
C H A P T E R  1

Vectors and Fields

Electromagnetics deals with the study of electric and magnetic fields. It is at once
apparent that we need to familiarize ourselves with the concept of a field, and in
particular with electric and magnetic fields.These fields are vector quantities and
their behavior is governed by a set of laws known as Maxwell’s equations. The
mathematical formulation of Maxwell’s equations and their subsequent applica-
tion in our study of the elements of engineering electromagnetics require that
we first learn the basic rules pertinent to mathematical manipulations involving
vector quantities. With this goal in mind, we devote this chapter to vectors and
fields in general and electric and magnetic fields in particular.

We first study certain simple rules of vector algebra without the implica-
tion of a coordinate system and then introduce the Cartesian, cylindrical, and
spherical coordinate systems. After learning the vector algebraic rules, we turn
our attention to a discussion of scalar and vector fields, static as well as time-
varying, by means of some familiar examples. Following this general introduc-
tion to vectors and fields, we study the concepts of electric and magnetic fields
by considering the experimental laws of Coulomb and Ampere, and illustrate by
example the computation of electric fields due to charge distributions and mag-
netic fields due to current distributions. Finally, by combining the electric and
magnetic field concepts, we introduce the Lorentz force equation and use it to
discuss charged particle motion in electric and magnetic fields.

1.1 VECTOR ALGEBRA

In the study of elementary physics, we come across quantities such as mass, tem-
perature, velocity, acceleration, force, and charge. Some of these quantities have
associated with them not only a magnitude but also a direction in space, where-
as others are characterized by magnitude only. The former class of quantities
are known as vectors and the latter class of quantities are known as scalars.
Mass, temperature, and charge are scalars, whereas velocity, acceleration, and
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4 Chapter 1 Vectors and Fields

A B

DC

(a) (b)

(d)(c)

FIGURE 1.1

Graphical representation of vectors.

force are vectors. Other examples are voltage and current for scalars and elec-
tric and magnetic fields for vectors.

Vector quantities are represented by symbols in boldface roman type
(e.g., A), to distinguish them from scalar quantities, which are represented by
symbols in lightface italic type (e.g., A). Graphically, a vector, say, A, is repre-
sented by a straight line with an arrowhead pointing in the direction of A and
having a length proportional to the magnitude of A, denoted or simply A.
Figure 1.1 shows four vectors drawn to the same scale. If the top of the page rep-
resents north, then vectors A and B are directed eastward, with the magnitude
of B being twice that of A. Vector C is directed toward the northeast and has a
magnitude three times that of A.Vector D is directed toward the southwest and
has a magnitude equal to that of C. Since C and D are equal in magnitude but
opposite in direction, one is the negative of the other.

Since a vector may have in general an arbitrary orientation in three di-
mensions, we need to define a set of three reference directions at each and
every point in space in terms of which we can describe vectors drawn at that
point. It is convenient to choose these three reference directions to be mutually
orthogonal, as, for example, east, north, and upward, or the three contiguous
edges of a rectangular room. Thus, let us consider three mutually orthogonal
reference directions and direct unit vectors along the three directions as shown,
for example, in Fig. 1.2(a).A unit vector has magnitude unity.We shall represent
a unit vector by the symbol a and use a subscript to denote its direction.We shall
denote the three directions by subscripts 1, 2, and 3.We note that for a fixed ori-
entation of two combinations are possible for the orientations of and 
as shown in Figs. 1.2(a) and (b). If we take a right-hand screw and turn it from 
to through the 90° angle, it progresses in the direction of in Fig. 1.2(a) but
opposite to the direction of in Fig. 1.2(b). Alternatively, a left-hand screw
when turned from to in Fig. 1.2(b) will progress in the direction of 
Hence the set of unit vectors in Fig. 1.2(a) corresponds to a right-handed sys-
tem, whereas the set in Fig. 1.2(b) corresponds to a left-handed system.We shall
work consistently with the right-handed system.

A vector of magnitude different from unity along any of the reference direc-
tions can be represented in terms of the unit vector along that direction. Thus 
represents a vector of magnitude 4 units in the direction of represents aa1, 6a2

4a1

a3.a2a1

a3

a3a2

a1

a3,a2a1,

ƒ A ƒ

Unit vector
defined
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FIGURE 1.2

(a) Set of three orthogonal unit vectors in a right-handed system. (b) Set of three
orthogonal unit vectors in a left-handed system.

vector of magnitude 6 units in the direction of and represents a vector of
magnitude 2 units in the direction opposite to that of as shown in Fig. 1.3. Two
vectors are added by placing the beginning of the second vector at the tip of the
first vector and then drawing the sum vector from the beginning of the first vector
to the tip of the second vector. Thus, to add and we simply slide with-
out changing its direction until its beginning coincides with the tip of and then
draw the vector from the beginning of to the tip of as shown
in Fig. 1.3.To see this, imagine that on the floor of an empty rectangular room, you
are going from one corner to the opposite corner. Then to reach the destination,
you can first walk along one edge and then along the second edge. Alternatively,
you can go straight to the destination along the diagonal. By adding to the
vector in a similar manner, we obtain the vector 

as shown in Fig. 1.3. We note that the magnitude of is or

7.211 and that the magnitude of is or 7.483.
Conversely to the foregoing discussion, a. vector A at a given point is simply the

242 + 62 + 22,14a1 + 6a2 - 2a32
242 + 6214a1 + 6a22

14a1 + 6a2 - 2a32,14a1 + 6a22
-2a3

6a2,4a114a1 + 6a22
4a1

6a26a2,4a1

a3,
-2a3a2,

a3
a2

a1

4a1

6a2

4a1 � 6a2 � 2a3

4a1 � 6a2

6a2

–2a3

�2a3 FIGURE 1.3

Graphical addition of vectors.
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6 Chapter 1 Vectors and Fields

superposition of three vectors and which are the projections of
A onto the reference directions at that point. and are known as the
components of A along the 1, 2, and 3 directions, respectively.Thus

(1.1)

We now consider three vectors, A, B, and C, given by

(1.2a)
(1.2b)
(1.2c)

at a point and discuss several algebraic operations involving vectors as follows.

Vector addition and subtraction. Since a given pair of like components of two
vectors are parallel, addition of two vectors consists simply of adding the three
pairs of like components of the vectors. Thus,

(1.3)

Vector subtraction is a special case of addition. Thus,

(1.4)

Multiplication and division by a scalar. Multiplication of a vector A by a scalar
m is the same as repeated addition of the vector. Thus,

(1.5)

Division by a scalar is a special case of multiplication by a scalar. Thus,

(1.6)

Magnitude of a vector. From the construction of Fig. 1.3 and the associated
discussion, we have

(1.7)

Unit vector along A. The unit vector has a magnitude equal to unity, but its
direction is the same as that of A. Hence,

(1.8)aA =
A
ƒ A ƒ

=
A1

ƒ A ƒ
 a1 +

A2

ƒ A ƒ
 a2 +

A3

ƒ A ƒ
 a3

aA

ƒ A ƒ = ƒ A1 a1 + A2 a2 + A3 a3 ƒ = 4A1
2 + A2

2 + A3
2

B
n

=
1
n

 1B2 =
B1

n
 a1 +

B2

n
 a2 +

B3

n
 a3

mA = m1A1 a1 + A2 a2 + A3 a32 = mA1 a1 + mA2 a2 + mA3 a3

 = 1B1 - C12a1 + 1B2 - C22a2 + 1B3 - C32a3

 = 1B1 a1 + B2 a2 + B3 a32 + 1-C1 a1 - C2 a2 - C3 a32
 B - C = B + 1-C2

 = 1A1 + B12a1 + 1A2 + B22a2 + 1A3 + B32a3

 A + B = 1A1 a1 + A2 a2 + A3 a32 + 1B1 a1 + B2 a2 + B3 a32

 C = C1 a1 + C2 a2 + C3 a3

 B = B1 a1 + B2 a2 + B3 a3

 A = A1 a1 + A2 a2 + A3 a3

A = A1 a1 + A2 a2 + A3 a3

A3A1, A2,
A3 a3,A1 a1, A2 a2,
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1.1 Vector Algebra 7

Scalar or dot product of two vectors. The scalar or dot product of two vectors
A and B is a scalar quantity equal to the product of the magnitudes of A and B
and the cosine of the angle between A and B. It is represented by a boldface dot
between A and B. Thus, if is the angle between A and B, then

(1.9)

For the unit vectors we have

(1.10a)
(1.10b)
(1.10c)

By noting that we observe that the
dot product operation consists of multiplying the magnitude of one vector by
the scalar obtained by projecting the second vector onto the first vector, as
shown in Figs. 1.4(a) and (b). The dot product operation is commutative since

(1.11)

The distributive property also holds for the dot product, as can be seen from the
construction of Fig. 1.4(c), which illustrates that the projection of onto A
is equal to the sum of the projections of B and C onto A. Thus,

(1.12)

Using this property, we have

 + A3 a3
# B1 a1 + A3 a3

# B2 a2 + A3 a3
# B3 a3

 + A2 a2
# B1 a1 + A2 a2

# B2 a2 + A2 a2
# B3 a3

 = A1 a1
# B1 a1 + A1 a1

# B2 a2 + A1 a1
# B3 a3

 A # B = 1A1 a1 + A2 a2 + A3 a32 # 1B1 a1 + B2 a2 + B3 a32

A # 1B + C2 = A # B + A # C

B + C

B # A = BA cos a = AB cos a = A # B

A # B = A1B cos a2 = B1A cos a2,
 a3

# a1 = 0 a3
# a2 = 0 a3

# a3 = 1
 a2

# a1 = 0 a2
# a2 = 1 a2

# a3 = 0
 a1

# a1 = 1 a1
# a2 = 0 a1

# a3 = 0

a1, a2, a3,

A # B = ƒ A ƒ ƒ B ƒ  cos a = AB cos a

a

Dot product

(a) (b) (c)

a a

B cos a

A
 c

os
 a

A
A

A

B B B
C

B � C

FIGURE 1.4

(a) and (b) For showing that the dot product of two vectors A and B is the product of the
magnitude of one vector and the projection of the second vector onto the first vector.
(c) For proving the distributive property of the dot product operation.
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8 Chapter 1 Vectors and Fields

Finding angle
between two
vectors

Then using the relationships (1.10a)–(1.10c), we obtain

(1.13)

Thus, the dot product of two vectors is the sum of the products of the like com-
ponents of the two vectors.

From (1.9) and (1.13), we note that the angle between the vectors A and B
is given by

(1.14)

Thus, the dot product operation is useful for finding the angle between two
vectors. In particular, the two vectors are perpendicular if 

Vector or cross product of two vectors. The vector or cross product of two vec-
tors A and B is a vector quantity whose magnitude is equal to the product of the
magnitudes of A and B and the sine of the smaller angle between A and B
and whose direction is normal to the plane containing A and B and toward the
side of advance of a right-hand screw as it is turned from A to B through the
angle as shown in Fig. 1.5. It is represented by a boldface cross between A
and B. Thus, if is the unit vector in the direction of advance of the right-hand
screw, then

(1.15)

For the unit vectors we have

(1.16a)
(1.16b)
(1.16c)

Note that the cross product of two identical unit vectors is the null vector 0, that
is, a vector whose components are all zero. If we arrange the unit vectors in the
manner then going to the right, the cross product of any two succes-
sive unit vectors is the following unit vector, whereas going to the left, the cross

a1 a2 a3 a1 a2,

a3 � a3 = 0a3 � a2 = -a1a3 � a1 = a2

a2 � a3 = a1a2 � a2 = 0a2 � a1 = -a3

a1 � a3 = -a2a1 � a2 = a3a1 � a1 = 0

a1, a2, a3,

A � B = ƒ A ƒ ƒ B ƒ  sin a aN = AB sin a aN

aN

a,

a

A2 B2 + A3 B3 = 0.
A # B = A1 B1 +

a = cos-1 
A # B
AB

= cos-1 
A1 B1 + A2 B2 + A3 B3

AB

A # B = A1 B1 + A2 B2 + A3 B3

Cross
product

aN

a

A

B

FIGURE 1.5

Cross product operation A � B.
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1.1 Vector Algebra 9

product of any two successive unit vectors is the negative of the following unit
vector.

The cross product operation is not commutative since

(1.17)

The distributive property holds for the cross product (as we shall prove later in
this section), so that

(1.18)

Using this property and the relationships (1.16a)–(1.16c), we obtain

This can be expressed in determinant form in the manner

(1.19)

The cross product operation is useful for obtaining the unit vector normal
to two given vectors at a point. This can be seen by rearranging (1.15) in the
manner

(1.20)

Triple cross product. A triple cross product involves three vectors in two cross
product operations. Caution must be exercised in evaluating a triple cross prod-
uct since the order of evaluation is important; that is, is not in
general equal to This can be illustrated by means of a simple ex-
ample involving unit vectors. Thus, if and then

whereas

1A � B2 � C = 1a1 � a12 � a2 = 0 � a2 = 0

A � 1B � C2 = a1 � 1a1 � a22 = a1 � a3 = -a2

C = a2,A = a1, B = a1,
1A � B2 � C.

A � 1B � C2

aN =
A � B

AB sin a
=

A � B
ƒ A � B ƒ

A � B = 3 a1 a2 a3

A1 A2 A3

B1 B2 B3

3

 + 1A1 B2 - A2 B12a3

 = 1A2 B3 - A3 B22a1 + 1A3 B1 - A1 B32a2

 + A3 B1 a2 - A3 B2 a1

 = A1 B2 a3 - A1 B3 a2 - A2 B1 a3 + A2 B3 a1

 + A3 a3 � B1 a1 + A3 a3 � B2 a2 + A3 a3 � B3 a3

 + A2 a2 � B1 a1 + A2 a2 � B2 a2 + A2 a2 � B3 a3

 = A1 a1 � B1 a1 + A1 a1 � B2 a2 + A1 a1 � B3 a3

 A � B = 1A1 a1 + A2 a2 + A3 a32 � 1B1 a1 + B2 a2 + B3 a32

A � 1B + C2 = A � B + A � C

B � A = ƒ B ƒ ƒ A ƒ  sin a1-aN2 = -AB sin a aN = -A � B

Finding unit
vector normal
to two vectors
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10 Chapter 1 Vectors and Fields

Scalar triple product. The scalar triple product involves three vectors in a dot
product operation and a cross product operation as, for example, It
is not necessary to include parentheses since this quantity can be evaluated in
only one manner, that is, by evaluating first and then dotting the result-
ing vector with A. It is meaningless to try to evaluate the dot product first since
it results in a scalar quantity, and hence we cannot proceed any further. From
(1.19), we have

From (1.13), we then have

(1.21)

Since the value of the determinant on the right side of (1.21) remains un-
changed if the rows are interchanged in a cyclical manner,

(1.22)

The scalar triple product has the geometrical meaning that its absolute value is
the volume of the parallelepiped having the three vectors as three of its con-
tiguous edges, as will be shown in Section 1.2.

We shall now show that the distributive law holds for the cross product
operation by using (1.22). Thus, let us consider Then, if D is any
arbitrary vector, we have

where we have used the distributive property of the dot product operation.
Since this equality holds for any D, it follows that

Example 1.1 Vector algebraic operations

Given three vectors

 C = a2 + 2a3

 B = a1 + 2a2 - 2a3

 A = a1 + a2

A � 1B + C2 = A � B + A � C

 = D # A � B + D # A � C = D # 1A � B + A � C2
 D # A � 1B + C2 = 1B + C2 # 1D � A2 = B # 1D � A2 + C # 1D � A2

A � 1B + C2.

A # B � C = B # C � A = C # A � B

A # B � C = 3A1 A2 A3

B1 B2 B3

C1 C2 C3

3

A # B � C = 1A1 a1 + A2 a2 + A3 a32 # 3 a1 a2 a3

B1 B2 B3

C1 C2 C3

3

B � C

A # B � C.
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1.1 Vector Algebra 11

let us carry out several of the vector algebraic operations:

(a)

(b)

(c)

(d)

(e)

(f)

(g) Angle between A and 

(h)

(i) Unit vector normal to A and 

(j)

(k)

K1.1. Scalars; Vectors; Unit vectors; Right-handed system; Components of a vector;
Vector addition; Multiplication of vector by a scalar; Magnitude of a vector; Dot
product; Cross product; Triple cross product; Scalar triple product.

D1.1. Vector A has a magnitude of 4 units and is directed toward north.Vector B has a
magnitude of 3 units and is directed toward east. Vector C has a magnitude of 4
units and is directed 30° toward south from west. Find the following: (a)
(b) (c) (d) and (e)
Ans. (a) 4 units directed 60° west of north; (b) 5; (c) 6.212 units directed
15° east of north; (d) 10.392; (e) 24 units directed westward.

D1.2. Given three vectors

Find the following: (a) (b) unit vector along 
(c) (d) and (e)
Ans. (a) 13; (b) (c) 10; (d) (e) 8.5a1 - 4a2 + a3;12a1 + a2 - 2a32>3;

A # B � C.B � C;A # C;
1A + 2B - C2;ƒ A + B - 4C ƒ ;

 C = a1 + 2a2 + 3a3

 B = a1 + a2 - a3

 A = 3a1 + 2a2 + a3

A � 1B � C2.B # 1A - C2;3A + 4B + 3C;ƒ A - B ƒ ;
A + C;

A # B � C = 3 1 1 0
1 2 -2
0 1 2

3 = 112162 + 1121-22 + 102112 = 4

1A � B2 � C = 3 a1 a2 a3

-2 2 1
0 1 2

3 = 3a1 + 4a2 - 2a3

B =
A � B
ƒ A � B ƒ

= -  
2
3

 a1 +
2
3

 a2 +
1
3

 a3

 = -2a1 + 2a2 + a3

 A � B = 3 a1 a2 a3

1 1 0
1 2 -2

3 = 1-2 - 02a1 + 10 + 22a2 + 12 - 12a3

B = cos-1
 
A # B
AB

= cos-1
 

3
1122132 = 45°

A # B = 1a1 + a22 # 1a1 + 2a2 - 2a32 = 112112 + 112122 + 1021-22 = 3

iB =
B
ƒ B ƒ

=
a1 + 2a2 - 2a3

3
=

1
3

 a1 +
2
3

 a2 -
2
3

 a3

ƒ B ƒ = ƒ a1 + 2a2 - 2a3 ƒ = 41122 + 1222 + 1-222 = 3

4C = 41a2 + 2a32 = 4a2 + 8a3

B - C = 1a1 + 2a2 - 2a32 - 1a2 + 2a32 = a1 + a2 - 4a3

A + B = 1a1 + a22 + 1a1 + 2a2 - 2a32 = 2a1 + 3a2 - 2a3
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12 Chapter 1 Vectors and Fields

D1.3. Three vectors A, B, and C are given by

Find the following: (a) (b) and (c)
Ans. (a) (b) (c)

1.2 CARTESIAN COORDINATE SYSTEM

In the preceding section, we introduced the technique of expressing a vector at a
point in space in terms of its component vectors along a set of three mutually or-
thogonal directions defined by three mutually orthogonal unit vectors at that
point. Now to relate vectors at one point in space to vectors at another point in
space, we must define the set of three reference directions at each and every point
in space. To do this in a systematic manner, we need to use a coordinate system.
Although there are several different coordinate systems, we shall be concerned
with only three of those, namely, the Cartesian, cylindrical, and spherical coordi-
nate systems. The Cartesian coordinate system, also known as the rectangular co-
ordinate system, is the simplest of the three since it permits the geometry to be
simple, yet sufficient to study many of the elements of engineering electromag-
netics. We introduce the Cartesian coordinate system in this section and devote
the next section to the cylindrical and spherical coordinate systems.

