
C H A P T E R  2

Maxwell’s Equations 
in Integral Form

In Chapter 1, we learned the simple rules of vector algebra and familiarized
ourselves with the basic concepts of fields in general, and then introduced elec-
tric and magnetic fields in terms of forces on charged particles.We now have the
necessary background to introduce the additional tools required for the under-
standing of the various quantities associated with Maxwell’s equations and then
discuss Maxwell’s equations. In particular, our goal in this chapter is to learn
Maxwell’s equations in integral form as a prerequisite to the derivation of their
differential forms in the next chapter. Maxwell’s equations in integral form gov-
ern the interdependence of certain field and source quantities associated with
regions in space, that is, contours, surfaces, and volumes. The differential forms
of Maxwell’s equations, however, relate the characteristics of the field vectors at
a given point to one another and to the source densities at that point.

Maxwell’s equations in integral form are a set of four laws resulting from
several experimental findings and a purely mathematical contribution.We shall,
however, consider them as postulates and learn to understand their physical sig-
nificance as well as their mathematical formulation. The source quantities in-
volved in their formulation are charges and currents. The field quantities have
to do with the line and surface integrals of the electric and magnetic field vec-
tors. We shall therefore first introduce line and surface integrals and then con-
sider successively the four Maxwell’s equations in integral form.

2.1 THE LINE INTEGRAL

To introduce the line integral, let us consider in a region of electric field E the
movement of a test charge q from the point A to the point B along the path C as
shown in Fig. 2.1(a). At each and every point along the path the electric field
exerts a force on the test charge and, hence, does a certain amount of work in
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FIGURE 2.1

For evaluating the total amount of work done in moving a test charge along a path C from
point A to point B in a region of electric field.

moving the charge to another point an infinitesimal distance away.To find the total
amount of work done from A to B, we divide the path into a number of infinitesi-
mal segments as shown in Fig. 2.1(b), find the infinitesimal
amount of work done for each segment, and then add up the contributions from all
the segments. Since the segments are infinitesimal in length, we can consider each
of them to be straight and the electric field at all points within a segment to be the
same and equal to its value at the start of the segment.

If we now consider one segment, say, the jth segment, and take the compo-
nent of the electric field for that segment along the length of that segment, we ob-
tain the result where is the angle between the direction of the electric
field vector at the start of that segment and the direction of that segment. Since
the electric field intensity has the meaning of force per unit charge, the electric
force along the direction of the jth segment is then equal to To obtain
the work done in carrying the test charge along the length of the jth segment, we
then multiply this electric force component by the length of that segment.
Thus, for the jth segment, we obtain the result for the work done by the electric
field as

(2.1)

If we do this for all the infinitesimal segments and add up all the contributions,
we get the total work done by the electric field in moving the test charge from A
to B along the path C to be

(2.2)

 = qa
n

j = 1
1Ej21¢lj2 cos aj

 = qa
n

j = 1
Ej cos aj ¢lj

 + qEn cos an ¢ln

 = qE1 cos a1 ¢l1 + qE2 cos a2 ¢l2 + qE3 cos a3 ¢l3 + Á
 WAB = ¢W1 + ¢W2 + ¢W3 + Á + ¢Wn

¢Wj = qEj cos aj ¢lj

¢lj

qEj cos aj.

Ej

ajEj cos aj,

¢l1, ¢l2, ¢l3, Á ¢ln,
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Using the dot product operation between two vectors, we obtain

(2.3)

For a numerical example, let us consider the electric field given by

and determine the work done by the field in the movement of of charge
from the point A(0, 0, 0) to the point B(1, 1, 0) along the parabolic path

shown in Fig. 2.2(a).
For convenience, we shall divide the path into 10 segments having equal

projections along the x-axis, as shown in Fig. 2.2(a). We shall number the seg-
ments 1, 2, 3, 10.The coordinates of the starting and ending points of the jth
segment are as shown in Fig. 2.2(b). The electric field at the start of the jth seg-
ment is given by

The length vector corresponding to the jth segment, approximated as a straight
line connecting its starting and ending points, is

The required work is then given by

 = 3 * 10-6
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FIGURE 2.2

(a) Division of the path from A(0, 0, 0) to B(1, 1, 0) into 10 segments. (b) Length
vector corresponding to the jth segment of part (a) approximated as a straight line.

y = x2
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80 Chapter 2 Maxwell’s Equations in Integral Form

The result that we have just obtained for is approximate, since we di-
vided the path from A to B into a finite number of segments. By dividing it into
larger and larger numbers of segments, we can obtain more and more accurate
results. In the limit that the result converges to the exact value. The
summation in (2.3) then becomes an integral, which represents exactly the work
done by the field and is given by

(2.4)

The integral on the right side of (2.4) is known as the line integral of E from A to
B, along the specified path.

We shall illustrate the evaluation of the line integral by computing the
exact value of the work done by the electric field in the movement of the 
charge for the path in Fig. 2.2(a). To do this, we note that at any arbitrary point
on the curve 

so that the differential length vector tangential to the curve is given by

The value of at the point is

Thus, the required work is given by

 = 3 * 10-6
 c2x4

4
d
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11,1,02
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E # dl = 3 * 10-6
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 = 2x3 dx

 = x2ay
# 1dx ax + 2x dx ay2
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 dl = dx ax + dy ay + dz az
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B

A
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n : q ,

WAB

 = 3 * 10-10 * 4335 J = 1.3005 mJ

 + 1088 + 1539]
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 = 3 * 10-10
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j = 1
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Evaluation of
line integral
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2.1 The Line Integral 81

Note that we have evaluated the line integral by using x as the variable of inte-
gration. Alternatively, using y as the variable of integration, we obtain

Thus, the integration can be performed with respect to x or y (or z in the three-
dimensional case).What is important, however, is that the integrand must be ex-
pressed as a function of the variable of integration and the limits appropriate to
that variable must be employed.

Returning now to (2.4) and dividing both sides by q, we note that the line
integral of E from A to B has the physical meaning of work per unit charge
done by the field in moving the test charge from A to B. This quantity is known
as the voltage between A and B along the specified path and is denoted by the
symbol having the units of volts. Thus,

(2.5)

When the path under consideration is a closed path, that is, one that has no
beginning or ending, such as a rubber band, as shown in Fig. 2.3, the line integral
is written with a circle associated with the integral sign in the manner 
The line integral of a vector around a closed path is known as the circulation of
that vector. In particular, the line integral of E around a closed path is the work
per unit charge done by the field in moving a test charge around the closed path.
It is the voltage around the closed path and is also known as the electromotive
force.We shall now consider an example of evaluating the line integral of a vector
around a closed path.

AC E # dl.
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FIGURE 2.3

Closed path C in a region of electric field.
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82 Chapter 2 Maxwell’s Equations in Integral Form
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For evaluating the line integral of a vector
field around a closed path.

Example 2.1 Evaluation of line integral around a closed path

Let us consider the force field

and evaluate where C is the closed path ABCDA shown in Fig. 2.4.
Noting that

we simply evaluate each of the line integrals on the right side and add them up to obtain
the required quantity.

First, we observe that since the entire closed path lies in the plane,
and for all four straight lines. Then for the side AB,

For the side BC,

For the side CD,

L
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2.1 The Line Integral 83

For the side DA,

Finally,

In this example, we found that the line integral of F around the closed
path C is nonzero. The field is then said to be a nonconservative field. For a non-
conservative field, the line integral between two points, say, A and B, is depen-
dent on the path followed from A to B. To show this, let us consider the two
paths ACB and ADB, as shown in Fig. 2.5. Then we can write

(2.6)

It can be easily seen that if is not equal to zero, then is
not equal to The two integrals are equal only if is equal
to zero, which is the case for conservative fields. Examples of conservative fields
are Earth’s gravitational field and the static electric field. An example of non-
conservative fields is the time-varying electric field.Thus, in a time-varying elec-
tric field, the voltage between two points A and B is dependent on the path
followed to evaluate the line integral of E from A to B, whereas in a static elec-
tric field, the voltage, more commonly known as the potential difference, be-
tween two points A and B is uniquely defined because the line integral of E
from A to B is independent of the path followed from A to B.

AACBDAF # dl1ADBF # dl.
1ACB F # dlA ACBDAF # dl

 = LACB
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F # dl
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FIGURE 2.5

Two different paths from point A to point B.
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84 Chapter 2 Maxwell’s Equations in Integral Form

K2.1. Line integral; Line integral of E; Voltage; Line integral around a closed path;
Circulation; Line integral of E around a closed path; Electromotive force; Con-
servative vs. nonconservative fields.

D2.1. For each of the curves (a) (b) and (c)
in a region of electric field find the approxi-

mate value of the work done by the field in carrying a charge of from the
point (1, 1, 0) to the neighboring point on the curve, whose x coordinate is 1.1,
by evaluating along a straight line path.
Ans. (a) (b) (c)

D2.2. For find for the straight-line paths between the follow-
ing pairs of points from the first point to the second point: (a) (0, 0, 0) to (2, 0, 0);
(b) (0, 2, 0) to (2, 2, 0); and (c) (2, 0, 0) to (2, 2, 0).
Ans. (a) 0; (b) 4; (c) 2.

2.2 THE SURFACE INTEGRAL

To introduce the surface integral, let us consider a region of magnetic field and
an infinitesimal surface at a point in that region. Since the surface is infinitesi-
mal, we can assume the magnetic flux density to be uniform on the surface, al-
though it may be nonuniform over a wider region. If the surface is oriented
normal to the magnetic field lines, as shown in Fig. 2.6(a), then the magnetic
flux (webers) crossing the surface is simply given by the product of the surface
area (meters squared) and the magnetic flux density on the surface,
that is, If, however, the surface is oriented parallel to the magnetic field
lines, as shown in Fig. 2.6(b), there is no magnetic flux crossing the surface. If
the surface is oriented in such a manner that the normal to the surface makes
an angle with the magnetic field lines as shown in Fig. 2.6(c), then the amount
of magnetic flux crossing the surface can be determined by considering that the

a

B ¢S.
1Wb/m22

1F # dlF = y1ax + ay2,
0.0877 mJ.-0.0112 mJ;0.31 mJ;

E # ¢l

1 mC
E = yax + xay,sin 0.5px, z = 0

y =x2 + y2 = 2, z = 0,y = x2, z = 0,

B B BNormal

Normal

Normal

�S
�S

�S

(b) (c)(a)

a

FIGURE 2.6

Infinitesimal surface in a magnetic field B oriented (a) normal to the field. (b) parallel to
the field, and (c) with its normal making an angle a to the field.

¢S

Surface
integral
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2.2 The Surface Integral 85

component of B normal to the surface is and the component tangential
to the surface is The component of B normal to the surface results in a
flux of crossing the surface, whereas the component tangential to
the surface does not contribute at all to the flux crossing the surface. Thus, the
magnetic flux crossing the surface in this case is We can obtain
this result alternatively by noting that the projection of the surface onto the
plane normal to the magnetic field lines is Hence, the magnetic flux
crossing the surface is the same as that crossing normal to the area 
that is, or 

To aid further in the understanding of this concept, imagine raindrops
falling vertically downward uniformly. If you hold a rectangular loop horizon-
tally, the number of drops falling through the loop is simply equal to the area of
the loop multipled by the density (number of drops per unit area) of the drops.
If the loop is held vertically, no rain falls through the loop. If the loop is held at
some angle to the horizontal, the number of drops falling through the loop is the
same as that which would fall through another (smaller) loop, which is the pro-
jection of the slanted loop on to the horizontal plane.

