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Abstract
Pneumatic otoscopy is the recommended diagnostic method for middle ear infections. Physicians
use a pneumatic otoscope to assess the position of the eardrum (bulging or retraction) as well as the
eardrum mobility while an insufflation bulb is squeezed to generate air pressure changes in a sealed
ear canal. While pneumatic otoscopy provides increased sensitivity and specificity by detecting
decreased eardrum mobility, there exist many challenges to correctly perform and interpret results.
For example, the ear canal must be sealed using a specialized ear speculum to deliver sufficiently
large pressure changes that can induce visible movements of an eardrum. To overcome this
challenge, video motion magnification is proposed to amplify pneumatic-induced motions of the
eardrum without sealing of the ear canal. Pneumatic otoscopy is performed on adult subjects using
a smartphone camera with an otoscope attachment at 60 frames per second, with pressure inputs
at 5 Hz. Phase-based Eulerian motion magnification is applied to magnify spatiotemporal
dependent motions in the video. As a result, the motion magnification of unsealed pneumatic
otoscopy reveals comparable eardrummotions as in standard pneumatic otoscopy with a sealed ear
canal. Furthermore, the estimated motions (in pixels) are quantified to examine the spatial and the
temporal variations of the eardrum motions. The motion magnification may avoid the need for
sealing the ear canal as well as decrease patient discomfort in pneumatic otoscopy, improving the
capability and the usability as a point-of-care diagnostic tool in primary care and otology.

1. Introduction

A middle ear infection, or otitis media, is a leading cause of primary care visits worldwide during childhood.
Middle ear infections occur when inflammation is present within the middle ear, primarily due to bacterial
or viral pathogens [1]. More than 80% of children before the age of 4 have at least one episode [2], and its
financial burden remains substantial, estimated to be around $5 billion annually [3, 4]. A middle ear
infection is clinically characterized by the presence of accumulated middle ear fluid, known as a middle ear
effusion (MEE), in a normally air-filled middle ear cavity. Persistent MEEs may lead to conductive hearing
loss and developmental delays, as the eardrum vibrations will not effectively be transmitted to the inner ear.

Clinical diagnosis of middle ear infections can be difficult due to the anatomical location of the middle
ear. In order to establish a diagnosis, physicians must identify the presence of a MEE, located behind the
eardrum. The standard method to diagnose middle ear infections is to use an otoscope, a tool that provides a
magnified surface view of the eardrum. Otoscopic features, including bulging and opacity of the eardrum,
can be non-invasively examined. Nonetheless, otoscopy alone may not be sufficient for the diagnosis unless
the presence of a MEE is clearly visualized behind the eardrum [5–7]. Clinical guidelines therefore
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recommend the examination of eardrum mobility via pneumatic otoscopy [6, 7]. A pneumatic otoscope
combines a standard otoscope with an insufflation bulb to generate variations in air pressure. The presence
of a MEE will significantly decrease the eardrum mobility. Many studies have shown that pneumatic
otoscopy provides increased sensitivity and specificity among middle ear diagnostic tools, such as standard
otoscopy, tympanometry, and acoustic reflectometry, but only if performed and interpreted correctly [8–10].
Pneumatic otoscopy is often described as being difficult to perform correctly, and as a result, is rarely used in
practice [8, 11, 12].

To correctly perform pneumatic otoscopy, the ear canal must first be sealed using a specialized ear
speculum (specula with rubber rings) in order to deliver variations in air pressure to the eardrum. Second,
the magnitude of the pressure should be large enough so that the eardrum movement can be visualized by
otoscopy, yet safe enough to prevent any rupture of the eardrum. Third, the air pressure from the pneumatic
bulb should provide both negative and positive pressure to generate bidirectional movement of the eardrum.
In addition, due to the pressure changes in the sealed ear canal, pneumatic otoscopy can often lead to patient
discomfort [8]. Lastly, one must ensure that the pneumatic otoscope itself does not have a pressure leak. To
interpret the results from pneumatic otoscopy, physicians must detect subtle (<1 mm) and fast (<1 s)
movement of an eardrum. When a MEE is present, eardrum mobility will be decreased and disrupted.
However, decreased eardrummobility will also be observed when the ear canal is not properly sealed, thereby
compromising the diagnostic potential of this technique.

