for of a function g(z, t) representing a traveling wave
propagating in the with velocity 100 m/s is shown in Fig. 3.21. Find
the value of the function for each of the following cases: (a)
(b) and (c)
Ans. (a) 0.9A; (b) 0.4A; (c) A.

z = 100 m, t = 0.6 s.z = -300 m, t = 3.4 s;
z = 200 m, t = 0.2 s;

-z-direction
z = 0

3.5 SINUSOIDALLY TIME-VARYING UNIFORM PLANE WAVES 
IN FREE SPACE

In the previous section, we considered the current density on the infinite plane
current sheet to be an arbitrary function of time and obtained the solution for the
electromagnetic field. Of particular interest are fields varying sinusoidally with
time. Sinusoidally time-varying fields are important because of their natural oc-
currence and ease of generation. For example, when we speak, we emit sine
waves; when we tune our radio to a broadcast station, we receive sine waves; and
so on.Also, any function for which the time variation is arbitrary can be expressed
in terms of sinusoidally time-varying functions having a discrete or continuous
spectrum of frequencies, depending on whether the function is periodic or aperi-
odic. Thus, if the response of a system to a sinusoidal excitation is known, its re-
sponse for a nonsinusoidal excitation can be found. Sinusoidally time-varying
fields are produced by a source whose current density varies sinusoidally with
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time. Thus, assuming the current density on the infinite plane sheet of Fig. 3.14
to be

(3.89)

where is the amplitude and is the radian frequency, we obtain the corre-
sponding solution for the electromagnetic field by substituting 
in (3.87a) and (3.87b):

(3.90a)

(3.90b)

where

(3.91)

Equations (3.90a) and (3.90b) represent sinusoidally time-varying uni-
form plane waves propagating away from the current sheet.The phenomenon is
illustrated in Fig. 3.22, which shows sketches of the current density on the sheet
and the distance variation of the electric and magnetic fields on either side of
the current sheet for three values of t. It should be understood that in these
sketches the field variations depicted along the z-axis hold also for any other
line parallel to the z-axis. We shall now discuss in detail several important para-
meters and properties associated with the sinusoidal waves:

1. The argument of the cosine functions is the phase of the
fields. We shall denote the phase by the symbol Thus,

(3.92)

Note that is a function of t and z.
2. Since

(3.93)

the rate of change of phase with time for a fixed value of z is equal to the ra-
dian frequency of the wave. The linear frequency given by

(3.94)

is the number of times the phase changes by radians in one second for a
fixed value of z. The situation is pertinent to an observer at a point in the field

2p

f =
v

2p

v,

0f
0t

= v

f

f = vt < bz

f.
1vt < bz2

b =
v

vp

 H = ;  

JS0

2
 cos 1vt < bz2 ay for z � 0

 E =
h0JS0

2
 cos 1vt < bz2 ax for z � 0

JS1t2 = JS0 cos vt
vJS0

JS = -JS0 cos vt ax for z = 0

172 Chapter 3 Maxwell’s Equations in Differential Form . . .

Properties
and
parameters of
sinusoidal
waves

Frequency
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z

y

x

JS

z

y

x

x

JS

z

y

H

E E

H
E

H

H

H

H

E E

E

JS � � JS0 cos vt ax t � 0, JS � � JS0ax

JS � � ax
JS0t �       ,p

4v 2

JS � 0t �       ,p
2v

FIGURE 3.22

Time history of uniform plane electromagnetic wave radiating away from an infinite plane
current sheet in free space.
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174 Chapter 3 Maxwell’s Equations in Differential Form . . .

Phase
constant

Wavelength

region watching a movie of the field variations with time and counting the num-
ber of times in one second the field goes through a certain phase point, say, the
positive maximum.

3. Since

(3.95)

the magnitude of the rate of change of phase with distance z for a fixed value of
time is equal to known as the phase constant.The situation is pertinent to tak-
ing a still photograph of the phenomenon at any given time along the z-axis,
counting the number of radians of phase change in one meter.

4. It follows from property 3 that the distance, along the z-direction, in
which the phase changes by radians for a fixed value of time is equal to

This distance is known as the wavelength, denoted by the symbol Thus,

(3.96)

It is the distance between two consecutive positive maximum points on the si-
nusoid, or between any other two points that are displaced from these two pos-
itive maximum points by the same distance and to the same side, as shown in
Fig. 3.23.

5. From (3.91), we note that the velocity of propagation of the wave is
given by

(3.97)

Here, it is known as the phase velocity, since a constant value of phase progress-
es with that velocity along the z-direction. It is the velocity with which an ob-
server has to move along the direction of propagation of the wave to be
associated with a particular phase point on the moving sinusoid. Thus, it follows
from (3.92) that

d1vt < bz2 = 0

vp =
v

b

l =
2p
b

l.2p>b.
2p

b,

0f
0z

= <b

Phase
velocity

z

l

l

l

FIGURE 3.23

For explaining wavelength.
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3.5 Sinusoidally Time-Varying Uniform Plane Waves in Free Space 175

which gives

where the and signs correspond to and waves, respectively. We
recall that for free space,

6. From (3.96), (3.94), and (3.97), we note that

or

(3.98)

Thus, the wavelength and frequency of a wave are not independent of each
other, but are related through the phase velocity. This is not surprising because

is a parameter governing the variation of the field with distance for a fixed
time, f is a parameter governing the variation of the field with time for a fixed
value of z, and we know from Maxwell’s equations that the space and time vari-
ations of the fields are interdependent. For free space, (3.98) gives

(3.99a)

or

(3.99b)

It can be seen from these relationships that the higher the frequency, the
shorter the wavelength. Waves are classified according to frequency or wave-
length. Table 3.1 lists the commonly used designations for the various bands
up to 300 GHz, where 1 GHz is The corresponding frequency ranges109 Hz.

l in meters * f in megahertz = 300

l in meters * f in hertz = 3 * 108

l

lf = vp

lf = a2p
b
b a v

2p
b =

v

b

vp = 1>1m0e0 = c = 3 * 108 m>s.
1-21+2-+

dz

dt
= <  

v

b

v dt < b dz = 0

Classification
of waves

TABLE 3.1 Commonly Used Designations for the Various Frequency Ranges

Frequency Wavelength
Designation Range Range

ELF (extremely low frequency) 30–3000 Hz 10,000–100 km
VLF (very low frequency) 3–30 kHz 100–10 km
LF (low frequency) or long waves 30–300 kHz 10–1 km
MF (medium frequency) or medium waves 300–3000 kHz 1000–100 m
HF (high frequency) or short waves 3–30 MHz 100–10 m
VHF (very high frequency) 30–300 MHz 10–1 m
UHF (ultrahigh frequency) 300–3000 MHz 100–10 cm
Microwaves 1–30 GHz 30–1 cm
Millimeter waves 30–300 GHz 10–1 mm
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176 Chapter 3 Maxwell’s Equations in Differential Form . . .

and wavelength ranges are also given. The frequencies above about 300 GHz
fall into regions far infrared and beyond. The AM radio (550–1650 kHz) falls
in the medium wave band, whereas the FM radio makes use of 88–108 MHz in
the VHF band. The VHF TV channels 2–6 use 54–88 MHz, and 7–13 employ
174–216 MHz. The UHF TV channels are in the 470–890-MHz range. Mi-
crowave ovens operate at 2450 MHz. Police traffic radars operate at about
10.5 and 24.1 GHz. Various other ranges in Table 3.1 are used for various
other applications too numerous to mention here.

7. The electric and magnetic fields are such that

(3.100)

We recall that the intrinsic impedance of free space, has a value approxi-
mately equal to or 

8. The electric and magnetic fields have components lying in the planes of
constant phase and perpendicular to each other and to
the direction of propagation. In fact, the cross product of E and H results in a
vector that is directed along the direction of propagation, as can be seen by not-
ing that

(3.101)

We shall now consider two examples of the application of the properties
we have learned thus far in this section.

Example 3.11 Finding parameters for a specified sinusoidal uniform
plane-wave electric field

The electric field of a uniform plane wave is given by

Let us find (a) the various parameters associated with the wave and (b) the correspond-
ing magnetic field H.