Let us now consider a large surface S in the magnetic field region, as
shown in Fig. 2.7. The magnetic flux crossing this surface can be found by divid-
ing the surface into a number of infinitesimal surfaces 
applying the result just obtained for each infinitesimal surface, and adding up
the contributions from all the surfaces. To obtain the contribution from the jth
surface, we draw the normal vector to that surface and find the angle between
the normal vector and the magnetic flux density vector associated with that
surface. Since the surface is infinitesimal, we can assume to be the value of B
at the centroid of the surface, and we can also erect the normal vector at that
point. The contribution to the total magnetic flux from the jth infinitesimal sur-
face is then given by

(2.7)¢cj = Bj cos aj ¢Sj

Bj

Bj

aj

¢S1, ¢S2, ¢S3, Á , ¢Sn,

1B cos a2 ¢S.B1¢S cos a2 ¢S cos a,¢S
¢S cos a.

1B cos a2 ¢S.

1B cos a2 ¢S
B sin a.

B cos a

Bj

aj

anj

Normal

�Sj

S FIGURE 2.7

Division of a large surface S in a
magnetic field region into a number of
infinitesimal surfaces.
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86 Chapter 2 Maxwell’s Equations in Integral Form

where the symbol represents magnetic flux. The total magnetic flux crossing
the surface S is then given by

(2.8)

Using the dot product operation between two vectors, we obtain

(2.9)

where is the unit vector normal to the surface Furthermore, by using the
concept of an infinitesimal surface vector as one having magnitude equal to the
area of the surface and direction normal to the surface, that is,

(2.10)

we can write (2.9) as

(2.11)

For a numerical example, let us consider the magnetic field given by

and determine the magnetic flux crossing the portion of the xy-plane lying be-
tween and For convenience, we shall divide the sur-
face into 25 equal areas, as shown in Fig. 2.8 (a). We shall designate the squares
as where the first digit represents the number of
the square in the x-direction and the second digit represents the number of the
square in the y-direction. The x- and y-coordinates of the midpoint of the ijth
square are and respectively, as shown in Fig. 2.8(b).The
magnetic field at the center of the ijth square is then given by

Since we have divided the surface into equal areas and since all areas are in the
xy-plane,

¢Sij = 0.04 az for all i and j

Bij = 312i - 1212j - 1220.001az

12j - 120.1,12i - 120.1

11, 12, Á , 15, 21, 22, Á , 55,

y = 1.x = 0, x = 1, y = 0,

B = 3xy2az Wb/m2

[c]S = a
n

j = 1
Bj

# ¢Sj

¢Sj = ¢Sj anj

¢Sj.anj

[c]S = a
n

j = 1
Bj

# ¢Sj anj

 = a
n

j = 1
Bj1¢Sj2 cos aj

 = a
n

j = 1
Bj cos aj ¢Sj

 + Bn cos an ¢Sn

 = B1 cos a1 ¢S1 + B2 cos a2 ¢S2 + B3 cos a3 ¢S3 + Á
 [c]S = ¢c1 + ¢c2 + ¢c3 + Á + ¢cn

c
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FIGURE 2.8

(a) Division of the portion of the xy-plane lying between 
and into 25 squares. (b) Area corresponding to the ijth square.y = 1

x = 0, x = 1, y = 0,

The required magnetic flux is then given by

The result that we have just obtained for is approximate since we
have divided the surface S into a finite number of areas. By dividing it into larg-
er and larger numbers of squares, we can obtain more and more accurate re-
sults. In the limit that the result converges to the exact value. The
summation in (2.11) then becomes an integral that represents exactly the mag-
netic flux crossing the surface and is given by

(2.12)

where the symbol S associated with the integral sign denotes that the integration
is performed over the surface S. The integral on the right side of (2.12) is known
as the surface integral of B over S. The surface integral is a double integral since
dS is equal to the product of two differential lengths.

We shall illustrate the evaluation of the surface integral by computing
the exact value of the magnetic flux crossing the surface in Fig. 2.8(a). To do
this, we note that at any arbitrary point on the surface, the differential surface

[c]S = LS
B # dS

n : q ,

[c]S

 = 0.495 Wb

 = 0.0001211 + 3 + 5 + 7 + 9211 + 9 + 25 + 49 + 812
 = 0.00012a

5

i = 1
a

5

j = 1
12i - 1212j - 122

 = a
5

i = 1
a

5

j = 1
312i - 1212j - 1220.001az

# 0.04az

 [c]S = a
5

i = 1
a

5

j = 1
Bij

# ¢Sij

Evaluation of
surface
integral
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88 Chapter 2 Maxwell’s Equations in Integral Form

vector is given by

The value of at the point is

Thus, the required magnetic flux is given by

When the surface under consideration is a closed surface, the surface integral
is written with a circle associated with the integral sign in the manner A
closed surface is one that encloses a volume. Hence, if you are anywhere in that
volume, you can get out of it only by making a hole in the surface, and vice versa.A
simple example is the surface of a balloon inflated and tied up at the mouth. The
surface integral of B over the closed surface S is simply the magnetic flux
emanating from the volume bounded by the surface.Thus, whenever a closed sur-
face integral is evaluated, the unit vectors normal to the differential surfaces are
chosen to be pointing out of the volume, so as to give the outward flux of the
vector field, unless specified otherwise.We shall now consider an example of eval-
uating 

Example 2.2 Evaluation of a closed surface integral

Let us consider the magnetic field

and evaluate where S is the surface of the cubical box bounded by the planes

as shown in Fig. 2.9.
Noting that

 + Laefb
B # dS + Ldhgc

B # dS

 CS
B # dS = Labcd

B # dS + Lefgh
B # dS + Ladhe

B # dS + Lbcgf
B # dS

x = 0 x = 1
y = 0 y = 1
z = 0 z = 1

AS B # dS ,

B = 1x + 22ax + 11 - 3y2ay + 2zaz

AS B # dS.

AS B # dS.

 = L
1

x = 0L
1

y = 0
 3xy2 dx dy = 0.5 Wb

 [c]S = LS
B # dS

 = 3xy2 dx dy

 B # dS = 3xy2 az
# dx dy az

B # dS

dS = dx dy az

RaoCh02v3.qxd  12/18/03  3:09 PM  Page 88



2.2 The Surface Integral 89

y

x

z

d
1

1

1

h

e

g

f

ba

c

FIGURE 2.9

For evaluating the surface integral of a vector field
over a closed surface.

we simply evaluate each of the surface integrals on the right side and add them up to ob-
tain the required quantity. In doing so, we recognize that since the quantity we want is
the magnetic flux out of the box, we should direct the unit normal vectors toward the
outside of the box. Thus, for the surface abcd,

For the surface efgh,

For the surface adhe,

For the surface bcgf,

Lbfgc
B # dS = L

1

x = 0L
1

z = 0
1-22 dz dx = -2

B # dS = -2 dz dx

y = 1, B = 1x + 22ax - 2ay + 2zaz, dS = dz dx ay

Laehd
B # dS = L

1

x = 0L
1

z = 0
1-12 dz dx = -1

B # dS = -dz dx

y = 0, B = 1x + 22ax + 1ay + 2zaz, dS = -dz dx ay

Lefgh
B # dS = L

1

z = 0L
1

y = 0
3 dy dz = 3

B # dS = 3 dy dz

x = 1, B = 3ax + 11 - 3y2ay + 2zaz, dS = dy dz ax

Labcd
B # dS = L

1

z = 0L
1

y = 0
1-22 dy dz = -2

B # dS = -2 dy dz

x = 0, B = 2ax + 11 - 3y2ay + 2zaz, dS = -dy dz ax
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90 Chapter 2 Maxwell’s Equations in Integral Form

For the surface aefb,

For the surface dhgc,

Finally,

K2.2. Surface integral; Surface integral of B; Magnetic flux; Surface integral over a
closed surface.

D2.3. Given find by evaluating the approximate
absolute value of the magnetic flux crossing from one side to the other side of an in-
finitesimal surface of area at the point (1, 2, 1) for each of the following
orientations of the surface: (a) in the plane; (b) on the surface 
and (c) normal to the unit vector 
Ans. (a) (b) (c)

D2.4. For the vector field find the absolute value of over the
following plane surfaces: (a) square having the vertices at (0, 0, 0), (0, 2, 0), (0, 2,
2), and (0, 0, 2); (b) square having the vertices at (2, 0, 0), (2, 2, 0), (2, 2, 2), and (2,
0, 2); (c) square having the vertices at (0, 0, 0), (2, 0, 0), (2, 0, 2), and (0, 0, 2); and
(d) triangle having the vertices at (0, 0, 0), (2, 0, 0), and (0, 0, 2).
Ans. (a) 0; (b) 8; (c) 4; (d)

2.3 FARADAY’S LAW

In the preceding two sections, we introduced the line and surface integrals. We
are now ready to consider Maxwell’s equations in integral form. The first equa-
tion, which we shall discuss in this section, is a consequence of an experimental
finding by Michael Faraday in 1831 that time-varying magnetic fields give rise to
electric fields and, hence, it is known as Faraday’s law. Faraday discovered that
when the magnetic flux enclosed by a loop of wire changes with time, a current
is produced in the loop, indicating that a voltage or an electromotive force, ab-
breviated as emf, is induced around the loop. The variation of the magnetic flux
can result from the time variation of the magnetic flux enclosed by a fixed loop

4
3.

1A # dSA = x1ax + ay2,
10-3 Wb.11/122 * 10-3 Wb;2 * 10-3 Wb;

1
312ax + ay + 2az2.

2x2 + y2 = 6;x = 1
0.001 m2

B # ¢SB = 1yax - xay2 Wb/m2,

CS
 B # dS = -2 + 3 - 1 - 2 + 0 + 2 = 0

Ldhgc
B # dS = L

1

y = 0L
1

x = 0
2 dx dy = 2

B # dS = 2 dx dy

z = 1, B = 1x + 22ax + 11 - 3y2ay + 2az, dS = dx dy az

Laefb
B # dS = 0

B # dS = 0
z = 0, B = 1x + 22ax + 11 - 3y2ay + 0az, dS = -dx dy az
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Statement of
Faraday’s law

B

S

C

dS

FIGURE 2.10

For illustrating Faraday’s law.

or from a moving loop in a static magnetic field or from a combination of the
two, that is, a moving loop in a time-varying magnetic field.

In mathematical form, Faraday’s law is given by

(2.13)

where S is a surface bounded by the closed path C, as shown in Fig. 2.10. In
words, Faraday’s law states that the electromotive force around a closed path is
equal to the negative of the time rate of change of the magnetic flux enclosed by
that path. There are certain procedures and observations of interest pertinent to
the application of (2.13). We shall discuss these next.

1. The magnetic flux on the right side is to be evaluated in accordance with
the right-hand screw rule (R.H.S. rule), a convention that is applied consistently
for all electromagnetic field laws involving integration over surfaces bounded by
closed paths. The right-hand screw rule consists of imagining a right-hand screw
being turned around the closed path, as illustrated in Fig. 2.11 for two opposing
senses of paths, and using the resulting direction of advance of the screw to
evaluate the surface integral. The application of this rule to the geometry of

CC
E # dl = -  

d

dtLS
B # dS

Right-hand
screw rule

(a) (b)

C

C

FIGURE 2.11

Right-hand screw rule convention employed in the formulation of
electomagnetic field laws.
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FIGURE 2.12

(a) A plane surface and (b) a combination of three plane surfaces, bounded by the closed
path C.

Fig. 2.10 means that in evaluating the surface integral of B over S, the normal
vector to the differential surface dS should be directed as shown in that figure.