Motion magnification is a video processing technique that amplifies subtle motions in the video. By
amplifying the spatiotemporal changes between frames, one study reconstructed magnified motion from the
human pulse, oscillating guitar strings, and other visibly subtle motion [13]. This linear Eulerian video
magnification captures the small changes in color intensity values over time, at the frequency of interest.
Although linear Eulerian video processing can magnify subtle motion without heavy computation, this
method can be affected by noise, especially with larger magnification [14]. Recently, a Eulerian approach was
developed based on phase (complex-valued) changes in images [14]. This method employs the fact that
phase variations in one domain are equivalent to spatial translations in another domain via the Fourier shift
theorem. As a result, phase-based Eulerian video processing amplifies subtle motion while suppressing noise,
compared to the linear Eulerian processing method.

Motion magnification has great potential in biomedicine by identifying and visualizing motions that are
not easily visible with the naked eye. For example, one study applied linear Eulerian video magnification to
improve free flap monitoring during surgery [15]. Based on subtle color changes in arteries and veins, blood
supply and blockages can be monitored during surgery with motions magnified at frequencies around the
heart rate (1.2–1.4 Hz). Furthermore, vibration patterns of a membrane exposed to acoustic stimuli have
been visualized through motion magnification [16], showing the potential of this algorithm for applications
in remote hearing or monitoring. Phase-based Eulerian motion magnification has recently been applied to a
healthy adult subject to visualize eardrum vibration from a sound signal at 60 Hz [17]. However, detecting
the acoustic mobility of the eardrum was essentially limited by the frame rate of the camera, since audible
frequencies range from 20 to 20 000 Hz for humans.

In this paper, motion magnification is employed to visualize pneumatic-induced motion of the human
eardrum without sealing the ear canal. Sealing the ear canal is one of the main challenges and barriers to the
wide-spread practical use of pneumatic otoscopy, since a special ear speculum is required to seal the ear
canal. Nonetheless, pneumatic otoscopy has the capability of non-invasively examining the eardrum
mobility, enhancing the diagnostic accuracy of middle ear infections. Phase-based Eulerian motion
magnification developed by Wadhwa et al [14] is applied to the videos acquired from a high frame-rate
smartphone camera with an otoscope attachment. Furthermore, quantitative analysis is performed to
compare motions from different regions on the eardrum. If the pneumatic-induced motions of eardrums can
be identified and assessed without sealing the ear canal, pneumatic otoscopy will become a more reliable and
accessible point-of-care diagnostic method in primary care, pediatrics, and otology.

2. Methods

2.1. Principles of phase-based Eulerian motionmagnification
Phase-based Eulerian motion magnification was developed by Wadhwa et al based on earlier works in
Eulerian motion magnification [13]. Eulerian motion magnification utilizes spatial decomposition of each
frame in the input video, and a temporal filter is applied to select the motions at the frequency of interest.
Then, the filtered motion signals are multiplied with a pre-defined number to amplify the small motions.

To mathematically describe the motion magnification algorithm, an image I(x) in one dimensional (1D)
space is assumed. The 1D image I(x) has a small motion at time t, described bym(t). From the input with
true motion, I(x+m(t)), we want to generate the output with magnified motions at a certain frequency.
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First, the 1D image with the true motion can be spatially decomposed using Fourier series decomposition
and complex sinusoids with frequency ω,

I(x+m(t)) =
∞∑

ω=−∞
Aωe

iω(x+m(t)). (1)

The term on the right side of the equation (1) indicates a sum of complex sinusoids, where the
exponential term (phase) contains the motion information from the input image. From the Fourier shift
theorem, we know that the time shifting in one domain (motions) is equal to the multiplication of the phase
term in another domain. Thus, by modifying this phase term at a specific frequency, one can amplify the
motions of interest.