(a) From the argument of the sine and cosine functions, we can identify the following:

Then

 vp =
v

b
= 3 * 108 m>s

 l =
2p
b

= 2 m

 f =
v

2p
= 1.5 * 108

 Hz

 b = p rad>m
 v = 3p * 108 rad>s

E = 10 sin 13p * 108t - pz2 ax + 10 cos 13p * 108t - pz2 ay V>m

E � H = ;  

h0Js0
2

4
  cos2 1vt < bz2 az for z � 0

1z = constant planes2
377 Æ.120p

h0,

amplitude of E
amplitude of H

= h0

Intrinsic
impedance
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3.5 Sinusoidally Time-Varying Uniform Plane Waves in Free Space 177

Note also that In view of the minus sign associated with 
the direction of propagation of the wave is the 

(b) The unit vectors and associated with the first and second terms, respectively,
tell us that the electric field contains components directed along the x- and y-di-
rections. Using the properties 7 and 8 discussed earlier, we obtain the magnetic
field of the wave to be

Example 3.12 Electric field due to an array of two infinite plane current
sheets

An antenna array consists of two or more antenna elements spaced appropriately and
excited with currents having the appropriate amplitudes and phases in order to obtain a
desired radiation characteristic.To illustrate the principle of an antenna array, let us con-
sider two infinite plane parallel current sheets, spaced apart and carrying currents of
equal amplitudes but out of phase by as given by the densities

and find the electric field due to the array of the two current sheets.
We apply the result given by (3.90a) to each current sheet separately and then use

superposition to find the required total electric field due to the array of the two current
sheets. Thus, for the current sheet in the plane, we have

For the current sheet in the plane, we have

 = d h0 JS0

2
  cos 1vt - bz2 ax for z 7

l

4

-  

h0 JS0

2
  cos 1vt + bz2 ax for z 7

l

4

 = d h0 JS0

2
  sin avt - bz +

p

2
b  ax for z 7

l

4
h0 JS0

2
  sin avt + bz -

p

2
b  ax for z 6

l

4

 E2 = d h0 JS0

2
  sin cvt - b az -

l

4
b d  ax for z 7

l

4
h0 JS0

2
  sin cvt + b az -

l

4
b d  ax for z 6

l

4

z = l>4

E1 = d h0 JS0

2
  cos 1vt - bz2 ax for z 7 0

h0 JS0

2
  cos 1vt + bz2 ax for z 6 0

z = 0

 JS2 = -JS0 sin vt ax for z = l>4
 JS1 = -JS0 cos vt ax for z = 0

p>2
l>4

 = -  
10
377

  cos 13p * 108t - pz2 ax +
10

377
  sin 13p * 108t - pz2 ay A>m

 H =
10

377
  sin 13p * 108t - pz2 ay +

10
377

  cos 13p * 108t - pz2 1-ax2

ayax

+z-direction.
pz,lf = 3 * 108 = vp.

Principle of
antenna array
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178 Chapter 3 Maxwell’s Equations in Differential Form . . .

Now, using superposition, we find the total electric field due to the two current sheets to be

Thus, the total field is zero in the region due to the phase opposition of the
individual fields, and, hence, there is no radiation toward that side of the array. In the re-
gion the total field is twice that of the field of a single sheet due to the individ-
ual fields being in phase. The phenomenon is illustrated in Fig. 3.24, which shows the
individual fields and and the total field for a few values of t. The
result that we have obtained here for the total field due to the array of two current
sheets, spaced apart and fed with currents of equal amplitudes but out of phase by

is said to correspond to an “endfire” radiation pattern.

K3.5. Sinusoidal waves; Phase; Frequency; Wavelength; Phase velocity; Frequency
times wavelength; Intrinsic impedance; Antenna array.

D3.14. For a sinusoidally time-varying uniform plane wave propagating in free space,
find the following: (a) the frequency f, if the phase of the field at a point is ob-
served to change by rad in (b) the wavelength if the phase of the
field at a particular value of time is observed to change by in a distance of
1 m along the direction of propagation of the wave; (c) the frequency f, if the
wavelength is 25 m; and (d) the wavelength if the frequency is 5 MHz.
Ans (a) 15 MHz; (b) 50 m; (c) 12 MHz; (d) 60 m.

D3.15. The magnetic field of a uniform plane wave in free space is given by

Find unit vectors along the following: (a) the direction of propagation of the
wave; (b) the direction of the magnetic field at and (c) the direc-
tion of the electric field at 
Ans. (a) (b) (c)

D3.16. For the array of two infinite plane current sheets of Example 3.12, assume that

where Find the value of k for each of the following values of the ratio
of the amplitude of the electric-field intensity for to the amplitude of
the electric-field intensity for (a) 1/3; (b) 3; and (c) 7.
Ans. (a) (b) 1/2; (c) 3/4.

3.6 POLARIZATION OF SINUSOIDALLY TIME-VARYING VECTOR FIELDS

Returning now to the solution for the uniform plane wave fields given by
(3.90a) and (3.90b), we can talk about wave polarization. Polarization is the
characteristic that describes how the tip of a sinusoidally time-varying field vec-
tor at a point in space changes position with time. In the case of waves, when we

-1>2;
z 6 0:

z 7 l>4
ƒ k ƒ … 1.

JS2 = -kJS0 sin vt ax for z = l>4

-az.ax;-ay;
t = 0, y = 0.

t = 0, y = 0;

H = H0 cos 16p * 108t + 2py2 ax A>m

l,

0.04p
l,0.1 ms;3p

p>2,
l>4

Ex = Ex1 + Ex2Ex2Ex1

z 7 l>4,

z 6 0

 = c h0 JS0 cos 1vt - bz2 ax for z 7 l>4
h0 JS0 sin vt sin bz ax for 0 6 z 6 l>4
0 for z 6 0

 E = E1 + E2

RaoCh03v3.qxd  12/18/03  3:32 PM  Page 178



3.6 Polarization of Sinusoidally Time-Varying Vector Fields 179

z

z � 0

t � 0Ex1

Ex2
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z � l
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p

4v
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z � 0

Ex1

Ex2

Ex

z � l
4

z

t � 

p

2v
t � 

Ex1

Ex2

Ex

FIGURE 3.24

Time history of individual fields and the total field due to an array of two infinite plane
parallel current sheets.

talk about polarization, we refer to the electric field associated with the wave.
The electric field given by (3.90a) has only an x-component. We can visualize
the sinusoidal variation with time of this field at a particular point in the field
region by a vector changing in magnitude and direction, as shown in Fig. 3.25(a).
Since the tip of the vector moves back and forth along a line, which in this case
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180 Chapter 3 Maxwell’s Equations in Differential Form . . .

is parallel to the x-axis, the field is said to be linearly polarized in the x-direction.
Similarly, the sinusoidal variation with time of a field having a y-component
only can be visualized by a vector changing its magnitude and direction, as
shown in Fig. 3.25(b). Since the tip of the vector moves back and forth parallel
to the y-axis, the field is said to be linearly polarized in the y-direction.

For fields having more than one component, the polarization can be lin-
ear, circular, or elliptical, that is, the tip of the field vector can describe a
straight line, a circle, or an ellipse with time, as shown in Fig. 3.26, depending
on the relative amplitudes and phase angles of the component vectors. Note
that in the case of linear polarization, the direction of the vector remains
along a straight line, but its magnitude changes with time. For circular polar-
ization, the magnitude remains constant, but its direction changes with time.
Elliptical polarization is characterized by both magnitude and direction of the
vector changing with time. Let us consider two components and discuss the
different cases.

t

x

t

y

0

0

p

2v

p
v

2v
3p

v

2p
v

3p

2v
5p

2v
7p

(a)

(b)

FIGURE 3.25

(a) Time variation of a linearly polarized vector in the x-direction. (b) Time variation of
a linearly polarized vector in the y-direction.

tt

t

(a) (b) (c)

FIGURE 3.26

(a) Linear, (b) circular, and
(c) elliptical polarizations.
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3.6 Polarization of Sinusoidally Time-Varying Vector Fields 181

If the two component sinusoidally time-varying vectors have arbitrary am-
plitudes but are in phase or in phase opposition as, for example,

(3.102a)
(3.102b)

then the sum vector is linearly polarized in a direction making an
angle

(3.103)

with the x-direction, as shown in the series of sketches in Fig. 3.27 for the in-phase
case illustrating the time history of the magnitude and direction of F over an in-
terval of one period.The reasoning can be extended to two (or more) linearly po-
larized vectors that are not necessarily along the coordinate axes, but are all in
phase. Thus, the sum vector of any number of linearly polarized vectors having
different directions and amplitudes but in phase is also a linearly polarized vector.