The Cartesian coordinate system is defined by a set of three mutually or-
thogonal planes, as shown in Fig. 1.6(a). The point at which the three planes
intersect is known as the origin O. The origin is the reference point relative to
which we locate any other point in space. Each pair of planes intersects in a
straight line. Hence, the three planes define a set of three straight lines that

-3a1 - 3a2.a1 + 2a2 + 2a3;2a1 + a2 - 2a3;
C � 1A � B2.B � 1C � A2;A � 1B � C2;

 C = a1 - a2 + a3

 B = 2a1 + a2 - 2a3

 A = a1 + 2a2 + 2a3

(a) (b)

x � 0 y � 0

z � 0
y � 5

x � 2

z � 4

x

x

y

y

z

z

az

az

az

ay

ay

ax

ax

2
5

4

(2, 5, 4)

O

O ay
ax

FIGURE 1.6

Cartesian coordinate system. (a) The three orthogonal planes defining the coordinate system.
(b) The unit vectors in the Cartesian coordinate system are uniform.
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1.2 Cartesian Coordinate System 13

form the coordinate axes. These coordinate axes are denoted as the x-, y-, and
z-axes. Values of x, y, and z are measured from the origin; hence, the coordi-
nates of the origin are (0, 0, 0), that is, and Directions in
which values of x, y, and z increase along the respective coordinate axes are
indicated by arrowheads. The same set of three directions is used to erect a set
of three unit vectors, denoted and as shown in Fig. 1.6(a), for the
purpose of describing vectors drawn at the origin. Note that the positive x-,
y-, and z-directions are chosen such that they form a right-handed system, that
is, a system for which 

On one of the three planes, namely, the yz-plane, the value of x is constant
and equal to zero, its value at the origin, since movement on this plane does not
require any movement in the x-direction. Similarly, on the zx-plane, the value of
y is constant and equal to zero, and on the xy-plane, the value of z is constant
and equal to zero. Any point other than the origin is now given by the intersec-
tion of three planes

(1.23)

obtained by incrementing the values of the coordinates by appropriate amounts.
For example, by displacing the plane by 2 units in the positive x-direction,
the plane by 5 units in the positive y-direction, and the plane by 4
units in the positive z-direction, we obtain the planes and 
respectively, which intersect at point (2, 5, 4), as shown in Fig. 1.6(b). The inter-
sections of pairs of these planes define three straight lines along which we can
erect the unit vectors and toward the directions of increasing values of
x, y, and z, respectively, for the purpose of describing vectors drawn at that point.
These unit vectors are parallel to the corresponding unit vectors drawn at the
origin, as can be seen from Fig. 1.6(b). The same is true for any point in space in
the Cartesian coordinate system. Thus, each one of the three unit vectors in the
Cartesian coordinate system has the same direction at all points, and hence it is
uniform. This behavior does not, however, hold for all unit vectors in the cylin-
drical and spherical coordinate systems, as we shall see in the next section.

It is now a simple matter to apply what we have learned in Section 1.1 to vec-
tors in Cartesian coordinates.All we need to do is to replace the subscripts 1, 2, and
3 for the unit vectors and the components along the unit vectors by the subscripts
x, y, and z, respectively, and also utilize the property that and are uniform
vectors. Thus, let us, for example, obtain the expression for the vector drawn
from point to point as shown in Fig. 1.7. To do this, we
note that the position vector drawn from the origin to the point is given by

(1.24a)

The position vector is so called because it defines the position of the point in
space relative to the origin. Similarly, the position vector drawn from the ori-
gin to the point is given by

(1.24b)r2 = x2 ax + y2 ay + z2 az

P2

r2

r1 = x1 ax + y1 ay + z1 az

P1r1

P21x2, y2, z22,P11x1, y1, z12
R12

azax, ay,

azax, ay,

z = 4,x = 2, y = 5,
z = 0y = 0

x = 0

 z = constant
 y = constant
 x = constant

ax � ay = az.

az,ax, ay,

z = 0.x = 0, y = 0,

Expression
for vector
joining two
points
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14 Chapter 1 Vectors and Fields

x

y

z

x2

x1

y1 y2

z2

z1

P1

O

P2R12

r2

r1

(x2 � x1)ax

(z2 � z1)az

(y2 � y1)ay

FIGURE 1.7

For obtaining the expression for the vector from to P21x2, y2, z22.P11x1, y1, z12R12

Since, from the rule for vector addition, we obtain the vector 
to be

(1.25)

Thus, to find the components of the vector drawn from one point to another in
the Cartesian coordinate system, we simply subtract the coordinates of the ini-
tial point from the corresponding coordinates of the final point. These compo-
nents are just the distances one has to travel along the x-, y-, and z-directions,
respectively, if one chooses to go from to by traveling parallel to the coor-
dinate axes instead of traveling along the direct straight-line path.

Proceeding further, we can obtain the unit vector along the line drawn
from to to be

(1.26)

For a numerical example, if is and is (4, 2, 5), then

 a12 =
1

512
 13ax + 4ay + 5az2

 R12 = 3ax + 4ay + 5az

P211, -2, 02P1

a12 =
R12

R12
=
1x2 - x12ax + 1y2 - y12ay + 1z2 - z12az

[1x2 - x122 + 1y2 - y122 + 1z2 - z122]1>2

P2P1

P2P1

 = 1x2 - x12ax + 1y2 - y12ay + 1z2 - z12az

 R12 = r2 - r1

R12r1 + R12 = r2,
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1.2 Cartesian Coordinate System 15

In our study of electromagnetic fields, we have to work with line, surface,
and volume integrals. These involve differential lengths, surfaces, and volumes,
obtained by incrementing the coordinates by infinitesimal amounts. Since, in
the Cartesian coordinate system, the three coordinates represent lengths, the
differential length elements obtained by incrementing one coordinate at a time,
keeping the other two coordinates constant, are and for the
x-, y-, and z-coordinates, respectively.

Differential length vector. The differential length vector dl is the vector drawn
from a point P(x, y, z) to a neighboring point ob-
tained by incrementing the coordinates of P by infinitesimal amounts. Thus, it is
the vector sum of the three differential length elements, as shown in Fig. 1.8, and
given by

(1.27)

The differential lengths dx, dy, and dz in (1.27) are, however, not independent of
each other since in the evaluation of line integrals, the integration is performed
along a specified path on which the points P and Q lie.We shall illustrate this by
means of an example.

Example 1.2 Finding differential length vector along a curve

Let us consider the curve and obtain the expression for the differential
length vector dl along the curve at the point (1, 1, 1) and having the projection dz on the
z-axis.

The geometry pertinent to the problem is shown in Fig. 1.9. From elementary cal-
culus, we know that for In particular, at the point (1, 1, 1),

Thus,

 = 12ax + 2ay + az2 dz

 = 2 dz ax + 2 dz ay + dz az

 dl = dx ax + dy ay + dz az

dx = dy = 2 dz.
x = y = z2, dx = dy = 2z dz.

x = y = z2

dl = dx ax + dy ay + dz az

Q1x + dx, y + dy, z + dz2

dz azdx ax, dy ay,

Finding
differential
length vector
along a curve

az

ay

ax

Q(x � dx, y � dy, z � dz)

dy

dzdx

d l

P(x, y, z)

FIGURE 1.8

Differential length vector dl.
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16 Chapter 1 Vectors and Fields

x

y

z

O

x � y � z2d l

1

1

1

FIGURE 1.9

For finding the differential length
vector along the curve x = y = z2.

an

d l2

d l1

Curve 2

Curve 1

Surface
FIGURE 1.10

Finding the unit vector normal to a
surface by using differential length
vectors.

Note that the z-component of the dl vector found is dz, thereby satisfying the require-
ment of projection dz on the z-axis specified in the problem.

Differential length vectors are useful for finding the unit vector normal to
a surface at a point on that surface. This is done by considering two differential
length vectors at the point under consideration and tangential to two curves on
the surface and then using (1.20). Thus, with reference to Fig. 1.10, we have

(1.28)

Let us consider an example.

an =
dl1 � dl2

ƒ dl1 � dl2 ƒ
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1.2 Cartesian Coordinate System 17

an

d l2

d l1

z

1

2

x

yO

2x2 � y2 � 6

FIGURE 1.11

Example of finding the unit vector
normal to a surface.

Example 1.3 Finding unit vector normal to a surface

Find the unit vector normal to the surface at the point (1, 2, 0).
With reference to the construction shown in Fig. 1.11, we consider two differential

length vectors and at the point (1, 2, 0). The vector is along the straight line
whereas the vector is tangential to the curve For

and Hence,

For and and Specifically, at the point
(1, 2, 0), and Hence,

The unit normal vector is then given by

Differential surface vector. Two differential length vectors and originating
at a point define a differential surface whose area dS is that of the parallelogram
having and as two of its adjacent sides, as shown in Fig. 1.12(a). From simple
geometry and the definition of the cross product of two vectors, it can be seen that

(1.29)

In the evaluation of surface integrals, it is convenient to define a differential sur-
face vector dS whose magnitude is the area dS and whose direction is normal to
the differential surface.Thus, recognizing that the normal vector can be directed

dS = dl1 dl2 sin a = ƒ dl1 � dl2 ƒ

dl2dl1

dl2dl1

 =
112

 1ax + ay2
 an =

dz az � dx 1ax - ay2
ƒ dz az � dx 1ax - ay2 ƒ

dl2 = dx ax - dx ay = dx 1ax - ay2
dz = 0.dy = -dx

dz = 0.z = 0, 4x dx + 2y dy = 02x2 + y2 = 6

dl1 = dz az

y = 2, dx = dy = 0.x = 1
2x2 + y2 = 6, z = 0.dl2x = 1, y = 2,

dl1dl2dl1

2x2 + y2 = 6 Finding unit
normal vector
at a point on
a surface
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18 Chapter 1 Vectors and Fields

an

ay

ax

az

d l1

dS

dx

dx

dy

dy

dz

dz

d l2

z

x

y

a

(a) (b)

FIGURE 1.12

(a) Illustrating the differential surface vector concept. (b) Differential surface vectors in the
Cartesian coordinate system.

to either side of a surface, we can write

or

(1.30)

Applying (1.30) to pairs of three differential length elements 
and we obtain the differential surface vectors

(1.31a)
(1.31b)
(1.31c)

associated with the planes and re-
spectively. These are shown in Fig. 1.12(b) for the plus signs in (1.31a)–(1.31c).

Differential volume. Three differential length vectors and origi-
nating at a point define a differential volume which is that of the paral-
lelepiped having and as three of its contiguous edges, as shown in
Fig. 1.13(a). From simple geometry and the definitions of cross and dot prod-
ucts, it can be seen that

 = ƒ dl3
# dl1 � dl2 ƒ

 = ƒ dl1 � dl2 ƒ  
ƒ dl3

# dl1 � dl2 ƒ
ƒ dl1 � dl2 ƒ

 = ƒ dl1 � dl2 ƒ ƒ dl3
# an ƒ

 dv = area of the base of the parallelepiped * height of the parallelepiped

dl3dl1, dl2,
dv

dl3dl1, dl2,

z = constant,x = constant, y = constant,

 ;dx ax � dy ay = ;dx dy az

 ;dz az � dx ax = ;dz dx ay

 ;dy ay � dz az = ;dy dz ax

dz az,
dx ax, dy ay,

dS = ;dl1 � dl2

dS = ;dS an = ; ƒ dl1 � dl2 ƒ an
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1.2 Cartesian Coordinate System 19

an

ay

ax

az

d l1

dv dx

dy

dz

d l2

d l3

(a) (b)

FIGURE 1.13

(a) Parallelepiped defined by three differential length vectors originating at a point.
(b) Differential volume in the Cartesian coordinate system.

or

(1.32)

Thus, the scalar triple product of three vectors originating from a point has the
meaning that its absolute value is the volume of the parallelepiped having the
three vectors as three of its contiguous edges.

For the three differential length elements and associat-
ed with the Cartesian coordinate system, we obtain the differential volume to be

(1.33)

which is that of the rectangular parallelepiped shown in Fig. 1.13(b).
We shall conclude this section with a brief review of some elementary an-

alytic geometrical details that will be useful in our study of electromagnetics.An
arbitrary surface is defined by an equation of the form

(1.34)

In particular, the equation for a plane surface making intercepts a, b, and c on
the x-, y-, and z-axes, respectively, is given by

(1.35)

Since a curve is the intersection of two surfaces, an arbitrary curve is defined by
a pair of equations

(1.36)

Alternatively, a curve is specified by a set of three parametric equations

(1.37)x = x1t2, y = y1t2, z = z1t2

f1x, y, z2 = 0 and g1x, y, z2 = 0

x
a

+
y

b
+

z
c

- 1 = 0

f1x, y, z2 = 0

dv = dx dy dz

dz azdx ax, dy ay,

dv = ƒ dl1
# dl2 � dl3 ƒ
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20 Chapter 1 Vectors and Fields

where t is an independent parameter. For example, a straight line passing through
the origin and making equal angles with the positive x-, y-, and z-axes is given by
the pair of equations and or by the set of three parametric equa-
tions and 

K1.2. Cartesian or rectangular coordinate system; Orthogonal surfaces; Unit vectors;
Position vector; Vector joining two points; Differential length vector; Differen-
tial surface vector; Differential volume.

D1.4. Three points and are given by (3, 1, 0), and re-
spectively. Obtain the following: (a) the vector drawn from to (b) the
straight-line distance from to and (c) the unit vector along the line from

to 
Ans. (a) (b) 3; (c)

D1.5. For each of the following straight lines, find the differential length vector
along the line and having the projection dz on the z-axis: (a)
(b) and (c) the line passing through the points (2, 0, 0)
and (0, 0, 1).
Ans. (a) (b) (c)

D1.6. For each of the following pairs of points, obtain the equation for the straight line
passing through the points: (a) (1, 2, 0) and (3, 4, 0); (b) (0, 0, 0) and 
and (c) (1, 1, 1) and 
Ans. (a) (b) (c)

1.3 CYLINDRICAL AND SPHERICAL COORDINATE SYSTEMS

In the preceding section, we learned that the Cartesian coordinate system is de-
fined by a set of three mutually orthogonal surfaces, all of which are planes. The
cylindrical and spherical coordinate systems also involve sets of three mutually
orthogonal surfaces. For the cylindrical coordinate system, the three surfaces
are a cylinder and two planes, as shown in Fig. 1.14(a). One of these planes is the
same as the plane in the Cartesian coordinate system. The second
plane contains the z-axis and makes an angle with a reference plane, conve-
niently chosen to be the xz-plane of the Cartesian coordinate system.This plane
is therefore defined by The cylindrical surface has the z-axis as its
axis. Since the radial distance r from the z-axis to points on the cylindrical sur-
face is a constant, this surface is defined by Thus, the three or-
thogonal surfaces defining the cylindrical coordinates of a point are

(1.38)

Only two of these coordinates (r and z) are distances; the third coordinate 
is an angle.We note that the entire space is spanned by varying r from 0 to 
from 0 to and z from to q .- q2p,

q , f
1f2

 z = constant
 f = constant
 r = constant

r = constant.

f = constant.

f

z = constant

3x + 2y = 5, 3x - 2z = 1.x = y = -2z;y = x + 1, z = 0;
13, -2, 42.

12, 2, -12;
1-2ax + az2 dz.1ax - ay + az2 dz;dz az;

x + y = 0, y + z = 1;
x = 3, y = -4;

1ax + ay - az2>13.12ax + 3ay - 2az2;
P3.P1

P3;P2

P2;P1

15, 2, -22,11, -2, 22,P3P1, P2,

z = t.x = t, y = t,
z = x,y = x

Cylindrical
coordinate
system
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1.3 Cylindrical and Spherical Coordinate Systems 21

(a) (b)

p
f

f

f df

4
 �

af

af

ar

az

ar

az

r � 2

z � 3

A

x

r

x x

y y

z z

B

r

r df
dr

z

dr
P

Q

dz

r df

FIGURE 1.14

Cylindrical coordinate system. (a) Orthogonal surfaces and unit vectors.
(b) Differential volume formed by incrementing the coordinates.