2. In evaluating the surface integral of B, any surface S bounded by C
can be employed. For example, if the loop C is a planar loop, it is not necessary
to consider the plane surface having the loop as its perimeter. One can consid-
er a curved surface bounded by C or any combination of plane (or plane and
curved) surfaces which together are bounded by C, and which is sometimes a
more desirable choice. To illustrate this point, consider the planar loop PQRP
in Fig. 2.12 (a). The most obvious surface bounded by this loop is the plane
surface PQR inclined to the coordinate planes. Now imagine this plane sur-
face to be an elastic sheet glued to the perimeter and pushed in toward the
origin so as to conform to the coordinate planes. Then we obtain the combina-
tion of the plane surfaces OPQ, OQR, and ORP, as shown in Fig. 2.12(b),
which together constitute a surface also bounded by the loop. To evaluate the
surface integral of B for the surface in Fig. 2.12(a), we need to make use of the
dS vector on that slant surface. On the other hand, for the geometry in Fig.
2.12(b), we can use the (simpler) dS vectors associated with the coordinate
planes. The fact that any surface S bounded by a closed path C can be em-
ployed to evaluate the magnetic flux enclosed by C implies that the magnetic
flux through all such surfaces is the same in order for the emf around C to be
unique. As we shall learn in Section 2.4, it is a fundamental property of the
magnetic field that the magnetic flux is the same through all surfaces bounded
by a given closed path.

3. The closed path C on the left side need not represent a loop of wire,
but can be an imaginary contour. It means that the time-varying magnetic flux
induces an electric field in the region and this results in an emf around the
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Lenz’s law

Faraday’s law
for N-turn
coil

(a) (b) (c)

O
O

A
A A�

O

B
B�

A�

B�B

FIGURE 2.13

For illustrating the surface bounded by a loop containing two turns.

closed path. If a wire is placed in the position occupied by the closed path, the
emf will produce a current in the loop simply because the charges in the wire
are constrained to move along the wire.

4. The minus sign on the right side together with the right-hand screw
rule ensures that Lenz’s law is always satisfied. Lenz’s law states that the sense
of the induced emf is such that any current it produces tends to oppose the
change in the magnetic flux producing it. It is important to note that the in-
duced emf acts to oppose the change in the flux and not the flux itself. To clari-
fy this, let us consider that the flux is into the paper and increasing with time.
Then the induced emf acts to produce flux out of the paper. On the other hand,
if the same flux is decreasing with time, then the induced emf acts to produce
flux into the paper.

5. If the loop C contains more than one turn, such as in an N-turn coil,
then the surface S bounded by the periphery of the loop takes the shape of a
spiral ramp, as shown in Fig. 2.13 (a) for N equal to 2.This surface can be visual-
ized by taking two paper plates, cutting each of them along a radius, as shown in
Figs. 2.13(b) and (c), and joining the edge BO of the plate in (c) to the edge 
of the plate in (b). For a tightly wound coil, this is equivalent to the situation in
which N separate, identical, single-turn loops are stacked so that the emf in-
duced in the N-turn coil is N times that induced in one turn. Thus, for an N-turn
coil,

(2.14)

where is the magnetic flux computed as though the coil is a one-turn coil.

We shall now consider two examples to illustrate the determination of in-
duced emf using Faraday’s law, the first involving a stationary loop in a time-
varying magnetic field and the second involving a moving conductor in a static
magnetic field.

c

emf = -N 

dc

dt

A¿O
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x

z
y x � 0

z �0 z = b

x � a
B0 cos vt ay

dS

C

S

FIGURE 2.14

Rectangular loop in the xz-plane situated in a
time-varying magnetic field.

Example 2.3 Induced emf around a rectangular loop in a time-varying
magnetic field

A time-varying magnetic field is given by

where is a constant. It is desired to find the induced emf around the rectangular loop C
in the xz-plane bounded by the lines and as shown in Fig. 2.14.

Choosing in accordance with the right-hand screw rule and using
the plane surface S bounded by the loop, we obtain the magnetic flux enclosed by the
loop to be

Note that since the magnetic flux density is uniform and normal to the plane of the loop, this
result could have been obtained by simply multiplying the area ab of the loop by the compo-
nent of the flux density vector. The induced emf around the loop is then given by

The time variations of the magnetic flux enclosed by the loop and the induced
emf around the loop are shown in Fig. 2.15. It can be seen that when the magnetic flux
enclosed by the loop into the paper is decreasing with time, the induced emf is positive,
thereby producing a clockwise current if the loop were a wire. This polarity of the cur-
rent gives rise to a magnetic field directed into the paper inside the loop and, hence, acts
to oppose the decrease of the magnetic flux enclosed by the loop. When the magnetic
flux enclosed by the loop into the paper is increasing with time, the induced emf is neg-
ative, thereby producing a counterclockwise current around the loop. This polarity of
the current gives rise to a magnetic field directed out of the paper inside the loop and
hence acts to oppose the increase of the magnetic flux enclosed by the loop. These ob-
servations are consistent with Lenz’s law.

 = -  
d

dt
 [abB0 cos vt] = abB0v sin vt

 CC
E # dl = -  

d

dtLS
B # dS

B0 cos vt

 = B0 cos vtL
b

z = 0L
a

x = 0
dx dz = abB0 cos vt

 c = LS
B # dS = L

b

z = 0L
a

x = 0
B0 cos vt ay

# dx dz ay

dS = dx dz ay

z = b,x = 0, x = a, z = 0,
B0

B = B0 cos vt ay

Stationary
loop in a
time-varying
magnetic field
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Moving
conductor in
a static
magnetic field
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c

2p 3p
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0 p 2p 3p
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abB0

abB0v

emf

FIGURE 2.15

Time variations of magnetic flux 
enclosed by the loop of Fig. 2.14 and the
resulting induced emf around the loop.

c

Example 2.4 Induced emf around an expanding loop in a uniform static
magnetic field

A rectangular loop of wire with three sides fixed and the fourth side movable is situated
in a plane perpendicular to a uniform magnetic field as illustrated in Fig. 2.16.
The movable side consists of a conducting bar moving with a velocity in the y-direction.
It is desired to find the emf induced around the closed path C of the loop.

Letting the position of the movable side at any time t be considering
in accordance with the right-hand screw rule, and using the plane surface

S bounded by the loop, we obtain the magnetic flux enclosed by the loop to be

Note that this result could also have been obtained as the product of the area of the loop
and the flux density because of the uniformity of the flux density withinB0,l1y0 + v0 t2

 = B0 l1y0 + v0 t2
 = L

l

x = 0L
y0 + v0 t

y = 0
B0 dx dy

 LS
B # dS = LS

B0az
# dx dy az

dS = dx dy az

y0 + v0 t,

v0

B = B0az,

xl

z
y

C

S dS v0ay

B

FIGURE 2.16

Rectangular loop of wire with a movable side
situated in a uniform magnetic field.

RaoCh02v3.qxd  12/18/03  3:09 PM  Page 95



96 Chapter 2 Maxwell’s Equations in Integral Form

the area of the loop and its perpendicularity to the plane of the loop. The emf induced
around C is given by

Note that if the bar is moving to the right, the induced emf is negative and produces a
current in the sense opposite to that of C. This polarity of the current is such that it gives
rise to a magnetic field directed out of the paper inside the loop. The flux of this magnet-
ic field is in opposition to the flux of the original magnetic field and hence tends to
oppose the increase in the magnetic flux enclosed by the loop. On the other hand, if the
bar is moving to the left, is negative, the induced emf is positive, and produces current
in the same sense as that of C. This polarity of current is such that it gives rise to a mag-
netic field directed into the paper inside the loop.The flux of this magnetic field is in aug-
mentation to the flux of the original magnetic field and hence tends to oppose the
decrease in the magnetic flux enclosed by the loop. These observations are once again
consistent with Lenz’s law.

It is also of interest to note that the induced emf can also be interpreted as being
due to the electric field induced in the moving bar by virtue of its motion perpendicular
to the magnetic field. Thus, a charge Q in the bar experiences a force or

To an observer moving with the bar, this force appears as an
electric force due to an electric field Viewed from inside the loop, this
electric field is in the counterclockwise sense. Hence, the induced emf, which is the line
integral of E along the bar, is given by

in the counterclockwise sense (i.e., opposite to C), consistent with the result deduced
from Faraday’s law. This concept of induced emf is known as the motional emf concept,
which is employed widely in the study of electromechanics.

In the two examples we just discussed, we have implicitly illustrated the
principles behind two of the practical applications of Faraday’s law. These are
pertinent to the reception of radio and TV signals using a loop antenna and
electromechanical energy conversion.

That the arrangement considered in Example 2.3 illustrates the principle
of a loop antenna can be seen by noting that if the loop C were in the xy-plane
or in the yz-plane, no emf would be induced in it since the magnetic flux densi-
ty is then parallel to the plane of the loop and no flux is enclosed by the loop.
In fact, for any arbitrary orientation of the loop, only that component of B nor-
mal to the plane of the loop contributes to the magnetic flux enclosed by the
loop and, hence, to the emf induced in the loop.Thus, for a given magnetic field,
the voltage induced in the loop varies as the orientation of the loop is changed,
with the maximum occurring when the loop is in the plane perpendicular to the

L
l

x = 0
v0 B0 ax

# dx ax = L
l

x = 0
v0 B0 dx = v0 B0 l

F>Q = v0 B0ax.
Qv0 ay � B0 az = Qv0 B0ax.

F = Qv � B

v0

 = -B0 lv0

 = -  
d

dt
 [B0 l1y0 + v0 t2]

 CC
E # dl = -  

d

dtLS
B # dS

Principle of
loop antenna
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Locating a
radio
transmitter

Electro-
mechanical
energy
conversion

magnetic field. Pocket AM radios generally contain a type of loop antenna con-
sisting of many turns of wire wound around a bar of magnetic material, and TV
receivers generally employ a single-turn circular loop for UHF channels.
Thus, for maximum signals to be received, the AM radios and the TV loop
antennas need to be oriented appropriately. Another point of interest evi-
dent from Example 2.3 is that the induced emf is proportional to the radian
frequency of the source of the magnetic field. Hence, for the same voltage to
be induced for a given amplitude of the magnetic flux density, the area of
the loop times the number of turns is inversely proportional to the frequency.

What is undesirable for one purpose can sometimes be used to advantage
for another purpose. The fact that no voltage is induced in the loop antenna
when the magnetic field is parallel to the plane of the loop is useful for locating
the transmitter of a radio wave. Since the magnetic field of an incoming radio
wave is perpendicular to its direction of propagation, no voltage is induced in
the loop when its axis is along the direction of the transmitter. For a transmitter
on Earth’s surface, it is then sufficient to use two spaced vertical loop antennas
and find their orientations for which no signals are received. By then producing
backward along the axes of the two loop antennas, as shown by the top view in
Fig. 2.17, the location of the transmitter can be determined.

That the arrangement considered in Example 2.4 is a simple example of
an electromechanical energy converter can be seen by recognizing that in view
of the current flow in the moving bar, the bar is acted on by a magnetic force.
Since for positive the current flows in the loop in the sense opposite to that
of C and hence in the positive x-direction in the moving bar, and since the mag-
netic field is in the z-direction, the magnetic force is exerted in the or

Thus, to keep the bar moving, an external force must be exerted
in the thereby requiring mechanical work to be done by an ex-
ternal agent. It is this mechanical work that is converted into electrical energy in
the loop.

What we have just discussed is the principle of generation of electric power
by linear motion of a conductor in a magnetic field. Practical electric generators
are of the rotating type. The principle of a rotating generator can be illustrated
by considering a rectangular loop of wire situated symmetrically about the z-axis
and rotating with angular velocity around the z-axis in a constant magnetic
field as shown in Fig. 2.18(a). Then noting from the view in Fig.
2.18(b) that the magnetic flux enclosed by the loop at any arbitrary value of
time is the same as that enclosed by its projection onto the yz-plane at that time,
we obtain where A is the area of the loop and the situationc = B0 A cos vt,

c

B =  B0ax,
v

+ay-direction,
-ay-direction.

ax � az

v0,

B0

v,

Principle of
rotating
generator

Loop 1

Loop 2

Transmitter

FIGURE 2.17

Top view of an arrangement consisting
of two loop antennas for locating a
transmitter of radio waves.
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FIGURE 2.18

For illustrating the principle of a rotating generator.