If the two component sinusoidally time-varying vectors have equal ampli-
tudes, differ in direction by 90°, and differ in phase by as, for example,

(3.104a)

(3.104b)

then, to determine the polarization of the sum vector we note that
the magnitude of F is given by

(3.105)

and that the angle which F makes with is given by

(3.106)

Thus, the sum vector rotates with constant magnitude and at a rate of rad/s, so
that its tip describes a circle.The sum vector is then said to be circularly polarized.

vF0

a = tan-1
 

Fy

Fx
= tan-1

 

F0 sin 1vt + f2
F0 cos 1vt + f2 = vt + f

axa

ƒ F ƒ = ƒ F0 cos 1vt + f2 ax + F0 sin 1vt + f2 ay ƒ = F0

F = F1 + F2,

 F2 = F0 sin 1vt + f2 ay

 F1 = F0 cos 1vt + f2 ax

p>2,

a = tan-1
 

Fy

Fx
= ;tan-1

 

F2

F1

F = F1 + F2

 F2 = ;F2 cos 1vt + f2 ay

 F1 = F1 cos 1vt + f2 ax

Linear
polarization

x

y

F1

F2

F

a aa a

a a a

FIGURE 3.27

The sum vector of two linearly polarized vectors in phase is a linearly polarized vector.

Circular
polarization
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182 Chapter 3 Maxwell’s Equations in Differential Form . . .

The series of sketches in Fig. 3.28 illustrates the time history of the magnitude and
direction of F over an interval of one period.

The reasoning can be generalized to two linearly polarized vectors not
necessarily along the coordinate axes.Thus, if two linearly polarized vectors sat-
isfy the three conditions of (1) equal amplitudes, (2) perpendicularity in direc-
tion, and (3) phase difference of 90°, then their sum vector is circularly
polarized. We shall illustrate this by means of an example.

Example 3.13 Determination of the polarization of the sum of two
linearly polarized vectors

Suppose we are given two vectors

at a point. Note that the vector consists of two components (x and z) that are in phase
opposition. Hence, it is linearly polarized, but along the direction of The
vector is linearly polarized along the y-direction. We wish to determine the polariza-
tion of the vector 

Since the two linearly polarized vectors and are not in phase, we rule out the
possibility of F being linearly polarized. In fact, since varies with time in a cosine man-
ner, whereas varies in a sine manner, we note that and differ in phase by 90°.The
amplitude of is or 5, which is equal to that of Also,

so that and are perpendicular.Thus, and satisfy all three conditions for the sum of
two linearly polarized vectors to be circularly polarized.Therefore, F is circularly polarized.

Alternatively, we observe that

Hence, F is circularly polarized.

 = 125 = 5, a constant with time

 = 125 cos2 2p * 106t + 25 sin2 2p * 106t21>2
 = ƒ 3 cos 2p * 106t ax + 5 sin 2p * 106t ay - 4 cos 2p * 106t az ƒ

 ƒ F ƒ = ƒ F1 + F2 ƒ

F2F1F2F1

F1
# F2 = 13ax - 4az2 # 5ay = 0

F2.232 + 1-422,F1

F2F1F2

F1

F2F1

F = F1 + F2.
F2

13ax - 4az2.
F1

 F2 = 5ay sin 2p * 106t

 F1 = 13ax - 4az2 cos 2p * 106t

x

y

F1

F2

F
a

FIGURE 3.28

Circular polarization.
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3.6 Polarization of Sinusoidally Time-Varying Vector Fields 183

For the general case in which the conditions for the sum vector to be lin-
early polarized or circularly polarized are not satisfied, the sum vector is
elliptically polarized; that is, its tip describes an ellipse. Thus, linear and circular
polarizations are special cases of elliptical polarization. For example, the ellipse
described by the tip of the vector resulting from the superposition of two sinu-
soidally time-varying, orthogonal component vectors and

of the same frequency, for values of 
and is shown in Fig. 3.29, where the component vectors and

the resultant vector are also shown for one value of time, and the interval be-
tween the dots is one-hundredth of the period 

An example in which polarization is relevant is in the reception of radio
waves. If the incoming signal is linearly polarized, then for maximum voltage to
be induced in a linear receiving antenna, the antenna must be oriented parallel
to the direction of polarization of the signal. Any other orientation of the an-
tenna will result in a smaller induced voltage, since the antenna “sees” only that
component of the electric field parallel to itself. In particular, if the antenna is in
the plane perpendicular to the direction of polarization of the incoming signal,
no voltage is induced. On the other hand, if the incoming signal is circularly or
elliptically polarized, a voltage is induced in the antenna, except for one orien-
tation that is along the line perpendicular to the plane of the circle or the ellipse.

Finally, in the case of circular and elliptical polarizations, since the circle or
the ellipse can be traversed in one of two opposite senses, we talk of right-hand-
ed or clockwise polarization and left-handed or counterclockwise polarization.
The convention is that if in a given constant phase plane, the tip of the field vec-
tor of a circularly polarized wave rotates with time in the clockwise sense as
seen looking along the direction of propagation of the wave, the wave is said to
be right circularly polarized. If the tip of the field vector rotates in the counter-
clockwise sense, the wave is said to be left circularly polarized. Similar consider-
ations hold for elliptically polarized waves, which arise due to the superposition
of two linearly polarized waves in the general case.

For example, for the uniform plane wave of Example 3.11, The two com-
ponents of E are equal in amplitude, perpendicular, and out of phase by 90°.
Therefore, the wave is circularly polarized. To determine if the polarization is
right-handed or left-handed, we look at the electric field vectors in the z = 0

2p>v.

u = 105°,f = 60°,
A = 40, B = 60,F2 = B cos 1vt + u2 ay

F1 = A cos 1vt + f2 ax

Elliptical
polarization

40
60

x

y

FIGURE 3.29

Ellipse traced by the tip of the vector
40 cos 1vt + 60°2 ax + 60 cos 1vt + 105°2 ay.

Relevance of
polarization
in reception
of radio
waves
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184 Chapter 3 Maxwell’s Equations in Differential Form . . .

plane for two values of time, and 
These are shown in Fig. 3.30. As time progresses, the tip of the vector rotates in
the counterclockwise sense, as seen looking in the Hence, the
wave is left circularly polarized.

K3.6. Polarization; Linear polarization; Circular polarization; Elliptical polarization.
D3.17. Two sinusoidally time-varying vector fields are given by

Find the polarization of at each of the following points: (a) (3, 4, 0);
(b) (c) and (d)
Ans. (a) Linear; (b)circular; (c) linear; (d) elliptical.

D3.18. A sinusoidally time-varying vector field is given at a point by 
Find the value(s) of between 0° and 360° for

each of the following cases: (a) F is linearly polarized along a line lying in the
second and fourth quadrants; (b) F is circularly polarized with the sense of rota-
tion from the toward the with time; and (c) F is cir-
cularly polarized with the sense of rotation from the toward the

with time.
Ans. (a) 240°; (b) 330°; (c) 150°.