The origin is given by and Any other point in space
is given by the intersection of three mutually orthogonal surfaces obtained
by incrementing the coordinates by appropriate amounts. For example, the
intersection of the three surfaces and defines the point

as shown in Fig. 1.14(a). These three orthogonal surfaces define
three curves that are mutually perpendicular.Two of these are straight lines and
the third is a circle. We draw unit vectors, and tangential to these
curves at the point A and directed toward increasing values of r, and z, re-
spectively. These three unit vectors form a set of mutually orthogonal unit vec-
tors in terms of which vectors drawn at A can be described. In a similar manner,
we can draw unit vectors at any other point in the cylindrical coordinate system,
as shown, for example, for point in Fig. 1.14(a). It can now be seen
that the unit vectors and at point B are not parallel to the corresponding
unit vectors at point A.Thus, unlike in the Cartesian coordinate system, the unit
vectors and in the cylindrical coordinate system do not have the same di-
rections everywhere; that is, they are not uniform. Only the unit vector which
is the same as in the Cartesian coordinate system, is uniform. Finally, we note
that for the choice of as in Fig. 1.14(a), that is, increasing from the positive x-
axis toward the positive y-axis, the coordinate system is right-handed, that is,
ar � af = az.

f

az,
afar

afar

B11, 3p>4, 52

f,
azar, af,

A12, p>4, 32, z = 3r = 2, f = p>4,

z = 0.r = 0, f = 0,
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22 Chapter 1 Vectors and Fields

To obtain expressions for the differential lengths, surfaces, and volumes
in the cylindrical coordinate system, we now consider two points and

where Q is obtained by incrementing infinitesi-
mally each coordinate from its value at P, as shown in Fig. 1.14(b). The three
orthogonal surfaces intersecting at P, and the three orthogonal surfaces inter-
secting at Q, define a box that can be considered to be rectangular since 
and dz are infinitesimally small. The three differential length elements forming
the contiguous sides of this box are and The differential
length vector dl from P to Q is thus given by

(1.39)

The differential surface vectors defined by pairs of the differential length ele-
ments are

(1.40a)
(1.40b)
(1.40c)

These are associated with the and 
surfaces, respectively. Finally, the differential volume formed by the three
differential lengths is simply the volume of the box; that is,

(1.41)

For the spherical coordinate system, the three mutually orthogonal sur-
faces are a sphere, a cone, and a plane, as shown in Fig. 1.15(a). The plane is the
same as the plane in the cylindrical coordinate system.The sphere
has the origin as its center. Since the radial distance r from the origin to points
on the spherical surface is a constant, this surface is defined by 
The spherical coordinate r should not be confused with the cylindrical coordi-
nate r. When these two coordinates appear in the same expression, we shall use
the subscripts c and s to distinguish between cylindrical and spherical. The cone
has its vertex at the origin and its surface is symmetrical about the z-axis. Since
the angle is the angle that the conical surface makes with the z-axis, this sur-
face is defined by Thus, the three orthogonal surfaces defining the
spherical coordinates of a point are

(1.42)

Only one of these coordinates (r) is distance; the other two coordinates ( and )
are angles. We note that the entire space is spanned by varying r from 0 to 
from 0 to and from 0 to 2p.fp,

q , u
fu

 f = constant
 u = constant
 r = constant

u = constant.
u

r = constant.

f = constant

dv = 1dr21r df21dz2 = r dr df dz

dv
z = constantr = constant, f = constant,

 ;dr ar � r df af = ;r dr df az

 ;dz az � dr ar = ;dr dz af

 ;r df af � dz a = ;r df dz ar

dl = dr ar + r df af + dz az

dz az.dr ar, r df af,

dr, df,

Q1r + dr, f + df, z + dz2, P1r, f, z2

Spherical
coordinate
system
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p
f

u

f

df

duu

f

3
 �

p
u

6
�

af

af

au

au

ar

ar

r � 3

A

B

r

x x

y y

z z

r df

dr

dr

P
Q

r du

r

r sin u df

(a) (b)

FIGURE 1.15

Spherical coordinate system. (a) Orthogonal surfaces and unit vectors. (b) Differential
volume formed by incrementing the coordinates.

The origin is given by and Any other point in space is
given by the intersection of three mutually orthogonal surfaces obtained by in-
crementing the coordinates by appropriate amounts. For example, the intersec-
tion of the three surfaces and defines the point

as shown in Fig. 1.15(a). These three orthogonal surfaces define
three curves that are mutually perpendicular. One of these is a straight line and
the other two are circles. We draw unit vectors and tangential to these
curves at point A and directed toward increasing values of r, and respec-
tively. These three unit vectors form a set of mutually orthogonal unit vectors in
terms of which vectors drawn at A can be described. In a similar manner, we can
draw unit vectors at any other point in the spherical coordinate system, as
shown, for example, for point in Fig. 1.15(a). It can now be seen that
these unit vectors at point B are not parallel to the corresponding unit vectors at
point A.Thus, in the spherical coordinate system all three unit vectors and

do not have the same directions everywhere; that is, they are not uniform. Fi-
nally, we note that for the choice of as in Fig. 1.15(a), that is, increasing from
the positive z-axis toward the xy-plane, the coordinate system is right-handed,
that is,

To obtain expressions for the differential lengths, surfaces, and volume in the
spherical coordinate system, we now consider two points and 

where Q is obtained by incrementing infinitesimally eachdr, u + du, f + df2, Q1r +P1r, u, f2
ar � au = af.

u

af
ar, au,

B11, p/2, 02

f,u,
afar, au,

A13, p/6, p/32, f = p/3r = 3, u = p/6,

f = 0.r = 0, u = 0,
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24 Chapter 1 Vectors and Fields

coordinate from its value at P, as shown in Fig. 1.15(b). The three orthogonal sur-
faces intersecting at P and the three orthogonal surfaces intersecting at Q define a
box that can be considered to be rectangular since and are infinitesimal-
ly small.The three differential length elements forming the contiguous sides of this
box are and The differential length vector dl from P to
Q is thus given by

(1.43)

The differential surface vectors defined by pairs of the differential length ele-
ments are

(1.44a)
(1.44b)
(1.44c)

These are associated with the and 
surfaces, respectively. Finally, the differential volume formed by the three
differential lengths is simply the volume of the box, that is,

(1.45)

In the study of electromagnetics, it is useful to be able to convert the coor-
dinates of a point and vectors drawn at a point from one coordinate system to
another, particularly from the cylindrical system to the Cartesian system and
vice versa, and from the spherical system to the Cartesian system and vice versa.
To derive first the relationships for the conversion of the coordinates, let us con-
sider Fig. 1.16(a), which illustrates the geometry pertinent to the coordinates of
a point P in the three different coordinate systems. Thus, from simple geometri-
cal considerations, we have

(1.46a)
(1.46b)

Conversely, we have

(1.47a)

(1.47b)

Relationships (1.46a) and (1.47a) correspond to conversion from cylindrical coor-
dinates to Cartesian coordinates, and vice versa. Relationships (1.46b) and (1.47b)
correspond to conversion from spherical coordinates to Cartesian coordinates,

f = tan-1
 

y

x
u = tan-1

 
4x2 + y2

z
rs = 4x2 + y2 + z2

z = zf = tan-1
 

y

x
rc = 4x2 + y2

z = rs cos uy = rs sin u sin fx = rs sin u cos f
z = zy = rc sin fx = rc cos f

dv = 1dr21r du21r sin u df2 = r2 sin u dr du df

dv
f = constantr = constant, u = constant,

 ;dr ar � r du au = ;r dr du af

 ;r sin u df af � dr ar = ;r sin u dr df au

 ;r du au � r sin u df af = ;r2 sin u du df ar

dl = dr ar + r du au + r sin u df af

r sin u df af.dr ar, r du au,

dfdr, du

Conversions
between
coordinate
systems
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1.3 Cylindrical and Spherical Coordinate Systems 25

u

u

f

f

af

af

au

ay

arc

arc

ars

ax

az

az

O

x

x

y

y

z

z

rc

rs

P

(a)

(b) (c)

FIGURE 1.16

(a) Converting coordinates of a point from one coordinate system to another. (b) and (c)
Expressing unit vectors in cylindrical and spherical coordinate systems, respectively, in
terms of unit vectors in the Cartesian coordinate system.

and vice versa. It should be noted that in computing from y and x, consideration
should be given to the quadrant of the xy-plane in which the projection of the
point P onto the xy-plane lies.

Considering next the conversion of vectors from one coordinate system to
another, we note that to do this, we need to express each of the unit vectors of
the first coordinate system in terms of its components along the unit vectors in
the second coordinate system. From the definition of the dot product of two
vectors, the component of a unit vector along another unit vector, that is, the co-
sine of the angle between the unit vectors, is simply the dot product of the two
unit vectors. Thus, considering the sets of unit vectors in the cylindrical and
Cartesian coordinate systems, we have with the aid of Fig. 1.16(b),

(1.48a)
(1.48b)
(1.48c)

Similarly, for the sets of unit vectors in the spherical and Cartesian coordinate
systems, we obtain, with the aid of Fig. 1.16(b) and (c),

(1.49a)
(1.49b)
(1.49c)

We shall now illustrate the use of these relationships by means of an example.

af # az = 0af # ay = cos faf # ax = -sin f
au # az = -sin uau # ay = cos u sin fau # ax = cos u cos f

ars
# az = cos uars

# ay = sin u sin fars
# ax = sin u cos f

az
# az = 1az

# ay = 0az
# ax = 0

af # az = 0af # ay = cos faf # ax = -sin f
arc

# az = 0arc
# ay = sin farc

# ax = cos f

f
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26 Chapter 1 Vectors and Fields

Example 1.4 Conversion of a vector from Cartesian to spherical
coordinates

Let us consider the vector at the point (3, 4, 5) and convert it to one in
spherical coordinates.

First, from the relationships (1.47b), we obtain the spherical coordinates of the
point (3, 4, 5) to be

Then, noting from the relationships (1.49) that

we obtain at the point under consideration

This result is to be expected since the given vector has components equal to the coordi-
nates of the point at which it is specified. Hence, its magnitude is equal to the distance of
the point from the origin, that is, the spherical coordinate of the point, and its direction
is along the line drawn from the origin to the point, that is, along the unit vector at
that point. In fact, the given vector is a particular case of the position vector

which is the vector drawn from the origin to the point (x, y, z).

K1.3. Cylindrical coordinate system; Orthogonal surfaces; Unit vectors; Differential
lengths, surfaces, and volume; Spherical coordinate system; Orthogonal sur-
faces; Unit vectors; Differential lengths, surfaces, and volume; Conversions be-
tween coordinate systems.

D1.7. Convert into Cartesian coordinates each of the following points: (a) in
cylindrical coordinates; (b) in cylindrical coordinates; (c)

in spherical coordinates; and (d) in spherical coordinates.
Ans. (a) (b) (c) (d) 11, 13, 22.13, 13, -22;1-2, -213, -12;1-13, 1, 32;

118, p/4, p/32p/62
14, 2p/3,14, 4p/3, -12

12, 5p/6, 32

xax + yay + zaz = rs ars,

ars

rs

 = 512ars

 + 510.512ars - 0.512au2
 + 410.412ars + 0.412au + 0.6af2

 3ax + 4ay + 5az = 310.312ars + 0.312au - 0.8af2
 Cax

ay

az

S = C0.312 0.312 -0.8
0.412 0.412 0.6
0.512 -0.512 0

S Cars

au
af

S

 = C sin u cos f cos u cos f -sin f
sin u sin f cos u sin f cos f

cos u -sin u 0
S Cars

au
af

S
 Cax

ay

az

S = C 1ax
# ars2 1ax

# au2 1ax
# af2

1ay
# ars2 1ay

# au2 1ay
# af2

1az
# ars2 1az

# au2 1az
# af2

S Cars

au
af

S
 f = tan-1

 

4
3 = 53.13°

 u = tan-1
 
432 + 42

5
= tan-1 1 = 45°

 rs = 432 + 42 + 52 = 512

3ax + 4ay + 5az

RaoCh01v3.qxd  12/18/03  2:44 PM  Page 26



1.4 Scalar and Vector Fields 27

D1.8. Convert into cylindrical coordinates the following points specified in Cartesian
coordinates: (a) (b) and (c)
Ans. (a) (b) (c)

D1.9. Convert into spherical coordinates the following points specified in Cartesian
coordinates: (a) (b) and (c)
Ans. (a) (b) (c)

1.4 SCALAR AND VECTOR FIELDS

Before we take up the task of studying electromagnetic fields, we must under-
stand what is meant by a field. A field is associated with a region in space, and
we say that a field exists in the region if there is a physical phenomenon associ-
ated with points in that region. For example, in everyday life we are familiar
with the earth’s gravitational field.We do not “see” the field in the same manner
as we see light rays, but we know of its existence in the sense that objects are
acted upon by the gravitational force of Earth. In a broader context, we can talk
of the field of any physical quantity as being a description, mathematical or
graphical, of how the quantity varies from one point to another in the region of
the field and with time. We can talk of scalar or vector fields depending on
whether the quantity of interest is a scalar or a vector. We can talk of static or
time-varying fields depending on whether the quantity of interest is indepen-
dent of time or changing with it.

We shall begin our discussion of fields with some simple examples of scalar
fields. Thus let us consider the case of the conical pyramid shown in Fig. 1.17(a).
A description of the height of the pyramidal surface versus position on its base is
an example of a scalar field involving two variables. Choosing the origin to be the
projection of the vertex of the cone onto the base and setting up an xy-coordi-
nate system to locate points on the base, we obtain the height field as a function
of x and y to be

(1.50)

Although we are able to depict the height variation of points on the conical
surface graphically by using the third coordinate for h, we will have to be con-
tent with the visualization of the height field by a set of constant-height con-
tours on the xy-plane if only two coordinates were available, as in the case of a
two-dimensional space. For the field under consideration, the constant-height
contours are circles in the xy-plane centered at the origin and equally spaced for
equal increments of the height value, as shown in Fig. 1.17(a).

For an example of a scalar field in three dimensions, let us consider a rec-
tangular room and the distance field of points in the room from one corner of
the room, as shown in Fig. 1.17(b). For convenience, we choose this corner to be
the origin O and set up a Cartesian coordinate system with the three contiguous
edges meeting at that point as the coordinate axes. Each point in the room is de-
fined by a set of values for the three coordinates x, y, and z. The distance r from

h1x, y2 = 6 - 24x2 + y2

12, 3p/4, p2.14, p/3, 5p/62;12, p/2, 3p/22;
1-12, 0, -122.1-3, 13, 22;10, -2, 02;

12, 5p/4, 32.12, 5p/3, -12;12, p, 12;
1-12, -12, 32.11, -13, -12;1-2, 0, 12;

Scalar fields
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FIGURE 1.17

(a) Conical pyramid lying above the xy-plane and a set of constant-height
contours for the conical surface. (b) Rectangular room and a set of constant-
distance surfaces depicting the distance field of points in the room from one
corner of the room.

the origin to that point is Thus, the distance field of points in
the room from the origin is given by

(1.51)

Since the three coordinates are already used up for defining the points in the
field region, we have to visualize the distance field by means of a set of constant-
distance surfaces. A constant-distance surface is a surface for which points on it
correspond to a particular constant value of r. For the case under consideration,
the constant-distance surfaces are spherical surfaces centered at the origin and
are equally spaced for equal increments in the value of the distance, as shown in
Fig. 1.17(b).

The fields we have discussed thus far are static fields. A simple example of
a time-varying scalar field is provided by the temperature field associated with

r1x, y, z2 = 4x2 + y2 + z2

4x2 + y2 + z2.
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points in a room, especially when it is being heated or cooled. Just as in the case
of the distance field of Fig. 1.17(b), we set up a three-dimensional coordinate
system and to each set of three coordinates corresponding to the location of a
point in the room, we assign a number to represent the temperature T at that
point. Since the temperature at that point, however, varies with time t, this num-
ber is a function of time. Thus, we describe mathematically the time-varying
temperature field in the room by a function T(x, y, z, t). For any given instant of
time, we can visualize a set of constant-temperature or isothermal surfaces cor-
responding to particular values of T as representing the temperature field for
that value of time. For a different instant of time, we will have a different set of
isothermal surfaces for the same values of T. Thus, we can visualize the time-
varying temperature field in the room by a set of isothermal surfaces continu-
ously changing their shapes as though in a motion picture.

The foregoing discussion of scalar fields may now be extended to vector
fields by recalling that a vector quantity has associated with it a direction in
space in addition to magnitude. Hence, to describe a vector field, we attribute to
each point in the field region a vector that represents the magnitude and direc-
tion of the physical quantity under consideration at that point. Since a vector at
a given point can be expressed as the sum of its components along the set of unit
vectors at that point, a mathematical description of the vector field involves
simply the descriptions of the three component scalar fields. Thus, for a vector
field F in the Cartesian coordinate system, we have

(1.52)

Similar expressions in cylindrical and spherical coordinate systems are as follows:

(1.53a)

(1.53b)

We should, however, recall that the unit vectors and in (1.53a) and all
three unit vectors in (1.53b) are themselves nonuniform, but known, functions
of the coordinates.

A vector field is described by a set of direction lines, also known as stream
lines and flux lines. A direction line is a curve constructed such that the field is
tangential to the curve for all points on the curve. To find the equations for the
direction lines for a specified vector field F, we consider the differential length
vector dl tangential to the curve. Then since F and dl are parallel, their compo-
nents must be in the same ratio. Thus, in the Cartesian coordinate system, we
obtain the differential equation

(1.54)
dx

Fx
=

dy

Fy
=

dz

Fz

afar

 F1r, u, f, t2 = Fr1r, u, f, t2ar + Fu1r, u, f, t2au + Ff1r, u, f, t2af
 F1r, f, z, t2 = Fr1r, f, z, t2ar + Ff1r, f, z, t2af + Fz1r, f, z, t2az

F1x, y, z, t2 = Fx1x, y, z, t2ax + Fy1x, y, z, t2ay + Fz1x, y, z, t2az

1.4 Scalar and Vector Fields 29

Vector fields

Finding
equations for
direction lines
of a vector
field
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30 Chapter 1 Vectors and Fields

which upon integration gives the required algebraic equation. Similar expres-
sions in cylindrical and spherical coordinate systems are as follows:

(1.55)

(1.56)

We shall illustrate the concept of direction lines and the use of (1.54)–(1.56) to
obtain the equations for the direction lines by means of an example.

Example 1.5 Linear velocity vector field of points on a rotating disk

Consider a circular disk of radius a rotating with constant angular velocity about an
axis normal to the disk and passing through its center. We wish to describe the linear ve-
locity vector field associated with points on the rotating disk.

We choose the center of the disk to be the origin and set up a two-dimensional co-
ordinate system, as shown in Fig. 1.18(a). Note that we have a choice of the coordinates

v

 
dr

Fr
=

r du
Fu

=
r sin u df

Ff

 
dr

Fr
=

r df
Ff

=
dz

Fz

f

af

O
O

O

x

y
(r, f)r

(a) (b)

(c)

FIGURE 1.18

(a) Rotating disk. (b) Linear velocity vector field associated with points on the
rotating disk. (c) Same as (b) except that the vectors are omitted and the
density of direction lines is used to indicate the magnitude variation.
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1.4 Scalar and Vector Fields 31

(x, y) or the coordinates We know that the magnitude of the linear velocity of a
point on the disk is then equal to the product of the angular velocity and the radial dis-
tance r of the point from the center of the disk.The direction of the linear velocity is tan-
gential to the circle drawn through that point and concentric with the disk. Hence, we
may depict the linear velocity field by drawing at several points on the disk vectors that
are tangential to the circles concentric with the disk and passing through those points,
and whose lengths are proportional to the radii of the circles, as shown in Fig. 1.18(b),
where the points are carefully selected to reveal the circular symmetry of the field with
respect to the center of the disk. We find, however, that this method of representation of
the vector field results in a congested sketch of vectors. Hence, we may simplify the
sketch by omitting the vectors and simply placing arrowheads along the circles, thereby
obtaining a set of direction lines. We note that for the field under consideration, the di-
rection lines are also contours of constant magnitude of the velocity, and hence by in-
creasing the density of the direction lines as r increases, we can indicate the magnitude
variation, as shown in Fig. 1.18(c).