Magnetic
levitation

shown in Fig. 2.18(a) is assumed for The emf induced in the loop is
or Thus, the rotating loop in the constant magnetic field

produces an alternating voltage. The same result can be achieved by a stationary
loop in a rotating magnetic field. In fact, in most generators, a stationary mem-
ber, or stator, carries the coils in which the voltage is induced, and a rotating
member, or rotor, provides the magnetic field. As in the case of the arrangement
of Example 2.4, a certain amount of mechanical work must be done to keep the
loop rotating. It is this mechanical work, which is supplied by the prime mover
(such as a turbine in the case of a hydroelectric generator or the engine of an au-
tomobile in the case of its alternator) turning the rotor, that is converted into
electrical energy.

There are numerous other applications of Faraday’s law, but we shall dis-
cuss only one more before we conclude this section. This is the phenomenon of
magnetic levitation, a basis for rapid transit systems employing trains that hover
over their guideways and do not touch the rail, among other applications. Mag-
netic levitation arises from a combination of Faraday’s law and Ampère’s force
law. It can be explained and demonstrated through a series of simple experi-
ments, culminating in a current-carrying coil lifting up above a metallic plate, as
described in the following:

1. Consider a pair of coils (30 to 50 turns of No. 26 wire of about 4-in. di-
ameter) attached to nails on a piece of wood, as shown in Fig. 2.19. Set to zero
the output of a variable power supply obtained by connecting a variac to the
110-V ac mains. Connect one output terminal (A) of the variac to the begin-
nings ( and ) of both coils and the second output terminal (B) to the ends
( and ) of both coils so that currents flow in the two coils in the same sense.
Apply some voltage to the coils by turning up the variac and note the attraction
between the coils. Repeat the experiment by connecting A to and and B
to and so that currents in the two coils flow in opposite senses, and note
repulsion this time. What we have just described is Ampère’s force law at work.
If the currents flow in the same sense, the magnetic force is one of attraction,

D1,C2

D2C1

D2D1

C2C1

vB0 A sin vt.-dc/dt,
t = 0.
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1See L. Pearce Williams,“André-Marie Ampère,” Scientific American, January 1989, pp. 90–97, for an
interesting account of Ampère’s experiments involving helical and spiral coils.

Variac

110 V

Coil No. 2

Coil No. 1

C1

A

B

C2 D2
D1

Fuse

AC

FIGURE 2.19

Experimental setup for demonstration of Ampère’s force law, Faraday’s law, and the principle
of magnetic levitation.

and if the currents flow in opposite senses, it is one of repulsion, as shown in
Figs. 2.20(a) and (b), respectively, for straight wires, for the sake of simplicity.1

2. Connect coil No. 2 to the variac and coil No. 1 to an oscilloscope to ob-
serve the induced voltage in coil No. 1, thereby demonstrating Faraday’s law.
Note the change in the induced voltage as the variac voltage is changed. Note
also the change in the induced voltage by keeping the variac voltage constant
and moving coil No. 1 away from coil No. 2 and/or turning it about the vertical.

3. Connect coil No. 2 to the variac and leave coil No. 1 open-circuited. Ob-
serve that no action takes place as the variac voltage is applied to coil No. 2.This
is because although a voltage is induced in coil No. 1, no current flows in it.

I I

B BF

(a) (b)

F

I

BF

I

B F
FIGURE 2.20

For explaining (a) force of attraction for
currents flowing in the same sense and 
(b) force of repulsion for currents flowing
in opposite senses.
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Now short circuit coil No. 1 and repeat the experiment to note repulsion. This
is due to the induced voltage in coil No. 1 causing a current flow in it in the
sense opposite to that in coil No. 2, and, hence, is a result of the combination of
Faraday’s law and Ampère’s force law. That the force is one of repulsion can be
deduced by writing circuit equations and showing that the current in the short-
circuited coil does indeed flow in the sense opposite to that in the excited coil.
However, it can be explained with the aid of physical reasoning as follows.
When both coils are excited in the same sense in part (1) of the demonstration,
the magnetic flux linking each coil is the sum of two fluxes in the same sense,
due to the two currents. When the two coils are excited in opposite senses, the
magnetic flux linking each coil is the algebraic sum of two fluxes in opposing
senses, due to the two currents. Therefore, for the same source voltage and for
the same pair of coils, the currents that flow in the coils in the second case have
to be greater than those in the first case, for the induced voltage in each coil to
equal the applied voltage. Thus, the force of repulsion in the second case is
greater than the force of attraction in the first case. Consider now the case of
one of the coils excited by source voltage, say, and the other short-circuited.
Then the situation can be thought of as the first coil excited by and in
series, and the second coil excited by and in series, thereby result-
ing in a force of attraction and a force of repulsion. Since the force of repulsion
is greater than the force of attraction, the net force, according to superposition,
is one of repulsion.

4. Now to demonstrate actual levitation, place a smaller coil (about 30
turns of No. 28 wire of about 2-in. diameter) on a heavy aluminum plate

as shown in Fig. 2.21. Applying only the minimum neces-
sary voltage and turning the variac only momentarily to avoid overheating, pass
current through the coil from the variac to see the coil levitate. This levitation is
due to the repulsive action between the current in the coil and the induced cur-
rents in the metallic plate. Since the plate is heavy and cannot move, the alter-
native is for the coil to lift up.

K2.3. Faraday’s law; Right-hand screw rule; Lenz’s law; Faraday’s law for N-turn coil;
Motional emf concept; Principle of loop antenna; Electromechanical energy
conversion; Rotating generator; Magnetic levitation.

D2.5. Given find the induced emf around each
of the following closed paths: (a) the rectangular path from (0, 0, 0) to (0, 1, 0) to
(0, 1, 1) to (0, 0, 1) to (0, 0, 0); (b) the triangular path from (1, 0, 0) to (0, 1, 0) to

B = B01sin vt ax - cos vt ay2 Wb/m2,

15 in. * 5 in. * 1
2 in.2,

-Vg>2Vg>2
Vg>2Vg>2

Vg,

To 110 V AC
Through
Variac

Aluminum
Plate

Coil

FIGURE 2.21

Setup for demonstrating magnetic
levitation.
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(0, 0, 1) to (1, 0, 0); and (c) the rectangular path from (0, 0, 0) to (1, 1, 0) to (1, 1, 1)
to (0, 0, 1) to (0, 0, 0).

Ans. (a) (b)

(c)

D2.6. A square loop lies in the xy-plane forming the closed path C connecting the
points (0, 0, 0), (1, 0, 0), (1, 1, 0), (0, 1, 0), and (0, 0, 0), in that order. A magnetic
field B exists in the region. From considerations of Lenz’s law, determine
whether the induced emf around the closed path C at is positive, negative,
or zero for each of the following magnetic fields, where is a positive constant:
(a) (b) and (c)
Ans. (a) negative; (b) positive; (c) zero.

D2.7. For find the induced emf around the following closed
paths: (a) the closed path comprising the straight lines successively connecting
the points (0, 0, 0), (1, 0, 0), (1, 1, 0), (0, 1, 0), (0, 0, 0.001), and (0, 0, 0); (b) the
closed path comprising the straight lines successively connecting the points
(0, 0, 0), (1, 0, 0), (1, 1, 0), (0, 1, 0), (0, 0, 0.001), (1, 0, 0.001), (1, 1, 0.001), (0, 1,
0.001), (0, 0, 0.002), and (0, 0, 0) with a slight kink in the straight line at the point
(0, 0, 0.001) to avoid touching the point; and (c) the closed path comprising the
helical path from to and
the straight-line path from to with slight kinks to
avoid touching the helical path.
Ans. (a) (b) (c)

2.4 AMPÈRE’S CIRCUITAL LAW

In the preceding section, we introduced Faraday’s law, one of Maxwell’s equa-
tions, in integral form. In this section, we introduce another of Maxwell’s
equations in integral form. This equation, known as Ampère’s circuital law, is a
combination of an experimental finding of Oersted that electric currents gen-
erate magnetic fields and a mathematical contribution of Maxwell that time-
varying electric fields give rise to magnetic fields. It is this contribution of
Maxwell that led to the prediction of electromagnetic wave propagation even
before the phenomenon was discovered experimentally. In mathematical
form, Ampère’s circuital law is analogous to Faraday’s law and is given by

(2.15)

where S is a surface bounded by C.

The quantity on the left side of (2.15) is the line integral of the

vector field around the closed path C. We learned in Section 2.1 that the
quantity has the physical meaning of work per unit charge associatedAC E # dl

B/m0

CC
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# dl
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with the movement of a test charge around the closed path C. The quantity 

does not have a similar physical meaning. This is because magnetic

force on a moving charge is directed perpendicular to the direction of motion of
the charge, as well as to the direction of the magnetic field, and hence does not
do work in the movement of the charge. The vector is known as the “mag-
netic field intensity vector” and is denoted by the symbol H. By recalling from
(1.78) that B has the units of [(permeability)(current)(length)] per 
we note that the quantity H has the units of current per unit distance or amp/m.

This gives the units of current or amp to In analogy with the name

“electromotive force” for the quantity is known as the “mag-

netomotive force,” abbreviated as mmf.
The quantity on the right side of (2.15) is the current due to flow of

free charges crossing the surface S. It can be a convection current such as due to
motion of a charged cloud in space, or a conduction current due to motion of
charges in a conductor. Although can be filamentary current, surface cur-
rent, or volume current, or a combination of these, it is formulated in terms of
the volume current density vector, J, in the manner

(2.16)

Just as the surface integral of the magnetic flux density vector B over
a surface S gives the magnetic flux (Wb) crossing that surface, the surface inte-
gral of J over a surface S gives the current (A) crossing that surface.

The quantity on the right side of (2.15) is the flux of the vector
field crossing the surface S. The vector is known as the “displacement
vector” or the “displacement flux density vector” and is denoted by the sym-
bol D. By recalling from (1.62) that E has the units of (charge) per [(permit-
tivity) ], we note that the quantity D has the units of charge per unit
area or Hence the quantity that is, the displacement flux,

has the units of charge, and the quantity has the units of (charge)

or current and is known as the “displacement current.” Physically, it is not a cur-
rent in the sense that it does not represent the flow of charges, but mathemati-
cally it is equivalent to a current crossing the surface S.

Replacing and in (2.15) by H and D, respectively, and using
(2.16), we rewrite Ampère’s circuital law as

(2.17)

In words, (2.17) states that the magnetomotive force around a closed path C is
equal to the algebraic sum of the current due to flow of charges and the displace-
ment current bounded by C. The situation is illustrated in Fig. 2.22.

CC
H # dl = LS

J # dS +
d

dtLS
D # dS

e0EB>m0

d

dt

d

dtLS
e0E # dS

1S e0E # dS,C>m2.
1distance22

e0Ee0E
1S e0E # dS

1A/m22
1Wb/m22

[Ic]S = LS
J # dS

[Ic]S

[Ic]S

AC  H # dlAC 
E # dl,

AC H # dl.

[1distance22],
B>m0

CC
 
B
m0

# dl

Statement of
Ampère’s
circuital law
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2.4 Ampère’s Circuital Law 103

J, D

S

C
dS

FIGURE 2.22

For illustrating Ampère’s
circuital law.

As in the case of Faraday’s law, there are certain procedures and observa-
tions pertinent to the application of (2.17). These are as follows.

1. The surface integrals on the right side of (2.17) are to be evaluated in accor-
dance with the R.H.S. rule, which means that for the geometry of Fig. 2.22,
the normal vector to the differential surface dS should be directed as shown
in the figure.

2. In evaluating the surface integrals, any surface S bounded by C can be em-
ployed. However, the same surface must be employed for the two surface
integrals. It is not correct to consider two different surfaces to evaluate the
two surface integrals, although both surfaces may be bounded by C.

Observation 2 implies that for the mmf around C to be unique, the sum of
the two currents (current due to flow of charges and displacement current)
through all possible surfaces bounded by C is the same. Let us now consider two
surfaces and bounded by the closed paths and respectively, as shown
in Fig. 2.23, where and are traversed in opposite senses and touch each
other so that and together form a closed surface. The situation may be
imagined by considering the closed surface to be that of a potato and and 
to be two rubber bands around the potato.