3.7 POWER FLOW AND ENERGY STORAGE

In Sec. 3.4, we obtained the solution for the electromagnetic field due to an infi-
nite plane current sheet situated in the plane, for arbitrary time variation,
and then in Sec. 3.5 we considered the solution for the sinusoidal case. For a sur-
face current flowing in the negative x-direction, we found the electric field on
the sheet to be directed in the positive x-direction. Since the current is flowing
against the force due to the electric field, a certain amount of work must be
done by the source of the current to maintain the current flow on the sheet. Let
us consider a rectangular area of length and width on the current sheet
as shown in Fig. 3.31. Since the current density is the charge crossingJS0 cos vt,

¢y¢x

z = 0

+x-direction
+y-direction

+y-direction+x-direction

a60°2 ax + 1 cos 1vt + a2 ay.
F = 1 cos 1vt +

1-1, -3, 0.22.1-2, 1, 12;13, -2, 0.52;
F1 + F2

 F2 = F0 cos 12p * 108t - 3pz2 ay

 F1 = F0 cos 12p * 108t - 2pz2 ax

+z-direction.

t = 1
6 * 10-8 s 13p * 108t = p>22.t = 0

y
z

x

[E]t � 0

[E]t �   	 10–8 s
1
6

FIGURE 3.30

For the determination of the sense of
circular polarization for the field of Ex. 3.11.
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the width in time dt is The force exerted on this
charge by the electric field is given by

(3.107)

The amount of work required to be done against the electric field in displacing
this charge by the distance is

(3.108)

Thus the power supplied by the source of the current in maintaining the surface
current over the area is

(3.109)

Recalling that on the sheet is we obtain

(3.110)

We would expect the power given by (3.110) to be carried by the electro-
magnetic wave, half of it to either side of the current sheet. To investigate this,
we note that the quantity has the units of

which represents power density. Let us then consider the rectangular box en-
closing the area on the current sheet and with its sides almost touching¢x ¢y

 =
newton-meters

second
*

1

1meter22 =
watts

1mater22

 
newtons
coulomb

*
amperes

meter
=

newtons
coulomb

*
coulomb

second-meter
*

meter
meter

E � H

dw

dt
= h0 

JS0
2

2
   cos2 vt ¢x ¢y

h0 

JS0

2
  cos vt,Ex

dw

dt
= JS0Ex cos vt ¢x ¢y

¢x ¢y

dw = Fx ¢x = JS0Ex cos vt dt ¢x ¢y

¢x

F = dq E = JS0 ¢y cos vt dt Ex ax
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FIGURE 3.31

For the determination of power flow density
associated with the electromagnetic field.
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186 Chapter 3 Maxwell’s Equations in Differential Form . . .

the current sheet on either side of it, as shown in Fig. 3.31. Evaluating the sur-
face integral of over the surface of the rectangular box, we obtain the
power flow out of the box as

(3.111)

This result is exactly equal to the power supplied by the current source as given
by (3.110).

We now interpret the quantity as the power flow density vector as-
sociated with the electromagnetic field. It is known as the Poynting vector after
J.H. Poynting and is denoted by the symbol P. Thus,

(3.112)

In particular, it is the instantaneous Poynting vector, since E and H are instanta-
neous field vectors. Although we have here introduced the Poynting vector by
considering the specific case of the electromagnetic field due to the infinite
plane current sheet, the interpretation that is equal to the power
flow out of the closed surface S is applicable in the general case.

Example 3.14 Distance variations of fields far from a physical antenna

Far from a physical antenna, that is, at a distance of several wavelengths from the anten-
na, the radiated electromagnetic waves are approximately uniform plane waves with
their constant phase surfaces lying normal to the radial directions away from the anten-
na, as shown for two directions in Fig. 3.32. We wish to show from the Poynting vector
and physical considerations that the electric and magnetic fields due to the antenna vary
inversely proportional to the radial distance away from the antenna.

From considerations of electric and magnetic fields of a uniform plane wave, the
Poynting vector is directed everywhere in the radial direction, indicating power flow ra-
dially away from the antenna, and is proportional to the square of the magnitude of the
electric field intensity. Let us now consider two spherical surfaces of radii and and
centered at the antenna, and insert a cone through these two surfaces such that the ver-
tex is at the antenna, as shown in Fig. 3.32. Then the power crossing the portion of the
spherical surface of radius inside the cone must be the same as the power crossing the
portion of the spherical surface of radius inside the cone. Since these surface areas are
proportional to the square of the radius and since the surface integral of the Poynting
vector gives the power, the Poynting vector must be inversely proportional to the square
of the radius. This in turn means that the electric field intensity and hence the magnetic
field intensity must be inversely proportional to the radius.

Thus, from these simple considerations, we have established that far from a radiat-
ing antenna the electromagnetic field is inversely proportional to the radial distance

ra

rb

rbra

AS E � H # dS

P = E � H

E � H

 = h0 

JS0
2

2
  cos2 vt ¢x ¢y

 + a -h0 
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2

4
  cos2 vt azb # 1- ¢x ¢y az2

 CE � H # dS = h0 
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3.7 Power Flow and Energy Storage 187

away from the antenna.This reduction of the field intensity inversely proportional to the
distance is known as the “free space reduction.” For example, let us consider communi-
cation from earth to the moon. The distance from the earth to the moon is approximate-
ly or Hence, the free space reduction factor for the field
intensity is or, in terms of decibels, the reduction is or 171.6 db.

Returning to the electromagnetic field due to the infinite plane current
sheet, let us consider the region The magnitude of the Poynting vector in
this region is given by

(3.113)

The variation of with z for is shown in Fig. 3.33. If we now consider a rec-
tangluar box lying between and planes and having dimensionsz = z + ¢zz = z

t = 0Pz

Pz = ExHy = h0 

JS0
2

4
  cos2 1vt - bz2

z 7 0.

20 log10 38 * 107,10-7>38
38 * 107 m.38 * 104 km

Constant Phase
Surfaces

Antenna
ra

ra

rb

rb

FIGURE 3.32

Radiation of electromagnetic waves far from a physical antenna.
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FIGURE 3.33

For the discussion of energy storage
in electric and magnetic fields.

RaoCh03v3.qxd  12/18/03  3:33 PM  Page 187



188 Chapter 3 Maxwell’s Equations in Differential Form . . .

and in the x and y directions, respectively, we would in general obtain a
nonzero result for the power flowing out of the box, since is not every-
where zero. Thus there is some energy stored in the volume of the box. We then
ask ourselves the question,“Where does this energy reside?”A convenient way of
interpretation is to attribute the energy storage to the electric and magnetic fields.

To discuss the energy storage in the electric and magnetic fields further,
we evaluate the power flow out of the rectangular box. Thus

where is the volume of the box. Letting equal to and using (3.72a)
and (3.72b), we obtain

(3.114)

Equation (3.114) tells us that the power flow out of the box is equal to the sum of
the time rates of decrease of the quantities and These
quantities are obviously the energies stored in the electric and magnetic fields,
respectively, in the volume of the box. It then follows that the energy densities as-
sociated with the electric and magnetic fields in free space are and 
respectively, having the units Although we have obtained these results by
considering the particular case of the uniform plane wave, they hold in general.

Equation (3.114) is a special case of a theorem known as the Poynting’s
theorem. To derive Poynting’s theorem for the general case, we make use of the
vector identity.

(3.115)� # 1E � H2 = H # � � E - E # � � H
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and Maxwell’s curl equations

to obtain

(3.116)

Substituting P for and taking the volume integral of both sides of
(3.116) over the volume V, we obtain

(3.117)

Interchanging the differentiation operation with time and integration operation
over volume in the second and third terms on the right side and replacing the
volume integral on the left side by a closed surface integral in accordance with
the divergence theorem, we get

(3.118)

where S is the surface bounding the volume V. Equation (3.118) is the Poynt-
ing’s theorem for the general case. Since it should hold for any size V, it follows
that the electric stored energy density and the magnetic stored energy density in
free space are given by

(3.119a)

(3.119b)

respectively. The quantity having the units or is the
power density associated with the work done by the field, having to do with the
current flow.
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190 Chapter 3 Maxwell’s Equations in Differential Form . . .

Returning now to (3.113), we can talk about the time-average value of 
denoted It is the value of averaged over one period of the sinusoidal
time variation of the source; that is,

(3.120)

where is the period. From (3.113), we have

(3.121)

This can be expressed in the manner

(3.122)

where and are the phasor electric and magnetic field components, re-
spectively. See Appendix A for phasors. In terms of vector quantities,

(3.123)

which is the time-average Poynting vector, where

(3.124)

is the complex Poynting vector.
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K3.7. Power flow; Poynting vector; Poynting’s theorem; Electric stored energy densi-
ty; Magnetic stored energy density; Time-average Poynting vector.

D3.19. The magnetic field associated with a uniform plane wave propagating in the
in free space is given by

Find the following: (a) the instantaneous power flow across a surface of area
in the plane at (b) the instantaneous power flow across a sur-

face of area in the plane at and (c) the time-average
power flow across a surface of area in the plane.
Ans. (a) (b) 0 W; (c)

D3.20. Find the time-average values of the following: (a) (b)
and (c)

Ans. (a) 0; (b) 0.25A; (c) 0.3125A.