For this simple example, we have been able to obtain the direction lines without
resorting to the use of mathematics. We shall now consider the mathematical determina-
tion of the direction lines and show that the same result is obtained. To do this, we note
that the linear velocity vector field is given by

Then, considering that the geometry associated with the problem is two-dimensional and
using (1.55), we have

or

which represents circles centered at the origin, as in Fig. 1.18(c).
If we wish to obtain the equations for the direction lines using Cartesian coordi-

nates, we first write

Then from (1.54), we have

or

which again represents circles centered at the origin.

 x2 + y2 = constant
 x dx + y dy = 0

dx

-y
=

dy

x

 = v1-yax + xay2
 = vr1-sin f ax + cos f ay2

 v1x, y2 = vr1af # ax2ax + vr1af # ay2ay

 r = constant
 dr = 0

dr

0
=

r df

vr

v1r, f2 = vraf

v

1r, f2.
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32 Chapter 1 Vectors and Fields

K1.4. Field; Static field, Time-varying field; Scalar field; Constant magnitude contours
and surfaces; Vector field; Direction lines.

D1.10. The time-varying temperature field in a certain region of space is given by

where is a constant. Find the shapes of the constant-temperature surfaces for
each of the following values of t: (a) (b) and (c)
Ans. (a) elliptic cylinders; (b) spheres; (c) ellipsoids.

D1.11. For the vector field find the fol-
lowing: (a) the magnitude of F and the unit vector along F at the point (1, 1, 0);
(b) the point at which the magnitude of F is 3 and the direction of F is along the
unit vector and (c) the point at which the magnitude of F is
3 and the direction of F is along the unit vector 
Ans. (a) (b) (1, 1, 1); (c)

D1.12. A vector field is given in cylindrical coordinates by

Express the vector F in Cartesian coordinates at each of the following points spec-
ified in Cartesian coordinates: (a) (1, 0, 0); (b) and (c)
Ans. (a) (b) (c)

1.5 THE ELECTRIC FIELD

Basic to our study of the elements of engineering electromagnetics is an under-
standing of the concepts of the electric and magnetic fields. Hence, we devote
this and the following section to an introduction of these concepts. To introduce
the electric field concept, we note that, from our study of Newton’s law of gravi-
tation in elementary physics, we are familiar with the gravitational force field as-
sociated with material bodies by virtue of their physical property known as mass.
Newton’s experiments showed that the gravitational force of attraction between
two bodies of masses and separated by a distance R that is very large
compared with their sizes, is equal to where G is the universal con-
stant of gravitation. In a similar manner, a force field known as the electric field
is associated with bodies that are charged. A material body may be charged pos-
itively or negatively or may possess no net charge. In the International System of
Units that we use throughout this book, the unit of charge is the coulomb, ab-
breviated C. The charge of an electron is Alternatively, ap-
proximately represent a charge of one negative coulomb.

Experiments conducted by Coulomb showed that the following hold for
two charged bodies that are very small in size compared to their separation so
that they can be considered as point charges:

1. The magnitude of the force is proportional to the product of the magni-
tudes of the charges.

6.24 * 1018 electrons
-1.60219 * 10-19 C.

m1 m2 G/R2,
m2m1

1
81-ax + 13ay2.- 1

2 ay;ax;
11, 13, -42.11, -1, -32;

F =
1

r2 1cos f ar + sin f af2

10.6, 1.8, -0.62.3, 1312ax + 2ay + 2az2;
az.

1
312ax + 2ay + az2;

F = 13x - y2ax + 1x + z2ay + 12y - z2az,

t = 1 s.t = 0.5 s;t = 0;
T0

T1x, y, z, t2 = T05[x11 + sin pt2]2 + [2y11 - cos pt2]2 + 4z26

Coulomb’s
law
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1.5 The Electric Field 33

2. The magnitude of the force is inversely proportional to the square of the
distance between the charges.

3. The magnitude of the force depends on the medium.
4. The direction of the force is along the line joining the charges.
5. Like charges repel; unlike charges attract.

For free space, the constant of proportionality is where is known as
the permittivity of free space, having a value or approximately
equal to (For convenience, we shall use a value of for 
throughout this book.) Thus, if we consider two point charges and 
separated R m in free space, as shown in Fig. 1.19, then the forces and ex-
perienced by and respectively, are given by

(1.57a)

and

(1.57b)

where and are unit vectors along the line joining and as shown
in Fig. 1.19. Equations (1.57a) and (1.57b) represent Coulomb’s law. Since the
units of force are newtons, we note that has the units 

These are commonly known as farads per meter, where a
farad is a per newton-meter.

In the case of the gravitational field of a material body, we define the grav-
itational field intensity as the force per unit mass experienced by a small test
mass placed in that field. In a similar manner, the force per unit charge experi-
enced by a small test charge placed in an electric field is known as the electric
field intensity, denoted by the symbol E. Alternatively, if in a region of space, a
test charge q experiences a force F, then the region is said to be characterized by
an electric field of intensity E given by

(1.58)E =
F
q

1coulomb221newton-meter22. 1coulomb22 pere0

Q2,Q1a12a21

F2 =
Q2 Q1

4pe0 R2 a12

F1 =
Q1 Q2

4pe0 R2 a21

Q2,Q1

F2F1

Q2 CQ1 C
e010-9/36p10-9/36p.

8.854 * 10-12,
e01/4pe0,

Electric field
defined

F1

F2

Q1

Q2

a12

a21

R

FIGURE 1.19

Forces experienced by two point
charges and Q2.Q1
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Electrostatic
separation of
minerals

Cathode ray
tube

1See, for example, A. D. Moore, ed., Electrostatics and Its Applications (New York: John Wiley &
Sons, 1973), Chap. 10.

The unit of electric field intensity is newton per coulomb, or more commonly
volt per meter, where a volt is a newton-meter per coulomb. The test charge
should be so small that it does not alter the electric field in which it is placed.
Ideally, E is defined in the limit that q tends to zero; that is,

(1.59)

Equation (1.59) is the defining equation for the electric field intensity irrespec-
tive of the source of the electric field. Just as one body by virtue of its mass is the
source of a gravitational field acting on other bodies by virtue of their masses, a
charged body is the source of an electric field acting on other charged bodies.
We will, however, learn in Chapter 2 that there exists another source for the
electric field, namely, a time-varying magnetic field.

Equation (1.58) or (1.59) tells us that the force experienced by a charged
particle placed at a point in an external electric field is in the same direction as
that of the electric field if the charge is positive, but opposite to that of the elec-
tric field if the charge is negative, as shown in Fig. 1.20. This phenomenon is the
basis behind electrostatic separation, a process widely used in industry to sepa-
rate minerals.1 An example is illustrated in Fig. 1.21. Phosphate ore composed
of granules of quartz and phosphate rock is dropped through a hopper onto a
vibrating feeder. The friction between the two types of granules resulting from
the vibration causes the quartz particles to be positively charged and the phos-
phate particles to be negatively charged. The oppositely charged particles are
then passed through a chute into the electric field region between two parallel
plates, where they are separated and subsequently collected separately.

There are many other devices based on the electric force on a charged
particle. We shall, however, discuss only one other application, the cathode ray
tube, which is used in oscilloscopes, TV receivers, computer display terminals,
and so on. The schematic of a cathode ray tube is shown in Fig. 1.22. Electrons
are emitted from the heated cathode and are accelerated toward the anode by
an electric field directed from the anode toward the cathode. After passing
through the anode, they enter a region between two orthogonal pairs of parallel
plates, one pair being horizontal and the other vertical. A voltage applied to the

E = lim
q:0

 
F
q

��

qE

�qE

q �q

E

FIGURE 1.20

Forces experienced by positive and negative
charges in an electric field.
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1.5 The Electric Field 35

horizontal set of plates produces an electric field between the plates directed
vertically, thereby deflecting the electrons vertically and imparting to them a ver-
tical component of velocity as they leave the region between the plates. Similar-
ly, a voltage applied to the vertical set of plates deflects the electrons horizontally
sideways and imparts to them a sideways component of velocity as they leave the
region between the plates.Thus, by varying the voltages applied to the two sets of
plates, the electron beam can be made to strike the fluorescent screen and pro-
duce a bright spot at any point on the screen.
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FIGURE 1.21

Example for illustrating electrostatic separation
of minerals.

Grid
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FIGURE 1.22

Schematic diagram of a cathode ray tube.
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Returning now to Coulomb’s law and letting one of the two charges in
Fig. 1.19, say, be a small test charge q, we have

(1.60)

The electric field intensity at the test charge due to the point charge is
then given by

(1.61)

Generalizing this result by making R a variable, that is, by moving the test
charge around in the medium, writing the expression for the force experienced
by it, and dividing the force by the test charge, we obtain the electric field inten-
sity E due to a point charge Q to be

(1.62)

where R is the distance from the point charge to the point at which the field in-
tensity is to be computed and is the unit vector along the line joining the two
points under consideration and directed away from the point charge.The electric
field intensity due to a point charge is thus directed everywhere radially away
from the point charge and its constant-magnitude surfaces are spherical surfaces
centered at the point charge, as shown by the cross-sectional view in Fig. 1.23.

Using (1.62) in conjunction with (1.25) and (1.26), we can obtain the ex-
pression for the electric field intensity at a point P(x, y, z) due to a point charge
Q located at a point Thus, noting that the vector R from to P is
given by and the unit vector is
equal to R/R, we obtain

(1.63)
 =

Q

4pe0
 

1x - x¿2ax + 1y - y¿2ay + 1z - z¿2az

[1x - x¿22 + 1y - y¿22 + 1z - z¿22]3/2

 E =
QR

4pe0 R3

aR[1x - x¿2ax + 1y - y¿2ay + 1z - z¿2az]
P¿P¿1x¿, y¿, z¿2.

aR

E =
Q

4pe0 R2 aR

E2 =
F2

q
=

Q1

4pe0 R2 a12

Q1E2

F2 =
Q1 q

4pe0 R2 a12

Q2,
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R

Q

aR

E

FIGURE 1.23

Direction lines and cross sections of constant-magnitude
surfaces of electric field due to a point charge.

Electric field
due to a point
charge
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1.5 The Electric Field 37

For a numerical example, if P and are (3, 1, 1) and respectively, then

If we now have several point charges as shown in Fig. 1.24, the
force experienced by a test charge situated at a point P is the vector sum of the
forces experienced by the test charge due to the individual charges. It then fol-
lows that the electric field intensity at point P is the superposition of the electric
field intensities due to the individual charges; that is,

(1.64)

We shall illustrate the application of (1.64) by means of an example involving
two point charges.

Example 1.6 Electric field of two point charges

Let us consider two point charges and situated at 
and (1, 0, 0), respectively.We wish to (a) find the electric field intensity at the point (0, 0, 1)
and (b) discuss computer generation of the direction line of E passing through that point.

(a) Using (1.64) and (1.63) in conjunction with the geometry in Fig. 1.25(a), we obtain

(1.65)

Note that the direction of E is given by the unit vector pointing
away from the positive charge The field vectors and and the resultant
field vector E, are shown in Fig. 1.25(a).

E2,E1Q1.
13ax + az2/110

 = 1.118a3ax + az110
b

 =
8pe0

4pe0
 

1ax + az2
23/2 -

4pe0

4pe0
 

1-ax + az2
23/2

 [E]10, 0, 12 = [E1]10, 0, 12 + [E2]10, 0, 12

1-1, 0, 02Q2 = -4pe0 CQ1 = 8pe0 C

E =
Q1

4pe0 R1
2 aR1

+
Q2

4pe0 R2
2 aR2

+ Á +
Qn

4pe0 Rn
2  aRn

Q1, Q2, Á ,

E =
Q

108pe0
 12ax + 2ay + az2

11, -1, 02,P¿

aRn

aR3

aR2

aR1
P

R1

Q1

Q2

Q3

R2

R3

Rn

Qn

FIGURE 1.24

Collection of point charges and unit vectors along
the directions of their electric fields at a point P.
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E1
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E
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1

Q1 � 8pe0 C Q2 � �4pe0 C
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(0.095, 0, 1.032)

(0.193, 0, 1.052)

3ax � az

10 4.8ax � az

4.9

(a) (b)

FIGURE 1.25

(a) Computation of the resultant electric field due to two point charges. (b) Generation of the direction
line of the electric field of (a).

(b) To discuss the computer generation of the direction line of E, we recall that a di-
rection line is a curve such that at any given point on the curve, the field is tan-
gential to the curve. For the case of the electric field, it is also the path followed by
an infinitesimal test charge when released at a point on the curve. To obtain the
direction line through the point (0, 0, 1), we go by an incremental distance from
(0, 0, 1) along the direction of the electric field vector at that point to reach a new
point, compute the field at the new point, and continue the process. Thus, choos-
ing for the purpose of illustration an incremental distance of 0.1 m and going
along the unit vector from (0, 0, 1), we obtain the new point to be
(0.095, 0, 1.032), as shown in Fig. 1.25(b). The electric field at this point is

(1.66)

Note that the direction of this electric field, which is along the unit vector
is slanted more toward the negative charge than that of the

electric field at the point (0, 0, 1), as shown in Fig. 1.25(b), indicating the swing of
the direction line toward The procedure is continued by going the incremen-
tal distance of 0.1 m from (0.095, 0, 1.032) along the unit vector 
to the new point (0.193, 0, 1.052) and computing the field vector at that point,
and so on, until the direction line is terminated close to the point charge The
same can be done to obtain the portion of the direction line from (0, 0, 1) toward
the point charge by moving opposite to E. Values of the coordinates of the
beginning point (X and Z), the magnitude of the electric field at that point (E),
and the components of the unit vector along the electric field (UX and UZ), per-
tinent to the steps along the direction line computed in this manner, are listed in

Q1,

Q2.

14.8ax + az2/4.9
Q2.

Q214.8ax + az2/4.9,

 = 1.015a4.8ax + az

4.9
b

 [E]10.095, 0, 1.0322 =
8pe0

4pe0
 

11.095ax + 1.032az2
11.0952 + 1.032223/2 -

4pe0

4pe0
 

1-0.905ax + 1.032az2
10.9052 + 1.032223/2

13ax + az2/110
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1.5 The Electric Field 39

Table 1.1, parts (a) and (b), corresponding to the segments of the direction line
from (0, 0, 1) toward and respectively. It can be seen that the test charge
takes 17 steps toward but only 14 steps back toward 

In the simple procedure employed in Example 1.6, there is a (cumulative)
error associated with each step. This error can be reduced by employing a mod-
ified procedure as follows: Instead of moving the test charge by 0.1 m from its
current location, say, point A, to a new location, say, point B, along the direction

Q1.Q2

Q1,Q2

TABLE 1.1 Values of Parameters Pertinent to the Steps in the Computer Generation of
the Direction Line of E in Fig. 1.25 for (a) the Segment from (0, 0, 1) Toward the Charge 
and (b) the Segment from (0, 0, 1) Back Toward the Charge 

(a)

Number of 
(b)

steps = 14
UZ = 0.853UX = 0.522E = 860.610Z = 0.041X = - .975
UZ = 0.849UX = 0.529E = 91.176Z = 0.126X = - .922
UZ = 0.843UX = 0.538E = 32.588Z = 0.210X = - .868
UZ = 0.835UX = 0.551E = 16.616Z = 0.294X = - .813
UZ = 0.823UX = 0.568E = 10.074Z = 0.376X = - .756
UZ = 0.808UX = 0.590E = 6.769Z = 0.457X = - .697
UZ = 0.788UX = 0.616E = 4.871Z = 0.536X = - .636
UZ = 0.762UX = 0.648E = 3.681Z = 0.612X = - .571
UZ = 0.730UX = 0.684E = 2.888Z = 0.685X = - .503
UZ = 0.689UX = 0.724E = 2.333Z = 0.754X = - .430
UZ = 0.640UX = 0.768E = 1.931Z = 0.818X = - .353
UZ = 0.580UX = 0.815E = 1.634Z = 0.876X = - .272
UZ = 0.507UX = 0.862E = 1.411Z = 0.926X = - .186
UZ = 0.420UX = 0.908E = 1.243Z = 0.968X = - .095
UZ = 0.316UX = 0.949E = 1.118Z = 1.000X = 0.000

Number of steps = 17
UZ = -1.000UX = -0.023E = 577.540Z = 0.042X = 1.001
UZ = -1.000UX = 0.010E = 49.846Z = 0.142X = 1.000
UZ = -0.999UX = 0.049E = 17.101Z = 0.241X = 0.995
UZ = -0.995UX = 0.101E = 8.537Z = 0.341X = 0.985
UZ = -0.986UX = 0.167E = 5.100Z = 0.440X = 0.968
UZ = -0.969UX = 0.246E = 3.391Z = 0.536X = 0.944
UZ = -0.942UX = 0.337E = 2.426Z = 0.631X = 0.910
UZ = -0.899UX = 0.439E = 1.837Z = 0.721X = 0.866
UZ = -0.836UX = 0.548E = 1.459Z = 0.804X = 0.811
UZ = -0.751UX = 0.660E = 1.212Z = 0.879X = 0.745
UZ = -0.643UX = 0.766E = 1.051Z = 0.944X = 0.669
UZ = -0.513UX = 0.858E = 0.951Z = 0.995X = 0.583
UZ = -0.368UX = 0.930E = 0.898Z = 1.032X = 0.490
UZ = -0.215UX = 0.977E = 0.882Z = 1.053X = 0.392
UZ = -0.065UX = 0.998E = 0.898Z = 1.060X = 0.292
UZ = 0.076UX = 0.997E = 0.942Z = 1.052X = 0.193
UZ = 0.204UX = 0.979E = 1.015Z = 1.032X = 0.095
UZ = 0.316UX = 0.949E = 1.118Z = 1.000X = 0.000

Q1.
Q2
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40 Chapter 1 Vectors and Fields

of the electric field at point A, it is moved by 0.1 m to a point C along a direction
that bisects the directions of the fields at points A and B. Computer-plotted
field maps in the xz-plane for pairs of point charges and located at

and (1, 0), respectively, by using this modified procedure are shown in
Fig. 1.26. In each map, plotting of a direction line begins at one of the point
charges and terminates when the line reaches to within a distance of 0.1 m from
the second point charge, or if it goes beyond a specified rectangular region. In
this manner, direction lines beginning at points around each point charge and at
30° intervals on a circle of radius 0.1 m are plotted, with the 0° angle corre-
sponding to the 

For Fig. 1.26(a), at and at (1, 0). The rectangu-
lar region is one having corners at (3, 2), and The di-
rection lines beginning at each point charge either end on the second charge or
go out of the boundary of the rectangular region. For Figs. 1.26(b)–(d), region
of map is rectangle having corners at (3, 4), (3, 0), and taking
advantage of the symmetry of the field map about the axis through the charges,

1-3, 02,1-3, 42,

1-3, -22.13, -22,1-3, 22,
Q2 = -Q1-1, 02Q1 = 2Q

+x-direction.