In order to amplify only the motions of interest, a filter is applied to select the frequencies of interest.
Assuming that we know a range of frequencies in the motion,m(t), the phase ωx+ωm(t)can be bandpass
filtered to remove the DC component ωx, resulting in

B= ωm(t) . (2)

Then, the specific motion can be magnified in each term by an amplification factor, α, in equation (1) as,

Aωe
iω(x+m(t))eiαB = Aωe

iω(x+m(t))eiαωm(t) = Aωe
iω(x+(1+α)m(t)). (3)

Equation (3) shows the input with only motionm(t) amplified by the factor 1+α. This process can be
scaled up for two dimensional (2D) datasets or images. It is also noted that the changes in motions at
different locations in 2D are computed by the same process as described for equations (1) through (3).

For the case of phase-based motion magnification, the spatial decomposition is performed using a
complex steerable pyramid, a technique in signal processing and computer vision to understand an image
with a range of scales and orientations [18]. In addition, the phase is separated (equation 1) from the
amplitude in each frame of multi-scale and multi-orientation. The spatiotemporal changes in the phase are
analyzed by applying temporal filters to select the motions of interest (equation 2). Then, the bandpass
filtered motions are magnified (equation 3) and combined with the amplitude to reconstruct the magnified
video. More details about the algorithm can be found in Wadhwa et al [14]. In summary, each frame of a
video is decomposed based on a wide range of complex values, and the temporally band-passed phase is
modified to magnify spatial motion.

2.2. Experimental methods
To investigate a feasibility of the motion magnification algorithm to amplify the motions of the human
eardrum, three adult volunteers were recruited at the Beckman Institute for Advanced Science and
Technology (Urbana, IL) under a protocol approved by the institutional review board (IRB) at the University
of Illinois at Urbana-Champaign. A standard 226 Hz tympanometry (TM286 AutoTymp, Welch-Allyn) was
used to measure the compliance of an eardrum and the middle ear pressure. Pneumatic video otoscopy and
tympanometry were performed in a typical exam room. The subjects were asked to lie down on an
examination bed for stable measurements during pneumatic video otoscopy. The subjects with the normal
condition of the middle ear (n= 2) did not have any previous or recent middle ear disease or symptoms.
These two subjects’ tympanograms revealed a type ‘A’ tympanogram showing a narrow, peak acoustic
compliance. One adult volunteer complained of ‘ear fullness’ and had a type ‘As’ tympanogram, indicating
decreased eardrum mobility. This subject also had previous middle ear infections as a child.

A smartphone (iPhone 6, Apple, Cupertino, CA) with an otoscope attachment (OTO, CellScope) was
used to acquire videos of the pneumatic-induced motions of the eardrums at a frame rate of 60 Hz and with
720 p resolution. The otoscope attachment contained an insufflation port for pneumatic otoscopy. Standard
disposable otoscope specula were used during imaging under non-sealed conditions. In order to verify the
processed motions, systematic and consistent pressure inputs were utilized. A custom-designed pressure
generator based on a voice coil and bellow from a previous study [19] was employed. The sinusoidal pressure
(peak amplitude of±150 daPa, when properly sealed) at 5 Hz was applied via plastic tubing connected to the
insufflation port. A frequency of 5 Hz was selected to avoid potential motion artifacts and motion due to the
heart rate, which occurs around 1 Hz. For comparison to standard pneumatic otoscopy with a sealed ear
canal, a silicone earbud was used with a speculum to form a proper seal of the ear canal. As a baseline
measurement, videos of motion without sealing of the ear canal, and without any pressure inputs, were also
acquired. Since the measurement is in a video format, one video measurement contains multiple repeats of
movements, depending on the frequency of the induced pressure transient and the length of the video. The
number of repeats can be adjusted by taking a longer measurement. In general, around five separate video
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Figure 1. Schematic diagram of (a) the experimental setup and (b) a graphical illustration of the motion magnification algorithm.

measurements were taken for the study. A schematic diagram describing the experimental method is shown
in figure 1.