SUMMARY

We have in this chapter derived the differential forms of Maxwell’s equations
from their integral forms, which we introduced in Chapter 2. For the general
case of electric and magnetic fields having all three components, each of them
dependent on all coordinates and time, Maxwell’s equations in differential form
are given as follows in words and in mathematical form.

Faraday’s law. The curl of the electric field intensity is equal to the negative of
the time derivative of the magnetic flux density; that is,

(3.125)

Ampère’s circuital law. The curl of the magnetic field intensity is equal to the
sum of the current density due to flow of charges and the displacement current
density, which is the time derivative of the displacement flux density; that is,

(3.126)

Gauss’ law for the electric field. The divergence of the displacement flux den-
sity is equal to the charge density; that is,

(3.127)

Gauss’ law for the magnetic field. The divergence of the magnetic flux density
is equal to zero; that is,

(3.128)� # B = 0

� # D = r

� � H = J +
0D
0t

� � E = -  
0B
0t

A sin6 vt.A1cos2 vt - 0.5 sin2 2vt2;
A sin vt sin 3vt;

60pH0
2 W.120pH0

2 W;
z = 01 m2

t = 11>82 ms;z = 01 m2
t = 0;z = 01 m2

H = H0 cos 16p * 107t - 0.2pz2 ay A>m
+z-direction
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192 Chapter 3 Maxwell’s Equations in Differential Form . . .

Auxiliary to (3.125)–(3.128), the continuity equation is given by

(3.129)

This equation, which is the differential form of the law of conservation of
charge, states that the sum of the divergence of the current density due to flow
of charges and the time derivative of the charge density is equal to zero. Also,
we recall that

which relate D and H to E and B, respectively, for free space.
We have learned that the basic definitions of curl and divergence, which

have enabled us to discuss their physical interpretations with the aid of the curl
and divergence meters, are

Thus, the curl of a vector field at a point is a vector whose magnitude is the cir-
culation of that vector field per unit area, with the area oriented so as to maxi-
mize this quantity and in the limit that the area shrinks to the point. The
direction of the vector is normal to the area in the aforementioned limit and in
the right-hand sense. The divergence of a vector field at a point is a scalar quan-
tity equal to the net outward flux of that vector field per unit volume in the limit
that the volume shrinks to the point. In Cartesian coordinates, the expansions
for curl and divergence are

Thus, Maxwell’s equations in differential form relate the spatial variations of
the field vectors at a point to their temporal variations and to the charge and
current densities at that point.
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Summary 193

We have also learned two theorems associated with curl and divergence.
These are the Stokes’ theorem and the divergence theorem given, respectively, by

Stokes’ theorem enables us to replace the line integral of a vector around a
closed path by the surface integral of the curl of that vector over any surface
bounded by that closed path, and vice versa.The divergence theorem enables us
to replace the surface integral of a vector over a closed surface by the volume
integral of the divergence of that vector over the volume bounded by the closed
surface and vice versa.

Next, we studied the principles of uniform plane waves. Uniform plane
waves are a building block in the study of electromagnetic wave propagation.
They are the simplest type of solutions resulting from the coupling of the elec-
tric and magnetic fields in Maxwell’s curl equations. Their electric and magnetic
fields are perpendicular to each other and to the direction of propagation. The
fields are uniform in the planes perpendicular to the direction of propagation.

We first obtained the uniform plane wave solution to Maxwell’s equations
in time domain in free space by considering an infinite plane current sheet in
the xy-plane with uniform surface current density given by

and deriving the electromagnetic field due to the current sheet to be

(3.130a)

(3.130b)

where

and

are the velocity of propagation and intrinsic impedance, respectively. In (3.130a)
and (3.130b), the arguments and represent wave motion1t + z>vp21t - z>vp2
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194 Chapter 3 Maxwell’s Equations in Differential Form . . .

in the positive z-direction and the negative z-direction, respectively, with the ve-
locity Thus, (3.130a) and (3.130b) correspond to waves propagating away
from the current sheet to either side of it. Since the fields are uniform in con-
stant-z planes, they represent uniform plane waves. We discussed how to plot
the variations of the field components versus t for fixed values of z and versus z
for fixed values of t, for a given function 

We then extended the solution to sinusoidally time-varying uniform plane
waves by considering the current density on the infinite plane sheet to be

and obtaining the corresponding field to be

(3.131a)

(3.131b)

where

(3.132)

We discussed several important parameters and properties associated with
these waves, including polarization. The quantity is the phase constant, that
is, the magnitude of the rate of change of phase with distance along the direc-
tion of propagation, for a fixed time. The velocity which from (3.132) is
given by

(3.133)

is known as the phase velocity, because it is the velocity with which a particular
constant phase progresses along the direction of propagation. The wavelength

that is, the distance along the direction of propagation in which the phase
changes by radians, for a fixed time, is given by

(3.134)

The wavelength is related to the frequency f in a simple manner as given by

(3.135)

which follows from (3.133) and (3.135) and is a result of the fact that the time
and space variations of the fields are interdependent. We also discussed the
principle of antenna array.

vp = lf

l =
2p
b

2p
l,

vp =
v

b

vp,

b

b =
v

vp
= v1m0e0

 H = 

JS0

2
  cos 1vt � bz2 ay for z � 0

 E =
h0JS0

2
  cos 1vt � bz2 ax for z � 0

JS = -JS0 cos vt ax A>m

JS1t2.

vp.
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Polarization of sinusoidally time-varying vector fields was then considered.
In the general case, the polarization is elliptical, that is, the tip of the field vector
describes an ellipse with time. Linear and circular polarizations are special cases.

Finally, we learned that there is power flow and energy storage associated
with the wave propagation that accounts for the work done in maintaining the
current flow on the sheet.The power flow density is given by the Poynting vector

and the energy densities associated with the electric and magnetic fields are
given, respectively, by

The surface integral of the Poynting vector over a given closed surface gives the
total power flow out of the volume bounded by that surface.

REVIEW QUESTIONS

Q3.1. State Faraday’s law in differential form for the simple case of 
How is it derived from Faraday’s law in integral form?

Q3.2. State Faraday’s law in differential form for the general case of an arbitrary elec-
tric field. How is it derived from its integral form?

Q3.3. What is meant by the net right-lateral differential of the x- and y-components of
a vector normal to the z-direction? Give an example in which the net right-lat-
eral differential of and normal to the z-direction is zero, although the in-
dividual derivatives are nonzero.

Q3.4. What is the determinant expansion for the curl of a vector in Cartesian co-
ordinates?

Q3.5. State Ampère’s circuital law in differential form for the general case of an arbi-
trary magnetic field. How is it derived from its integral form?

Q3.6. State Ampère’s circuital law in differential form for the simple case of
How is it derived from Ampère’s circuital law in differential

form for the general case?
Q3.7. If a pair of E and B at a point satisfies Faraday’s law in differential form, does it

necessarily follow that it also satisfies Ampère’s circuital law in differential
form, and vice versa?

Q3.8. State Gauss’ law for the electric field in differential form. How is it derived from
its integral form?

Q3.9. What is meant by the net longitudinal differential of the components of a vec-
tor field? Give an example in which the net longitudinal differential of the
components of a vector field is zero, although the individual derivatives are
nonzero.

Q3.10. What is the expansion for the divergence of a vector in Cartesian coordinates?
Q3.11. State Gauss’ law for the magnetic field in differential form. How is it derived

from its integral form?

H = Hy1z, t2ay.

EyEx

E = Ex1z, t2ax.

 wm =
1
2

 m0H
2

 we =
1
2

 e0E
2

P = E � H
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196 Chapter 3 Maxwell’s Equations in Differential Form . . .