Applying Ampère’s circuital law to and and noting that is chosen
in accordance with the R.H.S. rule, we have

(2.18a)CC1
 
H # dl = LS1

J # dS1 +
d

dtLS1

D # dS1

dS1S1C1

C2C1

S2S1

C2C1

C2,C1S2S1

C1 C2

S1 S2

dS2dS1

FIGURE 2.23

Two closed paths and touching each
other and bounding the surfaces and 
respectively, which together form a closed
surface.

S2,S1

C2C1
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104 Chapter 2 Maxwell’s Equations in Integral Form

Similarly, applying Ampère’s circuital law to and and noting again that 
is chosen in accordance with the R.H.S. rule, we have

(2.18b)

Now adding (2.18a) and (2.18b), we obtain

(2.19)

where the left side results from the fact that and are actually the same
path but traversed in opposite senses, so that the two line integrals are the neg-
atives of each other.

Since the closed surface can be of any size and shape, we can gen-
eralize (2.19) to write

or

(2.20)

Thus, the displacement current emanating from a closed surface is equal to the
current due to charges flowing into the volume bounded by that closed surface.

An important example of the property given by (2.20) at work is in a ca-
pacitor circuit, as shown in Fig. 2.24. In this circuit, the time-varying voltage
source sets up a time-varying electric field between the plates of the capacitor

d

dtCS
 D # dS = -CS

 J # dS

CS
 J # dS +

d

dtCS
 D # dS = 0

S1 + S2

C2C1

0 = CS1 + S2

 J # dS +
d

dtCS1 + S2

 D # dS

CC2

 H # dl = LS1

J # dS2 +
d

dtLS2

D # dS2

dS2S2C2

Capacitor
circuit

Capacitor
Plates

S

� �

D

V(t)

I(t) I(t)

FIGURE 2.24

Capacitor circuit for illustrating that the
displacement current from one plate to the other is
equal to the wire current.
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2.4 Ampère’s Circuital Law 105

and directed from one plate to the other. Therefore, one can talk about dis-
placement current crossing a surface between the plates.According to (2.20) ap-
plied to a closed surface S enclosing one of the plates, as shown in the figure,

(2.21)

where I(t) is the current (due to flow of charges in the wire) drawn from the
voltage source. Neglecting fringing effects and assuming that the electric field is
normal to the plates and uniform, we have, from (2.21),

(2.22)

where A is the area of each plate. Thus, where the wire current ends on one of
the plates, the displacement current takes over and completes the circuit to the
second plate.

Let us now return to Ampère’s circuital law (2.17) and examine it together
with Faraday’s law (2.13). To do this, we repeat the two laws

(2.23)

(2.24)

and observe that time-varying electric and magnetic fields are interdependent,
since according to Faraday’s law (2.23), a time-varying magnetic field produces
an electric field, whereas according to Ampère’s circuital law (2.24), a time-
varying electric field gives rise to a magnetic field. In addition, Ampère’s cir-
cuital law tells us that an electric current generates a magnetic field. These
properties from the basis for the phenomena of radiation and propagation of
electromagnetic waves. To provide a simplified, qualitative explanation of radi-
ation from an antenna, we begin with a piece of wire carrying a time-varying
current, I(t), as shown in Fig. 2.25. Then, the time-varying current generates a
time-varying magnetic field H(t), which surrounds the wire. Time-varying elec-
tric and magnetic fields, E(t) and H(t), are then produced in succession, as
shown by two views in Fig. 2.25, thereby giving rise to electromagnetic waves.
Thus, just as water waves are produced when a rock is thrown in a pool of water,
electromagnetic waves are radiated when a piece of wire in space is excited by a
time-varying current.

K2.4. Ampère’s circuital law; Magnetic field intensity; Magnetomotive force; Dis-
placement flux density; Displacement current; Capacitor circuit; Radiation from
an antenna.

 CC
H # dl = LS

J # dS +
d

dtLS
D # dS

 CC
E # dl = -  

d

dtLS
B # dS

d

dtCS
D # dS =

d

dt
 1DA2 = I1t2

d

dtCS
D # dS = I1t2

Radiation
from antenna
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I(t)

E

E

H

H

FIGURE 2.25

Two views of a simplified depiction of
electromagnetic wave radiation from a
piece of wire carrying a time-varying
current.

D2.8. For in free space, find the displacement current crossing an area
of in the xy-plane from the to the for each of the follow-
ing values of t: (a) (b) and (c)
Ans. (a) (b) 0; (c)

D2.9. Three point charges and situated at the corners of an equi-
lateral triangle of sides 1 m are connected to each other by wires along the
sides of the triangle. Currents of I A and 3I A flow from to and to 
respectively.The displacement current emanating from a spherical surface of ra-
dius 0.1 m and centered at is A. Find the following: (a) the current flow-
ing from to (b) the displacement current emanating from the spherical
surface of radius 0.1 m and centered at and (c) the displacement current em-
anating from the spherical surface of radius 0.1 m and centered at 
Ans. (a) 3I A; (b) (c) 6I A.

2.5 GAUSS’ LAWS

In the previous two sections, we learned two of the four Maxwell’s equations.
These two equations have to do with the line integrals of the electric and mag-
netic fields around closed paths. The remaining two Maxwell’s equations are
pertinent to the surface integrals of the electric and magnetic fields over closed
surfaces. These are known as Gauss’ laws.

-4I A;
Q3.

Q1;
Q3;Q2

-2IQ2

Q3,Q1Q2Q1

Q31t2Q11t2, Q21t2,
-0.1e-1e0 E0 A.0.1 e0 E0 A;

t = 1 s.t = 1>12 s;t = 0;
+z-side-z-side0.1 m2

E = E0 te-t2
az
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2.5 Gauss’ Laws 107

Gauss’ law
for the
electric field

Evaluation of
volume
integral

Gauss’ law for the electric field states that the displacement flux emanating
from a closed surface S is equal to the charge contained within the volume V
bounded by that surface. This statement, although familiarly known as Gauss’
law, has its origin in experiments conducted by Faraday. In mathematical form,
it is given by

(2.25)

The quantity is the charge contained within the volume V bounded by S.
Although can be a point charge, surface charge, or volume charge, or a
combination of these, it is formulated as the volume integral of the volume
charge density that is, in the manner

(2.26)

The volume integral is a triple integral since dv is the product of three dif-
ferential lengths. For an illustration of the evaluation of a volume integral, let us
consider

and the cubical volume V bounded by the planes 
and Then the charge Q contained within the cubical volume is

given by

 = 3
2 

  
C

 = cx2

2
+ x d

x = 0

1

 = L
1

x = 0
1x + 12 dx

 = L
1

x = 0
cxy +

y2

2
+

y

2
d

y = 0

1

 dx

 = L
1

x = 0L
1

y = 0
ax + y +

1
2
b  dx dy

 = L
1

x = 0L
1

y = 0
cxz + yz +

z2

2
d

z = 0

1

 dx dy

 Q = LV
 r dv = L

1

x = 0L
1

y = 0L
1

z = 0
1x + y + z2 dx dy dz

z = 1.z = 0,
x = 0, x = 1, y = 0, y = 1,

r = 1x + y + z2 C/m3

[Q]V = LV
  r dv

r,

[Q]V

[Q]V

CS
D # dS = [Q]V
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D

S
dS

r

V

FIGURE 2.26

For illustrating Gauss’ law
for the electric field.

We may now write Gauss’ law for the electric field (2.25) in the manner

(2.27)

where we recall that

and it is understood that although formulated in terms of the volume
charge density represents the algebraic sum of all free charges contained
within V. The situation is illustrated in Fig. 2.26.

Gauss’ law for the magnetic field is analogous to Gauss’ law for the elec-
tric field and is given by

(2.28)

In words, (2.28) states that the magnetic flux emanating from a closed surface is
equal to zero. In physical terms, (2.28) signifies that magnetic charges do not exist
and magnetic flux lines are closed. Whatever magnetic flux enters (or leaves) a
certain part of a closed surface must leave (or enter) through the remainder of
the closed surface, as illustrated in Fig. 2.27.

This property of the magnetic field is sometimes useful in the computation
of magnetic flux crossing a given surface (which is not closed). For example, to
find the magnetic flux crossing the slanted plane surface in Fig. 2.28, it is not
necessary to evaluate formally the surface integral of B over that surface. Since
the slant surface and the three surfaces and in the coordinate planes
together form a closed surface, the required flux is the same as the net flux
crossing the surfaces and In fact, the net flux crossing the surfaces

and is the same as that crossing any nonplanar surface having the same
periphery as that of Thus, as already pointed out in Section 2.3, it is a funda-
mental property of the magnetic field that the magnetic flux is the same through

S1.
S4S2, S3,

S4.S2, S3,

S4S2, S3,S1

S1

CS
B # dS = 0

r,
1Vr dv,

D = e0E

CS
D # dS = LV

 r dv

Gauss’ law
for the
magnetic field
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B

S

dS

FIGURE 2.27

For illustrating Gauss’ law for the
magnetic field.

y

z

x

S2

S4

S3

S1

FIGURE 2.28

Slanted plane surface and surface 
and in the coordinate planes.S4

S2, S3,S1

all surfaces bounded by a closed path, and hence any surface S bounded by
closed path C can be used in Faraday’s law.

In view of the foregoing discussion, it can be seen that Gauss’ law for the
magnetic field is not independent of Faraday’s law. To show this mathematical-
ly, we consider the geometry shown in Fig. 2.23 and apply Faraday’s law to the
two closed paths to write

Adding the two equations, we obtain

or

(2.29)CS1 + S2

B # dS = constant with time

0 = -  
d

dtCS1 + S2

B # dS

 CC2

  E # dl = -  
d

dtLS2

B # dS2

 CC1

E # dl = -  
d

dtLS1

B # dS1
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110 Chapter 2 Maxwell’s Equations in Integral Form

Since there is no experimental evidence that the right side of (2.29) is nonzero,
it follows that

where we have replaced by S.

K2.5. Volume integral; Gauss’ law for the electric field; Gauss’ law for the magnetic
field.

D2.10. Several types of charge are located, in Cartesian coordinates, as follows: a point
charge of at a line charge of uniform density along the
straight line from to (3, 3, 3), and a surface charge of uniform den-
sity on that part of the plane between and Find
the displacement flux emanating from each of the following closed surfaces:
(a) surface of the cubical box bounded by the planes and

(b) surface of the cylindrical box of radius 2 m, having the z-axis as its
axis and lying between and and (c) surface of the octahedron hav-
ing its vertices at (3, 0, 0), (0, 0, 3), and 
Ans. (a) (b) (c)

D2.11. Magnetic fluxes of absolute values and cross three surfaces and
respectively, constituting a closed surface S. If find the

smallest of and for each of the following cases: (a) and are in
arithmetic progression; (b) and are in arithmetic progression;
and (c) and are in arithmetic progression.

Ans. (a) (b) (c)

2.6 THE LAW OF CONSERVATION OF CHARGE

Just as Gauss’s law for magnetic field is not independent of Faraday’s law,
Gauss’ law for the electric field is not independent of Ampère’s circuital law in
view of the law of conservation of charge. The law of conservation of charge
states that the net current due to flow of charges emanating from a closed surface
S is equal to the time rate of decrease of the charge within the volume V bounded
by S. It is given in mathematical form by

(2.30)

As illustrated in Fig. 2.29, this law follows from the property that electric charge
is conserved. If the charge in a given volume is decreasing with time at a certain
rate, there must be a net outflow of the charge at the same rate. Since current is
defined to be the rate of flow of charge, (2.30) then follows. As in the case of
(2.17), it is understood that in (2.30), although formulated in terms of J,
represents the algebraic sum of all currents due to flow of charges crossing S.