2.3. Applying phase-based Eulerian motionmagnification
The acquired videos were cropped to select the regions of interest. The start and the end of the videos were
not used for the magnification algorithm to avoid potential motion artifacts. No stabilization of the videos
was performed. Phase-based Eulerian motion magnification was performed on acquired videos in MATLAB
(R2017b, MathWorks, MA) on a personal computer (Alienware i9 with 32 GB RAM). An octave-bandwidth
pyramid with two orientations was used to decrease the processing time. Motions in the frequency range of
4.9–5.1 Hz were chosen to be amplified. The magnification factor (α) was set empirically to 15 for videos
with an unsealed ear canal, and to 10 for videos with a sealed ear canal for visualization purposes. All
parameters were consistent between measurements and subjects.

2.4. Analytical methods
A spatiotemporal slice is an effective two-dimensional representation of the video results. In order to
quantify and compare the pneumatic motion, a spatiotemporal slice was generated for a line of interest over
100 frames (duration of 1.68 s with 60 Hz acquisition). The slice can validate the motion frequency, as well as
the relative amplitude of the motion. In addition, the spatiotemporal slices at different spatial locations were
examined to investigate the spatial and temporal dependence of the pneumatic mobility.

From the spatiotemporal slices, the amplitudes of the motions (in pixels) can be extracted. Each
spatiotemporal slice was converted into a binary image, and the motions of interest in each spatiotemporal
slice were segmented and quantified to determine the amplitudes. By comparing different regions, the spatial
and temporal variations of pneumatic eardrum mobility can be investigated. No averaging was performed
during the quantification.

3. Results

3.1. Pneumatic eardrummotion with a sealed ear canal
First, pneumatic-induced motion of an eardrum with a sealed ear canal, as in standard pneumatic otoscopy,
is amplified to validate the motion magnification algorithm. Representative frames from the original
(unmagnified) video and the motion magnified video are shown in figures 2(a) and (b), respectively.
Multiple regions of interest are selected to represent different areas and features on the eardrum. The
spatiotemporal slices on the lines of interest over 1.68 s (100 frames total) are displayed in figures 2(a-1)
through (a-4) and figures 2 (b-1) through (b-4).

Since some regions (inferior) of the eardrum do not exhibit obvious structural features at the original
dynamic range of the camera, the contrast of colors (RGB) is adjusted to visualize subtle features. With
sinusoidal pressure inputs at 5 Hz, around 8 cycles of pneumatic-induced motion over 1.68 s was expected. It
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Figure 2. Comparison of (a) original and (b) motion magnified results showing pneumatic-induced motion of an eardrum with a
sealed ear canal. The spatiotemporal slices for the blue, green, red, and yellow lines are shown in (a-1 through a-4 and b-1
through b-4, respectively). Note that around 8 peaks of the cyclical motion are visible from the spatiotemporal slice. (c)
Comparison of motions at the blue line of interest between original and motion magnified results. (d) Spatial and temporal
variations of eardrum mobility can be examined after the motion is amplified. This dataset was acquired from a healthy adult
volunteer, subject 1. The original and the motion magnified video results can be found in video 1 (available online at
stacks.iop.org/JPPHOTON/2/034004/mmedia).

is noted that both the motion magnified results and the original video show consistent pneumatic motion at
5 Hz, since the ear canal was properly sealed and sufficiently large pressure amplitudes were delivered. After
motion magnification, exaggerated motions of the eardrum are visualized in figure 2(b).

In figure 2(c), the amplitudes of the motions on the blue lines of interest are compared after motion
magnification. The magnification captures the same pneumatic-induced motion detected by the original
video, but with a greater amplitude. Note that this amplitude can be adjusted using the magnification factor,
α. In addition, more consistent and clearer temporal motions are identified after the motion is magnified.
The magnified motions allow spatial and temporal comparison of the pneumatic-induced motion, as shown
in figure 2(d). The smallest motions are identified around the light reflex region (b-3), whereas the larger
motions are identified in the upper region (posterior). The light reflex region refers to a consistent region on
the eardrum that reflects the most amount of the incident light from the ear canal. This feature is often used
as a guide to examine the eardrum. Such spatial variations in the pneumatic mobility agreed with a previous
study based on computed tomography (CT) images and finite element modeling (FEM) [20]. Furthermore, a
temporal delay is also observed among different regions of the eardrum. There was a temporal lag of around
80 ms between the motion captured from the light reflex region compared to the motion captured from the
superior region of the eardrum.