1-1, 02 Q2Q1

(�3,  2) (3,  2)

(�3,  �2)
(a) (b)

(c) (d)

(3,  �2)

(�3,  4) (3,  4)

(�3,  0) Q1

Q1

Q2

Q2

(3,  0)

(�3,  4) (3,  4)

(�3,  0) Q1 Q1Q2

45

40
15

5

10

Q2(3,  0)

(�3,  4) (3,  4)

(�3,  0) (3,  0)

FIGURE 1.26

Computer-generated maps of direction lines of electric field for pairs of point charges and at and
(1, 0), respectively, in the xz-plane. (a) (b) (c) and
(d) Q1 = 81Q, Q2 = Q.

Q1 = 9Q, Q2 = -Q;Q1 = 4Q, Q2 = Q;Q1 = 2Q, Q2 = -Q;
1-1, 02Q2Q1
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1.5 The Electric Field 41

illustrated in Fig. 1.26(a). For Fig. 1.26(b), at and at
(1, 0). A zero-field point exists within the region at between the two
charges. For direction lines passing through this point, the test charge gets
trapped at that point, and the procedure used is to untrap it by displacing it by
0.01 perpendicular to the axis and continue plotting the line until it terminates
at a point on the boundary of the region. For Fig. 1.26(c), at 
and at (1, 0). A zero-field point exists within the region at (2, 0), to
the right of Also, three additional field lines are shown plotted. Two of
these are from at angles of 40° and 45° and the third is from at 10°. For
Fig. 1.26(d), at and at (1, 0). A zero-field point exists
just to the left of between the two charges. The map also includes two addi-
tional field lines originating from at 5° and 15° angles.

The foregoing illustration of the computation of the electric field intensi-
ty due to two point charges can be extended to the computation of the field in-
tensity due to continuous charge distributions. Continuous charge distributions
are of three types: line charges, surface charges, and volume charges, depending
on whether the charge is distributed along a line like chalk powder along a thin
line drawn on the blackboard, on a surface like chalk powder on the erasing
surface of a blackboard eraser, or in a volume like chalk powder in the chalk it-
self. The corresponding charge densities are the line charge density the sur-
face charge density and the volume charge density having the units of
charge per unit length (coulombs per meter), charge per unit area (coulombs
per meter squared), and charge per unit volume (coulombs per meter cubed),
respectively. The technique of finding the electric field intensity due to a given
charge distribution consists of dividing the region of the charge distribution
into a number of differential lengths, surfaces, or volumes, depending on the
type of the distribution, considering the charge in each differential element to
be a point charge, and using superposition. We shall illustrate the procedure by
means of three examples.

Example 1.7 Circular ring charge with uniform density

Charge Q C is distributed with uniform density along a circular ring of radius a lying in
the xy-plane and having its center at the origin, as shown in Fig. 1.27. We wish to find the
electric field intensity at a point on the z-axis.

Let us divide the ring into a large number of segments so that the charge in each
segment can be considered to be a point charge located at the center of the segment. Let
the segments be of equal length and numbered as shown in Fig. 1.27. Then
the electric field intensity at the point (0, 0, z) due to the charge in the jth segment is
given by

where is the charge in the jth segment and and are as shown in the figure. Since
the charge is uniformly distributed, is the same for all j and is equal to the chargeQj

aRj
RjQj

Ej =
Qj

4pe0 Rj
2 aRj

1, 2, 3, Á , 2n,

r,rS,
rL,

Q1

Q2

Q2 = Q1-1, 02Q1 = 81Q
Q2Q1

Q2.
Q2 = -Q

1-1, 02Q1 = 9Q

113, 02,
Q2 = Q1-1, 02Q1 = 4Q

Types of
charge
distributions

Ring charge
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aRj

y

z

x

aj

Rj

a

j

(0, 0, z)

f df
2n – 1

2n 1 2 3 · · ·

FIGURE 1.27

Determination of electric field due to
a circular ring of charge of uniform
density.

density times the length of the segment. Thus,

Furthermore, since the point (0, 0, z) is along the axis of the ring, it is equidistant from all
segments so that is the same for all j. Hence,

Now, from symmetry considerations, we note that for every segment 
there is a corresponding segment diametrically opposite to it in the other half of the ring
such that the electric field intensity due to the two segments together is directed along
the z-axis, as illustrated for segment j in Fig. 1.27. Hence, to find E due to the entire ring
charge, it is sufficient if we consider the z-component of multiply it by 2, and sum
from to Thus, we obtain the required electric field intensity to be

(1.67)

Note that is directed in the above the origin and in the
below the origin as to be expected.1z 6 02,-z-direction

1z 7 02+z-direction[E]10, 0, z2

 =
Qz

4pe01z2 + a223/2 az

 = a
n

j = 1
 

Qz

4pe0 n1z2 + a223/2 az

 = a
n

j = 1
 

Qjz

2pe0 Rj
3 az

 = a
n

j = 1
 

Qj

2pe0 Rj
2  cos aj az

 [E]10, 0, z2 = a
n

j = 1
 

2Qj

4pe0 Rj
2 1aRj

# az2az

j = n.j = 1
Ej,

1, 2, 3, Á , n,

Rj = 4z2 + a2

Rj

Qj = a Q

2pa
b a2pa

2n
b =

Q

2n
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1.5 The Electric Field 43

Alternative to the summation procedure just employed, we can obtain at (0, 0, z)
by setting up an integral expression and evaluating it. Thus, considering a differential
length a of the ring charge at the point as shown in Fig. 1.27, and making use
of symmetry considerations as discussed in connection with the summation procedure, we
obtain

(1.68)

For this example, the two results given by (1.67) and (1.68) are identical. In general, how-
ever, the summation procedure gives an approximate result for any finite value of n, and
the integral gives the exact result, provided it can be evaluated in closed form. The sum-
mation procedure is, however, more illuminating as to the application of superposition
and is convenient for computer solution.

Example 1.8 Electric field of an infinitely long line charge of uniform
density

Let us consider an infinitely long line charge along the z-axis with uniform charge densi-
ty and find the electric field intensity everywhere.

Let us first consider a point on the xy-plane, as shown in Fig. 1.28(a).
Then the solution can be carried out by dividing the line charge into a series of infinitesi-
mal segments, considering each segment to be a point charge, and using superposition.
Two such segments having lengths and equidistant from the origin, located at 
and are shown in the figure. Noting that the electric field contributions due to
these two segments make equal angles with the xy-plane and hence their superposition
has only an r-component, we obtain the field due to the two segments to be

The electric field intensity at P due to the entire line charge is then given by

 =
rL0

2pe0 r
 ar

 =
rL0

2pe0 r 3
 p/2

a= 0 

 cos a da

 = 3
 q

z¿ = 0 

 

rL0r dz¿
2pe0[r

2 + 1z¿22]3/2 ar

 [E]1r, f, 02 = 3
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[dE]1r, f, 02

 =
rL0r dz¿
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44 Chapter 1 Vectors and Fields

where we have used the relationship to make a change of the variable of in-
tegration from to 

Finally, since the charge density is uniform and the xy-plane can be chosen to be
passing through any point on the line charge without changing the geometry, this result is
valid for any value of z. Thus, the required electric field intensity is

(1.69)

which has the magnitude and is everywhere radial to the line charge as shown by

the cross-sectional view in Fig. 1.28(b).

Example 1.9 Electric field of an infinite plane sheet of charge of
uniform density

Let us consider an infinite plane sheet of charge in the xy-plane with uniform surface
charge density and find the electric field intensity due to it everywhere.

Let us first consider a point (0, 0, z) on the z-axis, as shown in Fig. 1.29(a).Then the
solution can be carried out by dividing the sheet into a number of infinitesimal surfaces
in Cartesian coordinates and using superposition. An alternate procedure consists of
using the result of Example 1.7 by dividing the sheet into concentric rings centered at the
origin and each having infinitesimal width dr in the radial direction. One such ring hav-
ing the arbitrary radius r and width dr is shown in Fig. 1.29(a). The charge in that ring is

rS0 C/m2

rL0

2pe0 r

E =
rL0

2pe0 r
 ar

a.z¿
z¿ = r tan a

z

y

x

f r

rL0

dz� (0, 0, z�)

(0, 0, �z�)

P

E

rL0

(a) (b)

a

a dE

FIGURE 1.28

(a) Determination of electric field due to an infinitely long line charge of uniform charge
density (b) Electric field due to the infinitely long line charge of (a).rL0 C/m.

Infinite plane
sheet of
charge
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1.5 The Electric Field 45

equal to the product of the uniform surface charge density and the area of
the ring. According to the result obtained in Example 1.7, the electric field intensity
at(0, 0, z) due to this ring charge is given by

The electric field intensity due to the entire sheet of charge is then given by

Finally, since the charge density is uniform and the origin of the coordinate system can be
chosen anywhere on the infinite sheet without changing the geometry, this result is valid
everywhere. Thus, the required electric field intensity is

(1.70)E = ;
rS0

2e0
  az for z � 0

 =
rS0z

2e0 ƒ z ƒ
  az

 =
rS0z

2e0
 c -  
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d
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q
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q

r = 0
 

rS0rz dr
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q
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[dE]10,0,z2

[dE]10, 0, z2 =
1rS02pr dr2z
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rS012pr dr2,
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FIGURE 1.29

(a) Determination of electric field due to an infinite plane sheet of uniform surface charge density
(b) Electric field due to the infinite plane sheet of charge of (a).rS0 C/m2.
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46 Chapter 1 Vectors and Fields

which has the magnitude everywhere and directed normally away from the sheet,
as shown by the cross-sectional view in Fig. 1.29(b). Defining to be the unit normal
vector directed away from the sheet, that is,

we have

(1.71)

K1.5. Coulomb’s law; Electric field intensity; E due to a point charge; Computation of
E due to charge distributions; E due to an infinitely long line charge of uniform
density; E due to an infinite plane sheet of charge of uniform density.

D1.13. Point charges, each of value are located at the vertices of an n-sided
regular polygon circumscribed by a circle of radius a. Find the electric force on
each charge for (a) (b) and (c)
Ans. (a) (b) (c) all directed away from
the center of the polygon.

D1.14. In Fig. 1.25, let the point charges be at and 
at (1, 0, 0). Find the following: (a) E at (0, 0, 1); (b) the coordinates of the point
at the end of the second step; and (c) the unit vector along E at the point com-
puted in (b).
Ans. (a) (b) (0.060, 0, 1.191); (c)

D1.15. In Fig. 1.27, let there be a second ring of charge uniformly distributed along
a circle of radius a, having its center at (0, 0, 2a) and lying parallel to the xy-
plane. Find E due to the two rings of charge together at each of the following
points: (a) (0, 0, 0); (b) (0, 0, a); and (c) (0, 0, 3a).
Ans. (a) (b) (c)

D1.16. Infinite plane sheets of charge lie in the and planes with
uniform surface charge densities and respectively. Given that the
resulting electric field intensities at the points (3, 5, 1), and (3, 4, 5)
are 0, and respectively, find the following: (a) (b) (c)
and (d) E at 
Ans. (a) (b) (c) (d)

1.6 THE MAGNETIC FIELD

In the preceding section, we presented an experimental law known as Coulomb’s
law having to do with the electric force associated with two charged bodies, and
we introduced the electric field intensity vector as the force per unit charge ex-
perienced by a test charge placed in the electric field. In this section, we present
another experimental law known as Ampère’s law of force, analogous to
Coulomb’s law, and use it to introduce the magnetic field concept.

-4az V/m.-2e0 C/m2;6e0 C/m2;4e0 C/m2;
1-2, 1, -62.
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1.6 The Magnetic Field 47

Ampère’s law of force is concerned with magnetic forces associated with
two loops of wire carrying currents by virtue of motion of charges in the loops.
Figure 1.30 shows two loops of wire carrying currents and and each of
which is divided into a large number of elements having infinitesimal lengths.
The total force experienced by a loop is the vector sum of forces experienced by
the infinitesimal current elements constituting the loop. The force experienced
by each of these current elements is the vector sum of the forces exerted on it by
the infinitesimal current elements constituting the second loop. If the number of
elements in loop 1 is m and the number of elements in loop 2 is n, then there are

pairs of elements. A pair of magnetic forces is associated with each pair
of these elements, just as a pair of electric forces is associated with a pair of
point charges.Thus, if we consider an element in loop 1 and an element in
loop 2, then the forces and experienced by the elements and re-
spectively, are given by

(1.72a)

(1.72b)

where and are unit vectors along the line joining the two current ele-
ments, R is the distance between them, and k is a constant of proportionality
that depends on the medium. For free space, k is equal to where is
known as the permeability of free space, having a value From
(1.72a) or (1.72b), we note that the units of are newtons per ampere squared.
These are commonly known as henrys per meter, where a henry is a newton-
meter per ampere squared.

m0

4p * 10-7.
m0m0/4p,

a12a21

 dF2 = I2 dl2 � akI1 dl1 � a12

R2 b
 dF1 = I1 dl1 � akI2 dl2 � a21

R2 b

dl2,dl1dF2dF1

dl2dl1

m * n

I2I1

Ampère’s law
of force

a12

a21

d l1

I1

I2

d l2

R

FIGURE 1.30

Two loops of wire carrying currents and I2.I1
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48 Chapter 1 Vectors and Fields

Equations (1.72a) and (1.72b) represent Ampère’s force law as applied to
a pair of current elements. Some of the features evident from these equations
are as follows:

1. The magnitude of the force is proportional to the product of the two cur-
rents and to the product of the lengths of the two current elements.

2. The magnitude of the force is inversely proportional to the square of the
distance between the current elements.

3. To determine the direction of the force acting on the current element 
we first find the cross product and then cross into the result-
ing vector. Similarly, to determine the direction of the force acting on the
current element we first find the cross product and then
cross into the resulting vector. For the general case of arbitrary orien-
tations of and these operations yield and which are not
equal and opposite. To illustrate by means of an example, let us consider

at (1, 0, 0) and at (0, 1, 0). Then

Thus, This is not a violation of Newton’s third law since iso-
lated current elements do not exist without sources and sinks of charges at
their ends. Newton’s third law, however, must and does hold for complete
current loops.

The forms of (1.72a) and (1.72b) suggest that each current element is acted
on by a field which is due to the other current element. By definition, this field is
the magnetic field and is characterized by a quantity known as the magnetic flux
density vector, denoted by the symbol B. Thus, we note from (1.72b) that the
magnetic flux density at the element due to the element is given by

(1.73)

and that this flux density acting on results in a force on it given by

(1.74)dF2 = I2 dl2 � B1

dl2
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1.6 The Magnetic Field 49

Similarly, we note from (1.72a) that the magnetic flux density at the element 
due to the element is given by

(1.75)

and that this flux density acting on results in a force on it given by

(1.76)

From (1.74) and (1.76), we see that the units of B are newtons per ampere-meter,
commonly known as webers per meter squared (or tesla), where a weber is a new-
ton-meter per ampere. The units of webers per unit area give the character of
flux density to the quantity B, unlike the character of field intensity as that of E
for the electric field case.

Generalizing (1.74) and (1.76), we say that an infinitesimal current ele-
ment of length dl and current I placed in a magnetic field of flux density B ex-
periences a force dF given by

(1.77)

as shown in Fig. 1.31. Alternatively, if a current element experiences a force in a
region of space, then the region is said to be characterized by a magnetic field.

There are many devices using the principle of magnetic force on a current-
carrying wire. One such device in everyday life is the loudspeaker. As shown by
the cross-sectional view in Fig. 1.32, the loudspeaker consists of a permanent
magnet between the poles of which is a coil wound around a cylinder attached to
the apex of a movable cone-shaped diaphragm. Current through the coil varies
in accordance with the audio signal from the output stage of the hi-fi amplifier or
radio receiver. A magnetic force is thus exerted on the coil, vibrating it back and
forth in step with the changes in the current. Since the coil assembly is attached
to the cone, the cone also vibrates, thereby producing sound waves in the air.

Returning now to (1.73) and (1.75) and generalizing, we obtain the mag-
netic flux density due to an infinitesimal current element of length dl and carry-
ing current I to be

(1.78)B =
m0

4p
  

I dl � aR

R2

dF = I dl � B

dF1 = I1 dl1 � B2

dl1

B2 =
m0

4p
  

I2 dl2 � a21

R2

dl2

dl1

dF

d l

I

B

B

FIGURE 1.31

Force experienced by a current element
in a magnetic field.

Principle of
loudspeaker

Magnetic
field due to a
current
element
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FIGURE 1.32

Cross-sectional view of a loud-speaker.

where R is the distance from the current element to the point at which the flux
density is to be computed and is the unit vector along the line joining the
current element and the point under consideration and directed away from
the current element, as shown in Fig. 1.33. Equation (1.78) is known as the
Biot–Savart law and is analogous to the expression for the electric field intensi-
ty due to a point charge.The Biot–Savart law tells us that the magnitude of B at
a point P is proportional to the current I, the element length dl, and the sine of
the angle between the current element and the line joining it to the point P,
and is inversely proportional to the square of the distance from the current el-
ement to the point P. Hence, the magnetic flux density is zero at points along
the axis of the current element and increases in magnitude as the point P is
moved away from the axis on a spherical surface centered at the current ele-
ment, becoming a maximum for equal to 90°. This is in contrast to the behav-
ior of the electric field intensity due to a point charge, which remains the same
in magnitude at points on a spherical surface centered at the point charge. The
direction of B at point P is normal to the plane containing the current element
and the line joining the current element to P as given by the cross product op-
eration that is, right circular to the axis of the wire. Thus, the directiondl � aR,

a

a

aR

I d l
a

aR

R
P

B
FIGURE 1.33

Magnetic flux density due to an
infinitesimal current element.
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1.6 The Magnetic Field 51

lines of the magnetic flux density due to a current element are circles centered
at points on the axis of the current element and lying in planes normal to the
axis. This is in contrast to the direction lines of the electric field intensity due to
a point charge, which are radial lines emanating from the point charge.

Example 1.10 Magnetic flux density due to a current element

Let us consider an infinitesimal length of wire located at the point (1, 0, 0) and
carrying current 2 A in the direction of the unit vector We wish to find the magnetic
flux density due to the current element at the point (0, 2, 2).

Noting that the current element is given by

and the vector R from the location (1, 0, 0) of the current element to the point (0, 2, 2) is
given by

and using Biot–Savart law, we obtain

The Biot–Savart law can be used to find the magnetic flux density due to a
current carrying filamentary wire of any length and shape by dividing the wire
into a number of infinitesimal elements and using superposition. We shall illus-
trate the procedure by means of an example.