Q3.12. How can you determine if a given vector can represent a magnetic field?
Q3.13. State the continuity equation and discuss its physical interpretation.
Q3.14. Summarize Maxwell’s equations in differential form.
Q3.15. State and briefly discuss the basic definition of the curl of a vector.
Q3.16. What is a curl meter? How does it help visualize the behavior of the curl of a

vector field?
Q3.17. Provide two examples of physical phenomena in which the curl of a vector field

is nonzero.
Q3.18. State and briefly discuss the basic definition of the divergence of a vector.
Q3.19. What is a divergence meter? How does it help visualize the behavior of the di-

vergence of a vector field?
Q3.20. Provide two examples of physical phenomena in which the divergence of a vec-

tor field is nonzero.
Q3.21. State Stokes’ theorem and discuss its application.
Q3.22. State the divergence theorem and discuss its application.
Q3.23. What is the divergence of the curl of a vector?
Q3.24. What is a uniform plane wave? Why is the study of uniform plane waves important?
Q3.25. Outline the procedure for obtaining from the two Maxwell’s curl equations the

particular differential equation for the special case of 
Q3.26. State the wave equation for the case of Describe the procedure

for its solution.
Q3.27. Discuss by means of an example how a function represents a

traveling wave propagating in the positive z-direction.
Q3.28. Discuss by means of an example how a function represents a

traveling wave propagating in the negative z-direction.
Q3.29. What is the significance of the intrinsic impedance of free space? What is its value?
Q3.30. Summarize the procedure for obtaining the solution for the electromagnetic

field due to the infinite plane sheet of uniform time-varying current density.
Q3.31. State and discuss the solution for the electromagnetic field due to the infinite

plane sheet of current density for 
Q3.32. Discuss the parameters and associated with sinusoidally time-varying

uniform plane waves.
Q3.33. Define wavelength. What is the relationship among wavelength, frequency, and

phase velocity?
Q3.34. Discuss the classification of waves according to frequency, giving examples of

their application in the different frequency ranges.
Q3.35. How is the direction of propagation of a uniform plane wave related to the di-

rections of its fields?
Q3.36. Discuss the principle of an antenna array with the aid of an example.
Q3.37. A sinusoidally time-varying vector is expressed in terms of its components

along the x-, y-, and z-axes. What is the polarization of each of the components?
Q3.38. What are the conditions for the sum of two linearly polarized sinusoidally time-

varying vectors to be circularly polarized?
Q3.39. What is the polarization for the general case of the sum of two sinusoidally

time-varying linearly polarized vectors having arbitrary amplitudes, phase an-
gles, and directions?

vpv, b,
z = 0.JS1t2 = -JS1t2ax

g1t + z1m0e02
f1t - z1m0e02

E = Ex1z, t2ax.
J = Jx1z2ax.
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Q3.40. Discuss the relevance of polarization in the reception of radio waves.
Q3.41. Discuss right-handed and left-handed circular polarizations associated with si-

nusoidally time-varying uniform plane waves.
Q3.42. What is the Poynting vector? What is the physical interpretation of the Poynting

vector over a closed surface?
Q3.43. Discuss how the fields far from a physical antenna vary inversely with the dis-

tance from the antenna.
Q3.44. Discuss the interpretation of energy storage in the electric and magnetic fields

of a uniform plane wave.What are the energy densities associated with the elec-
tric and magnetic fields?

Q3.45. State Poynting’s theorem. How is it derived from Maxwell’s curl equations?
Q3.46. What is the time-average Poynting vector? How is it expressed in terms of the

complex electric and magnetic fields?

PROBLEMS

Section 3.1

P3.1. Evaluating curls of vector fields. Find the curls of the following vector fields:

(a)
(b)
(c) in cylindrical coordinates
(d) in spherical coordinates

P3.2. Finding B for a given E from Faraday’s law in differential form. For each of the
following electric fields, find B that satisfies Faraday’s law in differential form:

(a)
(b)

P3.3. Simplified forms of Maxwell’s curl equations for special cases. Obtain the
simplified differential equations for the following cases: (a) Ampère’s circuital
law for and (b) Faraday’s law for in cylindrical
coordinates.

P3.4. Simultaneous satisfaction of Faraday’s and Ampere’s circuital laws by E and B.
For the electric field in free space find B that sat-
isfies Faraday’s law in differential form and then determine if the pair of E and
B satisfy Ampère’s circuital law in differential form.

P3.5. Satisfaction of Maxwell’s curl equations for a specified electric field. For the
electric field in free space find the nec-
essary condition relating and for the field to satisfy both of
Maxwell’s curl equations.

P3.6. Satisfaction of Maxwell’s curl equations for a specified electric field. For the
electric field in free space find the
value(s) of k for which the field satisfies both of Maxwell’s curl equations.

P3.7. Magnetic fields of current distributions from Ampere’s circuital law in differen-
tial form. For each of the following current distributions, find the corresponding
magnetic field intensity using Ampère’s circuital law in differential form without

1J = 02,E = E0e
-kx cos 12 * 108t - y2 az

e0a, b, v, m0,
1J = 02,E = E0 cos 1vt - ay - bz2 ax

1J = 02,E = E0e
-az cos vt ax

E = Ef1r, t2afH = Hx1z, t2ax

E = E0 ay cos [3p * 108t + 0.2p14x + 3z2]
E = E0 cos 3pz cos 9p * 108t ax

2r cos u ar + rau

1e-r2>r2af
cos yax - x sin y ay

zxax + xyay + yz az
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198 Chapter 3 Maxwell’s Equations in Differential Form . . .

the displacement current density term, and plot both the current density and the
magnetic field intensity components versus the appropriate coordinate:

(a)

(b)

in cylindrical coordinates

Section 3.2

P3.8. Evaluating divergences of vector fields. Find the divergences of the following
vector fields:

(a)
(b)
(c) in cylindrical coordinates
(d) in spherical coordinates

P3.9. Electric fields of charge distributions from Gauss’ law in differential form. For
each of the following charge distributions, find the corresponding displacement
flux density using Gauss’ law for the electric field in differential form, and plot
both the charge density and the displacement flux density component versus
the appropriate coordinate:

(a)

(b)

in cylindrical coordinates
P3.10. Realizability of vector fields as certain types of fields. For each of the following

vector fields, find the value of the constant k for which the vector field can be re-
alized as a magnetic field or as a current density in the absence of charge accu-
mulation (or depletion):

(a)

(b) in cylindrical coordinates

(c) in spherical coordinates

P3.11. Realizability of vector fields as certain types of fields. Determine which of the
following static fields can be realized both as an electric field in a charge-free re-
gion and a magnetic field in a current-free region:

(a)
(b) in cylindrical coordinates
(c) in spherical coordinatesr sin u au

[1 + 11>r22] cos f ar - [1 - 11>r22] sin f af

yax + xay

[1 + 12>r32]cos u ar + k[1 - 11>r32] sin u au

r1sin kf ar + cos kf af2
11>yk2 12xax + yay2

r = c r0 
r

a
for 0 6 r 6 a

0 otherwise

r = c r0 
x

a
for -a 6 x 6 a

0 otherwise

r cos u 1cos u ar - sin u au2
r sin f af

3ax + 1y - 32ay + 12 + z2az

zxax + xyay + yzaz

J = eJ0 af for a 6 r 6 2a

0 otherwise

J = c J0 
z

a
 ax for -a 6 z 6 a

0 otherwise
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Section 3.3

P3.12. Interpretation of curl with the aid of curl meter and by expansion. With the aid
of the curl meter and also by expansion in the Cartesian coordinate system, dis-
cuss the curl of the velocity vector field associated with the flow of water in the
stream of Fig. 3.8(a), except that the velocity varies in a nonlinear manner
from zero at the banks to a maximum of at the center given by

P3.13. Interpretation of curl with the aid of curl meter and by expansion. With the aid
of the curl meter and also by expansion in the cylindrical coordinate system, dis-
cuss the curl of the linear velocity vector field associated with points inside
Earth due to its spin motion.

P3.14. Interpretation of divergence with the aid of divergence meter and by expansion.
Discuss the divergences of the following vector fields with the aid of the divergence
meter and also by expansion in the appropriate coordinate system: (a) the position
vector field associated with points in three-dimensional space and (b) the linear
velocity vector field associated with points inside Earth due to its spin motion.

P3.15. Verification of Stokes’ theorem. Verify Stokes’ theorem for the following cases:
(a) the vector field and the closed path comprising
the straight lines from (0, 0, 0) to (0, 1, 0), from (0, 1, 0) to (0, 1, 1), and from (0,
1, 1) to (0, 0, 0) and (b) the vector field independent
of a closed path.

P3.16. Verification of the divergence theorem. Verify the divergence theorem for the
following cases: (a) the vector field and the cubical box
bounded by the planes and and
(b) the vector field and the closed surface bounded by the planes

and 

Section 3.4

P3.17. Simplified forms of Maxwell’s curl equations for special case of J. From
Maxwell’s curl equations, obtain the particular differential equations for the
case of 

P3.18. Plotting of functions of time and distance. For each of the following functions,
plot the value of the function versus z for the two specified values of time and
discuss the traveling-wave nature of the function.