3.2. Pneumatic-induced eardrummotion with an unsealed ear canal
In general, pneumatic-induced motion of the eardrum is not visible with the naked eye without sealing the
ear canal, because an insufficient pressure amplitude is delivered to the eardrum to induce large motion.
Here, motion magnification is applied to the video acquired from pneumatic otoscopy without sealing the
ear canal in order to visualize subtle motions on the eardrum. Representative frames from the original and
the motion magnified videos for the case of an unsealed canal are shown in figure 3, along with the
spatiotemporal slices of interest. The slices in figure 3 indicate that the motion at 5 Hz can be clearly
visualized only after the motion magnification is applied. In figure 3(c), the motions on the blue line of
interest are plotted after the magnification. Interestingly, subtle motions at 5 Hz are visualized from the
original video, but greater motions at around 1 Hz (possibly due to heart rate) dominate the overall
movement, concealing other smaller amplitude motions. After the motion at 5 Hz is magnified, however, the
pneumatic-induced motion is identified. Similar to figure 3(d), the spatial and temporal variations of
eardrum mobility can be examined without sealing of the ear canal. In this example, there was a temporal
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Figure 3. Comparison of (a) original and (b) motion magnified results showing pneumatic-induced motion of an eardrum
without sealing the ear canal. The spatiotemporal slices for the blue, green, red, and yellow lines are shown in (a-1 through a-4
and b-1 through b-4, respectively). Note that the motion magnification reveals around eight peaks of the cyclical motion. (c)
Comparison of motions at blue line of interest between the original and motion magnified results. (d) Spatial and temporal
variations of the eardrum mobility can be examined after motion is amplified. This dataset was acquired from a healthy adult
volunteer, subject 1. The original and the motion magnified video results can be found in video 2.

difference of around 60 ms between the motion captured from the region of the light reflex compared to the
motion captured near the Pars flaccida (upper region, yellow) of the eardrum.

Baseline or background measurements are important since noise is often composed of a wide range of
frequencies, with some potentially overlapping with the frequencies of interest. To validate that the motion
magnification captures true movement, a control experiment was conducted without sealing the ear canal,
and without any pressure input. Note that the measurements in figures 2 and 3 were taken from the same
healthy adult volunteer, for direct comparison of the sealing conditions and the baseline measurements. The
motion magnification algorithm was applied to this control video using the same parameters as in previous
cases (frequency range from 4.9 to 5.1 Hz to be amplified with an amplification factor of 15). A
representative frame from the baseline/background measurement is shown in figure 4. Note that there exist
small fluctuations in the baseline measurement without pressure changes. This baseline noise is from
minimal movements of the subject during the measurement, and contains a rage of frequencies. Since the
algorithm is set to amplify any 5 Hz phase variations and the subject cannot be immobile, any inherent noise
is magnified, as visualized in figure 4(b). However, the peak-to-peak amplitude of the pneumatic-induced
motion is around 8–10 times greater than that of the noise (figure 4(b)). This validates that phase-based
Eulerian motion magnification amplifies the true pneumatic-induced motion of an eardrum, but that
background noise is present.