Example 1.11 Magnetic field of an infinitely long straight wire of
current

Let us consider an infinitely long, straight wire situated along the z-axis and carrying cur-
rent I A in the We wish to find the magnetic flux density everywhere.

Let us consider a point on the xy-plane specified by the cylindrical coordinates
as shown in Fig. 1.34(a). Then the solution for the magnetic flux density at

can be obtained by considering a differential length dz of the wire at the point
(0, 0, z) and using superposition. Applying Biot–Savart law (1.78) to the geometry in
Fig. 1.34(a), we obtain the magnetic flux density at due to the current element1r, f, 02
1r, f, 02
1r, f, 02,

+z-direction.

 =
0.001m0

27p
 1-ay + az2 Wb/m2

 =
m0

4p
  

0.002ax � 1-ax + 2ay + 2az2
27

 =
m0

4p
  
I dl � R

R3

 [B]10, 2, 22 =
m0

4p
  

I dl � aR

R2

R = 10 - 12ax + 12 - 02ay + 12 - 02az = -ax + 2ay + 2az

I dl = 122110-32ax = 0.002ax

ax.
10-3 m

Infinitely
long, straight
wire
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(a) (b)
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z out of page
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FIGURE 1.34

(a) Determination of magnetic field due to an infinitely long, straight wire of current I A.
(b) Magnetic field due to the wire of (a).

at (0, 0, z) to be

The magnetic flux density due to the entire wire is then given by

Now, since the origin can be chosen to be anywhere on the wire without changing the
geometry, this result is valid everywhere. Thus, the required magnetic flux density is

(1.79)

which has the magnitude and surrounds the wire, as shown by the cross-sectional
view in Fig. 1.34(b).

m0 I>2pr

B =
m0 I

2pr
 af

 =
m0 I

2pr
 af

 =
m0 Ir

4p
 c z

r24z2 + r2
d

z = -q

q

af

 = L
q

z = -q
 

m0 Ir

4p1z2 + r223/2 dz af

 [B]1r, f, 02 = L
q

z = -q
dB

 =
m0 Ir dz

4p1z2 + r223>2 af

 =
m0 I dz

4p
  

r

R3 af

 =
m0 I dz

4p
  
sin a

R2  af

 [dB]1r, f, 02 =
m0

4p
  

I dz az � aR

R2

I dz az
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1.6 The Magnetic Field 53

The magnetic field computation illustrated in Example 1.11 can be extend-
ed to current distributions. Current distributions are of two types: surface cur-
rents and volume currents, depending on whether current flows on a surface like
rain water flowing down a smooth wall or in a volume like rain water flowing
down a gutter downspout. The corresponding current densities are the surface
current density and the volume current density, or simply the current density
J, having the units of current crossing unit length (amperes per meter) and cur-
rent crossing unit area (amperes per meter squared), respectively. Note that
the current densities are vector quantities, since flow is involved. Assuming for
simplicity surface current of uniform density flowing on a plane sheet, as shown
in Fig. 1.35(a), one obtains the current I on the sheet by multiplying the magni-
tude of by the dimension of the sheet normal to the direction of Simi-
larly, for volume current of uniform density flowing in a straight wire, as shown
in Fig. 1.35(b), the current I in the wire is given by the product of the magnitude
of J and the area of cross section A of the wire normal to the direction of J. If the
current density is nonuniform, the current can be obtained by performing an ap-
propriate integration along the width of the sheet or over the cross section of the
wire, depending on the case.We shall illustrate the determination of the magnet-
ic field due to a current distribution by means of an example.

Example 1.12 Magnetic field of an infinite plane sheet of current

Let us consider an infinite plane sheet of current in the xz-plane with uniform surface
current density and find the magnetic flux density everywhere.

Let us first consider a point (0, y, 0) on the positive y-axis, as shown in Fig. 1.36(a).
Then the solution can be carried out by dividing the sheet into a number of thin vertical
strips and using superposition. Two such strips, which are on either side of the z-axis and
equidistant from it, are shown in Fig. 1.36(a). Each strip is an infinitely long filamentary
wire of current Then, applying the result of Example 1.11 to each strip and noting
that the resultant magnetic flux density at (0, y, 0) due to the two strips together has only
an x-component, we obtain

 = -2 

m0 JS0 dx

2p4x2 + y2
  

y4x2 + y2
 ax = -  

m0 JS0y dx

p1x2 + y22  ax

 dB = dB1 + dB2 = -2 dB1 cos a ax

JS0 dx.

JS = JS0 az A/m

JS.wJS

JS

w

JS

J

A

(a) (b)

FIGURE 1.35

Determination of currents due to 
(a) surface current and (b) volume
current distributions of uniform densities.

Types of
current
distributions

Infinite plane
sheet of
current
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(a)
(b)
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a z

FIGURE 1.36

(a) Determination of magnetic field due to an infinite plane sheet of current density (b) Magnetic
field due to the current sheet of (a).

JS0 az A/m.

The magnetic flux density due to the entire sheet is then given by

Since the magnetic field due to each strip is circular to that strip, a similar result applies
for a point on the negative y-axis except for for the field. Thus,

Now, since the origin can be chosen to be anywhere on the sheet without changing
the geometry, the foregoing results are valid everywhere in the respective regions. Thus,
the required magnetic flux density is

(1.80)

which has the magnitude everywhere and is directed in the direction for
as shown in Fig. 1.36(b). Defining to be the unit normal vector directed awayany � 0,

<axm0 JS0>2
B = <  

m0 JS0

2
 ax for y � 0

[B]10, y, 02 =
m0 JS0

2
 ax for y 6 0

+x-direction

 = -  

m0 JS0

2
 ax for y 7 0

 = -  

m0 JS0y

p
 c 1

y
 tan-1

 
x

y
d

x = 0

q

ax

 = -L
q

x = 0
 

m0 JS0y

p1x2 + y22  dx ax

 [B]10, y, 02 = L
q

x = 0
dB
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1.6 The Magnetic Field 55

from the sheet, that is,

and noting that

we can write

(1.81)

Alternative to the derivation in Example 1.12, we can obtain the result
given by (1.81) from analogy between the electric field due to charge distribu-
tions and the magnetic field due to current distributions. To see this, we note,
with reference to Fig. 1.37(a), that E due to a point charge and B due to a cur-
rent element are given by

(1.82a)

We further note, with reference to Fig. 1.37(b), that E due to an infinitely long
line charge of uniform density and B due to an infinitely long line current are
given by

(1.82b)

Then, with reference to Fig. 1.37(c), we can write the analogy between E due to
an infinite plane sheet charge of uniform density and B due to an infinite plane
sheet of uniform current density as follows:

(1.82c)

Thus, the result given by (1.81) could have been written from this analogy, with-
out actually carrying out the solution in Example 1.12.

Returning now to (1.77), we can formulate the magnetic force in terms of
moving charge, since current is due to flow of charges. Thus, if dt is the time
taken by the charge dq contained in the length dl of the current element to flow
with a velocity v across the infinitesimal cross-sectional area of the element,
then and so that

(1.83)dF =
dq

dt
 v dt � B = dq v � B

dl = v dt,I = dq>dt,

E =
rL0

2e0
 an 4 B =

m0

2
 JS � an

 =
m0 I

2pr
 az � ar

 E =
rL0

2pe0 r
 ar 4 B =

m0 I

2pr
 af

E =
Q

4pe0 R2 aR 4 B =
m0 I

4pR2 dl � aR

B =
m0

2
 JS � an

B =
m0

2
 1JS0 az2 � 1;ay2 for y � 0

an = ;ay for y � 0

Magnetic
force in terms
of charge
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FIGURE 1.37

Analogy between electric field due to charge distributions and magnetic field due to current
distributions.

It then follows that the force F experienced by a test charge q moving with a ve-
locity v in a magnetic field of flux density B is given by

(1.84)

We may now obtain a defining equation for B in terms of the moving test
charge.To do this,we note from (1.84) that the magnetic force is directed normally to

F = qv � B
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1.6 The Magnetic Field 57

both v and B, as shown in Fig. 1.38, and that its magnitude is equal to 
where is the angle between v and B.A knowledge of the force F acting on a test
charge moving with an arbitrary velocity v provides only the value of To
find B, we must determine the maximum force that occurs for equal to 90°
by trying out several directions of v, keeping its magnitude constant. Thus, if this
maximum force is and it occurs for a velocity then

(1.85)

As in the case of defining the electric field intensity, we assume that the test
charge does not alter the magnetic field in which it is placed. Ideally, B is de-
fined in the limit that tends to zero; that is,

(1.86)

Equation (1.86) is the defining equation for the magnetic flux density irrespec-
tive of the source of the magnetic field. We have learned in this section that an
electric current or a charge in motion is a source of the magnetic field. We will
learn in Chapter 2 that there exists another source for the magnetic field,
namely, a time-varying electric field.

There are many devices based on the magnetic force on a moving charge. Of
particular interest is the motion of a charged particle in a uniform magnetic field,
as shown in Fig. 1.39. In this figure, a particle of mass m and charge q entering the

B = lim
qv:0

 

Fm � am

qv

qv

B =
Fm � am

qv

vam,Fm

dqvB
B sin d.

d

qvB sin d,

F
B

B

q d

v
FIGURE 1.38

Force experienced by a test charge
q moving with a velocity v in a
magnetic field B.

Charged
particle
motion in
uniform
magnetic field

B

q

R

v

FIGURE 1.39

Circular motion of a charged particle
entering a uniform magnetic field region.
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58 Chapter 1 Vectors and Fields

magnetic field region with velocity v perpendicular to B experiences a force 
perpendicular to v. Hence, the particle describes a circular path of radius R, equal
to , obtained by equating the centripetal force to the magnetic force

. The fact that the radius is equal to is used in several different appli-
cations. In the mass spectrograph, the mass-to-charge ratio of the particles is ob-
tained by measuring the radius of the circular orbit for known values of and B.
For ions of the same charge but of different masses, the radii of the circular paths
are directly proportional to their masses and to their velocities. This forms the
basis for electromagnetic separation of isotopes, two or more forms of a chemical
element having the same chemical properties and the same atomic number but
different atomic weights. In the cyclotron, a particle accelerator, the particle un-
dergoes a series of semicircular orbits of successively increasing velocities and
hence radii before it exits the field region with high energy.

K1.6. Ampère’s law of force; Magnetic flux density; Biot-Savart law; Computation of
B due to current distributions; B due to an infinitely long straight wire; B due to
an infinite plane sheet of current of uniform density; Analogies between E due
to charge distributions and B due to current distributions.

D1.17. For located at (1, 0, 0) and located at (0, 1, 0),
find: (a) and (b)
Ans. (a) (b)

D1.18. A current I flows in a wire along the curve and in the direction
of increasing z. If the wire is situated in a magnetic field 

find the magnetic force acting on an infinitesimal length of the wire
having the projection dz on the z-axis at each of the following points: (a) (2, 1, 0);
(b) (3, 1.5, 1); and (c) (6, 3, 2).
Ans. (a) (b) (c)

D1.19. Given find the magnitude of the magnetic force
acting on a test charge q moving with velocity at the point for each
of the following paths of the test charge: (a) (b)
and (c)
Ans. (a) 0; (b) (c)

D1.20. Infinite plane sheets of current lie in the and planes with
uniform surface current densities and respectively.
Find the resulting magnetic flux densities at the following points: (a) (1, 2, 2);
(b) ; and (c)
Ans. (a) (b) (c)

1.7 LORENTZ FORCE EQUATION

In Section 1.5, we learned that a test charge q placed in an electric field of in-
tensity E experiences a force

(1.87)FE = qE

m0 JS01-ay + az2.-m0 JS0 az;m0 JS01ay + az2;
1-2, 1, -22.12, -2, -12

-JS0 ax A/m,JS0 az, 2JS0 ax,
z = 0x = 0, y = 0,

0.1641qv0 B0.qv0 B0;
x = y = 2z2.

4x = 4y = z + 9;x = y = -2z;
12, 2, -12v0

B = 1B0/3212ax + 2ay - az2,
10az2/15.

I dz 12ax + ay -I dz 12ax + ay - 5az2/7.5;I dz 12ax + ay2/5;

1x2 + y22,
B = 1yax - xay2/

x = 2y = z2 + 2

-1m0 I1 I2/812p2 dx dy ay.-1m0 I1 I2>812p2 dx dy ax;
dF2.dF1

I2 dl2 = I2 dx ax,I1 dl1 = I1 dy ay

v

mv/qBqvB
mv2>Rmv/qB

qvB
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1.7 Lorentz Force Equation 59

and in Section 1.6, we learned that a test charge q moving with a velocity v in a
magnetic field of flux density B experiences a force

(1.88)

Combining (1.87) and (1.88), we can write the expression for the total force act-
ing on a test charge q moving with velocity v in a region characterized by elec-
tric field of intensity E and magnetic field of flux density B to be

(1.89)

Equation (1.89) is known as the Lorentz force equation.
We observe from (1.89) that the electric and magnetic fields at a point can

be determined from a knowledge of the forces experienced by a test charge at
that point for several different velocities. For a given B, E can be found from the
force for one velocity, since acts in the direction of E. For a given E, B can be
found from two forces for two noncollinear velocities, since acts perpendic-
ular to both v and B.Thus, to find both E and B, the knowledge of a minimum of
three forces is necessary. We shall illustrate the determination of E and B from
three forces by means of an example.

Example 1.13 Finding the electric and magnetic fields from forces on a
test charge

The forces experienced by a test charge q for three different velocities at a point in a re-
gion of electric and magnetic fields are given by

where and are constants. We wish to find E and B at that point.
From the Lorentz force equation, we have

(1.90a)

(1.90b)

(1.90c)

Eliminating E by subtracting (1.90a) from (1.90b) and (1.90c) from (1.90b), we obtain

(1.91a)

(1.91b)

Since the cross product of two vectors is perpendicular to the two vectors, it follows from
(1.91a) that is perpendicular to B and from (1.91b) that is perpendicular to
B. Thus, B is perpendicular to both and But the cross product of 
and is perpendicular to both of them. Therefore, B must be directed parallel to

Thus, we can write

(1.92)B = C1ax + ay2 � ax = -Caz

1ax + ay2 � ax.
ax

1ax + ay2ax.1ax + ay2
ax1ax + ay2

 v01ay - az2 � B = E0 ax

 v01ay - ax2 � B = E01ax + ay2

 qE + qv0 az � B = q1E0 ax + E0 ay2
 qE + qv0 ay � B = q12E0 ax + E0 ay2
 qE + qv0 ax � B = qE0 ax

E0v0

for v3 = v0 az F3 = qE01ax + ay2
for v2 = v0 ay F2 = qE012ax + ay2
for v1 = v0 ax F1 = qE0 ax

FM

FE

F = FE + FM = q1E + v � B2

FM = qv � B

Determination
of electric and
magnetic
fields from
forces on a test
charge
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60 Chapter 1 Vectors and Fields

where C is a proportionality constant to be determined. To do this, we substitute (1.92)
into (1.91b) to obtain

or Thus, we get

Alternatively, we can obtain this result by assuming 
substituting in (1.91a) and (1.91b), equating the like components, and solving the result-
ing algebraic equations. Thus, substituting in (1.91a), we have

or

Substituting in (1.91b), we have

or

Thus, we obtain and, hence,

Finally, we can find E by substituting the result obtained for B in any one of the
three equations (1.90a)–(1.90c). Thus, substituting in (1.90c), we obtain

The Lorentz force equation is a fundamental equation in electromagnet-
ics. Together with the pertinent laws of mechanics, it constitutes the starting
point for the study of charged particle motion in electric and/or magnetic fields.
Devices based on charged particle motion in fields are abundant in practice.

E = E01ax + ay2
B = 1E0>v02az

B =
E0

v0
 az

Bz = E0>v0, Bx = 0, By = 0,

Bz + By =
E0

v0
 and Bx = 0

v0[1Bz + By2ax - Bx ay - Bx az] = E0 ax

v0 3 ax ay az

0 1  -1
Bx By Bz

3 = E0 ax

Bz =
E0

v0
 and 1By + Bx2 = 0

v0[Bz ax + Bz ay - 1By + Bx2az] = E0 ax + E0 ay

v0 3 ax ay az

-1 1 0
Bx By Bz

3 = E01ax + ay2

B = Bx ax + By ay + Bz az,

B =
E0

v0
 az

C = -E0>v0.

 - v0 Cax = E0 ax

 v01ay - az2 � 1-Caz2 = E0 ax

Lorentz force
applications
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1.7 Lorentz Force Equation 61

Examples, some of which we discussed in Sections 1.5 and 1.6, are cathode ray
tubes, ink-jet printers, electron microscopes, mass spectrographs, particle accel-
erators, and microwave tubes such as klystrons, magnetrons, and traveling wave
tubes. Interaction between charged particles and fields is the basis for the study
of the electromagnetic properties of materials and for the study of radio-wave
propagation in gaseous media such as Earth’s ionosphere, in which the con-
stituent gasses are partially ionized by the solar radiation.

Tracing the path of a charged particle in a region of electric and magnetic
fields involves setting the mechanical force, as given by the product of the mass
of the test charge and its acceleration, equal to the electromagnetic force, as
given by the Lorentz force equation, and solving the resulting differential equa-
tion(s) subject to initial condition(s). For simplicity, we shall consider a two-
dimensional situation in which the motion is confined to the xy-plane in a region
of uniform, crossed electric and magnetic fields, and as
shown in Fig. 1.40, where and are constants. We shall assume that a test
charge q having mass m starts at at the point with initial veloci-
ty 

From the Lorentz force equation (1.89), the force exerted by the crossed
electric and magnetic fields on the test charge is given by

(1.93)

The equations of motion of the test charge can then be written as

(1.94a)

(1.94b)

(1.94c)

Equation (1.94c), together with the initial conditions and at 
simply tells us that the path of the test charge is confined to the plane.z = 0

t = 0,z = 0vz = 0

 
dvz

dt
= 0

 
dvy

dt
=

qE0

m
-

qB0

m
 vx

 
dvx

dt
=

qB0

m
 vy

 = qB0 vy ax + 1qE0 - qB0 vx2ay

 = qE0 ay + q1vx ax + vy ay + vz az2 � B0 az

 F = q1E + v � B2

v = vx0 ax + vy0 ay.
1x0, y0, 02t = 0

B0E0

B = B0 az,E = E0 ay
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FIGURE 1.40

Test charge q in a region of crossed
electric and magnetic fields.
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Eliminating from (1.94a) and (1.94b), we obtain

(1.95)

the solution for which is

(1.96a)

where and are constants to be determined from the initial conditions and
From (1.94a), the solution for is then given by

(1.96b)

Using initial conditions and at to evaluate and in
(1.96a) and (1.96b), we obtain

(1.97a)

(1.97b)

Integrating (1.97a) and (1.97b) with respect to t and using initial conditions 
and at to evaluate the constants of integration, we then obtain

(1.98a)

(1.98b)

Equations (1.98a) and (1.98b) give the position of the test charge versus
time, whereas (1.97a) and (1.97b) give the corresponding velocity components.
For and the solutions reduce to

(1.99a)

(1.99b)

(1.99c)

(1.99d)

These can also be obtained directly from (1.94a) and (1.94b) with set equal
to zero.