ASJ # dS

CS
  J # dS = -  

d

dtLV
 r dv

1
3 + 15

 c0.
1

2 + 212
 c0;

1
6

 c0;

ln c3ln c1, ln c2,
1>c31>c1, 1>c2,

c3c1, c2,c3c1, c2,
c1 + c2 + c3 = c0,S3,

S1, S2,c3c1, c2,

-3.0718 mC.1.3631 mC;3.3923 mC;
10, 0, -32.1-3, 0, 02, 10, 3, 02, 10, -3, 02,

z = 2;z = -2
z = ;2;

x = ;2, y = ;2,

z = 1.z = -1x = 0-1 mC/m2
1-1, -1, -12

2 mC/m11, 1, -1.52,1 mC

S1 + S2

CS
B # dS = 0

Law of
Conservation
of Charge
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J

SV
dS

r(t)

FIGURE 2.29

For illustrating the law of
conservation of charge.

Comparing (2.20) and (2.30), we obtain

(2.31)

Since there is no experimental evidence that the right side of (2.31) is nonzero,
it follows that

Thus, since (2.20) follows from Ampère’s circuital law, Gauss’ law for the elec-
tric field follows from Ampère’s circuital law with the aid of the law of conser-
vation of charge.

We shall now illustrate the combined application of Gauss’ law for the
electric field, the law of conservation of charge, and Ampère’s circuital law by
means of an example.

Example 2.5 Combined application of several of Maxwell’s equations
in integral form

Let us consider current I A flowing from a point charge Q(t) at the origin to infinity
along a semi-infinitely long straight wire occupying the positive z-axis, and find 
where C is a circular path of radius a lying in the xy-plane and centered at the point
charge, as shown in Fig. 2.30.

Considering the hemispherical surface S bounded by C, and above the xy-plane, as
shown in Fig. 2.30, and applying Ampère’s circuital law, we obtain

(2.32)CC
H # dl = I +

d

dtLS
D # dS

AC H # dl,

CS
D # dS = LV

 r dv

d

dtCS
D # dS =

d

dtLV
 r dv

d

dt
 aCS

D # dS - LV
 r dvb = 0

CS
 D # dS - LV

 r dv = constant with time
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112 Chapter 2 Maxwell’s Equations in Integral Form

From Gauss’ law for the electric field, the displacement flux emanating from a spherical
surface centered at the point charge is equal to Q. In view of the spherical symmetry of
the electric field about the point charge, half of the flux goes through the hemispherical
surface. Thus,

(2.33)

From the law of conservation of charge applied to a spherical surface centered at the
point charge,

(2.34)

Substituting (2.33) into (2.32) and then using (2.34), we obtain

It should be noted that the same result holds for any contour C lying in any plane pass-
ing through the origin and surrounding the point charge Q(t) and the wire in the right-
hand sense as seen looking along the positive z-axis.

K2.6. Law of conservation of charge.
D2.12. Three point charges and are situated at the vertices of a tri-

angle and are connected by means of wires carrying currents. A current I A
Q31t2Q11t2, Q21t2,

 =
I

2

 = I +
1
2

 1-I2
 = I +

1
2

 

dQ

dt

 CC
H # dl = I +

d

dt
 aQ

2
b

I = -  

dQ

dt

LS
D # dS =

Q

2

y

S

z

x

Q(t)

a

C

I

FIGURE 2.30

Semi-infinitely long wire of current I, with a point
charge Q(t) at the origin.
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2.7 Application to Static Fields 113

flows from to and 3I A flows from to The charge is increasing
with time at the rate of 5I C/s. Find the following: (a) (b) and (c)
the current flowing from to 
Ans. (a) (b) (c) 2I A.

2.7 APPLICATION TO STATIC FIELDS

Collecting together Faraday’s law (2.13), Ampere’s circuital law (2.17), Gauss’
law for the electric field (2.27), and Gauss’ law for the magnetic field (2.28), we
have the four Maxwell’s equations in integral form given by

(2.35a)

(2.35b)

(2.35c)

(2.35d)

whereas the law of conservation of charge is given by

(2.36)

For static fields, that is, for Maxwell’s equations in integral form
become

(2.37a)

(2.37b)

(2.37c)

(2.37d)

whereas the law of conservation of charge becomes

(2.38)CS
 J # dS = 0

 CS
 B # dS = 0

 CS
 D # dS = LV

 r dv

 CC
 H # dl = LS

 J # dS

 CC
 E # dl = 0

d>dt = 0,

CS
 J # dS = -  

d

dtLV
 r dv

 CS
B # dS = 0

 CS
D # dS = LV

 r dv

 CC
H # dl = LS

J # dS +
d

dtLS
D # dS

 CC
E # dl = -  

d

dtLS
B # dS

-2I C>s;-3I C>s;
Q3.Q1

dQ2>dt;dQ1>dt;
Q3Q3.Q2Q2Q1

Maxwell’s
equations in
integral form
for static
fields
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I

C

I

C

From � To �

(a)

(b)

FIGURE 2.31

For illustrating that the current enclosed by a closed
path C is uniquely given in (a) but not in (b).

It can be immediately seen from (2.37a)–(2.37d) that the interdependence
between the electric and magnetic fields no longer exists. Equation (2.37a) tells
us simply that the static electric field is a conservative field. Similarly, (2.37d)
tells us that the magnetic flux is the same through all surfaces bounded by a
closed path. On the other hand, (2.37c) and (2.37b) enable us to find the static
electric and magnetic fields for certain time-invariant charge and current distri-
butions, respectively. These distributions must be such that the resulting electric
and magnetic fields possess symmetry to be able to replace the integrals on the
left sides of (2.37c) and (2.37b) by algebraic expressions involving the compo-
nents of electric and magnetic fields, respectively.

In addition, in the case of (2.37b), the current on the right side must be
uniquely given for a given closed path C, which property is ensured by (2.38).
An example in which this current is uniquely given is that of the infinitely long
wire in Fig. 2.31(a). This is because the current crossing all possible surfaces
bounded by the closed path C is equal to I since the wire, being infinitely long,
pierces through all such surfaces.This can also be seen in a different manner by
imagining the closed path to be a rigid loop and visualizing that the loop can-
not be moved to one side of the wire without cutting the wire. On the other
hand, if the wire is finitely long, as shown in Fig. 2.31(b), it can be seen that for
some surfaces bounded by C, the wire pierces through the surface, whereas for
some other surfaces, it does not. Alternatively, a rigid loop occupying the
closed path can be moved to one side of the wire without cutting the wire.Thus,
for this case, there is no unique value of the wire current enclosed by C and
hence (2.37b) cannot be used to determine H. The problem here is that (2.38)
is not satisfied, since for current to flow in the finitely long wire, there must be
time-varying charges at the two ends, thereby giving rise to time-varying elec-
tric field. Hence, a displacement current exists in addition to the wire current
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l

r

f

y

z

x

r df dz ar

Line
Charge

FIGURE 2.32

For the determination of electric field due to an
infinitely long line charge of uniform density
rL0 C/m.

D due to a
line charge

such that the algebraic sum of the two currents crossing all surfaces bounded
by C is the same and requires the use of (2.17).

We shall now illustrate the application of (2.37c) and (2.37b) by means of
some examples.

Example 2.6 Electric field due to an infinitely long line charge using
Gauss’ law

Let us consider charge distributed uniformly with density along the z-axis and
find the electric field due to the infinitely long line charge using (2.37c).

Let us consider the closed surface S of a cylinder of radius r, with the line charge as
its axis and extending from to as shown in Fig. 2.32.Then according to (2.37c),

(2.39)

Although this result is valid for any closed surface enclosing the portion of the line
charge from to we have chosen the particular surface in Fig. 2.32 to be able
to reduce the surface integral of D in (2.37c), and hence in (2.39), to an algebraic quanti-
ty. To do this, we note the following:

(a) In view of the uniform charge density, the entire line charge can be thought of as
the superposition of pairs of equal point charges located at equal distances above
and below any given point on the z-axis. Hence the field due to the entire line
charge has only a radial component independent of and z.

(b) In view of (a), the contribution to the closed surface integral from the top and bot-
tom surfaces of the cylindrical box is zero.

Thus, we have

D = Dr1r2ar

f

z = l,z = 0

CS
 D # dS = rL0  l

z = l,z = 0

rL0 C/m
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FIGURE 2.33

For the determination of electric field due
to a spherical charge of uniform density
r0 C/m3.

and

(2.40)

Comparing (2.39) and (2.40), we obtain

(2.41)

The field varies inversely with the radial distance away from the line charge.

Example 2.7 Electric field due to a spherical volume charge using
Gauss’ law

Let us consider charge distributed uniformly with density in the spherical region
as shown by the cross-sectional view in Fig. 2.33, and find the electric field due to

the spherical charge by using (2.37c).
As in Example 2.6, we shall once again choose a surface S that enables the re-

placement of the surface integral in (2.37c) by an algebraic quantity. To do this, we note
from considerations of symmetry, and of the spherical charge as a superposition of point
charges, that D possesses only an r-component dependent on r only. Thus,

D = Dr1r2ar

r … a,
r0 C/m3

D =
rL0

2pr
 ar

 Dr1r2 =
rL0

2pr

 2prlDr1r2 = rL0  l

 = 2prlDr1r2
 CS

D # dS = L
2p

f= 0L
l

z = 0
Dr1r2ar

# r df dz ar

D due to a
spherical
volume
charge
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0 a 2a 3a
r

Dr

1
3
r0a

1
12
r0a FIGURE 2.34

Variation of with r for the
spherical charge of Fig. 2.33.

Dr

Choosing, then, a spherical surface of radius r centered at the origin, we obtain

(2.42)

Noting that the charge exists only for and with uniform density, we obtain the
charge enclosed by the spherical surface to be

(2.43)

Substituting (2.42) and (2.43) into (2.37c), we get

(2.44)

The variation of with r is shown plotted in Fig. 2.34.

Example 2.8 Magnetic field due to cylindrical wire of current using
Ampere’s circuital law

Let us consider current flowing with uniform density in an infinitely long
solid cylindrical wire of radius a with its axis along the z-axis, as shown by the cross-
sectional view in Fig. 2.35. We wish to find the magnetic field everywhere using (2.37b).

J = J0 az A/m2

Dr

D = d r0 r

3
 ar for r … a

r0 a3

3r2  ar for r Ú a

 Dr1r2 = d r0 r

3
for r … a

r0 a3

3r2 for r Ú a

 4pr2Dr1r2 = e 4
3pr3r0 for r … a
4
3pa3r0 for r Ú a

LV
 r dv = e 4

3pr3r0 for r … a
4
3pa3r0 for r Ú a

r 6 a,

 = 4pr2Dr1r2
 CS

D # dS = L
p

u= 0L
2p

f= 0
Dr1r2ar

# r2 sin u du df ar

H due to a
cylindrical
wire of current
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118 Chapter 2 Maxwell’s Equations in Integral Form

The current distribution can be thought of as the superposition of infinitely long
filamentary wires parallel to the z-axis. Then in view of the symmetry about the z-axis
and from the nature of the magnetic field due to an infinitely long wire given by (1.79),
we can say that the required H has only a component dependent on r only. Thus,

Choosing, then, a circular closed path C of radius r lying in the xy-plane and centered at
the origin, we obtain

(2.45)

Considering the plane surface bounded by C, and noting that the current exists only for
we obtain the current enclosed by the closed path to be

(2.46)

Substituting (2.45) and (2.46) into (2.37b), we get

 Hf = d J0 r

2
for r … a

J0 a2

2r
for r Ú a

 2prHf = e J0pr2 for r … a

J0pa2 for r Ú a

 =  e J0pr2 for r … a

J0pa2 for r Ú a

 LS
J # dS = d L

r

r = 0L
2p

f= 0
J0 az

# r dr df az for r … a

L
a

r = 0L
2p

f= 0
J0 az

# r dr df az for r Ú a

r 6 a,

 = 2prHf1r2
 CC

H # dl = L
2p

f= 0
 Hf1r2af # r df af

H = Hf1r2af
f

x

y

f

r �a

r 	a

a

C

C

FIGURE 2.35

For the determination of magnetic field due
to an infinitely long solid cylindrical wire of
uniform current density J0 az A/m2.
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0 a 2a 3a
r

Hf

1
2 J0a

1
4

J0a FIGURE 2.36

Variation of with r for the
cylindrical wire of current of
Fig. 2.35.