3.3. Comparison of motions from sealed and unsealed ear canals
Ultimately, it is essential to determine if unsealed pneumatic otoscopy with motion magnification can
produce similar results as properly sealed standard pneumatic otoscopy. The magnified motions without
sealing the ear canal are compared with the original (unmagnified) pneumatic motions after sealing the ear
canal. In figure 5(a), unsealed pneumatic otoscopy with motion magnification reveals a sinusoidal 5 Hz
signal from the light reflex region as in standard pneumatic otoscopy, but with increased amplitude of the
motion. In addition, figure 5(b) shows similar 5 Hz motion from the superior region on the eardrum with
comparable amplitudes. The relative amplitudes of the magnified motions from the light reflex region were
less than those in the posterior-superior region of the eardrum, as expected from previous results [20]. Thus,
depending on the eardrum region, motion magnification can generate greater or comparable pneumatic
motion images or signals as in standard pneumatic otoscopy. Additional video datasets comparing properly
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Figure 4. Baseline motion magnified results from the video acquired with no pressure inputs and without sealing the ear canal.
Note that although the algorithm captures noise at 5 Hz, the motions are subtle and much less compared to figures 1 and 2. (b)
Plot comparing the amplitudes of the motions with 5 Hz pressure input and the baseline measurement. This dataset was acquired
from a healthy adult volunteer, subject 1.

Figure 5. Comparison of magnified eardrum motions with an unsealed ear canal versus the original eardrum motions with a
sealed ear canal. (a) Comparison of motions near the light reflex region. (b) Comparison of motions near the posterior-superior
regions on the eardrum.

sealed pneumatic otoscopy and unsealed pneumatic otoscopy with motion magnification can be found in
video 3. Video 3 was acquired from a second healthy adult volunteer, subject 2.

3.4. Pneumatic-induced eardrummotion with decreased eardrummobility
In order to assess decreased eardrummobility with the motion magnification algorithm, unsealed pneumatic
otoscopy was performed on an adult volunteer who complained of ‘ear fullness’. The subject had a type ‘As’
tympanogram with a compliance of 0.1 cm3. In general, a compliance of 0.3 cm3 or above is considered as
normal. The middle ear pressure and the ear canal volume were determined to be−40 daPa and 0.9 cm3,
respectively, and both values are within a normal range. The subject had slightly bulging eardrums as well as
scarring on the eardrums, shown in figure 6(a). For unsealed pneumatic otoscopy, the magnitude and
frequency of sinusoidal pressure inputs as well as the parameters for the motion magnification algorithm
remained the same as those employed in the normal cases. Figure 6(b) shows the motion magnified results
with spatiotemporal slices showing 5 Hz motion. Figures 6 (c) and (d) describe the cyclical motion,
compared with the motion from two healthy subjects. The two normal eardrums had a compliance of
0.5 cm3 and 0.4 cm3, determined from tympanometry. The peak-to-peak motion amplitude of the normal
middle ear was around 2–4 times greater than that of the less compliant eardrum, depending on the region.
Interestingly, there was much less (around 0–20 ms) temporal lag of motions between the two regions (blue
and red line) of interest. This might be due to an increased stiffness of the eardrum in response to the
pressure changes. The video dataset comparing the normal eardrum and the eardrum with decreased
mobility is shown in video 4.
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Figure 6.Motion magnified pneumatic-induced motion of the subject with decreased eardrum mobility. This subject obtained a
type ‘As’ tympanogram with a peak compliance of 0.1 cm3. (a,b) High-resolution otoscopy images of the eardrum, where scarring
and slight bulging of the eardrum are identified. (c,d) Plots of cyclical motion from the blue and red lines of interest (around light
reflex), respectively. The amplitudes of the motion are around 2–4 times less than those from the two normal middle ear
conditions.

4. Discussion

4.1. Capability of motionmagnification for assessing eardrummobility
Non-invasive assessment of eardrum mobility is challenging. Pneumatic otoscopy is the standard method to
examine the pneumatic-induced mobility of the human ear for the diagnosis of otitis media (an ear
infection). However, it is difficult to perform and results are difficult to interpret due to several reasons. The
complex and dynamic motions of the eardrum contain both lateral and axial (in and out of plane)
movements, which require information in three dimensions for the appropriate assessment. While features
on the eardrum can be used to help track these motions, the visible surface features of the eardrum are
largely limited to only the light reflex (cone of light), the umbo, and the malleus. A few studies have been
performed using quantitative pneumatic otoscopy, where videos of mobility are quantified and analyzed
based on the locations and angles of the malleus and the umbo [21, 22]. However, the difficulties associated
with the preparation and manipulation of pneumatic otoscopy remain the same, hindering the broader
applicability of such quantitative analysis. More advanced research tools can quantitatively and accurately
measure the pneumatic eardrum mobility. For example, optical coherence tomography (OCT) can measure
pneumatic mobility of human eardrums in vivo [19, 23]. However, OCT is not currently used in clinics, and
is more expensive compared to a standard or pneumatic otoscope.