The path of a test charge in the crossed electric and magnetic fields may
now be traced by using (1.98a) and (1.98b) for not equal to zero, and (1.99a)B0

B0

 vy = vy0 +
qE0

m
 t

 vx = vx0

 y = y0 + vy0t +
1
2

 

qE0

m
 t2

 x = x0 + vx0t

B0 = 0, vc : 0,

 y = y0 -
1
vc

 avx0 -
E0

B0
b11 - cos vct2 +

vy0

vc
 sin vct

 x = x0 +
E0

B0
 t +

1
vc

 avx0 -
E0

B0
b  sin vct +

vy0

vc
 11 - cos vct2

t = 0y = y0

x = x0

 vy = - avx0 -
E0

B0
b  sin vct + vy0 cos vct

 vx =
E0

B0
+ avx0 -

E0

B0
b  cos vct + vy0 sin vct

C2C1t = 0vy = vy0vx = vx0

vy = -C1 sin vct + C2 cos vct

vyvc = qB0/m.
C2C1
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E0

B0
+ C1 cos vct + C2 sin vct

d2vx

dt2 + aqB0

m
b2

vx = a q

m
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B0 E0
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and (1.99b) for equal to zero. For example, the path of an electron 
for 

and is shown in Fig. 1.41, in which the spacing
between the dots corresponds to a time interval of 

K1.7. Lorentz force equation; Determination of E and B from forces on a test charge;
Charged-particle motion in electric and magnetic fields.

D1.21. A magnetic field exists at a point. For each of
the following velocities of a test charge q, find the electric field E at that
point for which the acceleration experienced by the test charge is zero: (a)

(b) and (c) along the line

Ans. (a) (b) (c) 0.
D1.22. In a region of uniform electric and magnetic fields and re-

spectively, a test charge q of mass m moves in the manner

where Find the forces acting on the test charge for the following
values of t: (a) (b) and (c)
Ans. (a) (b) (c)

SUMMARY

We first learned in this chapter several rules of vector algebra that are necessary
for our study of the elements of engineering electromagnetics by considering
vectors expressed in terms of their components along three mutually orthogo-
nal directions. To carry out the manipulations involving vectors at different

-qE0 ay.qE0 ax;qE0 ay;
t = p>vc.t = p>2vc;t = 0;

vc = qB0>m.

 z = 0

 y =
E0

vcB0
 11 - cos vct2

 x =
E0

vcB0
 1vct - sin vct2

B = B0 az,E = E0 ay

v0 B012ax - 2ay - az2;-v0 B01ay + az2;
y = -z = 2x.

v0v012ax + ay + 2az2;v01ax - ay + az2;

B = 1B0>321ax + 2ay - 2az2

5 : 10-9 s.
vy0 = 3 * 107 m/svx0 = 107 m/s,

B0 = 10-4 Wb/m2,E0 = -103 V/m,y0 = 0,x0 = 0,-1.7578 : 1011 C/kg2
1q>m =B0

y

x 4 8 12
0

–4

4

FIGURE 1.41

An example of tracing the path of an
electron in crossed electric and magnetic
fields.
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64 Chapter 1 Vectors and Fields

points in space in a systematic manner, we then introduced the Cartesian coor-
dinate system and discussed the application of the vector algebraic rules to vec-
tors in the Cartesian coordinate system. To summarize these rules, we consider
three vectors

in a right-handed Cartesian coordinate system, that is, with We
then have

Other useful expressions are

We then discussed the cylindrical and spherical coordinate systems, and
conversions between these coordinate systems and the Cartesian coordinate sys-
tem. Relationships for carrying out the coordinate conversions are as follows:

CYLINDRICAL TO CARTESIAN, AND VICE VERSA

x = r cos f y = r sin f z = z

r = 4x2 + y2 f = tan-1
 

y

x
z = z

 dv = dx dy dz

 dS = ;dy dz ax, ;dz dx ay, ;dx dy az

 dl = dx ax + dy ay + dz az

 A #  B � C = 3Ax Ay Az

Bx By Bz

Cx Cy Cz

3
 A � B = 3 ax ay az

Ax Ay Az

Bx By Bz

3
 A #  B = AxBx + AyBy + AzBz

aA =
Ax4A2

x + A2
y + A2

z

 ax +
Ay4A2

x + A2
y + A2

z

 ay +
Az4A2

x + A2
y + A2

z

 az

 ƒ A ƒ = 4A2
x + A2

y + A2
z

 
B
n

=
Bx

n
 ax +

By

n
 ay +

Bz

n
 az

 mA = mAx ax + mAy ay + mAz az

 B - C = 1Bx - Cx2ax + 1By - Cy2ay + 1Bz - Cz2az

 A + B = 1Ax + Bx2ax + 1Ay + By2ay + 1Az + Bz2az

ax � ay = az.

 C = Cx ax + Cy ay + Cz az

 B = Bx ax + By ay + Bz az

 A = Ax ax + Ay ay + Az az
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SPHERICAL TO CARTESIAN, AND VICE VERSA

Other useful expressions are as follows:

CYLINDRICAL

SPHERICAL

Next we discussed the concepts of scalar and vector fields, static and time-
varying, by means of some simple examples such as the height of points on a
conical surface above its base, the temperature field of points in a room, and the
velocity vector field associated with points on a disk rotating about its center.
We learned about the visualization of fields by means of constant-magnitude
contours or surfaces, and in addition, by means of direction lines in the case of
vector fields. We also discussed the mathematical technique of obtaining the
equations for the direction lines of a vector field.

Having obtained the necessary background vector algebraic tools and
physical concepts, we then introduced the electric field concept from considera-
tion of an experimental law known as Coulomb’s law, having to do with the
electric forces between two charges. We learned that electric force acts on
charges merely by virtue of the property of charge. The electric force acting on
a test charge q at a point in the field region is given by

where E is the electric field intensity at that point. The electric field intensity
due to a point charge Q in free space is given by

where is the permittivity of free space, R is the distance from the point charge to
the point at which the field intensity is to be computed, and is the unit vector
along the line joining the two points and directed away from the point charge.

aR

e0

E =
Q

4pe0 R2 aR

F = qE

 dv = r2 sin u dr du df

 dS = ;r2 sin u du df ar, ;r sin u dr df au, ;r dr du af

 dl = dr ar + r du au + r sin u df af

 dv = r dr df dz

 dS = ;r df dz ar, ;dr dz af, ;r dr df az

 dl = dr ar + r df af + dz az

x = r sin u cos f y = r sin u sin f z = r cos u

r = 4x2 + y2 + z2 u = tan-1
 
2x2 + y2

z
f = tan-1

 

y

x
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66 Chapter 1 Vectors and Fields

Using superposition in conjunction with the electric field due to a point charge, we
discussed the computation of the electric field due to two point charges and the
computer generation of the direction lines of the electric field. We then extended
the determination of electric field intensity to continuous charge distributions.

Next we introduced the magnetic field concept from considerations of
Ampère’s law of force, having to do with the magnetic forces between two cur-
rent loops. We learned that the magnetic field exerts force only on moving
charges.The magnetic force acting on a test charge q moving with a velocity v at
a point in the field region is given by

where B is the magnetic flux density at that point. In terms of current flowing in
a wire, the magnetic force acting on a current element of length dl and current I
at a point in the field region is given by

The magnetic flux density due to a current element I dl in free space is given by
the Biot-Savart law

where is the permeability of free space, and R and have the same mean-
ings as in the expression for E due to a point charge. Using superposition in con-
junction with the Biot-Savart law, we discussed the computation of the magnetic
field due to current distributions.

Combining the electric and magnetic field concepts, we then introduced
the Lorentz force equation

which gives the force acting on a test charge q moving with velocity v at a point
in a region characterized by electric field of intensity E and magnetic field of
flux density B. We used the Lorentz force equation to discuss (1) the determi-
nation of E and B at a point from a knowledge of forces acting on a test charge
at that point for three different velocities and (2) the tracing of charged particle
motion in a region of crossed electric and magnetic fields.

REVIEW QUESTIONS

Q1.1. Give some examples of scalars.
Q1.2. Give some examples of vectors.
Q1.3. Is it necessary for the reference vectors and to be an orthogonal set?
Q1.4. State whether and directed westward, northward, and downward, re-

spectively, is a right-handed or a left-handed set.
a3a1, a2,

a3a1, a2,

F = q1E + v � B2

aRm0

B =
m0

4p
  

I dl � aR

R2

F = I dl � B

F = qv � B
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Q1.5. State all conditions for which 
Q1.6. State all conditions for which 
Q1.7. What is the significance of 
Q1.8. What is the significance of 
Q1.9. What is the particular advantageous characteristic associated with the unit vec-

tors in the Cartesian coordinate system?
Q1.10. What is the position vector?
Q1.11. What is the total distance around the circumference of a circle of radius 1 m?

What is the total vector distance around the circle?
Q1.12. Discuss the application of differential length vectors to find a unit vector nor-

mal to a surface at a point on the surface.
Q1.13. Discuss the concept of a differential surface vector.
Q1.14. What is the total surface area of a cube of sides 1 m? Assuming the normals to

the surfaces to be directed outward of the cubical volume, what is the total vec-
tor surface area of the cube?

Q1.15. Describe the three orthogonal surfaces that define the cylindrical coordinates of
a point.

Q1.16. Which of the unit vectors in the cylindrical coordinate system are not uniform?
Explain.

Q1.17. Discuss the conversion from the cylindrical coordinates of a point to its Carte-
sian coordinates, and vice versa.

Q1.18. Describe the three orthogonal surfaces that define the spherical coordinates of
a point.

Q1.19. Discuss the nonuniformity of the unit vectors in the spherical coordinate
system.

Q1.20. Discuss the conversion from the spherical coordinates of a point to its Cartesian
coordinates, and vice versa.

Q1.21. Describe briefly your concept of a scalar field and illustrate with an example.
Q1.22. Describe briefly your concept of a vector field and illustrate with an example.
Q1.23. How do you depict pictorially the gravitational field of Earth?
Q1.24. Discuss the procedure for obtaining the equations for the direction lines of a

vector field.
Q1.25. State Coulomb’s law. To what law in mechanics is Coulomb’s law analogous?
Q1.26. What is the value of the permittivity of free space? What are its units?
Q1.27. What is the definition of electric field intensity? What are its units?
Q1.28. Discuss two applications based on the electric force on a charged particle.
Q1.29. Describe the electric field due to a point charge.
Q1.30. Discuss the computer generation of the direction lines of the electric field due

to two point charges.
Q1.31. Discuss the different types of charge distributions. How do you determine the

electric field intensity due to a charge distribution?
Q1.32. Describe the electric field due to an infinitely long line charge of uniform

charge density.
Q1.33. Describe the electric field due to an infinite plane sheet of uniform surface

charge density.

A � 1B � C2 = 0?
A #  B � C = 0?

A � B = 0.
A #  B = 0.
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68 Chapter 1 Vectors and Fields

Q1.34. State Ampère’s force law as applied to current elements.Why is it not necessary
for Newton’s third law to hold for current elements?

Q1.35. What are the units of magnetic flux density? How is magnetic flux density de-
fined in terms of force on a current element?

Q1.36. What is the value of the permeability of free space? What are its units?
Q1.37. Describe the magnetic field due to a current element.
Q1.38. Discuss the different types of current distributions. How do you determine the

magnetic flux density due to a current distribution?
Q1.39. Describe the magnetic field due to an infinite plane sheet of uniform surface

current density.
Q1.40. Discuss the analogies between the electric field due to charge distributions and

the magnetic field due to current distributions.
Q1.41. How is magnetic flux density defined in terms of force on a moving charge?
Q1.42. Discuss two applications based on the magnetic force on a current-carrying wire

or on a moving charge.
Q1.43. State the Lorentz force equation.
Q1.44. Discuss the determination of E and B at a point from the knowledge of forces

experienced by a test charge at that point for several velocities.What is the min-
imum required number of forces?

Q1.45. Give some examples of devices based on charged particle motion in electric and
magnetic fields.

Q1.46. Discuss the tracing of the path of a charged particle in a region of crossed elec-
tric and magnetic fields.

PROBLEMS

Section 1.1

P1.1. Geometrical computations involving conversion from rectangular to polar coor-
dinates. A bug starts at a point and travels 1 m northward, s m eastward,
southward, westward, and so on, where making a 90°-turn to the
right and traveling in the new direction s times the distance traveled in the pre-
vious direction. Find the value of s for each of the following cases: (a) the total
distance traveled by the bug is 1.5 m; (b) the straight-line distance from the ini-
tial position to the final position of the bug is 0.8 m; and (c) the final position of
the bug relative to its initial position is 30° east of north.

P1.2. Solution of simultaneous vector algebraic equations. Three vectors A, B, and C
satisfy the equations

By writing a matrix equation for the matrix

and solving it, obtain the vectors A, B, and C.

CA1 A2 A3

B1 B2 B3

C1 C2 C3

S
3 * 3

 2A - B + C = a1 + 5a2

 A + 2B + 3C = -2a1 + 5a2 + 5a3

 A + B - C = 2a1 + a2

s 6 1,s3 m
s2 m
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P1.3. Law of cosines from dot product. Two vectors A and B originate from a com-
mon point. (a) If comprises the third side of the triangle, obtain
using the law of cosines relating C to A, B, and the
angle between A and B. (b) Find the expression for the distance from the
common point to the side C, in terms of A and B only.

P1.4. Using vector algebraic operations. Four vectors drawn from a common point
are given as follows:

Find the value(s) of m for each of the following cases: (a) A is perpendicular to
B; (b) B is parallel to C; (c) A, B, and C lie in the same plane; and (d) D is per-
pendicular to both A and B.

P1.5. Straight line connecting the tips of three vectors originating from a point. Show
that the tips of three vectors A, B, and C originating from a common point lie
along a straight line if Provide a geometric
interpretation for this result.

P1.6. Plane containing the tips of four vectors originating from a point. Show that
the tips of four vectors A, B, C, and D originating from a common point lie in a
plane if Then determine if the tips of

and lie in a plane.
P1.7. Some vector identities.

(a) Show that

(b) Using the result of part (a), show the following:

(i)

(ii)

Section 1.2

P1.8. Geometrical computations in Cartesian coordinates. Three points are given by
A(12, 0, 0), B(0, 15, 0), and Find the following: (a) the distance
from B to C; (b) the component of the vector from A to C along the vector from
B to C; and (c) the perpendicular distance from A to the line through B and C.

P1.9. Sphere passing through four specified points in Cartesian coordinates. Consid-
er four points and Show that the
center point of the sphere passing through these points is given by
the solution of the equation

Then find the center point of the sphere and its radius if the four points are (1,
1, 4), (3, 3, 2), (2, 3, 3), and (3, 2, 3).

2Cx2 - x1 y2 - y1 z2 - z1

x3 - x1 y3 - y1 z3 - z1

x4 - x1 y4 - y1 z4 - z1

S Cx0

y0

z0

S = C x2
2 + y2

2 + z2
22 - 1x1

2 + y1
2 + z1

22
1x3

2 + y3
2 + z3

22 - 1x1
2 + y1

2 + z1
22

1x4
2 + y4

2 + z4
22 - 1x1

2 + y1
2 + z1

22
S

1x0, y0, z02
1x4, y4, z42.1x1, y1, z12, 1x2, y2, z22, 1x3, y3, z32,

C10, 0, -202.

1A � B2 # 1B � C2 � 1C � A2 = 1A � B # C22
A � 1B � C2 + B � 1C � A2 + C � 1A � B2 = 0

A � 1B � C2 = 1A # C2B - 1A # B2C

D = a1 + 2a2 - 2a3A = a1, B = 2a2, C = 2a3,
1A - B2 # 1A - C2 � 1A - D2 = 0.

A � B + B � C + C � A = 0.

 D = m2a1 + ma2 + a3

 C = a1 + ma2 + 2a3

 B = ma1 + a2 - 2a3

 A = 2a1 - ma2 - a3

a

C # C = 1B - A2 # 1B - A2
C = B - A
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70 Chapter 1 Vectors and Fields

P1.10. Plane containing two vectors originating from a common point.
(a) Two vectors A and B originate from a common point Show

that the equation for the plane in which the two vectors lie is given by

where is the position vector and 
is the vector from the origin to the point P.

(b) Using the result of part (a), find the equation for the plane containing the
points (1, 1, 2), (2, 2, 0), and (3, 0, 1).

P1.11. Finding differential length vector tangential to a curve. Find the expression for
the differential length vector tangential to the curve at an ar-
bitrary point on the curve and having the projection dz on the z-axis. Then ob-
tain the differential length vectors tangential to the curve at the points (a) (2, 0,
0), (b) (1, 1, 1), and (c)

P1.12. Finding unit vector normal to a curve and a line at the point of intersection.
Find the expression for the unit vector normal to the curve at the
point (1, 1, 1) and having no components along the line 

P1.13. Finding unit vector normal to a surface. By considering two differential length
vectors tangential to the surface at the point (1, 1, 1), find the
unit vector normal to the surface.

P1.14. Finding differential surface vector associated with a plane. Consider the differ-
ential surface lying on the plane and having as its projection on the
xz-plane the rectangular differential surface of sides dx and dz in the x- and z-
directions, respectively. Obtain the expression for the vector dS associated with
that surface.

Section 1.3

P1.15. Vector algebraic operations with points in cylindrical coordinates. Three points
are given in cylindrical coordinates by and

(a) Find the volume of the parallelepiped having the lines from
the origin to the three points as one set of its contiguous edges. (b) Determine if
the point in cylindrical coordinates lies in the plane containing
A, B, and C.

P1.16. Vector algebraic operations with points in spherical coordinates. Four points
are given in spherical coordinates by C(1, 0, 0),
and Show that these four points are situated at the corners
of a parallelogram and find the area of the parallelogram.

P1.17. Vector algebraic operations for vectors specified in cylindrical coordinates.
Three unit vectors are given in cylindrical coordinates as follows: at

at and at Find: (a) (b)
and (c)

P1.18. Vector algebraic operations for vectors specified in spherical coordinates.
Three unit vectors are given in spherical coordinates as follows: at

at and at Find:
(a) (b) (c) and (d)

P1.19. Conversion of vector in Cartesian coordinates to one in spherical coordinates.
Convert the vector at the point to one in spherical
coordinates.