(a)
(b)

P3.19. Writing traveling wave functions for specified time and distance variations.
Write expressions for traveling-wave functions corresponding to the following
cases: (a) time variation at in the manner 10u(t) and propagating in the

with velocity 0.5 m/s; (b) time variation at in the manner
and propagating in the with velocity 4 m/s; and (c) distance

variation at in the manner and propagating in the with
velocity 2 m/s.

-z-direction5z3e-z2
t = 0

+y-directiont sin 20t
y = 0-x-direction

x = 0

t = 0, t = 10-8 s

12 * 108t + z2[u12 * 108t + z2 - u12 * 108t + z - 32];
e-ƒt - z ƒ; t = 0, t = 1 s

J = Jz1y, t2az.

x + y = 1.x = 0, y = 0, z = 0, z = 1
y2ay - 2yzaz

z = 1y = 0, y = 1, z = 0,x = 0, x = 1,
xyax + yzay + zxaz

A = cos y ax - x sin y ay

+ xyay + yzazA = zxax

v =
4v0

a2  1ax - x22az

v0

vz
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�1

–100

[ f ]t � 0

z, m

1

100 200 3000 400

FIGURE 3.34

For Problems 3.20 and 3.21

P3.20. Plotting time and distance variations of a traveling wave. The variation with z
for of a function f(z, t) representing a traveling wave propagating in the

with velocity 100 m/s is shown in Fig. 3.34. Find and sketch: (a) f
versus z for (b) f versus t for and (c) f versus t for z = 200 m.z = 0;t = 1 s;
+z-direction

t = 0

10

0.4

t, �s

JS, A/m

2 3 4 5

1011 t2

FIGURE 3.35

For Problem 3.22

P3.21. Plotting time and distance variations of a traveling wave. Repeat Problem
P3.20 if the function f represents a traveling wave propagating in the

with velocity 100 m/s.
P3.22. Plotting field variations for a specified infinite plane-sheet current source. An

infinite plane sheet lying in the plane in free space carries a surface cur-
rent of density where is as shown in Fig. 3.35. Find and
sketch (a) versus t in the plane; (b) versus z for and
(c) versus z for t = 4 ms.Hy

t = 2 ms;Exz = 300 mEx

JS1t2JS = -JS1t2ax,
z = 0

-z-direction

0

0.1

t, �s

JS, A/m

0.2

21 3 4

FIGURE 3.36

For Problem P3.23

P3.23. Plotting field variations for a specified infinite plane-sheet current source. An
infinite plane sheet of current density A/m where is as
shown in Fig. 3.36, lies in the plane in free space. Find and sketch: (a)
versus t in the plane; (b) versus t in the plane; (c)
versus z for and (d) versus z for t = 4 ms.Hyt = 3 ms;

Exz = -600 mHyz = 300 m
Exz = 0

JS1t2JS = -JS1t2ax
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Section 3.5

P3.25. Finding parameters for a specified sinusoidal uniform plane-wave electric field.
The electric-field intensity of a uniform plane wave propagating in free space is
given by

Find: (a) the frequency; (b) the wavelength; (c) the direction of propagation of
the wave; and (d) the associated magnetic-field intensity vector H.

P3.26. Writing field expressions for an infinite plane current sheet source. Given
in the plane in free space, find

E and H for Use the following three steps, which are generalizations of
the solution to the electromagnetic field due to the infinite plane current sheet
in the plane:

1. Write the expression for H on the sheet and on either side of it, by noting
that where is the unit vector nor-
mal to the sheet and directed toward the side of interest.

2. Extend the result of step 1 to write the expression for H everywhere, that is,
for considering the traveling wave character of the fields.

3. Write the solution for E everywhere by noting that (a) the amplitude of
of H, and (b) the direction of E, the direction of

H, and the direction of propagation constitute a right-handed orthogonal
set, so that 

P3.27. Writing field expressions for an infinite plane current sheet source. Given
in the plane in free space, find E and H

for Use the three steps outlined in Problem P3.26, except that the cur-
rent sheet is in the plane.

P3.28. Electric field due to an array of two infinite plane current sheets. The current
densities of two infinite, plane, parallel current sheets are given by

 JS2 = -kJS0 cos vt ax in the z = l>2 plane
 JS1 = -JS0 cos vt ax    in the z = 0 plane

x = 0
x � 0.

x = 0JS = 0.2 sin 15p * 107t ay A>m
E = h0 H : an.

E = h0 * the amplitude

z � 0,

an[H]z = 0 ; = 1
2 JS : 1;az2 = 1

2 Js : an,

z = 0

z � 0.
z = 0JS = 0.2113ax + ay2 cos 6p * 109t A>m

E = 37.7 cos 19p * 107t + 0.3py2 ax V>m

P3.24. Source and more field variations from a given field variation of a uniform plane
wave. The time variation of the electric-field intensity in the 
plane of a uniform plane wave propagating away from an infinite plane current
sheet of current density lying in the plane in free space
is given by the periodic function shown in Fig. 3.37. Find and sketch (a) ver-
sus t; (b) versus t in plane; (c) versus z for and (d)

versus z for t = 3 ms.Hy

t = 2 ms;Exz = -600 mEx

JS

z = 0JS1t2 = -JS1t2ax

z = 300 mEx

t, �s

37.7

3210�1�2

[Ex]z � 300 m, V/m

FIGURE 3.37

For Problem P3.24

RaoCh03v3.qxd  12/18/03  3:33 PM  Page 201



202 Chapter 3 Maxwell’s Equations in Differential Form . . .

Find the electric-field intensities in the three regions: (a) (b)
and (c)

P3.29. An array of three infinite plane current sheets. The current densities of three in-
finite plane, parallel, current sheets are given by

Obtain the expression for the ratio of the amplitude of the electric field in the
region to the amplitude of the electric field in the region Then
find the ratio for each of the following values of k: (a) (b)
and (c) Find the value(s) of k for each of the following values of the
ratio: (a) 1/3 and (b) 3.

Section 3.6

P3.30. Determination of polarization for combinations of linearly polarized vectors.
Three sinusoidally time-varying linearly polarized vector fields are given at a
point by

Determine the polarizations of the following: (a) (b)
and (c)

P3.31. Polarization of sum of two linearly polarized vector fields. Two sinusoidally
time-varying, linearly polarized vector fields are given at a point by

where C is a constant. (a) Determine the polarization of the vector for
(b) Find the value(s) of C for which the tip of the vector traces a

circle with time.
P3.32. Unit vectors along the hour and minute hands of an analog watch. Consider an

analog watch that keeps accurate time and assume the origin to be at the center
of the dial, the x-axis passing through the 12 mark, and the y-axis passing
through the 3 mark. (a) Write the expression for the time-varying unit vector di-
rected along the hour hand of the watch. (b) Write the expression for the time-
varying unit vector directed along the minute hand of the watch. (c) Obtain the
specific expression for these unit vectors when the hour hand and the minute
hand are aligned exactly and between the 5 and 6 marks.

P3.33. Field expressions for sinusoidal uniform plane wave for specified characteris-
tics. Write the expressions for the electric- and magnetic-field intensities of a si-
nusoidally time-varying uniform plane wave propagating in free space and

F1 + F2C = 2.
F1 + F2

 F2 = 1Cax + ay - 2az2 sin 2p * 106t

 F1 = 1Cax + Cay + az2 cos 2p * 106t

F1 - F2 + F3.
F1 + F2 + F3;F1 + F2;

 F3 = a1
2

 ax + 13 ay +
13
2

 azb  cos 12p * 106t - 60°2
 F2 = az cos 12p * 106t + 30°2
 F1 = 13 ax cos 12p * 106t + 30°2

k = 1.
k = 1>2,k = -1,

z 6 0.z 7 l>2

 JS3 = -2kJs0 cos vt ax in the z = l>2 plane
 JS2 = -kJS0 sin vt ax    in the z = l>4 plane
 JS1 = -JS0 cos vt ax      in the z = 0 plane

z 7 l>2.l>2;
0 6 z 6  z 6 0;
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having the following characteristies: (a) (b) direction of propa-
gation is the and (c) polarization is right circular with the electric
field in the plane at having an x-component equal to and a y-
component equal to 

P3.34. Determination of sense of polarization for several cases of sinusoidal traveling
waves. For each of the following fields, determine if the polarization is right- or
left-circular or elliptical.