Motion magnification can be a valuable add-on tool for pneumatic otoscopy since this processing
algorithm can avoid the need for sealing the ear canal, can provide quantitative measures of the eardrum
motions, and is affordable. We demonstrated that the video magnification can amplify eardrum motions in
pneumatic otoscopy with and without sealing of the ear canal. The amplified eardrum motions show
different spatial and temporal responses, which may be useful for studying different middle ear diseases. In
the normal middle ear, we observed that the superior regions on the eardrum have greater displacements
than the region near the light reflex. There was also a temporal variation between the eardrum motion from
different regions of the eardrum. From the middle ear with low compliance, we observed around 2–4 fold
lower peak-to-peak amplitudes of magnified motion compared with that of the normal middle ear. In
addition, much less temporal variation between regions of the eardrum was determined, emphasizing the
potential of this technique to differentiate diseased from normal middle ear conditions. Although this study
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used a smartphone with an otoscope attachment, similar results can be obtained from a readily available
video otoscope (Welch-Allyn Digital Macroview) that offers a sufficient camera frame-rate of 30 Hz for
capturing motions around 2 to 5 Hz, a typical frequency range of pressure inputs by physicians using
pneumatic otoscopy [24].

4.2. Significance of seeing pneumatic-induced eardrummotions with an unsealed ear canal
According to a recent study from 370 clinicians (70% of which were pediatricians and 30% of which were
otorhinolaryngologists), around 90% of clinicians regularly use standard otoscopy, whereas only 17% of
clinicians use pneumatic otoscopy [12]. The reasons include that the instrument was absent in clinics
(92.4%), that pneumatic otoscopy was considered useless (2.4%), and that the physicians had inadequate
experience for its use (5.1%) [12]. All of these responses were in spite of the established guidelines [6, 7, 11]
that pneumatic otoscopy should be used for the diagnosis of otitis media. The standard instrument for
diagnosis includes an otoscope with a pneumatic port, an insufflation bulb, and a specialized ear speculum
with a rubber ring to pressure-seal the ear canal. The limited adoption and use suggest that developing
experience and skills to manipulate a pneumatic otoscope to obtain and maintain a pressure seal of the ear
canal is the critical barrier for physicians to perform pneumatic otoscopy in practice [11, 12].

When the ear canal is properly sealed with a special ear speculum, and the seal is maintained (often in the
presence of a fidgety infant who may be in pain from their ear infection), pneumatic motions are estimated
to be around a few hundreds of micrometers, which are visible with the naked eye during otoscopy. During
the diagnostic procedure, the subject can feel the pressure-induced movement of his/her eardrum, and may
also feel uncomfortable during the measurement. Thus, magnification of eardrum motions without having
to seal the ear canal not only simplifies this method for clinicians, but also minimizes the discomfort for
patients [8].

In this paper, we showed that motion magnification can amplify subtle pneumatic-induced motions of
the eardrum without a specialized ear speculum, and can visualize even larger-amplitude motions than
pneumatic otoscopy with a sealed ear canal (figure 5). Furthermore, the algorithm allows quantitative
analysis of the pneumatic motions themselves. Lastly, it is worthwhile to emphasize that the motion
magnification algorithm does not create the observed movements, and the magnified background noise is
noticeably different compared with those from the pneumatic-induced motions (figure 4). Because a
standard ear speculum partially fills and seals the ear canal, it is therefore possible to deliver much less
pressure to the ear canal and then magnify eardrum motions, compared to the need to fully seal the ear canal
and deliver larger pressure amplitudes in order to visualize eardrum motions with the naked eye.