11, 1, 122ax + ay - 12 az

A � B # C.B # C;A # C;A # B;
13, p>4, 3p>22.C = af11, p>3, 02,12, p>6, p>22, B = au

A = ar

B � C.B # C;
A # B;13, 5p>6, 12.C = af11, p>3, 22,12, p>6, 02, B = af

A = ar

D1112, p>6, p>22.
p>4, p>32,A11, p>2, 02, B118,

D113, p>2, 2.52
C12, 5p>6, 02.

p>6, -22,B1213,A12, p>3, 12,

2x + y = 2

x2 + y2 + 2z2 = 4

x = y = z.
x = y2 = z3

1-2, 4, 22.

x + y = 2, y = z2

z1 az

r1 = x1 ax + y1 ay +r = xax + yay + zaz

A � B # 1r - r12 = 0

P1x1, y1, z12.
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P1.20. Equality of two vectors in different coordinates. Determine if the vector 
at the point in cylindrical coordinates is equal to the

vector at the point in spherical coordinates.
P1.21. Finding unit vector tangential to a curve in cylindrical coordinates. Find the ex-

pression for the unit vector tangential to the curve given in cylindrical coordi-
nates by Then obtain the unit vectors tangential to the
curve at the points: (a) and (b)

P1.22. Finding unit vector tangential to a curve in spherical coordinates. Find the ex-
pression for the unit vector tangential to the curve given in spherical coordi-
nates by Then obtain the unit vectors tangential to
the curve at the points: (a) and (b)

Section 1.4

P1.23. Scalar field of height of a hemispherical trough in a hemispherical dome. An
otherwise hemispherical dome of radius 2 m has a symmetrically situated hemi-
spherical trough of radius 1 m, as shown by the cross-sectional view in Fig. 1.42.
Assuming the origin to be at the center of the base of the dome, obtain the ex-
pression for the two-dimensional scalar field describing the height h of the
dome in each of the two coordinate systems: (a) rectangular (x, y) and (b) polar
1r, f2.

11, p>2, p2.11, p>4, p>22
r = 1, f = 2u, 0 … u … p.

112, p>12, 02.11, p>4, 02
r2 sin 2f = 1, z = 0.

11, p>3, p>6213ars - 13 au - af2
13, p>3, 5213 af + 3az2

1arc -

h

1 m

2 m FIGURE 1.42

For Problem P1.23.

P1.24. Force field experienced by a mass in the Earth’s gravitational field. Assuming
the origin to be at the center of Earth and the z-axis to be passing through the
poles, write vector functions for the force experienced by a mass m in the
gravitational field of Earth (mass M) in each of the three coordinate systems:
(a) Cartesian, (b) cylindrical, and (c) spherical. Describe the constant-magnitude
surfaces and the direction lines.

P1.25. Field of the linear velocity of points inside the Earth. Assuming the origin to be
at the center of Earth and the z-axis to be passing through the poles, write vec-
tor functions for the linear velocity of points inside Earth due to its spin mo-
tion in each of the three coordinate systems: (a) Cartesian; (b) cylindrical; and
(c) spherical. Describe the constant-magnitude surfaces and the direction lines.

P1.26. Finding equations for the direction lines of vector fields in Cartesian coordi-
nates. Obtain the equations for the direction lines for the following vector fields
and passing through the point (1, 2, 3): (a) and (b)

P1.27. Finding equation for the direction line of a vector field in cylindrical coordinates.
Obtain the equation for the direction line for the vector field given in cylindrical
coordinates by and passing through the point 

P1.28. Finding equation for the direction line of a vector field in spherical coordinates.
Obtain the equation for the direction line for the vector field given in spherical co-
ordinates by and passing through the point 12, p>4, p>62.12 cos u ar - sin u au2

12, p>3, 12.1sin f ar + cos f af2

xax + yay + zaz.2yax - xay
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72 Chapter 1 Vectors and Fields

Section 1.5

P1.29. Electric forces on point charges. Point charges, each of value Q, are situated at
the corners of a regular tetrahedron of edge length L. Find the electric force on
each point charge.

P1.30. Electric force on a test charge in the field of six point charges. Six point
charges, each of value Q, are situated at (d, 0, 0), (0, d, 0),
(0, 0, d), and A test charge q located at the origin is displaced by a
distance along the positive x-axis. Find an approximate expression for
the electric force acting on the charge.

P1.31. Finding the point charge for specified electric field intensities. For each of the fol-
lowing pairs of electric field intensities, find, if possible, the location and the value
of a point charge that produces both fields: (a) at
(2, 2, 3) and at and (b)

at (1, 1, 1) and at (1, 2, 0).
P1.32. Electric field intensity due to an electric dipole. Two equal and opposite point

charges Q and are located at (0, 0, d/2) and respectively. Such an
arrangement is known as the electric dipole. Show that the electric field intensity
due to the electric dipole at very large distances from the origin compared to the
spacing d is given approximately by 

P1.33. Motion of a point charge along the axis of a circular ring charge. A point charge
q of mass m is in static equilibrium at the origin, in the presence of a circular ring
charge Q in the xy-plane and two point charges, each of value Q, on the z-axis.The
ring charge is uniformly distributed, with radius a and center at the origin.The two
point charges are located at and (0, 0, a). All charges are of the same
sign.The point charge q is constrained to move along the z-axis. It is given a slight
displacement and released at Obtain the approximate differential
equation for the motion of the charge and find the frequency of oscillation.

P1.34. Finding a circular ring charge that produces specified electric field intensities.
Design an arrangement of a circular ring charge of uniform density and total
charge Q equal to that produces electric field intensities of V/m at
the two points (0, 0, 1) and (0, 0, 2). If Q is not equal to determine, if any,
the restriction on its value for a solution to exist.

P1.35. Electric field of a circular ring charge with nonuniform density. Assuming that
the circular ring of Example 1.7 is coated with charge such that the charge den-
sity is given by find the electric field intensity at a point on
the z-axis by setting up the integral expression and evaluating it.

P1.36. Electric field of a circular disc of charge with nonuniform density. Consider a
circular disc of radius a lying in the xy-plane with its center at the origin and car-
rying charge of density Obtain the expression for the electric field
intensity at the point (0, 0, z) by setting up the integral and evaluating it.

P1.37. Electric field of a line charge with nonuniform density. Consider the charge dis-
tributed with density along the line between and (0, 0, a).
Obtain the expression for the electric field intensity at in cylindrical co-
ordinates, by considering a differential length element along the line charge, set-
ting up the field as an integral and evaluating it.

P1.38. Electric field of a slab of volume charge distributed between two planes. Con-
sider the volume charge distributed uniformly with density between the
planes and Using superposition in conjunction with the result ofz = a.z = -a

r0 C/m3

1r, f, 02
10, 0, -a24pe0 ƒ z ƒ  C/m

4pe0>r C/m2.

rL = rL0 cos f C/m,

1 mC,
103 az1 mC

t = 0.z0 V a

10, 0, -a2

1Qd>4pe0 r3212 cos u ar + sin u au2.

10, 0, -d>22,-Q

E2 = 12ax + ay + 2az2 V/maz2 V/m
E1 = 12ax + 2ay +1-1, 0, 32;E2 = 1ax + 2ay + 2az2 V/m

E1 = 12ax + 2ay + az2 V/m

¢ 	 d
10, 0, -d2.

10, -d, 02,1-d, 0, 02,

RaoCh01v3.qxd  12/18/03  2:44 PM  Page 72



Problems 73

Example 1.9, show that the electric field intensity due to the slab of charge is
given by

Section 1.6

P1.39. Magnetic forces on current elements. Three identical current elements 
A-m are located at equally spaced points on a circle of radius 1 m centered at
the origin and lying on the xy-plane. The first point is (1, 0, 0). Find the magnet-
ic force on each current element.

P1.40. Magnetic flux density due to a current element. For the current element
A situated at the point find the magnetic flux densi-

ties at three points: (a) (b) and (c) (3, 0, 2).

P1.41. Finding infinitely long wire for specified magnetic flux densities. For each of
the following pairs of magnetic flux densities, find, if possible, the orientation
of an infinitely long filamentary wire and the current in it required to produce
both fields: (a) at (3, 0, 0) and at (0,
4, 0); and (b) at and 
at 

P1.42. Attraction between two long, horizontal filamentary wires. Two long identical
rigid filamentary wires, each of length l and weight w, are suspended horizontally
from the ceiling by long weightless threads, each of length L. The wires are
arranged to be parallel and separated by a distance d, small compared to l and L.
A current I is passed through both wires via flexible connections so as to cause
the wires to be attracted to each other. (a) Should the currents be in the same
sense or in opposite senses for attraction to occur? (b) If the current is gradually
increased from zero, the wires will gradually approach each other. A condition
may be reached when any further increase of current will cause the wires to swing
and touch each other. Determine the critical value of I at which this happens.

P1.43. Magnetic field due to a circular loop of wire. A circular loop of wire of radius a
is situated in the xy-plane with its center at the origin. It carries a current I in the
clockwise sense as seen along the positive z-axis, that is, in the sense of increas-
ing values of Obtain the expression for B due to the current loop at a point
on the z-axis.

P1.44. Magnetic field due to a finitely long straight wire of current. A straight wire
along the z-axis carries current I in the positive z-direction. Consider the por-
tion of the wire between and where Show that the
magnetic flux density at an arbitrary point due to this portion of the
wire is given by

where and are the angles subtended by the lines from P to and
respectively, with the z-axis. Verify your result in the limit 

and 
P1.45. Magnetic flux density due a square loop of wire. A square loop of wire lies in

the xy-plane with its corners at (1, 1, 0), and A11, -1, 02.1-1, -1, 02,1-1, 1, 02,
a2 : q .

a1 : - q10, 0, a22,
10, 0, a12a2a1

B =
m0 I

4pr
 1cos a1 - cos a22af

P1r, f, z2
a2 7 a1.10, 0, a22,10, 0, a12

f.

10, 12, 02.
B2 = -10-7 ax Wb/m2112, 0, 02B1 = 10-71ay - az2 Wb/m2

B2 = -10-7 ax Wb/m2B1 = 10-7 ay Wb/m2

12, -3, 42,12, -1, 32,
11, -2, 22,I dx 1ax + ay2

I dz az

E = c -1r0 a/e02az for z 6 -a

1r0 z/e02az for -a 6 z 6 a

1r0 a/e02az for z 7 a
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current of 1 A flows in the loop in the sense defined by connecting the specified
points in succession. Applying the result of Problem P1.44 to each side of the
loop, find the magnetic flux densities at two points: (a) (0, 0, 0) and (b) (2, 0, 0).

P1.46. Finding a pair of infinitely long parallel wires for specified magnetic flux densities.
Design an arrangement of a pair of infinitely long, straight, filamentary wires par-
allel to the z-direction and in a plane parallel to the xz-plane, each carrying cur-
rent I equal to 1 A but in opposite directions, which produce magnetic flux
densities of and at the points (0, 1, 0) and (0,
2, 0), respectively. If I is not equal to 1 A, determine, if any, the restriction on its
value for a solution to exist.

P1.47. Magnetic flux density due to three plane current sheets. Three infinite plane
current sheets, each of a uniform current density, exist in the coordinate planes
of a Cartesian coordinate system. The magnetic flux densities due to these cur-
rent sheets are given at three points as follows: at (1, 2, 3), at

at Find the mag-
netic flux densities at the following points: (a) (b)
and (c)

P1.48. Magnetic field for a current distribution between two planes. Consider current
distribution with uniform density in the volume between the planes

and and with uniform density in the volume be-
tween the planes and Using superposition in conjunction with the
result of Example 1.12, show that the magnetic flux density due to the current
distribution is given by

P1.49. Ratio of the radii of orbits of two charged particles in a uniform magnetic field.
Show that the ratio of the radii of orbits of two charged particles of the same
charge, but with different masses, entering a region of uniform magnetic field
perpendicular to the field and with equal kinetic energies is equal to the ratio of
the square roots of their masses.

Section 1.7

P1.50. Movement of a test charge in a region of crossed electric and magnetic fields.
Show that in a region of uniform, crossed electric and magnetic fields E and B, re-
spectively, a test charge released at a point in the field region with initial velocity

moves with constant velocity equal to the initial value. Compute
v for E and B equal to and respectively.

P1.51. Finding magnetic field from forces experienced by a test charge. Let and 
be the forces experienced by a test charge q at a point in a region of electric and
magnetic fields E and B, respectively, for velocities and respectively, of the
charge. If and are such that 
that is, their tips do not lie on a straight line when drawn from a common point,
show that

P1.52. Finding electric and magnetic fields from forces experienced by a test charge.
The forces experienced by a test charge q at a point in a region of electric and
magnetic fields E and B, respectively, are given as follows for three different

B =
1
q

 c F2 - F1

1v2 - v12 � A
d  A

A = F1 � F2 + F2 � F3 + F3 � F1 Z 0,F3F1, F2,
v3,v1, v2,

F3F1, F2,
B01ax - 2ay + 2az2,E012ax + 2ay + az2

v = 1E � B2>B2

B = em0 J01 ƒ y ƒ - a2ax for ƒ y ƒ … a

0 otherwise

y = a.y = 0
-J0 az A/m2y = 0,y = -a

J0 az A/m2

16, -3, -52.
1-4, -5, 72;1-6, -2, -32;

18, 9, -42, B = B01ax + 2ay2.17, -5, 62, B = B01-ax + 2az2;
B = 3B0 ax;

0.5 : 10-7 ay Wb/m210-7 ay Wb/m2
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velocities of the test charge, where and are constants.

Find E and B at that point.
P1.53. Forces experienced by a test charge in a region of electric and magnetic fields.

Three forces and experienced by a test charge q at a point in a region
of electric and magnetic fields for three different velocities of the test charge are
given as follows:

Find the forces and experienced by the test charge at that point for three
other velocities: (a) (b) and (c)

P1.54. Movement of a test charge in a region of uniform electric and magnetic fields.
Uniform electric and magnetic fields exist in a region of space. A test charge q
released with an initial velocity or moves with constant velocity equal to
the initial value. Show that the test charge moves with constant velocity equal to
the initial value when released with an initial velocity for
any nonzero 

REVIEW PROBLEMS

R1.1. Using vector algebraic operations and equalities. Using the equality

show that if and then

Find F if and 

R1.2. Shortest distance from a point to a plane. The tips of three vectors A, B,
and C originating from a common point determine a plane. (a) Show that
the shortest distance from the common point to the plane is 

(b) Compute its value for 
in cylindrical coordinates, and in

spherical coordinates, at the point in Cartesian coordinates.
R1.3. Sphere inscribed in an equilateral tetrahedron inscribed in a sphere. Find the

edge length of the largest equilateral tetrahedron that can be fit inside a sphere
of radius unity. Then find the radius of the largest sphere that can be fit inside
that tetrahedron.

R1.4. Equation for a curve traversed on a sphere. Consider an observer always mov-
ing in the southeast direction on the surface of a spherical Earth of radius a,
starting at the Greenwich meridian on the equator. (a) Find the equation for the
curve traversed by the observer, using a spherical coordinate system with the

113, 3, 22
13 au + 2af2C = 1

413ars +1
21arc - 13 af2

A = 2az, B =ƒ A � B + B � C + C � A ƒ .
ƒ A # B � C ƒ >

16ax - 5ay - 2az2.
D =A = 1ax + ay2, B = 1ax + 2ay - 2az2, C = 1ax - ay2,

F =
C � D
A # D

= -  
C � D

B # C

B � F = D,A � F = C

A � 1B � C2 = 1A # C2B - 1A # B2C

1m + n2.
1mv1 + nv22>1m + n2

v2v1

v6 = 1v0>4213ax + ay2.v5 = v01ax + ay2,v4 = 0,
F6F4, F5,

 F3 = qE0 az for v3 = v01ax + 2ay2
 F2 = 0  for v2 = v0 ay

 F1 = 0  for v1 = v0 ax

F3F1, F2,

 F3 = 0      for v3 = v0 az

 F2 = qE01ax - ay - az2 for v2 = v0 ay

 F1 = qE01ax - ay + az2 for v1 = v0 ax

E0v0
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origin at the center of Earth, the North Pole at and corresponding
to the Greenwich meridian. (b) Find the first two values of the south latitude
when the observer is again on the Greenwich meridian. (c) Does the observer
ever reach the South Pole?

R1.5. Three point charges on a semicircle. Consider the arrangement of three point
charges and as shown in Fig. 1.43, where and are fixed
and is constrained to move on the semicircle. (a) Find the value of in terms of
k for which is in equilibrium. (b) Find the numerical value of for k = 8.aQ2

aQ2

kQ1Q1Q2,Q1, kQ11k 7 02,

f = 0,u = 0,

FIGURE 1.43

For Problem R1.5.
Q1

Q2

kQ1a a

a

a

R1.6. Finitely long line charge distribution of nonuniform density. Consider a line
charge distribution along the z-axis between and (a) Show that,
if the charge density is an even function the electric field intensity at a
point has only an r-component, and set up the integral expression for it.
(b) Show that, if the charge density is an odd function the electric field in-
tensity at has only a z-component, and set up the integral expression
for it. (c) Given that the charge density is

express f(z) as the sum of even and odd functions and and evaluate
the electric field components.

R1.7. Magnetic flux density due to a wire of current with straight and curved seg-
ments. Current I flows along a wire which is straight from to a on the x-axis,
circular from (a, 0, 0) to (0, a, 0) and lying on the xy-plane in the sense of in-
creasing and then from a to on the y-axis. Find B at (0, 0, a).

R1.8. Magnetic field due to a nonuniform current distribution between two planes.
Current is distributed with density in the volume between the
planes and Show that the magnetic flux density due to the cur-
rent distribution is given by

R1.9. Movement of a test charge in a region of uniform electric and magnetic fields.
Consider a test charge moving with constant velocity 
in a region of a uniform electric field of intensity and
a uniform magnetic field of flux density Is this in-
formation sufficient to find uniquely and If not, given that v is per-
pendicular to B, find and in terms of and v0.E0Bz0Bx0, By0,

Bz0?Bx0, By0,
B = Bx0 ax + By0 ay + Bz0 az.

E = E012ax + ay - 2az2
v = v012ax - 2ay + az2

B = c
m0 J0

2a
 1a2 - y22ax for -a 6 y 6 a

0 otherwise

y = a.y = -a
J01y/a2az A/m2

qf,

q

f21z2,f11z2
f1z2 = e4pe01a + 2z2 for -a … z … 0

4pe0 a for 0 … z … a

1r, f, 02
f21z2,

1r, f, 02
f11z2,

z = a.z = -a
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