(a)

(b)

(c)

(d)

P3.35. Uniform plane-wave field in terms of right and left circularly polarized compo-
nents. Express each of the following uniform plane wave electric fields as a su-
perposition of right- and left-circularly polarized fields:

(a)

(b)

Section 3.7.

P3.36. Instantaneous and time-average Poynting vectors for specified electric fields.
For each of the following electric-field intensities for a uniform plane wave in
free space, find the instantaneous and time-average Poynting vectors:

(a)

(b)

(c)

P3.37. Poynting vector and power flow for a coaxial cable. The electric and magnetic
fields in a coaxial cable, an arrangement of two coaxial perfectly conducting
cylinders of radii a and are given by

where and are constants and the axis of the cylinders is the z-axis. (a) Find
the instantaneous and time-average Poynting vectors associated with the fields.
(b) Find the time-average power flow along the coaxial cable.

P3.38. Power radiated for specified radiation fields of an antenna. The electric- and
magnetic-field intensities in the radiation field of an antenna located at the ori-
gin are given in spherical coordinates by

 H =
E01m0>e0

   
sin u

r
  cos v1t - r1m0e02 au A>m

 E = E0  
sin u

r
  cos v1t - r1m0e02 au V>m

I0V0

 H =
I0

2pr
  cos v1t - z1m0e02 au for a 6 r 6 b

 E =
V0

r ln 1b>a2  cos v1t - z1m0e02 ar for a 6 r 6 b

b 17a2,

E = E0 cos 1vt - bz2 ax + 2E0 sin 1vt - bz2 ay

E = E0 cos 1vt - bz2 ax - E0 sin 1vt - bz2 ay

E = E0 cos 1vt - bz2 ax + 2E0 cos 1vt - bz2 ay

E0 ax cos 1vt - bz + p>32 - E0 ay cos 1vt - bz + p>62
E0 ax cos 1vt + bz2

E0 cos 1vt - bx2 az - E0 sin 1vt - bx + p>42 ay

E0 cos 1vt + by2 ax - 2E0 sin 1vt + by2 az

E0 cos 1vt + bx2 ay + E0 sin 1vt + bx2 az

E0 cos 1vt - by2 az + E0 sin 1vt - by2 ax

0.75E0.
E0t = 0z = 0

+z-direction;
f = 100 MHz;
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Find: (a) the instantaneous Poynting vector; (b) the instantaneous power radiated
by the antenna by evaluating the surface integral of the instantaneous Poynting
vector over a spherical surface of radius r centered at the antenna and enclosing
the antenna; and (c) the time-average power radiated by the antenna.

P3.39. Energy storage associated with a charge distribution. A volume charge distrib-
ution is given in spherical coordinates by

(a) Find the energy stored in the electric field of the charge distribution. (b) Find
the work required to rearrange the charge distribution with uniform density in
the region 

P3.40. Energy storage associated with a current distribution. A current distribution is
given in cylindrical coordinates by

Find the energy stored in the magnetic field of the current distribution per unit
length in the z-direction.

REVIEW PROBLEMS

R3.1. Satisfaction of Maxwell’s curl equations for a specified electric field. Find the
numerical value(s) of k, if any, such that the electric field in free space 
given by

satisfies both of Maxwell’s curl equations.
R3.2. Satisfaction of Maxwell’s curl equations for fields in a rectangular cavity res-

onator. The rectangular cavity resonator is a box comprising the region
and and bounded by metallic walls on all of

its six sides. The time-varying electric and magnetic fields inside the resonator
are given by

where and are constants and is the radian frequency of oscilla-
tion. Find the value of that satisfies both of Maxwell’s curl equations. The
medium inside the resonator is free space.

R3.3. Electric field of a charge distribution from Gauss’ law in differential form. The
x-variation of charge density independent of y and z is shown in Fig. 3.38. Find
and sketch the resulting versus x.Dx

v

vH02E0, H01,

 H = H01 sin  
px

a
  cos  
pz

d
  sin vt ax - H02 cos  

px

a
  sin  
pz

d
  sin vt az

 E = E0 sin  
px

a
  sin 
pz

d
  cos vt ay

0 6 z 6 d,0 6 y 6 b,0 6 x 6 a,

E = E0 sin 6x sin 13 * 109t - kz2 ay

1J = 02

J = eJ0 az for r 6 30a

-J0 az for 4a 6 r 6 5a

r 6 a.

r = er01r>a22 for r 6 a

0 for r 7 a
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Review Problems 205

R3.4. Classification of static vector fields. With respect to the properties of physical
realizability as electric and magnetic fields, static vector fields can be classified
into four groups: (i) electric field only; (ii) magnetic field only; (iii) electric field
in a charge-free region or a magnetic field in a current-free region; and (iv) none
of the preceding three. For each of the following fields, determine the group to
which it belongs:

(a)
(b)

(c) in cylindrical coordinates

(d) in cylindrical coordinates

R3.5. Finding traveling-wave functions from specified sums of the functions. Figures
3.39(a) and (b) show the distance variations at and respectively, of
the sum of two functions f(z, t) and g(z, t), each of duration not exceeding 3 s,
and representing traveling waves propagating in the and re-
spectively, with velocity 100 m/s. Find and sketch f and g versus t for z = 0.

-z-directions,+z-

t = 1 s,t = 0

1
r

 1cos f ar + sin f af2

e-r

r
 af

1x2 - y22ax - 2xyay + 4az

xax + yay

z, m0

1

2
[ f � g]t � 0

100 200

(a)

300 400 z, m0

1

2
[ f � g]t � 1s

100 200

(b)

300 400

FIGURE 3.39

For Problem R3.5

r

3r0

�r0

x
a

�a

FIGURE 3.38

For Problem R3.3
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R3.7. An array of two infinite plane current sheets. For the array of two infinite plane
current sheets of Example 3.12, assume that

Obtain the expression for the ratio of the amplitude of the electric field in the
region to the amplitude of the electric field in the region Then
find the following: (a) the value of the ratio for and (b) the value of 
for for the ratio to be equal to 2.

R3.8. A superposition of two infinite plane current sheets. Given 
A/m in the plane and A/m in the

plane, find E and H in the two regions and Dis-
cuss the polarizations of the fields and the time-average power flow in both
regions. Note that the two current densities are directed perpendicular to each
other.

R3.9. Elliptical polarization. The components of a sinusoidally time-varying vector
field are given at a point by

Show that the field is elliptically polarized in the xy-plane with the equation of
the ellipse given by Further show that the axial ratio
(ratio of the major axis to the minor axis) of the ellipse is and the tilt angle
(angle made by the major axis with the x-axis) is 45°.

R3.10. Work associated with rearranging a charge distribution. Find the amount of
work required for rearranging a uniformly distributed surface charge Q of ra-
dius a into a uniformly distributed volume charge of radius a.

13
x2 - xy + y2 = 3>4.

 Fy = 1 cos 1vt + 60°2
 Fx = 1 cos vt

y 7 0.25 m.y 6 0y = 0.25 m
cos 6p * 108t azJS2 = 0.2 y = 0108t ax

JS1 = 0.2 cos 6p *  

0 6 a 6 p>2,
aa = p>4;

z 6 0.z 7 l>4

JS2 = -JS0 sin 1vt + a2 ax for z = l>4

206 Chapter 3 Maxwell’s Equations in Differential Form . . .

R3.6. Plotting more field variations from a given field variation of a uniform plane
wave. The time-variation of the electric field in the plane of a
uniform plane wave propagating away from an infinite plane current sheet lying
in the plane is given by the periodic function shown in Fig. 3.40. Find and
sketch the following: (a) versus t in the plane; (b) versus z for

and (c) versus z for t = 1>3 ms.Hyt = 0;
Exz = 200 mEx

z = 0

z = 600 mEx

Ex, V/m

75.4

�37.7

t, �s
�2 �1 0 1 25

3
�

2
3

�
1
3

4
3

7
3

FIGURE 3.40

For Problem R3.6.
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