4.3. Limitations and future work
While motion magnification without the need to seal the ear canal provides a new method to examine the
pneumatic-induced mobility of an eardrum, this study has several limitations for determining its diagnostic
utility. First, the subject (patient) is required to remain still during the measurement, since large physical
movements of the head or body can cause motion artifacts. Having subjects lie down on an exam bed, as was
done in this study, can help with stabilization. The effect of the noise is also illustrated in figure 4. Second,
consistent pressure inputs (both amplitude and frequency) from a custom-built pressure system were used in
this study, which would not be immediately available in clinics. However, the frequency range of interest for
the motion magnification algorithm can be adjusted by the user. The frequency of pressure inputs by a
hand-squeezed insufflation bulb varies between clinicians, and can range from 2 to 5 Hz [24]. Third,
although quantitative analysis was performed based on the relative amplitudes of the motions, the absolute
amount of eardrum displacement cannot be measured with a pneumatic otoscope due to the axial
movements of the eardrum. Recent advances in the use of OCT for imaging and quantifying the eardrum
and its dynamics, however, would enable quantitative displacement measures on the micron scale [19, 23].
Fourth, the number of datasets presented in this initial study was limited, as the focus was on assessing the
feasibility of motion magnification in pneumatic otoscopy. A future study will not only include a larger
number of subjects to assess statistically different conditions, but will also include both normal and various
pathological ear conditions to determine how magnified motions can be used for clinical diagnosis of
different ear diseases.

In addition, the absolute amplitudes of the amplified motions may not be used for direct comparisons
between different optical imaging systems and between adults and pediatric subjects. Imaging systems can
have different parameters, such as magnification, pixel resolution, and frame rate. In this study, the
magnification was kept constant (auto-focus lock feature) during motions. The standard otoscope tips that
we used in the study behave as a mechanical spacer, since the shape of the tip prevents it from being inserted
deeper into the ear canal. Nonetheless, the imaging distance and magnification are dependent on the length
and anatomy of each individual ear canal, just as in standard otoscopy. We believe that the shorter distance
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between the speculum and the eardrum may give more accurate measurements. A higher frame rate and
better pixel resolution may also provide more reliable measurements. For further investigations, more
standardized tests are necessary to generate a normalized range for healthy eardrum movements that can be
used between different optical imaging systems.

A video stabilization technique that does not affect the motion magnification will be helpful in order to
apply this method to pediatric subjects. In addition, recent work on amplitude-based filtering for video
motion magnification by Wu et al [25] may improve the accuracy of detecting pneumatic-induced motions
even in the presence of larger motion. Lastly, a standardized, objective system for pneumatic otoscopy needs
to be developed with a user-friendly, embedded platform for practical use of the motion magnification
algorithm.

Motion magnification of video-based image data has other applications in biomedical imaging. Here,
motion magnification was used to amplify subtle (sub-millimeter scale) motions visualized from a standard
smartphone camera. If this algorithm is combined with more advanced and sensitive phase-based optical
imaging systems that capture nanometer-scale eardrum motions, as in phase-resolved OCT [26], the motion
magnification may reveal the nano-scale displacements of the eardrum associated with hearing.

5. Conclusion

Examining pneumatic-induced eardrum mobility is important for the diagnosis of middle ear infections.
However, sealing the ear canal is required in order to observe the eardrum motions via otoscopy, since visible
motions (few hundreds of micrometers) of the eardrum must be induced by the pressure. In this study,
motion magnification based on the spatiotemporal changes in phase is employed to amplify subtle
pneumatic-induced motions of the eardrum without having to seal the ear canal. The magnified motions
were visualized with amplitudes comparable to those generated by standard pneumatic otoscopy.
Furthermore, much less motion was identified after the motion magnification in the case of decreased
eardrum mobility. Quantification and comparison of the relative amplitude and temporal response of the
motions were performed for different regions of the eardrum, which may be useful for detecting the
disrupted eardrum mobility that occurs during middle ear infections.
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