Hf

(2.47)

The variation of with r is shown plotted in Fig. 2.36.

K2.7. Maxwell’s equations in integral form for static fields; Uniqueness of current en-
closed by a closed path; D due to symmetrical charge distributions; H due to
symmetrical current distributions.

D2.13. Charge is distributed with uniform density inside a regular solid of edges
a. Find the displacement flux emanating from one side of the solid for each of the
following shapes of the solid: (a) tetrahedron; (b) cube; and (c) octahedron.
Ans. (a) (b) (c)

D2.14. The cross section of an infinitely long solid wire having the z-axis as its axis is a
regular polygon of sides a. Current flows in the wire with uniform density

Find the line integral of H along one side of the polygon and tra-
versed in the sense of increasing for each of the following shapes of the poly-
gon: (a) equilateral triangle; (b) square; and (c) octagon.
Ans. (a) (b) (c)

SUMMARY

We first learned in this chapter how to evaluate line and surface integrals of vec-
tor quantities, and then we introduced Maxwell’s equations in integral form.
These equations, which form the basis of electromagnetic field theory, are given
as follows in words and in mathematical form:

Faraday’s law. The electromotive force around a closed path C is equal to the
negative of the time rate of change of the magnetic flux enclosed by that path;
that is,

(2.48)CC
E # dl = -  

d

dtLS
B # dS

0.6036a2J0 A.0.25a2J0 A;0.1443a2J0 A;

f

J0az A/m2.

0.0589r0 a3 C.0.1667r0 a3 C;0.0295r0 a3 C;

r0 C>m3

Hf

H = d J0 r

2
 af for r … a

J0 a2

2r
 af for r Ú a
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120 Chapter 2 Maxwell’s Equations in Integral Form

Ampère’s circuital law. The magnetomotive force around a closed path C is
equal to the sum of the current enclosed by that path due to the actual flow of
charges and the displacement current due to the time rate of change of the dis-
placement flux enclosed by that path; that is,

(2.49)

Gauss’ law for the electric field. The displacement flux emanating from a closed
surface S is equal to the charge enclosed by that surface; that is,

(2.50)

Gauss’ law for the magnetic field. The magnetic flux emanating from a closed
surface S is equal to zero; that is,

(2.51)

An auxiliary equation, the law of conservation of charge, is given by

(2.52)

In words, (2.52) states that the current due to flow of charges emanating from a
closed surface is equal to the time rate of decrease of the charge enclosed by
that surface.

In using (2.48)–(2.52), we recall that

(2.53)

(2.54)

In evaluating the right sides of (2.48) and (2.49), the normal vectors to the sur-
faces must be chosen such that they are directed in the right-hand sense, that is,
toward the side of advance of a right-hand screw as it is turned around C. In
(2.50), (2.51), and (2.52), it is understood that the surface integrals are evaluated
so as to find the flux outward from the volume bounded by the surface. We also
learned that (2.51) is not independent of (2.48) and that (2.50) follows from
(2.49) with the aid of (2.52).

Finally, we discussed several applications of Maxwell’s equations, includ-
ing the computation of static electric and magnetic fields due to symmetrical
charge and current distributions, respectively.

 H =
B
m0

 D = e 0E

CS
 J # dS = -  

d

dtL  

V  
r dv 

CS
 B # dS = 0

CS
D # dS = LV

 r dv

CC
H # dl = LS

J # dS +
d

dtLS
D # dS
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REVIEW QUESTIONS

Q2.1. How do you find the work done in moving a test charge by an infinitesimal dis-
tance in an electric field? What is the amount of work involved in moving the
test charge normal to the electric field?

Q2.2. What is the physical interpretation of the line integral of E between two points
A and B?

Q2.3. How do you find the approximate value of the line integral of a vector field
along a given path? How do you find the exact value of the line integral?

Q2.4. Discuss conservative versus nonconservative fields, giving examples.
Q2.5. How do you find the magnetic flux crossing an infinitesimal surface?
Q2.6. What is the magnetic flux crossing an infinitesimal surface oriented parallel to

the magnetic flux density vector? For what orientation of the infinitesimal sur-
face relative to the magnetic flux density vector is the magnetic flux crossing the
surface a maximum?

Q2.7. How do you find the approximate value of the surface integral of a vector field
over a given surface? How do you find the exact value of the surface integral?

Q2.8. Provide physical interpretations for the closed surface integrals of any two vec-
tors of your choice.

Q2.9. State Faraday’s law.
Q2.10. What are the different ways in which an emf is induced around a loop?
Q2.11. Discuss the right-hand screw rule convention associated with the application of

Faraday’s law.
Q2.12. To find the induced emf around a planar loop, is it necessary to consider the

magnetic flux crossing the plane surface bounded by the loop? Explain.
Q2.13. What is Lenz’s law?
Q2.14. Discuss briefly the motional emf concept.
Q2.15. How would you orient a loop antenna to obtain maximum signal from an inci-

dent electromagnetic wave that has its magnetic field directed along the
north–south line?

Q2.16. State three applications of Faraday’s law.
Q2.17. State Ampère’s circuital law.
Q2.18. What is displacement current? Compare and contrast displacement current

with current due to flow of charges.
Q2.19. Is it meaningful to consider two different surfaces bounded by a closed path to

compute the two different currents on the right side of Ampère’s circuital law to
find around the closed path?

Q2.20. Discuss the relationship between the displacement current emanating from a
closed surface and the current due to flow of charges emanating from the same
closed surface.

Q2.21. Give an example involving displacement current.
Q2.22. Discuss briefly the principle of radiation from a wire carrying a time-varying

current.
Q2.23. State Gauss’ law for the electric field.
Q2.24. How do you evaluate a volume integral?
Q2.25. State Gauss’ law for the magnetic field.

AH # dl
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122 Chapter 2 Maxwell’s Equations in Integral Form

Q2.26. What is the physical interpretation of Gauss’ law for the magnetic field?

Q2.27. Discuss the dependence of Gauss’ law for the magnetic field on Faraday’s law.

Q2.28. State the law of conservation of charge.

Q2.29. How is Gauss’ law for the electric field dependent on Ampère’s circuital law?

Q2.30. Summarize Maxwell’s equations in integral form for time-varying fields.

Q2.31. Summarize Maxwell’s equations in integral form for static fields.

Q2.32. Are static electric and magnetic fields interdependent? Explain.

Q2.33. Discuss briefly the application of Gauss’ law for the electric field to determine
the electric field due to charge distributions.

Q2.34. When can you say that the current in a wire enclosed by a closed path is unique-
ly defined? Give two examples.

Q2.35. Give an example in which the current in a wire enclosed by a closed path is not
uniquely defined. Is it correct to apply Ampère’s circuital law for the static case
in such a situation? Explain.

Q2.36. Discuss briefly the application of Ampère’s circuital law to determine the mag-
netic field due to current distributions.

PROBLEMS

Section 2.1

P2.1. Evaluation of line integral in Cartesian coordinates. For the vector field 
find for each of the following paths from (0, 0, 0)

to (1, 1, 1): (a) and (b)

P2.2. Evaluation of line integral around a closed path in Cartesian coordinates. Given
find where C is the closed path compris-

ing the straight lines from (0, 0, 0) to (1, 1, 1), from (1, 1, 1) to (1, 1, 0), and
from (1, 1, 0) to (0, 0, 0).

P2.3. Evaluation of line integral in Cartesian coordinates. For the vector field 
find in each of the following ways: (a) along

the straight-line path between the two points; (b) along the curved path
between the two points; and (c) without choosing any partic-

ular path. Is the vector field conservative or nonconservative? Explain.

P2.4. Evaluation of line integral around closed path in cylindrical coordinates. Given
in cylindrical coordinates, find where C

is the closed path comprising the straight line from (0, 0, 0) to (1, 0, 0), the circu-
lar arc from (1, 0, 0) to through the straight line from

to and the straight line from to (0, 0, 0).

P2.5. Evaluation of line integral in spherical coordinates. Given 
in spherical coordinates, find for each of the fol-

lowing paths: (a) straight-line path from (0, 0, 0) to (2, 0, 0); (b) circular arc from
to through and (c) circular arc from
to through 12, p>6, p>42.12, p>6, p>2212, p>6, 02

12, p>4, p>42;12, p>2, p>4212, 0, p>42
1A # dlsin u au2 + r sin u af

A = e-r1cos u ar +
11, p>2, 1211, p>2, 12,11, p>2, 02

11, p>4, 02,11, p>2, 02
AC A # dl,A = 2r sin f ar + r2af + zaz

x = z = sin 1y>42
111, 2p, 12
10, 0, 02 F # dlcos y ax - x sin y ay,

F =

AC F # dl,F = xyax + yzay + zxaz,

x = y = z3.x = y = z
111, 1, 12
10, 0, 02 F # dlyax - zay + xaz,

F =
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Section 2.2

P2.6. Evaluation of a closed surface integral in Cartesian coordinates. Given 
evaluate where S is the surface of the cubi-

cal box bounded by the planes and 
P2.7. Evaluation of a closed surface integral in Cartesian coordinates. Given 

evaluate where S is the surface of the
rectangular box bounded by the planes and

P2.8. Evaluation of a closed surface integral in cylindrical coordinates. Given 
in cylindrical coordinates, evaluate where S is

the surface of the box bounded by the plane surfaces 
and the cylindrical surface 

P2.9. Evaluation of a closed surface integral in spherical coordinates. Given 
in spherical coordinates, find where S is the surface

of that part of the spherical volume of radius unity and lying in the first octant.

Section 2.3

P2.10. Induced emf around a closed path in a time-varying magnetic field. Find the in-
duced emf around the rectangular closed path C connecting the points (0, 0, 0),
(a, 0, 0), (a, b, 0), (0, b, 0), and (0, 0, 0), in that order, for each of the following
magnetic fields:

(a)

(b)

P2.11. Induced emf around a moving loop in a static magnetic field. A magnetic field is
given in the xz-plane by where is a constant. A rigid
rectangular loop is situated in the xz-plane and with its corners at the points

and If the loop is moving in
that plane with a velocity where is a constant, find by using Fara-
day’s law the induced emf around the loop in the sense defined by connecting the
above points in succession. Discuss your result by using the motional emf concept.

P2.12. Induced emf around a closed path in a time-varying magnetic field. A magnet-
ic field is given in the xz-plane by Consider a
rigid square loop situated in the xz-plane with its vertices at (x, 0, 1), (x, 0, 2),

and (a) Find the expression for the emf induced
around the loop in the sense defined by connecting the above points in succes-
sion. (b) What would be the induced emf if the loop is moving with the velocity

instead of being stationary?
P2.13. Induced emf around a swinging loop in a static magnetic field. A rigid rectan-

gular loop of metallic wire is hung by pivoting one side along the x-axis, as
shown in Fig. 2.37. The loop is free to swing about the pivoted side without fric-
tion under the influence of gravity and in the presence of a uniform magnetic
field If the loop is given a slight angular displacement and re-
leased, show that the emf induced around the closed path C of the loop is ap-
proximately equal to where is the angular velocity of swing of the loopvB0 abv,

B = B0az Wb/m2.

v = v0ax m/s

1x + 1, 0, 12.1x + 1, 0, 22,
B = B0 cos p1x - v0 t2 ay Wb/m2.

v0v = v0ax m/s,
1x0 + a, z02.1x0, z02, 1x0, z0 + b2, 1x0 + a, z0 + b2,

B0B = 1B0>x2ay Wb/m2,

B = B0 sin 
px

a
 cos vt az

B =
B0 a2

1x + a22 e-taz

AS A # dS,r2ar + r sin u au
A =

r = 2, 0 6 f 6 p>2.z = 0, z = 1,
f = 0, f = p>2,

AS A # dS,r cos f ar - r sin f af
A =

z = 3.
z = 0,x = 0, x = 1, y = 0, y = 2,

AS A # dS,1x2y + 22ax + 3ay - 2xyzaz,
A =

z = 1.x = 0, x = 1, y = 0, y = 1, z = 0,
AS A # dS,x2yzax + y2zxay + z2xyaz,

A =
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z
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x

v

g

a

g

FIGURE 2.38

For Problem P2.14.

toward the vertical. Does the loop swing faster or slower than in the absence of
the magnetic field? Explain.

P2.14. A conducting bar rolling down inclined rails in a uniform static magnetic field.
A rigid conducting bar of length L, mass M, and electrical resistance R rolls
without friction down two parallel conducting rails that are inclined at an angle

with the horizontal, as shown in Fig. 2.38. The rails are of negligible resistance
and are joined at the bottom by another conductor, also of negligible resistance,
so that the total resistance of the loop formed by the rolling bar and the three
other sides is R. The entire arrangement is situated in a region of uniform static
magnetic field directed vertically downward. Assume the bar
to be rolling down with uniform velocity v parallel to the rails under the influ-
ence of Earth’s gravity (acting in the positive z-direction) and the magnetic
force due to the current in the loop produced by the induced emf. Show that v is
equal to tan sec a.a1MgR>B0

2L22

B = B0az Wb/m2,

a

P2.15. Induced emf around a revolving loop in a static magnetic field. A rigid rectan-
gular loop of base b and height h situated normal to the xy-plane and with its
sides pivoted to the z-axis revolves about the z-axis with angular velocity

in the sense of increasing as shown in Fig. 2.39. Find the induced emf
around the closed path C of the loop for each of the following magnetic fields:
(a) and (b) Assume the loop to
be in the xz-plane at t = 0.

B = B01yax - xay2 Wb/m2.B = B0ay Wb/m2

f,v rad/s

y

x
b

z

C
a g

a

v

FIGURE 2.37

For Problem P2.13.
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b FIGURE 2.39

For Problem P2.15.

P2.16. Induced emf around a loop in a time-varying magnetic field for several cases.
A rigid rectangular loop of area A is situated in the xz-plane and symmetri-
cally about the z-axis, as shown in Fig. 2.40, in a region of magnetic field

Find the induced emf around the closed
path C of the loop for each of the following cases: (a) the loop is stationary;
(b) the loop revolves around the z-axis in the sense of increasing with uni-
form angular velocity of and (c) the loop revolves around the z-axis in
the sense of decreasing with uniform angular velocity of For parts
(b) and (c), assume that the loop is in the xz-plane at t = 0.

v rad/s.f

v rad/s;
f

B = B01sin vt ax + cos vt ay2 Wb/m2.

y

x

z

C

A

f

FIGURE 2.40

For Problem P2.16.

Section 2.4

P2.17. Application of Ampere’s circuital law in integral form. Given that 
and for find

the current due to flow of charges enclosed by the rectangular closed path from
(0, 0, 1) to (0, 1, 1) to to to (0, 0, 1).

P2.18. Application of Ampere’s circuital law in integral form. A current density due to
flow of charges is given by Find the displace-
ment current emanating from each of the following closed surfaces: (a) the sur-
face of the cubical box bounded by the planes and 
and (b) the surface of the cylindrical box bounded by the surfaces 
and 

P2.19. Finding rms value of current drawn from voltage source connected to a capaci-
tor. A voltage source connected to a parallel-plate capacitor by means of wires
sets up a uniform electric field of be-
tween the plates of the capacitor and normal to the plates. Assume that no field

E = 180 sin 2p * 106t sin 4p * 106t V/m

z = 2.
r = 1, z = 0,

z = ;2,x = ;2, y = ;2,

z2az2 A/m2.J = -1xax + yay +

10, 0, -1210, 1, -12
z 
 0,D = 2m0e0 H01t < 2m0e0 z22ax;H01t < 2m0e0 z22ay

H =
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126 Chapter 2 Maxwell’s Equations in Integral Form

exists outside the region between the plates. If the area of each plate is 
and the medium between the plates is free space, find the root-mean-square
value of the current drawn from the voltage source.

P2.20. Finding rms value of current drawn from voltage source connected to a capaci-
tor. Assume that the time variation of the electric field in Problem P3.19 is as
shown in Fig. 2.41. Find and plot versus time the current drawn from the voltage
source. What is the root-mean-square value of the current?

0.1 m2

180

–3 –2 –1 0 1 2 3 4 5 6

E, V/m

t, �s
FIGURE 2.41

For Problem P2.20.

Section 2.5

P2.21. Finding displacement flux emanating from a surface enclosing charge. For each
of the following charge distributions, find the displacement flux emanating from the
surface enclosing the charge: (a) for the cubi-
cal box bounded by and and (b)
for and 

P2.22. Finding displacement flux emanating from a surface enclosing charge. For each
of the following charge distributions, find the displacement flux emanating from
the surface enclosing the charge: (a) for in
cylindrical coordinates; and (b) for 
in spherical coordinates.

P2.23. Application of Gauss’ law for the magnetic field in integral form. Using the
property that find the absolute value of the magnetic flux crossing
that portion of the surface bounded by and 
for 

Section 2.6

P2.24. Application of the law of conservation of charge. Given 
find the time rate of decrease of the charge contained within each of

the following volumes: (a) volume bounded by the planes 
and (b) volume bounded by the cylinders and 

and the planes and and (c) volume bounded by the spherical sur-
faces and and the conical surface 

P2.25. Combined application of several of Maxwell’s equations in integral form. Cur-
rent I flows along a straight wire from a point charge located at the origin
to a point charge located at (0, 0, 1). Find the line integral of H along the
square closed path having the vertices at (1, 1, 0), and

and traversed in that order.
P2.26. Combined application of several of Maxwell’s equations in integral form. Cur-

rent I flows along a straight wire from a point charge at the origin to a
point charge at the point (2, 2, 2). Find the line integral of H around theQ21t2

Q11t2
11, -1, 02

1-1, -1, 02,1-1, 1, 02,
Q21t2

Q11t2
u = p>3.r = 2r = 1

z = 1;z = 0
r = 2r = 1z = 1; y = 1, z = 0,

x = 0, x = 1, y = 0,
zaz2 A/m2,

J = 1xax + yay +

B = B01yax - xay2 Wb/m2.
z = 1x = 0, x = p, z = 0,y = sin x

AS B # dS = 0,

r 6 1, 0 6 u 6 p>2r1r, u, f2 = 1r0>r2 sin2 u
r 6 1, 0 6 z 6 1r1r, f, z2 = r0 e-r2

x2 + y2 + z2 6 1.x 7 0, y 7 0, z 7 0,
r01xyz2r1x, y, z2 =z = ;1;x = ;1, y = ;1,

r1x, y, z2 = r013 - x2 - y2 - z22
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triangular closed path having the vertices at (3, 0, 0), (0, 3, 0), and (0, 0, 3) and
traversed in that order.

Section 2.7

P2.27. Application of Gauss’ law for the electric field in integral form and symmetry.
Charge is distributed with density in a cubical box bounded by the
planes and Find the displacement flux ema-
nating from one side of the box for each of the following cases: (a)

and (b)
P2.28. Electric field due to a cylindrical charge distribution using Gauss’ law. Charge

is distributed with density in the cylindrical region Find D
everywhere.

P2.29. Electric field due to a spherical charge distribution using Gauss’ law. Charge is
distributed with uniform density in the region in spherical
coordinates. Find D everywhere and plot versus r.

P2.30. Application of Ampere’s circuital law in integral form and symmetry. Current
flows with density J(x, y) in an infinitely long thick wire having the z-axis as its
axis. The cross section of the wire in the xy-plane is the square bounded by

and Find the line integral of H along one side of the
square and traversed in the sense of increasing for each of the following cases:
(a) and (b)

P2.31. Magnetic field due to a solid wire of current using Ampere’s circuital law. Cur-
rent flows with density along an infinitely long solid cylin-
drical wire of radius a having the z-axis as its axis. Find H everywhere and plot

versus r.
P2.32. Magnetic field for a coaxial cable using Ampere’s circuital law. A coaxial cable

consists of an inner conductor of radius 3a and an outer conductor of inner ra-
dius 4a and outer radius 5a.Assume the cable to be infinitely long and its axis to
be along the z-axis. Current I flows with uniform density in the in
the inner conductor and returns with uniform density in the in the
outer conductor. Find H everywhere and plot versus r.

REVIEW PROBLEMS

R2.1. Determination of a specified static vector field to be a conservative field. Show
that the vector field given by

is a conservative field.Then find the value of from the point 
to the point 

R2.2. Induced emf around an expanding loop in a nonuniform static magnetic field. In
Fig. 2.42, a rectangular loop of wire with three sides fixed and the fourth side
movable is situated in a plane perpendicular to a nonuniform magnetic field

where is a constant. The position of the movable side is
varied with time in the manner where Find the in-
duced emf around the closed path C of the loop.Verify that Lenz’s law is satisfied.
Show also that the induced emf consists of two frequency components, and 2v.v

a 6 y0.y = y0 + a cos vt,
B0B = B0 yaz Wb/m2,

14, p>3, p>62.
11, p>6, p>321F # dI

F = cos u sin f ar - sin u sin f au + cot u cos u af

Hf

-z-direction
+z-direction

Hf

J = J01r>a2az A/m2

J1x, y2 = x2y2az A/m2.J1x, y2 = 1 ƒ x ƒ + ƒ y ƒ 2az A/m2
f

y = ;1 m.x = ;1 m

Dr

a 6 r 6 2ar0C/m3

r 6 1.r0 e-r2
 C/m3

r1x, y, z2 = 2 ƒ xyz ƒ  C/m3.13 - x2 - y2 - z22 C/m3
r1x, y, z2 =

z = ;1 m.x = ;1 m, y = ;1 m,
r1x, y, z2
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128 Chapter 2 Maxwell’s Equations in Integral Form

R2.3. Finding amplitude of current from sinusoidal voltage source connected to a ca-
pacitor. A voltage source is connected by means of wires to a parallel-plate ca-
pacitor made up of circular plates of radii a in the and planes and
having their centers on the z-axis.The electric field between the plates is given by

Find the amplitude of the current drawn from the voltage source, assuming the
region between the plates to be free space and that no field exists outside this
region.

R2.4. Combined application of several of Maxwell’s equations in integral form. Cur-
rent I flows along a straight wire from a point charge located at one of the
vertices of a cube to a point charge at the center of the cube. Find the ab-
solute value of the line integral of H around the periphery of one of the three
sides of the cube not containing the vertex at which is located.

R2.5. Electric field due to a spherical charge distribution using Gauss’ law. Charge is
distributed with density where is a constant, in the spherical re-
gion Find D everywhere and plot versus r.

R2.6. Magnetic field in the hollow region of wire bounded by two parallel cylindrical
surfaces. Current flows axially with uniform density in the region be-
tween two infinitely long parallel, cylindrical surfaces of radii a and 
and with their axes separated by the vector distance c, where 
Find the magnetic field intensity in the current-free region inside the cylindri-
cal surface of radius b.

ƒ c ƒ 6 1a - b2.
b 16a2,

J0 A/m2

Drr 6 a.
r0r = r01r>a22,

Q1

Q21t2
Q11t2

E = E0 sin 
pr

2a
 cos vt az for r 6 a

z = dz = 0

y

x

l

z

C

B

FIGURE 2.42

For Problem R2.2.
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